JP2004356272A - Manufacturing method for thermoelectric material - Google Patents

Manufacturing method for thermoelectric material Download PDF

Info

Publication number
JP2004356272A
JP2004356272A JP2003150666A JP2003150666A JP2004356272A JP 2004356272 A JP2004356272 A JP 2004356272A JP 2003150666 A JP2003150666 A JP 2003150666A JP 2003150666 A JP2003150666 A JP 2003150666A JP 2004356272 A JP2004356272 A JP 2004356272A
Authority
JP
Japan
Prior art keywords
thermoelectric material
hot
producing
plastic deformation
phosphorus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003150666A
Other languages
Japanese (ja)
Inventor
Masamichi Hashida
昌道 橋田
Masaya Kojima
真弥 小島
Yasuhito Takahashi
康仁 高橋
Katsuya Wakita
克也 脇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003150666A priority Critical patent/JP2004356272A/en
Publication of JP2004356272A publication Critical patent/JP2004356272A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the thermal conductivity by inhibiting grain growth, and to improve the figure of merit in a hot plastic working regarding a manufacturing method for a thermoelectric material in which heat is converted into electricity. <P>SOLUTION: Powder of Bi<SB>2</SB>Te<SB>3</SB>thermoelectric material, to which phosphorus is added, is introduced into a die 1 in a shape that upper and lower sections are held by a punch 2, and a green compact 3 is manufactured by pressing the punch 2 (a dust process). Temperature is elevated by a temperature elevator (not shown), and the green compact 3 is spread in the direction perpendicular to the direction of pressing the punch 2 in the vertical direction, and a spread body is obtained (a deformation process). The grain growth in the case of a hot plastic deformation (hot flatting) can be suppressed because a crystal grain size is mode remarkably fine in a pulverizing process by adding phosphorus, and the thermoelectric material having the high figure of merit can be manufactured because a crystal orientation is enhanced. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、熱を電気に変換する熱電材料の作製方法に関するものである。
【0002】
【従来の技術】
一般に、BiTe、BiSe及びSbTeのようなV−VI族系等の熱電材料、特に室温付近で使用できる材料は、センサー素子や光素子、LSI基板などの半導体回路、宇宙ステーションで使用される電子機器の冷却、レーザダイオード等の精密温度制御が要求されるところに使用されている。
【0003】
BiTe化合物は、菱面体結晶の単位胞中にBiとTeの原子をそれぞれ2個と3個を含む層状構造で物理的性質に大きな異方性を持つ。この構造は六方晶表示のc軸方向にTe原子層の重なりが3組存在し、このTe−Te原子の結合はファン・デル・ワールス結合のため、共有結合やイオン結合およびそれらの混合結合で結合した他の原子間の結合より著しく弱く容易に劈開する。また、c軸方向に垂直(c面に平行)な方向で電気特性が高い。
【0004】
熱電材料の特性を表す性能指数Zは、(数1)で示すようにゼーベック係数αの2乗と電気伝導率σの積を熱伝導率κで割ったもので表される。従って、Zを大きくするためには、ασを大きくし、かつκを小さくする必要がある。
【0005】
【数1】

Figure 2004356272
【0006】
一般によく使われるブリッジマン法等で一方向凝固させて作製した溶製材料は、単結晶材料ほどではないが、結晶の配向性が整っている。そのため、電気特性は高い。しかし、熱伝導率も大きく、劈開しやすいため材料強度が低い。
【0007】
