JP2004351367A - Photocatalyst carrier and production method therefor - Google Patents

Photocatalyst carrier and production method therefor Download PDF

Info

Publication number
JP2004351367A
JP2004351367A JP2003154282A JP2003154282A JP2004351367A JP 2004351367 A JP2004351367 A JP 2004351367A JP 2003154282 A JP2003154282 A JP 2003154282A JP 2003154282 A JP2003154282 A JP 2003154282A JP 2004351367 A JP2004351367 A JP 2004351367A
Authority
JP
Japan
Prior art keywords
photocatalyst
fibers
melting point
fiber
nonwoven fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003154282A
Other languages
Japanese (ja)
Inventor
Akihiro Kato
陽弘 加藤
Akio Mukai
昭雄 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okaya Electric Industry Co Ltd
Original Assignee
Okaya Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okaya Electric Industry Co Ltd filed Critical Okaya Electric Industry Co Ltd
Priority to JP2003154282A priority Critical patent/JP2004351367A/en
Publication of JP2004351367A publication Critical patent/JP2004351367A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photocatalyst carrier which can increase the surface area of a photocatalyst carried by a substrate and which can be easily handled, and also which can be easily produced. <P>SOLUTION: The substrate 14 is formed from a nonwoven fabric made of a mass of entangled fibers 12. The photocatalyst carrier 10 carries the photocatalyst 16 on the surface of the fibers 12 composing the nonwoven fabric. The production method for the photocatalyst carrier 10 comprises: a process of forming an aggregate of compound fibers 22 by coating the fibers 12 made of a high temperature melting material with fibers 20 made of a low melting point material; a process of heating the aggregate at a higher temperature than the melting point of the fibers 20 made of the low melting point material and at a lower temperature than the melting point of the fibers 12 made of the high melting point material so as to melt only the fibers 20 made of the low melting point material, and forming the substrate 14 from the nonwoven fabric by bonding the crossing parts of the fibers 12 made of the high melting point material with the molten fibers 20 made of the low melting point material; and a process of bonding the photocatalyst 16 in particle form on the surface of the fibers 12 composing the nonwoven fabric through the molten fibers 20 made of the low melting point material. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、基体に光触媒を担持させて成る光触媒担持体に係り、特に、基体に担持する光触媒の表面積が大きいと共にその取扱いが容易であり、尚且つ製造容易な光触媒担持体及びその製造方法に関する。
【0002】
【従来の技術】
酸化チタン(TiO)等の光触媒は、紫外線の照射を受けると活性化して強力な酸化還元作用を生じ、窒素酸化物(NO)、硫黄酸化物(SO)等の有害化合物や汚濁物等を効果的に分解する作用を発揮するものであることから、基体に光触媒を担持させて成る光触媒担持体を用いて空気や水の浄化を行う試みが成されている。
ところで、上記光触媒による有害化合物や汚濁物等の分解は、これら有害化合物や汚濁物等が光触媒に接触することによって生じる作用である。従って、光触媒による空気や水の浄化能力を向上させるためには、光触媒の表面積をできるだけ拡大することが望ましい。
【0003】
そこで、本出願人は、先に、基体の表面に、表面を光触媒で被覆された多数の繊維状体を、上記基体表面に対して立設状態で被着して成る光触媒担持体を提案した(特願2002−311043号)。
図10に示すように、この光触媒担持体60は、ガラス、樹脂、金属等の適宜な材料より成る平板状の基体62の表面に、アナターゼ型の酸化チタン(TiO)より成る光触媒64で被覆された多数の細長い繊維状体66が、接着剤68を介して、上記基体62表面に対して略垂直に立設状態で被着されている。この繊維状体66は、図11及び図12に示すように、ガラス繊維や樹脂繊維等の繊維70の表面に光触媒64をコーティングして構成されているものである。