一方、メカニカルアロイング法やガスアトマイズ法により熱電材料を微細化し、その微細結晶を一方向加圧焼結することで作製する焼結材料は、材料強度が優れ、かつ、加圧方向に対し垂直な方向にc面が揃う(例えば特許文献1)。
【0008】
また、結晶粒径が微細なため熱伝導率を低減させることができる。しかし、焼結材料の結晶配向性は、ブリッジマン法などと比べ低く、電気特性が低減するため、相殺され、性能指数が一方向凝固材を越えない。微細結晶焼結体の結晶配向性を向上する手段として、熱間塑性変形によるすえこみ鍛造や熱間押出成形によるものがある(例えば特許文献2)。
【0009】
【特許文献1】
特開昭62−264682号公報
【特許文献2】
特開平10−178218号公報
【0010】
【発明が解決しようとする課題】
しかしながら、熱間塑性変形を行うと結晶配向性は向上するが、その過程で数μmの粒径が数mmまで粒成長がおこすため、熱伝導率が向上し、結晶配向性を揃えても性能指数が低下してしまうという問題があった。
【0011】
本発明は、結晶の微細化を促進する添加剤を添加することで、熱間塑性変形の際にも結晶粒径を小さく保つことで熱伝導率を低減し、かつ結晶配向性を向上させることで電気伝導率を向上させることで性能指数を向上させる熱電材料の作製方法を提供するものである。
【0012】
【課題を解決するための手段】
本発明の請求項1記載の熱電材料の作製方法の発明は、ビスマス、アンチモン、テルル、セレンからなる群から少なくとも二つ以上を含有した熱電材料の作製方法であって、添加剤として燐(P)を使用し、前記熱電材料粉末を作製する粉砕工程と、前記熱電材料粉末を圧粉する圧粉工程と、前記圧粉体を熱間塑性変形させる変形工程とを含むものであり、燐を添加することで、粉砕工程において結晶粒径が著しく微細化するため、熱間塑性変形の際の粒成長を抑制でき、かつ結晶配向性を向上させるため、性能指数の高い熱電材料を作製できるという作用がある。
【0013】
請求項2記載の熱電材料の作製方法の発明は、ビスマス、アンチモン、テルル、セレンからなる群から少なくとも二つ以上を含有した熱電材料の作製方法であって、添加剤として燐(P)を使用し、前記熱電材料粉末を作製する粉砕工程と、前記熱電材料粉末を圧粉する圧粉工程と、前記圧粉体を焼結化する焼結工程と、前記焼結体を熱間塑性変形させる変形工程とを含むものであり、燐を添加することで、粉砕工程において結晶粒径が著しく微細化し、また、焼結体も微細な組織を有するため、熱間塑性変形の際の粒成長を抑制でき、かつ結晶配向性を向上させるため、性能指数の高い熱電材料を作製できる。また、焼結体を熱間塑性変形させるため、取り扱い性が良く、歩留まりも優れる効果がある。
【0014】
請求項3記載の熱電材料の作製方法の発明は、請求項1または2に記載の発明における前記熱間塑性変形が、熱間展延であるものであり、熱間展延する事で、展延方向と平行な方向にc面が優先的に配向し、性能指数の向上を図ることができる。
【0015】
請求項4記載の熱電材料の作製方法の発明は、請求項1または2に記載の発明における前記熱間塑性変形が、熱間押出加工であるものであり、熱間押出加工する事で、押出方向と平行な方向にc面が優先的に配向し、性能指数の向上を図ることができる。
【0016】
請求項5記載の熱電材料の作製方法の発明は、請求項1から4のいずれか一項に記載の発明における燐の添加量が3wt%以下であるものであり、燐の添加量が過剰になると、電気伝導率の低下による性能低下とともに、熱間塑性変形時に、割れが生じやすく、歩留まりが悪くなるため、それらの防止を図ることができる。
【0017】
請求項6記載の熱電材料の作製方法の発明は、請求項1から5のいずれか一項に記載の発明における前記熱間塑性変形は、573K以上823K以下の温度で行うものであり、塑性変形温度が低すぎると、組成変形の速度が低下するとともに、割れが生じ歩留まりが悪くなる。一方、塑性変形温度が高すぎると、粒成長が高まりすぎ、配向性が低下するため、最適温度での熱間塑性変形を行うことで防止できる。
【0018】
【発明の実施の形態】
以下、本発明による熱電材料の作製方法についての実施の形態について図面を参照しながら説明する。
【0019】
(実施の形態1)
図1は本発明の実施の形態1における熱電材料の作製方法の熱間展延工程(変形工程)の熱間展延前の状態を示す概略図、図2は同実施の形態における熱電材料の作製方法の熱間展延工程(変形工程)の熱間展延後の状態を示す概略図である。
【0020】
図1、図2に示すように、本実施の形態における熱電材料の作製方法の熱間展延工程は、ダイス1とパンチ2と燐を添加したBiTe系熱電材料の圧粉体3と展延体4とで構成されている。
【0021】
以上のように構成された熱間展延工程(変形工程)について、以下その動作を説明する。
【0022】
まず、ダイス1中にパンチ2で上下を挟む形で、燐を添加したBiTe系熱電材料の粉末を入れ、パンチ2を加圧することで圧粉体3を作製、設置する(圧粉工程)。
【0023】
昇温装置(図示せず)にて昇温後、パンチ2を上下方向から加圧する事で、圧粉体3は加圧方向と垂直方向に展延され、展延体4が得られる(変形工程)。
【0024】
以下、具体例を用い、本実施の形態1について説明する。
【0025】
展延工程は、まずメカニカルアロイング法により作製した燐を添加した(BiTe0.25(SbTe0.75の組成からなる熱電材料微粉末を、水素還元処理後、加圧力500kg/cmで、直径20mm、高さ10mmの円柱状に圧粉し、圧粉体を形成する(圧粉工程)。
【0026】
そして、直径30mmのダイス内に圧粉体を設置し、装置内をアルゴン雰囲気に置換後、753K、200kg/cmの加圧力で加圧することで、圧粉体は圧縮され、加圧方向と垂直な方向へ展延される(変形工程)。この際、展延工程の加圧方向と、圧粉体作製時の加圧方向を同方向に行う。
【0027】
(表1)は本実施の形態の変形工程にて作製した(BiTe0.25(SbTe0.75の組成からなる熱電材料を基本組成とし、燐(P)を0.1、1、2wt%添加した熱電材料の展延後の特性評価結果(第1実施例から第3実施例)である。
【0028】
また、比較例として、(表1)中に(BiTe0.25(SbTe0.75の組成からなる熱電材料の焼結体の特性評価結果(比較例1)および、(BiTe0.25(SbTe0.75の組成からなる熱電材料の圧粉体を展延した展延体の特性評価結果(比較例2)を示す。
【0029】
比較例1の焼結体は、メカニカルアロイングで作製した熱電材料微粉末を圧粉後、ホットプレス装置にて、アルゴン雰囲気中、723K、600kg/cmの加圧力で作製した(焼結工程)。
【0030】
【表1】
Figure 2004356272
【0031】
(表1)に示ずように、比較例1と比較例2を比較すると、配向性の向上により、パワーファクターが向上し性能指数も向上したが、熱伝導率も向上している。
【0032】
この要因について検討するため、図3に比較例1の断面SEM写真を、図4に比較例2の断面SEM写真を示す。図3、図4からわかるように、熱間展延することで、結晶粒が増大していることがわかる。このため、熱伝導率が大きくなったことがわかる。
【0033】
次に、(表1)から実施例1,2,3の特性結果をみると、展延することで、比較例2と同様に、配向性が向上しパワーファクターが向上している。しかし、熱伝導率は比較例2と比べ、減少していることがわかる。
【0034】
そのため、性能指数は比較例2よりも向上した。この要因について検討するため、図5に第2実施例の断面SEM写真を示す。図5からわかるように、図4の比較例2のような結晶粒の成長は見られないことがわかる。このため、熱伝導率の増加がおこらず、高い性能指数を有する熱電素子を得ることが可能となる。
【0035】
なお、本実施の形態では熱間展延温度を753Kで行ったが、573K以上823K以下の温度で行えば同様の効果が得られる。熱間展延温度が低すぎると、組成変形の速度が低下するとともに、割れが生じ歩留まりが悪くなる。一方、塑性変形温度が高すぎると、粒成長が高まりすぎ、また配向性が低下する。
【0036】
また、燐の添加量は過剰になると、電気伝導率が減少し、展延して配向性を向上させても、パワーファクターの向上が見られなくなり、効果は小さくなる。
【0037】
従って、燐の添加量は3wt%以下が良い。これは、(表1)の第1実施例から第3実施例にかけて燐添加量が増加するに伴い、パワーファクターが低下していることからもわかる。
【0038】
また、加圧力は降伏応力以上であり、座屈が生じる圧力以下である必要があり、80kg/cm以上、300kg/cm以下の範囲であることが望ましい。
【0039】
また、本実施の形態ではBiTe、SbTeを用いて展延したが、BiSe、SbSe、SbSe単独あるいはこれらの混合系であっても同様の効果が見られる。
【0040】
また、本実施の形態では熱電材料の圧粉体を用いて、熱間展延を行ったが、比較例1の様な焼結体を熱間展延しても同様の効果が見られる。
【0041】
また、圧粉体作製に用いる熱電材料微粉末は、メカニカルアロイング法、メカニカルグラインディング法、ガスアトマイズ法等、その作製手段は問わない。
【0042】
(実施の形態2)
図6は本発明の実施の形態2における熱電材料の作製方法の熱間押出工程(変形工程)の熱間押出加工前の状態を示す概略図、図7は同実施の形態における熱電材料の作製方法の熱間押出工程(変形工程)の熱間押出加工後の状態を示す概略図である。
【0043】
図6、図7に示すように、本実施の形態2における熱間押出工程は、金型5と金型5内に設けられた空間6と空間6内に充填された燐を添加したBiTe系熱電材料の圧粉体7とパンチ8と金型5下部に空間6の径より小さな開口部と押出成型品10とで構成されている。
【0044】
以上のように構成された熱間押出工程(変形工程)について、以下その動作を説明する。
【0045】
まず、金型5中の空間6内に、事前に圧粉装置(図示せず)にて圧粉した燐を添加したBiTe系熱電材料の圧粉体7を設置する。
【0046】
昇温装置(図示せず)にて昇温後、パンチ8を垂直下方向へ加圧する事で、圧粉体7は金型5内を空間6から金型5下部の空間6より小さな径の開口部9に絞られながら、開口部9から押し出され、押し出し成形品10を手に入れる。
【0047】
以下、具体例を用い、本実施の形態2について説明する。
【0048】
熱間押出工程は、まずブリッジマン法にて作製した燐を添加した(BiTe0.25(SbTe0.75の組成からなる熱電材料を、メカニカルグラインディング法にて微細粉末にする。
【0049】
微細粉末を水素還元処理後、加圧力500kg/cmで、直径30mm、高さ30mmの円柱状に圧粉し、圧粉体を形成する(圧粉工程)。そして、金型内の空間に圧粉体を設置する。空間は圧粉体とほぼ同じ形の直径30mm、高さ30mmの形状部分と円筒部分から開口部にかけては円錐形の形状をしている。開口部の直径は5mmである。
【0050】
つぎに、装置内をアルゴン雰囲気に置換後、753K、200kg/cmの加圧力で加圧することで、圧粉体は開口部から、直径5mmの円柱状に押し出される(変形工程)。この際、熱電材料結晶のc面は押出方向と平行方向に配向する。従って、性能は押出方向と平行な方向に優れ、測定は押出方向と平行な方向で測定する。
【0051】
(表2)は本実施の形態2の変形工程にて作製した(BiTe0.25(SbTe0.75の組成からなる熱電材料を基本組成とし、燐(P)を0.1、1、2wt%添加した熱電材料の押出加工後の特性評価結果(第4実施例から第6実施例)である。
【0052】
また、比較例として、(表1)中に(BiTe0.25(SbTe0.75の組成からなる熱電材料の焼結体の特性評価結果(比較例1)および、(BiTe0.25(SbTe0.75の組成からなる熱電材料の圧粉体を押出加工した押出加工品の特性評価結果(比較例3)を示す。
【0053】
比較例1の焼結体は、メカニカルアロイングで作製した熱電材料微粉末を圧粉後、ホットプレス装置にて、アルゴン雰囲気中、723K、600kg/cmの加圧力で作製した(焼結工程)。
【0054】
【表2】
Figure 2004356272
【0055】
(表2)に示すように、比較例1と比較例3を比較すると、配向性の向上により、パワーファクターが向上し性能指数も向上したが、熱伝導率も向上している。
【0056】
これは、熱間押出加工をすることで、結晶粒が増大してたため、熱伝導率が大きくなったものである。
【0057】