【0004】
上記光触媒担持体60における繊維状体66表面の光触媒64に、図示しない紫外線ランプ等からの紫外線が照射されると、光触媒64が活性化して該光触媒64表面に接触した空気や水の浄化を行うことができるのである。
而して、上記光触媒担持体60にあっては、光触媒64で被覆された多数の繊維状体66を、基体62表面に対して略垂直に立設状態で被着したことから、基体62の表面積が、被着された多数の繊維状体66の表面積分増大することとなり、この結果、基体62表面に配置される光触媒64の表面積を飛躍的に拡大することができるのである。
【0005】
上記光触媒担持体60において、基体62表面への繊維状体66の被着は、静電植毛法を用いて行われる。これは、繊維状体66を、静電気を利用して立毛させた状態で、接着剤68の塗布された基体62表面に植毛するものである。
【0006】
【発明が解決しようとする課題】
上記光触媒担持体60は、基体62の表面に、光触媒64で被覆された多数の細長い繊維状体66を略垂直に立設状態で被着していたが、基体62表面の繊維状体66に触れる等して外力が加えられると、繊維状体66が比較的簡単に剥離してしまうため、その取扱いが不便であった。
また、上記光触媒担持体60は、静電植毛法を用いて、基体62表面への繊維状体66の被着を行っていたことから、繊維状体66や基体62表面を帯電させるための設備や工程が必要であり、その製造が煩雑であった。
【0007】
本発明は、上記従来の問題点に鑑みてなされたものであり、その目的とするところは、基体に担持する光触媒の表面積が大きいと共にその取扱いが容易であり、尚且つ製造容易な光触媒担持体及びその製造方法の実現にある。
【0008】
【課題を解決するための手段】
上記の目的を達成するため、本発明に係る光触媒担持体にあっては、多数の繊維が絡み合って形成された不織布で基体を形成すると共に、上記不織布を構成する繊維に光触媒を担持したことを特徴とする。
【0009】
本発明の光触媒担持体にあっては、多数の繊維が絡み合って形成され、単位体積当たりの繊維の表面積が極めて大きい不織布を構成する繊維に光触媒を担持せしめたことから、基体に担持する光触媒の表面積を大きく確保することができる。
また、本発明の光触媒担持体は、基体を不織布で構成し、該不織布を構成する繊維に光触媒を担持せしめたことから、基体62表面に、剥離し易い光触媒64で被覆された繊維状体66を被着した従来の光触媒担持体60に比べて、その取扱いが容易である。
【0010】
上記基体を略円筒状に形成しても良い。このように、基体を略円筒状に形成すれば、当該基体内部に、紫外線ランプ等の光源を挿通配置するができ、該光源から放射される全ての光触媒活性化作用を有する波長の光を無駄なく、基体に担持された光触媒に略均一に照射して活性化することができる。
【0011】
多数の繊維の集合体より成る紐を略格子状に織り込むと共に、上記紐の表面に光触媒を担持させて形成した織布を、上記基体の外面に接合しても良い。この場合、基体を不織布で構成した光触媒担持体の強度を向上させることができる。
【0012】
また、本発明に係る光触媒担持体の製造方法は、多数の繊維が絡み合って形成された不織布で基体を形成すると共に、上記不織布を構成する繊維に光触媒を担持して成る光触媒担持体の製造方法であって、高融点材料より成る繊維を低融点材料より成る繊維で被覆して形成した複合繊維の集積体を形成する工程と、上記複合繊維を構成する低融点材料より成る繊維の融点より高く、且つ、高融点材料より成る繊維の融点より低い温度で、上記複合繊維の集積体を加熱して低融点材料より成る繊維のみを溶融させ、高融点材料より成る繊維の交差部分を、溶融した低融点材料より成る繊維を介して接着することにより、不織布より成る上記基体を形成すると共に、粒子状の光触媒を、溶融した低融点材料より成る繊維を介して、不織布を構成する繊維の表面に接着する工程と、を備えたことを特徴とする。
本発明の光触媒担持体の製造方法にあっては、高融点材料より成る繊維を低融点材料より成る繊維で被覆した複合繊維を用い、低融点材料より成る繊維のみを溶融させて接着剤として機能させることにより、不織布の形成と光触媒の担持を略同時に行うことができるので、極めて製造容易である。
【0013】
【発明の実施の形態】
以下、図面に基づき、本発明に係る光触媒担持体の実施形態を説明する。
図1及び図2は、本発明に係る第1の光触媒担持体10を示すものであり、該光触媒担持体10は、多数の繊維12が絡み合ってシート状に形成された不織布より成る基体14と、図3及び図4に示すように、上記不織布を構成する繊維12の表面に被着・担持された光触媒16とから成る。
尚、光触媒16は、図4に示したように、繊維12の表面に緻密な膜状態で被着・担持される場合の他、繊維12表面の光触媒16の粒子間に微小な隙間が存在する状態で粗く被着・担持される場合もある。
【0014】
上記繊維12は、ナイロン、ポリエステル、アクリル、ポリプロピレン等の樹脂繊維、ガラス繊維、金属繊維等の短繊維から成り、その直径は5〜20μm、長さは0.5〜20mm程度である。
尚、長さが50〜100mm程度の長繊維から成る繊維12を用いることも勿論可能である。
【0015】
多数の上記繊維12が絡み合ってシート状に形成された不織布は、繊維12間に多数の空隙18(図3参照)が形成されるため通気性、通水性に優れており、また、多数の繊維12が立体的に絡み合っているため、単位体積当たりの繊維12の表面積が極めて大きいものである。
尚、上記繊維12の繊維密度や、不織布の厚さ、目付等を適宜調整することにより、不織布を構成する繊維12の総表面積を任意に増減可能である。
【0016】
上記光触媒16は、TiO、ZnO、SrTiO、BaTiO、Fe等、光触媒作用を有する金属酸化物で構成されるが、アナターゼ型の酸化チタンが、光触媒活性に優れており最も好適に使用できる。
また、上記光触媒16は、紫外線の照射を受けて活性化する光触媒だけでなく、可視光の照射を受けて活性化する可視光型光触媒を用いることもできる。
【0017】
以下において、上記第1の光触媒担持体10の製造方法について説明する。
先ず、ポリプロピレン等の高融点材料より成る繊維12を、ポリエチレン等の低融点材料より成る繊維20で被覆した所定長さの複合繊維22(図5参照)を多数準備し、カード法やエアレイ法等を用いて、これら多数の複合繊維22より成るシート状の集積体(ウェブ)を形成する。
次に、複合繊維22を構成する低融点材料より成る繊維20の融点より高く、且つ、高融点材料より成る繊維12の融点より低い温度で、複合繊維22より成る上記シート状の集積体を加熱して低融点材料より成る繊維20のみを溶融させると共に、粒子状の光触媒16を上記集積体に吹き付ける。
この結果、高融点材料より成る繊維12の交差部分が、溶融した低融点材料より成る繊維20を介して接着することにより、不織布より成る上記基体14が形成されると共に、粒子状の光触媒16が、溶融した低融点材料より成る繊維20を介して、不織布を構成する繊維12の表面に接着・担持され、上記第1の光触媒担持体10が完成する。