次に、(表2)から実施例4,5,6の特性結果をみると、押出加工をすることで、比較例3と同様に、配向性が向上しパワーファクターが向上している。しかし、熱伝導率は比較例3と比べ、減少していることがわかる。そのため、性能指数は比較例3よりも向上している。
【0058】
これは、燐の添加により、比較例2によりも結晶粒の成長が小さいため、熱伝導率の増加がおこらず、高い性能指数を有する熱電素子を得ることが可能となる。
【0059】
なお、本実施の形態2では熱間押出温度を753Kで行ったが、573K以上823K以下の温度で行えば同様の効果が得られる。熱間押出温度が低すぎると、組成変形の速度が低下するとともに、割れが生じ歩留まりが悪くなる。一方、塑性変形温度が高すぎると、粒成長が高まりすぎ、また、配向性が低下する。
【0060】
また、燐の添加量は過剰になると、電気伝導率が減少し、展延して配向性を向上させても、パワーファクターの向上が見られなくなり、効果は小さくなる。従って、燐の添加量は3wt%以下が良い。これは、(表2)の第4実施例から第6実施例にかけて燐添加量が増加するに伴い、パワーファクターが低下していることからもわかる。
【0061】
また、加圧力は降伏応力以上であり、座屈が生じる圧力以下である必要があり、80kg/cm以上、300kg/cm以下の範囲であることが望ましい。
【0062】
また、本実施の形態2ではBiTe、SbTeを用いて熱間押出を行ったが、BiSe、SbSe、SbSe単独あるいはこれらの混合系であっても同様の効果が見られる。
【0063】
また、本実施の形態2では熱電材料の圧粉体を用いて、熱間押出を行ったが、比較例1の様な焼結体を熱間押出しても同様の効果が見られる。
【0064】
また、圧粉体作製に用いる熱電材料微粉末は、メカニカルアロイング法、メカニカルグラインディング法、ガスアトマイズ法等、その作製手段は問わない。
【0065】
【発明の効果】
以上説明したように請求項1記載の熱電材料の作製方法によれば、ビスマス、アンチモン、テルル、セレンからなる群から少なくとも二つ以上を含有した熱電材料の作製方法であって、添加剤として燐(P)を使用し、前記熱電材料粉末を作製する粉砕工程と、前記熱電材料粉末を圧粉する圧粉工程と、前記圧粉体を熱間塑性変形させる変形工程とを含むことで、粉砕工程において結晶粒径が著しく微細化するため、熱間塑性変形の際の粒成長を抑制でき、かつ結晶配向性を向上させるため、性能指数の高い熱電材料を作製できる効果を有する。
【0066】
また、請求項2記載の熱電材料の作製方法は、ビスマス、アンチモン、テルル、セレンからなる群から少なくとも二つ以上を含有した熱電材料の作製方法であって、添加剤として燐(P)を使用し、前記熱電材料粉末を作製する粉砕工程と、前記熱電材料の粉末を圧粉する圧粉工程と、前記圧粉体を焼結化する焼結工程と、前記焼結体を熱間塑性変形させる変形工程とを含むことで、粉砕工程において結晶粒径が著しく微細化し、また、焼結体も微細な組織を有するため、熱間塑性変形の際の粒成長を抑制でき、かつ結晶配向性を向上させるため、性能指数の高い熱電材料を作製できる効果を有する。また、焼結体を熱間塑性変形させるため、取り扱い性が良く、歩留まりも優れる効果がある。
【0067】
また、請求項3記載の熱電材料の作製方法は、請求項1または2に記載の発明における前記熱間塑性変形が、熱間展延であるので、展延方向と平行な方向にc面が優先的に配向し、性能指数の向上を図ることができる。
【0068】
また、請求項4記載の熱電材料の作製方法は、請求項1または2に記載の発明における前記熱間塑性変形が、熱間押出加工であるので、押出方向と平行な方向にc面が優先的に配向し、性能指数の向上を図ることができる。
【0069】
また、請求項5記載の熱電材料の作製方法は、請求項1から4のいずれか一項に記載の発明における燐の添加量が3wt%以下であり、燐の添加量が過剰になると、電気伝導率の低下による性能低下とともに、熱間塑性変形時に、割れが生じやすく、歩留まりが悪くなるため、それらの防止を図ることができる。
【0070】
また、請求項6記載の熱電材料の作製方法は、請求項1から5のいずれか一項に記載の発明における前記熱間塑性変形は、573K以上823K以下の温度で行うもので、塑性変形温度が低すぎると、組成変形の速度が低下するとともに、割れが生じ歩留まりが悪くなる。一方、塑性変形温度が高すぎると、粒成長が高まりすぎ、配向性が低下するため、最適温度での熱間塑性変形を行うことで防止できる。
【図面の簡単な説明】
【図1】本発明の実施の形態1における熱間展延工程(変形工程)の熱間展延前の状態を示す概略図
【図2】本発明の実施の形態1における熱間展延工程(変形工程)の熱間展延後の状態を示す概略図
【図3】本発明の実施の形態1における比較例1の断面SEM写真
【図4】本発明の実施の形態1における比較例2の断面SEM写真
【図5】本発明の実施の形態1における第2実施例の断面SEM写真
【図6】本発明の実施の形態2における熱間押出工程(変形工程)の熱間押出加工前の状態を示す概略図
【図7】本発明の実施の形態2における熱間押出工程(変形工程)の熱間押出加工後の状態を示す概略図
【符号の説明】
1 ダイス
2 パンチ
3 圧粉体
4 展延体
5 金型
6 空間
7 圧粉体
8 パンチ
9 開口部
8 押出成型品[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a thermoelectric material that converts heat into electricity.
[0002]
[Prior art]
In general, thermoelectric materials such as V-VI group materials such as Bi 2 Te 3 , Bi 2 Se 3, and Sb 2 Te 3 , particularly materials that can be used near room temperature include semiconductor circuits such as sensor elements, optical elements, and LSI substrates. It is used where cooling of electronic equipment used in a space station and precise temperature control of a laser diode or the like are required.
[0003]
The Bi 2 Te 3 compound has a large anisotropy in physical properties in a layered structure including two and three atoms of Bi and Te in a unit cell of a rhombohedral crystal, respectively. In this structure, there are three sets of Te atomic layers overlapping in the c-axis direction of the hexagonal system, and the bonds of these Te-Te atoms are van der Waals bonds. It is significantly weaker than the bond between other bonded atoms and is easily cleaved. The electrical characteristics are high in a direction perpendicular to the c-axis direction (parallel to the c-plane).
[0004]
The figure of merit Z representing the properties of the thermoelectric material is expressed by dividing the product of the square of the Seebeck coefficient α and the electrical conductivity σ by the thermal conductivity κ as shown in (Equation 1). Therefore, in order to increase Z, it is necessary to increase α 2 σ and decrease κ.
[0005]
(Equation 1)
Figure 2004356272
[0006]
The ingot material produced by unidirectional solidification by the commonly used Bridgman method or the like has a uniform crystal orientation, although not as large as a single crystal material. Therefore, the electrical characteristics are high. However, it has high thermal conductivity and is easily cleaved, so that the material strength is low.
[0007]
On the other hand, a sintered material produced by refining a thermoelectric material by mechanical alloying or gas atomizing and then unidirectionally sintering the fine crystal has excellent material strength and is perpendicular to the pressing direction. The c-plane is aligned in the direction (for example, Patent Document 1).
[0008]
Further, since the crystal grain size is fine, the thermal conductivity can be reduced. However, the crystal orientation of the sintered material is lower than that of the Bridgman method or the like, and the electrical characteristics are reduced, so that the offset is offset and the figure of merit does not exceed that of the unidirectional solidified material. As means for improving the crystal orientation of the fine crystal sintered body, there are methods of upsetting forging by hot plastic deformation and hot extrusion molding (for example, Patent Document 2).
[0009]
[Patent Document 1]
JP-A-62-264682 [Patent Document 2]
JP-A-10-178218
[Problems to be solved by the invention]
However, when hot plastic deformation is performed, the crystal orientation improves, but in the process, grain growth of several μm to several mm occurs, so the thermal conductivity improves and the performance is improved even if the crystal orientation is aligned. There was a problem that the index dropped.