上記製造方法にあっては、高融点材料より成る繊維12を低融点材料より成る繊維20で被覆した複合繊維22を用い、低融点材料より成る繊維20のみを溶融させて接着剤として機能させることにより、不織布の形成と光触媒16の担持を略同時に行うことができるので、極めて製造容易である。
【0018】
尚、上記製造方法以外にも、例えば、光触媒の分散液中に不織布より成る基体14を浸漬した後乾燥、焼成させることにより、不織布を構成する繊維12の表面に光触媒16を被着・担持させることもできる。
【0019】
上記第1の光触媒担持体10の基体14である不織布の繊維12表面の光触媒16に、光触媒活性化作用を有する波長の光(紫外線や可視光)が照射されると、光触媒16が活性化して該光触媒16表面に接触した空気や水の浄化を行うことができるのである。
而して、上記第1の光触媒担持体10にあっては、多数の繊維12が立体的に絡み合って形成され、単位体積当たりの繊維12の表面積が極めて大きい不織布を構成する繊維12の表面に、光触媒16を担持せしめたことから、基体14に担持する光触媒16の表面積を大きく確保することができる。また、不織布は通気性、通水性に優れていることから、光触媒16と、空気や水との接触効率が良好である。
さらに、第1の光触媒担持体10にあっては、基体14を不織布で構成し、該不織布を構成する繊維12の表面に光触媒16を担持せしめたことから、基体62表面に、剥離し易い光触媒64で被覆された繊維状体66を被着した従来の光触媒担持体60に比べて、その取扱いが容易である。
【0020】
尚、基体14を不織布で構成した上記第1の光触媒担持体10の強度を向上させるため、図6に示すように、表面に光触媒16を担持させたシート状の織布24を、基体14の外面に接合しても良い。
この織布24は、樹脂繊維、ガラス繊維、金属繊維等の多数の繊維(図示せず)を縒る等して形成した繊維の集合体より成る紐26を、略格子状に織り込むと共に、該織布24を構成する紐26の表面に光触媒16を担持させることにより形成されている(図7)。この織布24は、紐26間に多数の空隙28が形成されるように粗織りされているため、通気性に優れている。
図6においては、基体14の底面に上記織布24を接合した場合が示されているが、基体14の上面に上記織布24を接合したり、或いは、基体14の外面を上記織布24で被覆した状態で接合しても良い。
【0021】
上記織布24と第1の光触媒担持体10の基体14外面との接合は、例えば、接着剤(図示せず)を介して行うことができる。
また、上記した複合繊維22を用いて第1の光触媒担持体10を製造する場合においては、溶融した低融点材料より成る繊維20を介して、高融点材料より成る繊維12の交差部分を接着することにより基体14を形成すると共に、粒子状の光触媒16を不織布を構成する繊維12の表面に接着・担持させ、更に、溶融した低融点材料より成る繊維20を介して、上記織布24を第1の光触媒担持体10の基体14外面に接着すれば良い。
【0022】
図8及び図9は、本発明に係る第2の光触媒担持体30を示すものである。この第2の光触媒担持体30は、多数の繊維12が絡み合ってシート状に形成された不織布より成る基体32が略円筒状に形成されている点に特徴を有し、その他の構成は、上記第1の光触媒担持体10と実質的に同一である。図8及び図9において、34は基体32内部に挿通された紫外線ランプ等の光源である。
【0023】
上記第2の光触媒担持体30の基体32である不織布の繊維12表面の光触媒16に、光源34から放射された光触媒活性化作用を有する波長の光(紫外線や可視光)が照射されると、光触媒16が活性化して該光触媒16表面に接触した空気や水の浄化を行うことができるのである。
【0024】
この第2の光触媒担持体30にあっても、上記第1の光触媒担持体10と同じく、多数の繊維12が立体的に絡み合って形成され、単位体積当たりの繊維12の表面積が極めて大きい不織布を構成する繊維12の表面に光触媒16を担持せしめたことから、基体32に担持する光触媒16の表面積を大きく確保することができる。また、不織布は通気性、通水性に優れていることから、光触媒16と、空気や水との接触効率が良好である。
さらに、基体32を不織布で構成し、該不織布を構成する繊維12の表面に光触媒16を担持せしめたことから、基体62表面に、剥離し易い光触媒64で被覆された繊維状体66を被着した従来の光触媒担持体60に比べて、その取扱いが容易である。
また、この第2の光触媒担持体30にあっては、基体32を略円筒状に形成しているので、当該基体32内部に、紫外線ランプ等の光源34を挿通配置するができ、該光源34から放射される全ての光触媒活性化作用を有する波長の光を無駄なく、基体32に担持された光触媒16に略均一に照射して活性化することができる。
【0025】
尚、第1の光触媒担持体10の場合と同様に、基体32を不織布で構成した第2の光触媒担持体30の強度を向上させるため、表面に光触媒16を担持させた上記織布24を、基体32の外面に接合しても良い。
【0026】
上記においては、不織布を構成する繊維12の「表面」に光触媒16を担持せしめた場合を例に挙げて説明したが、本発明はこれに限定されるものではなく、例えば、セルロース系の化学繊維であり、多数の孔を備えた多孔質構造を有するレーヨン繊維に粒子状の光触媒16を練り混むことにより、繊維12に光触媒16を担持させても良い。この場合、光触媒16は、レーヨン繊維で構成された繊維12の表面のみならず、レーヨン繊維中にも担持されることとなるが、上記の通り、レーヨン繊維は多孔質構造であるため、孔を介して、繊維12中に練り混まれた光触媒16にも光触媒活性化作用を有する波長の光を照射して活性化できると共に、空気や水と接触させて浄化を行うことができる。
【0027】
【発明の効果】
本発明の光触媒担持体にあっては、多数の繊維が絡み合って形成され、単位体積当たりの繊維の表面積が極めて大きい不織布を構成する繊維に光触媒を担持せしめたことから、基体に担持する光触媒の表面積を大きく確保することができる。
また、本発明の光触媒担持体は、基体を不織布で構成し、該不織布を構成する繊維に光触媒を担持せしめたことから、基体62表面に、剥離し易い光触媒64で被覆された繊維状体66を被着した従来の光触媒担持体60に比べて、その取扱いが容易である。
【0028】
本発明の光触媒担持体の製造方法にあっては、高融点材料より成る繊維を低融点材料より成る繊維で被覆した複合繊維を用い、低融点材料より成る繊維のみを溶融させて接着剤として機能させることにより、不織布の形成と光触媒の担持を略同時に行うことができるので、極めて製造容易である。
【図面の簡単な説明】
【図1】本発明に係る第1の光触媒担持体を模式的に示す斜視図である。
【図2】本発明に係る第1の光触媒担持体を模式的に示す部分拡大図である。
【図3】本発明に係る第1の光触媒担持体を構成する繊維を模式的に示す拡大図である。
【図4】本発明に係る第1の光触媒担持体を構成する繊維を模式的に示す断面図である。
【図5】複合繊維を示す概略断面図である。