[0011]
The present invention is to add an additive that promotes crystal refinement, to reduce the thermal conductivity by keeping the crystal grain size small even during hot plastic deformation, and to improve the crystal orientation. The present invention provides a method for producing a thermoelectric material that improves the figure of merit by improving electric conductivity.
[0012]
[Means for Solving the Problems]
The invention of a method for producing a thermoelectric material according to claim 1 of the present invention is a method for producing a thermoelectric material containing at least two members from the group consisting of bismuth, antimony, tellurium, and selenium. ), Comprising a pulverizing step of producing the thermoelectric material powder, a compacting step of compacting the thermoelectric material powder, and a deforming step of hot plastically deforming the compact. By adding, the crystal grain size is remarkably reduced in the pulverization step, so that grain growth during hot plastic deformation can be suppressed, and in order to improve crystal orientation, a thermoelectric material having a high figure of merit can be produced. There is action.
[0013]
The invention of a method for producing a thermoelectric material according to claim 2 is a method for producing a thermoelectric material containing at least two or more members from the group consisting of bismuth, antimony, tellurium, and selenium, wherein phosphorus (P) is used as an additive. Then, a pulverizing step of producing the thermoelectric material powder, a compacting step of compacting the thermoelectric material powder, a sintering step of sintering the compact, and hot plastic deformation of the sintered body The addition of phosphorus causes the crystal grain size to be significantly reduced in the pulverization step, and the sintered body also has a fine structure, so that the grain growth during hot plastic deformation is reduced. A thermoelectric material having a high figure of merit can be produced because it can be suppressed and crystal orientation is improved. In addition, since the sintered body is subjected to hot plastic deformation, there is an effect that the handleability is good and the yield is excellent.
[0014]
According to a third aspect of the invention, there is provided a method for producing a thermoelectric material, wherein the hot plastic deformation in the first or second aspect is hot rolling. The c-plane is preferentially oriented in the direction parallel to the elongation direction, and the figure of merit can be improved.
[0015]
According to a fourth aspect of the present invention, there is provided a method for producing a thermoelectric material, wherein the hot plastic deformation in the first or second aspect is hot extrusion. The c-plane is preferentially oriented in a direction parallel to the direction, and the figure of merit can be improved.
[0016]
According to a fifth aspect of the present invention, there is provided a method for producing a thermoelectric material, wherein the amount of phosphorus in the invention according to any one of the first to fourth aspects is 3 wt% or less, and the amount of phosphorus added is excessively high. If so, cracks are likely to occur at the time of hot plastic deformation as well as performance degradation due to a decrease in electric conductivity, and the yield is deteriorated.
[0017]
According to a sixth aspect of the invention, there is provided a method for producing a thermoelectric material, wherein the hot plastic deformation in the invention according to any one of the first to fifth aspects is performed at a temperature of 573K to 823K. If the temperature is too low, the rate of composition deformation decreases, and cracks occur to lower the yield. On the other hand, if the plastic deformation temperature is too high, the grain growth becomes too high and the orientation decreases, so that it can be prevented by performing hot plastic deformation at the optimum temperature.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of a method for manufacturing a thermoelectric material according to the present invention will be described with reference to the drawings.
[0019]
(Embodiment 1)
FIG. 1 is a schematic diagram showing a state before hot spreading in a hot spreading step (deformation step) of the method for producing a thermoelectric material according to Embodiment 1 of the present invention, and FIG. It is the schematic which shows the state after the hot spreading of the hot spreading process (deformation process) of the manufacturing method.
[0020]
As shown in FIGS. 1 and 2, the hot spreading step of the method for manufacturing a thermoelectric material according to the present embodiment includes a die 1, a punch 2, and a green compact 3 of a Bi 2 Te 3 -based thermoelectric material to which phosphorus is added. And the extension body 4.
[0021]
The operation of the hot spreading step (deformation step) configured as described above will be described below.
[0022]
First, a powder of a Bi 2 Te 3 type thermoelectric material to which phosphorus is added is put into a die 1 with a punch 2 sandwiching the upper and lower sides, and the punch 2 is pressed to produce and install a green compact 3 (compact compact). Process).
[0023]
After the temperature is raised by a temperature raising device (not shown), by pressing the punch 2 from above and below, the green compact 3 is spread in the direction perpendicular to the pressing direction, and the spread body 4 is obtained (deformation). Process).
[0024]
Hereinafter, the first embodiment will be described using a specific example.
[0025]
In the spreading step, first, a thermoelectric material fine powder having a composition of (Bi 2 Te 3 ) 0.25 (Sb 2 Te 3 ) 0.75 to which phosphorus produced by a mechanical alloying method is added is subjected to hydrogen reduction treatment. The powder is compacted into a column having a diameter of 20 mm and a height of 10 mm at a pressure of 500 kg / cm 2 to form a compact (compacting step).