【図6】表面に光触媒を担持させた織布を、第1の光触媒担持体の基体の外面に接合した状態を模式的に示す正面図である。
【図7】表面に光触媒を担持させた織布を模式的に示す平面図である。
【図8】本発明に係る第2の光触媒担持体を模式的に示す縦断面図である。
【図9】本発明に係る第2の光触媒担持体を模式的に示す横断面図である。
【図10】従来の光触媒担持体を示す断面図である。
【図11】従来の光触媒担持体における繊維状体の拡大縦断面図である。
【図12】従来の光触媒担持体における繊維状体の拡大横断面図である。
【符号の説明】
10 第1の光触媒担持体
12 繊維
14 基体
16 光触媒
22 複合繊維
24 織布
30 第2の光触媒担持体
32 基体
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a photocatalyst carrier having a photocatalyst supported on a substrate, and more particularly to a photocatalyst carrier having a large surface area and easy to handle, and easy to produce, and a method for producing the photocatalyst. .
[0002]
[Prior art]
Photocatalysts such as titanium oxide (TiO 2 ) are activated when irradiated with ultraviolet rays to produce a strong oxidation-reduction action, causing harmful compounds such as nitrogen oxides (NO X ) and sulfur oxides (SO X ) and pollutants. Attempts have been made to purify air or water using a photocatalyst carrier having a photocatalyst supported on a substrate, since the photocatalyst exerts an action of effectively decomposing it.
Incidentally, the decomposition of harmful compounds, pollutants, and the like by the photocatalyst is an action caused by the contact of these harmful compounds, pollutants, and the like with the photocatalyst. Therefore, in order to improve the ability of the photocatalyst to purify air and water, it is desirable to increase the surface area of the photocatalyst as much as possible.
[0003]
Therefore, the present applicant has previously proposed a photocatalyst carrier in which a large number of fibrous bodies whose surfaces are covered with a photocatalyst are applied to the surface of the substrate in an upright state with respect to the surface of the substrate. (Japanese Patent Application No. 2002-311043).
As shown in FIG. 10, this photocatalyst carrier 60 is coated on the surface of a flat substrate 62 made of an appropriate material such as glass, resin or metal with a photocatalyst 64 made of anatase-type titanium oxide (TiO 2 ). A large number of elongated fibrous bodies 66 are adhered via an adhesive 68 in an upright state substantially perpendicular to the surface of the base 62. As shown in FIGS. 11 and 12, the fibrous body 66 is formed by coating a surface of a fiber 70 such as a glass fiber or a resin fiber with a photocatalyst 64.
[0004]
When the photocatalyst 64 on the surface of the fibrous body 66 in the photocatalyst carrier 60 is irradiated with ultraviolet rays from an ultraviolet lamp or the like (not shown), the photocatalyst 64 is activated to purify air or water that has come into contact with the surface of the photocatalyst 64. You can do it.
Thus, in the photocatalyst carrier 60, the numerous fibrous bodies 66 covered with the photocatalyst 64 were attached in a state of standing substantially perpendicular to the surface of the substrate 62, The surface area is increased by the integral of the surface of the large number of fibrous bodies 66 attached, and as a result, the surface area of the photocatalyst 64 disposed on the surface of the base 62 can be significantly increased.