[0026]
Then, the green compact is placed in a die having a diameter of 30 mm, and after replacing the inside of the apparatus with an argon atmosphere, the green compact is compressed by applying a pressure of 753 K and a pressure of 200 kg / cm 2. It is spread in a vertical direction (deformation process). At this time, the pressing direction in the spreading step and the pressing direction in preparing the green compact are performed in the same direction.
[0027]
(Table 1) is based on a thermoelectric material having a composition of (Bi 2 Te 3 ) 0.25 (Sb 2 Te 3 ) 0.75 manufactured by the deformation process of the present embodiment, and phosphorus (P) is used. It is a characteristic evaluation result (1st Example-3rd Example) after spreading of the thermoelectric material which added 0.1, 1 and 2 wt%.
[0028]
In addition, as comparative examples, the results of the evaluation of the characteristics of the sintered body of the thermoelectric material having the composition of (Bi 2 Te 3 ) 0.25 (Sb 2 Te 3 ) 0.75 in Table 1 (Comparative Example 1) and shows (Bi 2 Te 3) 0.25 ( Sb 2 Te 3) 0.75 composition thermoelectric material green compact spreading the spreading of characterization results of which consists of (Comparative example 2).
[0029]
The sintered body of Comparative Example 1 was produced by compacting thermoelectric material fine powder produced by mechanical alloying and then using a hot press apparatus in an argon atmosphere at 723 K under a pressure of 600 kg / cm 2 (sintering step). ).
[0030]
[Table 1]
Figure 2004356272
[0031]
As shown in Table 1, when Comparative Example 1 and Comparative Example 2 were compared, the power factor was improved and the figure of merit was improved due to the improved orientation, but the thermal conductivity was also improved.
[0032]
FIG. 3 shows a cross-sectional SEM photograph of Comparative Example 1 and FIG. 4 shows a cross-sectional SEM photograph of Comparative Example 2 in order to study this factor. As can be seen from FIGS. 3 and 4, it can be seen that the crystal grains are increased by hot spreading. For this reason, it turns out that thermal conductivity became large.
[0033]
Next, looking at the characteristic results of Examples 1, 2 and 3 from (Table 1), the orientation is improved and the power factor is improved as in Comparative Example 2 by spreading. However, it can be seen that the thermal conductivity is lower than in Comparative Example 2.
[0034]
Therefore, the figure of merit was improved as compared with Comparative Example 2. FIG. 5 shows a cross-sectional SEM photograph of the second embodiment in order to study this factor. As can be seen from FIG. 5, it is understood that the growth of crystal grains as in Comparative Example 2 in FIG. 4 is not observed. Therefore, the thermal conductivity does not increase, and a thermoelectric element having a high figure of merit can be obtained.
[0035]
In the present embodiment, the hot spreading temperature is set at 753K, but the same effect can be obtained if the hot spreading temperature is set between 573K and 823K. If the hot-rolling temperature is too low, the rate of composition deformation is reduced, and cracks occur to lower the yield. On the other hand, when the plastic deformation temperature is too high, the grain growth becomes too high and the orientation decreases.
[0036]
If the amount of added phosphorus is excessive, the electrical conductivity decreases, and even if the orientation is improved by spreading, the power factor is not improved and the effect is reduced.
[0037]
Therefore, the addition amount of phosphorus is preferably 3 wt% or less. This can also be seen from the fact that the power factor decreases as the amount of phosphorus added increases from Example 1 to Example 3 in Table 1.
[0038]
Further, the pressing force must be equal to or higher than the yield stress and equal to or lower than the pressure at which buckling occurs, and is preferably in the range of 80 kg / cm 2 or more and 300 kg / cm 2 or less.
[0039]
Further, in the present embodiment, Bi 2 Te 3 and Sb 2 Te 3 are used for spreading, but Bi 2 Se 3 , Sb 2 Se 3 , Sb 2 Se 3 alone or a mixed system of these are also used. The effect is seen.
[0040]
Further, in the present embodiment, hot spreading was performed using a green compact of a thermoelectric material. However, the same effect can be obtained by hot spreading a sintered body as in Comparative Example 1.
[0041]
Further, the thermoelectric material fine powder used for the production of the green compact may be produced by any method such as a mechanical alloying method, a mechanical grinding method, and a gas atomizing method.
[0042]
(Embodiment 2)
FIG. 6 is a schematic diagram showing a state before hot extrusion in a hot extrusion step (deformation step) of the method for producing a thermoelectric material according to Embodiment 2 of the present invention, and FIG. It is the schematic which shows the state after the hot extrusion process of the hot extrusion process (deformation process) of the method.
[0043]
As shown in FIGS. 6 and 7, in the hot extrusion step in the second embodiment, the mold 5, the space 6 provided in the mold 5, and Bi 2 added with phosphorus filled in the space 6 are added. It is composed of a compact 3 of a Te3-based thermoelectric material, a punch 8, an opening smaller than the diameter of the space 6 below the mold 5, and an extruded product 10.