[0005]
In the photocatalyst carrier 60, the attachment of the fibrous body 66 to the surface of the base 62 is performed by using an electrostatic flocking method. In this method, the fibrous body 66 is planted on the surface of the base 62 on which the adhesive 68 is applied in a state where the fibrous body 66 is raised using static electricity.
[0006]
[Problems to be solved by the invention]
In the photocatalyst carrier 60, a large number of elongated fibrous bodies 66 covered with the photocatalyst 64 are adhered on the surface of the base 62 in a state of standing substantially vertically. When an external force is applied by touching or the like, the fibrous body 66 is relatively easily peeled off, which is inconvenient to handle.
In addition, since the photocatalyst carrier 60 has applied the fibrous body 66 to the surface of the base 62 by using the electrostatic flocking method, a facility for charging the fibrous body 66 and the surface of the base 62 is provided. And steps were required, and the production was complicated.
[0007]
The present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to provide a photocatalyst carrier which has a large surface area of a photocatalyst carried on a substrate, is easy to handle, and is easy to manufacture. And a method of manufacturing the same.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, in the photocatalyst carrier according to the present invention, the substrate is formed of a nonwoven fabric formed by entanglement of a large number of fibers, and a photocatalyst is supported on the fibers constituting the nonwoven fabric. Features.
[0009]
In the photocatalyst carrier of the present invention, a large number of fibers are entangled and formed, and the surface area of the fibers per unit volume is extremely large. A large surface area can be secured.
Further, the photocatalyst carrier of the present invention has a structure in which the base is composed of a nonwoven fabric, and the fibers constituting the nonwoven fabric carry the photocatalyst. It is easier to handle than the conventional photocatalyst carrier 60 on which is adhered.
[0010]
The base may be formed in a substantially cylindrical shape. When the base is formed in a substantially cylindrical shape in this manner, a light source such as an ultraviolet lamp can be inserted and disposed inside the base, so that all the light emitted from the light source and having a wavelength having a photocatalytic activation action is wasted. In addition, the photocatalyst supported on the substrate can be activated by irradiating it almost uniformly.
[0011]
A string composed of an aggregate of many fibers may be woven in a substantially lattice shape, and a woven fabric formed by supporting a photocatalyst on the surface of the string may be joined to the outer surface of the base. In this case, the strength of the photocatalyst carrier in which the substrate is formed of a nonwoven fabric can be improved.
[0012]
Further, the method for producing a photocatalyst carrier according to the present invention is a method for producing a photocatalyst carrier comprising forming a substrate with a nonwoven fabric formed by entanglement of a large number of fibers and supporting a photocatalyst on the fibers constituting the nonwoven fabric. A step of forming an aggregate of composite fibers formed by coating fibers made of a high melting point material with fibers made of a low melting point material; and And, at a temperature lower than the melting point of the fiber composed of the high melting point material, the aggregate of the composite fibers was heated to melt only the fiber composed of the low melting point material, and the intersection of the fiber composed of the high melting point material was melted. By bonding through a fiber made of a low-melting-point material, the above-described substrate made of a non-woven fabric is formed, and the particulate photocatalyst is formed into a non-woven fabric through a fiber made of a molten low-melting-point material. Characterized by comprising the step of bonding the surface of the fibers, the.
In the method for producing a photocatalyst carrier of the present invention, a composite fiber obtained by coating a fiber made of a high-melting material with a fiber made of a low-melting material is used, and only the fiber made of the low-melting material is melted to function as an adhesive. By doing so, the formation of the non-woven fabric and the supporting of the photocatalyst can be performed substantially simultaneously, so that the production is extremely easy.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a photocatalyst carrier according to the present invention will be described with reference to the drawings.
FIGS. 1 and 2 show a first photocatalyst carrier 10 according to the present invention. The photocatalyst carrier 10 includes a substrate 14 made of a nonwoven fabric formed in a sheet shape by entanglement of many fibers 12. As shown in FIGS. 3 and 4, a photocatalyst 16 is attached and carried on the surface of the fiber 12 constituting the nonwoven fabric.
In addition, as shown in FIG. 4, the photocatalyst 16 is not only attached and supported in a dense film state on the surface of the fiber 12, but also has a minute gap between particles of the photocatalyst 16 on the surface of the fiber 12. In some cases, it may be roughly applied and carried in a state.
[0014]
The fibers 12 are made of resin fibers such as nylon, polyester, acrylic and polypropylene, and short fibers such as glass fibers and metal fibers, and have a diameter of about 5 to 20 μm and a length of about 0.5 to 20 mm.
Of course, it is also possible to use a fiber 12 composed of a long fiber having a length of about 50 to 100 mm.
[0015]
The nonwoven fabric in which a large number of the fibers 12 are entangled to form a sheet is excellent in air permeability and water permeability because a large number of voids 18 (see FIG. 3) are formed between the fibers 12. Since the fibers 12 are three-dimensionally intertwined, the surface area of the fibers 12 per unit volume is extremely large.
The total surface area of the fibers 12 constituting the nonwoven fabric can be arbitrarily increased or decreased by appropriately adjusting the fiber density of the fibers 12, the thickness of the nonwoven fabric, the basis weight, and the like.
[0016]
The photocatalyst 16 is made of a metal oxide having a photocatalytic action, such as TiO 2 , ZnO, SrTiO 3 , BaTiO 3 , and Fe 2 O 3. Anatase-type titanium oxide is most preferable because of its excellent photocatalytic activity. Can be used for
As the photocatalyst 16, not only a photocatalyst activated upon irradiation with ultraviolet light but also a visible light type photocatalyst activated upon irradiation with visible light can be used.
[0017]
Hereinafter, a method for manufacturing the first photocatalyst carrier 10 will be described.
First, a large number of composite fibers 22 (see FIG. 5) having a predetermined length in which fibers 12 made of a high-melting material such as polypropylene are coated with fibers 20 made of a low-melting material such as polyethylene are prepared. Is used to form a sheet-like aggregate (web) composed of these multiple composite fibers 22.
Next, the sheet-shaped aggregate made of the conjugate fiber 22 is heated at a temperature higher than the melting point of the fiber 20 made of the low-melting material constituting the conjugate fiber 22 and lower than the melting point of the fiber 12 made of the high-melting material. Then, only the fiber 20 made of the low-melting-point material is melted, and the particulate photocatalyst 16 is sprayed on the aggregate.
As a result, the intersecting portions of the fibers 12 made of the high melting point material are bonded via the fibers 20 made of the molten low melting point material, so that the substrate 14 made of the nonwoven fabric is formed, and the particulate photocatalyst 16 is formed. The first photocatalyst carrier 10 is completed by being adhered and carried on the surface of the fibers 12 constituting the non-woven fabric via the fibers 20 made of the molten low melting point material.
In the above manufacturing method, a composite fiber 22 obtained by coating a fiber 12 made of a high melting point material with a fiber 20 made of a low melting point material is used, and only the fiber 20 made of a low melting point material is melted to function as an adhesive. Thereby, the formation of the nonwoven fabric and the supporting of the photocatalyst 16 can be performed substantially simultaneously, and therefore, the production is extremely easy.
[0018]
In addition to the above-described manufacturing method, for example, the photocatalyst 16 is adhered to and supported on the surface of the fiber 12 constituting the nonwoven fabric by immersing the substrate 14 made of the nonwoven fabric in a dispersion of the photocatalyst, followed by drying and firing. You can also.
[0019]
When the photocatalyst 16 on the surface of the nonwoven fabric 12 which is the substrate 14 of the first photocatalyst carrier 10 is irradiated with light (ultraviolet light or visible light) having a photocatalytic activation action, the photocatalyst 16 is activated. It is possible to purify the air or water in contact with the surface of the photocatalyst 16.
Thus, in the first photocatalyst carrier 10, a large number of fibers 12 are formed in a three-dimensionally entangled manner, and the surface area of the fibers 12 constituting the nonwoven fabric is extremely large per unit volume. Since the photocatalyst 16 is supported, a large surface area of the photocatalyst 16 supported on the base 14 can be ensured. Further, since the nonwoven fabric is excellent in air permeability and water permeability, the contact efficiency between the photocatalyst 16 and air or water is good.
Furthermore, in the first photocatalyst carrier 10, the base 14 is formed of a nonwoven fabric, and the photocatalyst 16 is supported on the surface of the fiber 12 constituting the nonwoven fabric. The handling is easier than that of the conventional photocatalyst carrier 60 on which the fibrous body 66 coated with 64 is adhered.
[0020]
In order to improve the strength of the first photocatalyst carrier 10 in which the substrate 14 is formed of a nonwoven fabric, as shown in FIG. It may be joined to the outer surface.
The woven fabric 24 weaves a string 26 made of an aggregate of fibers formed by twisting a large number of fibers (not shown) such as resin fibers, glass fibers, and metal fibers in a substantially lattice shape. It is formed by supporting the photocatalyst 16 on the surface of the string 26 constituting the woven fabric 24 (FIG. 7). Since the woven fabric 24 is coarsely woven so that a large number of voids 28 are formed between the cords 26, the woven fabric 24 is excellent in air permeability.
FIG. 6 shows the case where the woven fabric 24 is joined to the bottom surface of the base 14, but the woven fabric 24 is joined to the upper surface of the base 14, or the outer surface of the base 14 is attached to the woven fabric 24. May be joined in a state covered with.
[0021]
The bonding between the woven fabric 24 and the outer surface of the base 14 of the first photocatalyst carrier 10 can be performed, for example, via an adhesive (not shown).
In the case where the first photocatalyst carrier 10 is manufactured using the composite fiber 22 described above, the intersection of the fiber 12 made of the high melting point material is bonded via the fiber 20 made of the molten low melting point material. In this way, the substrate 14 is formed, and the particulate photocatalyst 16 is adhered and supported on the surface of the fiber 12 constituting the nonwoven fabric. Further, the woven fabric 24 is formed through the fiber 20 made of a molten low melting point material. What is necessary is just to adhere to the outer surface of the base 14 of the photocatalyst carrier 10 of one.
[0022]
8 and 9 show a second photocatalyst carrier 30 according to the present invention. The second photocatalyst carrier 30 is characterized in that a base 32 made of a nonwoven fabric formed in a sheet shape by entanglement of a large number of fibers 12 is formed in a substantially cylindrical shape. It is substantially the same as the first photocatalyst carrier 10. 8 and 9, reference numeral 34 denotes a light source such as an ultraviolet lamp inserted into the base 32.
[0023]
When the photocatalyst 16 on the surface of the nonwoven fabric 12 which is the substrate 32 of the second photocatalyst carrier 30 is irradiated with light (ultraviolet light or visible light) having a photocatalytic activating action emitted from the light source 34, This activates the photocatalyst 16 to purify the air or water in contact with the surface of the photocatalyst 16.
[0024]
In the second photocatalyst carrier 30, as in the case of the first photocatalyst carrier 10, a large number of fibers 12 are formed in a three-dimensionally entangled manner, and a nonwoven fabric having an extremely large surface area of the fibers 12 per unit volume is used. Since the photocatalyst 16 is supported on the surface of the constituent fibers 12, a large surface area of the photocatalyst 16 supported on the base 32 can be ensured. Further, since the nonwoven fabric is excellent in air permeability and water permeability, the contact efficiency between the photocatalyst 16 and air or water is good.
Furthermore, since the base 32 is formed of a nonwoven fabric and the photocatalyst 16 is supported on the surface of the fibers 12 constituting the nonwoven fabric, the fibrous body 66 covered with the photocatalyst 64 that is easily peeled off is adhered to the surface of the base 62. It is easier to handle than the conventional photocatalyst carrier 60 described above.
In the second photocatalyst carrier 30, the base 32 is formed in a substantially cylindrical shape, so that a light source 34 such as an ultraviolet lamp can be inserted and disposed inside the base 32. All of the light having a wavelength having a photocatalyst activating action radiated from the photocatalyst 16 supported on the substrate 32 can be irradiated to the photocatalyst 16 without waste and activated.
[0025]
As in the case of the first photocatalyst carrier 10, in order to improve the strength of the second photocatalyst carrier 30 in which the base 32 is formed of a nonwoven fabric, the woven fabric 24 having the photocatalyst 16 supported on the surface thereof is used. You may join to the outer surface of the base | substrate 32.
[0026]
In the above description, the case where the photocatalyst 16 is supported on the “surface” of the fiber 12 constituting the nonwoven fabric has been described as an example. However, the present invention is not limited to this. However, the photocatalyst 16 may be supported on the fiber 12 by kneading the particulate photocatalyst 16 into a rayon fiber having a porous structure with many holes. In this case, the photocatalyst 16 is supported not only on the surface of the fiber 12 made of rayon fiber but also in the rayon fiber. As described above, since the rayon fiber has a porous structure, pores are formed. In addition, the photocatalyst 16 kneaded in the fiber 12 can be activated by irradiating light with a wavelength having a photocatalytic activating action to the photocatalyst 16 and can be purified by contact with air or water.
[0027]
【The invention's effect】
In the photocatalyst carrier of the present invention, a large number of fibers are entangled and formed, and the surface area of the fibers per unit volume is extremely large. A large surface area can be secured.
Further, the photocatalyst carrier of the present invention has a structure in which the base is composed of a nonwoven fabric, and the fibers constituting the nonwoven fabric carry the photocatalyst. It is easier to handle than the conventional photocatalyst carrier 60 on which is adhered.
[0028]
In the method for producing a photocatalyst carrier of the present invention, a composite fiber obtained by coating a fiber made of a high-melting material with a fiber made of a low-melting material is used, and only the fiber made of the low-melting material is melted to function as an adhesive. By doing so, the formation of the non-woven fabric and the supporting of the photocatalyst can be performed substantially simultaneously, so that the production is extremely easy.
[Brief description of the drawings]
FIG. 1 is a perspective view schematically showing a first photocatalyst carrier according to the present invention.
FIG. 2 is a partially enlarged view schematically showing a first photocatalyst carrier according to the present invention.
FIG. 3 is an enlarged view schematically showing a fiber constituting a first photocatalyst carrier according to the present invention.
FIG. 4 is a cross-sectional view schematically showing a fiber constituting a first photocatalyst carrier according to the present invention.
FIG. 5 is a schematic sectional view showing a conjugate fiber.
FIG. 6 is a front view schematically showing a state in which a woven fabric having a photocatalyst supported on the surface is joined to an outer surface of a base of a first photocatalyst support.
FIG. 7 is a plan view schematically showing a woven fabric having a photocatalyst carried on the surface.
FIG. 8 is a longitudinal sectional view schematically showing a second photocatalyst carrier according to the present invention.
FIG. 9 is a cross-sectional view schematically showing a second photocatalyst carrier according to the present invention.
FIG. 10 is a sectional view showing a conventional photocatalyst carrier.
FIG. 11 is an enlarged vertical sectional view of a fibrous body in a conventional photocatalyst carrier.
FIG. 12 is an enlarged cross-sectional view of a fibrous body in a conventional photocatalyst carrier.
[Explanation of symbols]
Reference Signs List 10 first photocatalyst carrier 12 fiber 14 substrate 16 photocatalyst 22 composite fiber 24 woven fabric 30 second photocatalyst carrier 32 substrate

Claims (4)

多数の繊維が絡み合って形成された不織布で基体を形成すると共に、上記不織布を構成する繊維に光触媒を担持したことを特徴とする光触媒担持体。A photocatalyst carrier, wherein a substrate is formed of a nonwoven fabric formed by entanglement of a large number of fibers, and a photocatalyst is supported on the fibers constituting the nonwoven fabric. 上記基体を略円筒状に形成したことを特徴とする請求項1に記載の光触媒担持体。The photocatalyst carrier according to claim 1, wherein the substrate is formed in a substantially cylindrical shape. 多数の繊維の集合体より成る紐を略格子状に織り込むと共に、上記紐の表面に光触媒を担持させて形成した織布を、上記基体の外面に接合したことを特徴とする請求項1又は2に記載の光触媒担持体。3. A woven fabric formed by weaving a string composed of an aggregate of a large number of fibers in a substantially lattice-like manner, and a woven fabric formed by supporting a photocatalyst on the surface of the string is bonded to an outer surface of the base. 3. The photocatalyst carrier according to item 1. 多数の繊維が絡み合って形成された不織布で基体を形成すると共に、上記不織布を構成する繊維に光触媒を担持して成る光触媒担持体の製造方法であって、
高融点材料より成る繊維を低融点材料より成る繊維で被覆して形成した複合繊維の集積体を形成する工程と、
上記複合繊維を構成する低融点材料より成る繊維の融点より高く、且つ、高融点材料より成る繊維の融点より低い温度で、上記複合繊維の集積体を加熱して低融点材料より成る繊維のみを溶融させ、高融点材料より成る繊維の交差部分を、溶融した低融点材料より成る繊維を介して接着することにより、不織布より成る上記基体を形成すると共に、粒子状の光触媒を、溶融した低融点材料より成る繊維を介して、不織布を構成する繊維の表面に接着する工程と、
を備えたことを特徴とする光触媒担持体の製造方法。
A method for producing a photocatalyst carrier comprising forming a substrate with a nonwoven fabric formed by entanglement of a large number of fibers, and supporting a photocatalyst on fibers constituting the nonwoven fabric,
Forming a composite fiber aggregate formed by coating a fiber made of a high melting point material with a fiber made of a low melting point material,
The composite of the composite fibers is heated at a temperature higher than the melting point of the fiber composed of the low melting point material constituting the composite fiber and lower than the melting point of the fiber composed of the high melting point material, and only the fiber composed of the low melting point material is produced. By melting and bonding the intersections of the fibers made of the high melting point material via the fibers made of the melted low melting point material, the above-mentioned substrate made of a non-woven fabric is formed, and the particulate photocatalyst is melted into the molten low melting point material. A step of bonding to the surface of the fiber constituting the nonwoven fabric through the fiber made of the material,
A method for producing a photocatalyst carrier, comprising:
JP2003154282A 2003-05-30 2003-05-30 Photocatalyst carrier and production method therefor Pending JP2004351367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003154282A JP2004351367A (en) 2003-05-30 2003-05-30 Photocatalyst carrier and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003154282A JP2004351367A (en) 2003-05-30 2003-05-30 Photocatalyst carrier and production method therefor

Publications (1)

Publication Number Publication Date
JP2004351367A true JP2004351367A (en) 2004-12-16

Family

ID=34048988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003154282A Pending JP2004351367A (en) 2003-05-30 2003-05-30 Photocatalyst carrier and production method therefor

Country Status (1)

Country Link
JP (1) JP2004351367A (en)

Similar Documents

Publication Publication Date Title
JP4630872B2 (en) Air purification apparatus, air purification method, and photocatalyst-supported molded body
WO2003066193A1 (en) Fluid cleaning filter and filter device
CN1612801A (en) Flexible laminate structures having enclosed discrete regions of a material
CN107497181B (en) Melt-blown fiber/nanofiber/glass fiber composite filter material and preparation method thereof
JP6078336B2 (en) Photocatalyst carrier and method for producing the same
JP6857173B2 (en) Photocatalytic functional non-woven fabric and its manufacturing method
JP2004351367A (en) Photocatalyst carrier and production method therefor
JP2000025135A (en) Functionally flocked fabric article and its manufacture
JP2004351370A (en) Cleaning apparatus and its manufacturing method
KR19990008279A (en) Molded article with photocatalytic function
JP2004356507A (en) Light emitting diode with photocatalyst and its manufacturing method
CN100340712C (en) Functional fiber structure and making method thereof
JP5017602B2 (en) Hollow fine linear metal oxide aggregate and method for producing the same
JP2004290724A (en) Cleaning apparatus
JP2004356006A (en) Electric discharge panel with photocatalyst, and its manufacturing method
KR20140135439A (en) Manufacturing method of a filter containing deodorrizing powders
CN212708351U (en) Melt-blown activated carbon non-woven fabric
JP2004356002A (en) Discharge tube with photocatalyst, and its manufacturing method
JP3953717B2 (en) Pleated fold air purification filter consisting of flat encapsulated deodorizing sheet
JP6124247B2 (en) A method of forming a nanoadhesive layer for immobilizing nanofibers or nanoparticles.
JP2000233113A (en) Deodorization filter, its manufacture and use
JPH10234837A (en) Photoreactive harmful matter removing material
JPH1071312A (en) Filter material, manufacture thereof, filter apparatus using filter material
KR101595878B1 (en) Manufacturing method of an air cleaning filter containing deodorrizing powders
JP2003205244A (en) Photocatalyst carrier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090414