[0044]
The operation of the hot extrusion process (deformation process) configured as described above will be described below.
[0045]
First, in a space 6 in a mold 5, a green compact 7 of a Bi 2 Te 3 -based thermoelectric material to which phosphorus previously compressed by a compacting apparatus (not shown) is added is installed.
[0046]
After the temperature is raised by a temperature raising device (not shown), the punch 8 is pressed vertically downward so that the green compact 7 has a smaller diameter than the space 6 below the mold 5 from the space 6 in the mold 5. It is extruded from the opening 9 while being squeezed by the opening 9, and the extruded product 10 is obtained.
[0047]
Hereinafter, the second embodiment will be described using a specific example.
[0048]
In the hot extrusion step, first, a thermoelectric material having a composition of (Bi 2 Te 3 ) 0.25 (Sb 2 Te 3 ) 0.75 to which phosphorus added by a Bridgman method is added is subjected to a mechanical grinding method. Make fine powder.
[0049]
After the hydrogen reduction treatment, the fine powder is compacted into a column having a diameter of 30 mm and a height of 30 mm at a pressure of 500 kg / cm 2 to form a compact (compacting step). Then, the compact is placed in the space inside the mold. The space has a conical shape from the cylindrical portion to the opening with a shape portion having a diameter of 30 mm and a height of 30 mm, which is almost the same shape as the green compact. The diameter of the opening is 5 mm.
[0050]
Next, after the inside of the apparatus is replaced with an argon atmosphere, the compact is extruded from the opening into a cylindrical shape having a diameter of 5 mm by applying a pressure of 75 kg at a pressure of 200 kg / cm 2 (deformation step). At this time, the c-plane of the thermoelectric material crystal is oriented in a direction parallel to the extrusion direction. Therefore, the performance is excellent in the direction parallel to the extrusion direction, and the measurement is performed in the direction parallel to the extrusion direction.
[0051]
(Table 2) is based on a thermoelectric material having a composition of (Bi 2 Te 3 ) 0.25 (Sb 2 Te 3 ) 0.75 manufactured by the deformation process of the second embodiment, and phosphorus (P). Is a characteristic evaluation result (fourth to sixth examples) after extrusion of a thermoelectric material to which 0.1, 1 and 2 wt% was added.
[0052]
In addition, as comparative examples, the results of the evaluation of the characteristics of the sintered body of the thermoelectric material having the composition of (Bi 2 Te 3 ) 0.25 (Sb 2 Te 3 ) 0.75 in Table 1 (Comparative Example 1) and shows (Bi 2 Te 3) 0.25 ( Sb 2 Te 3) 0.75 composition thermoelectric material green compact extruded extrudates characteristics evaluation results consisting of (Comparative example 3).
[0053]
The sintered body of Comparative Example 1 was produced by compacting thermoelectric material fine powder produced by mechanical alloying and then using a hot press apparatus in an argon atmosphere at 723 K under a pressure of 600 kg / cm 2 (sintering step). ).
[0054]
[Table 2]
Figure 2004356272
[0055]
As shown in Table 2, when Comparative Example 1 and Comparative Example 3 are compared, the power factor is improved and the figure of merit is improved due to the improvement in the orientation, but the thermal conductivity is also improved.
[0056]
This is because the thermal conductivity was increased because the crystal grains were increased by hot extrusion.
[0057]
Next, looking at the characteristic results of Examples 4, 5, and 6 from (Table 2), as in Comparative Example 3, the orientation was improved and the power factor was improved by extrusion. However, it can be seen that the thermal conductivity is lower than that of Comparative Example 3. Therefore, the figure of merit is higher than that of Comparative Example 3.
[0058]
This is because, by the addition of phosphorus, the growth of the crystal grains is smaller than in Comparative Example 2, so that the thermal conductivity does not increase and a thermoelectric element having a high figure of merit can be obtained.
[0059]
In the second embodiment, the hot extrusion is performed at a temperature of 753K, but the same effect can be obtained if the temperature is 573K or more and 823K or less. If the hot extrusion temperature is too low, the rate of composition deformation is reduced, and cracks occur to lower the yield. On the other hand, if the plastic deformation temperature is too high, the grain growth becomes too high, and the orientation decreases.
[0060]
If the amount of added phosphorus is excessive, the electrical conductivity decreases, and even if the orientation is improved by spreading, the power factor is not improved and the effect is reduced. Therefore, the addition amount of phosphorus is preferably 3 wt% or less. This can be seen from the fact that the power factor decreases as the amount of added phosphorus increases from the fourth example to the sixth example in Table 2.
[0061]
Further, the pressing force must be equal to or higher than the yield stress and equal to or lower than the pressure at which buckling occurs, and is preferably in the range of 80 kg / cm 2 or more and 300 kg / cm 2 or less.
[0062]
In the second embodiment, hot extrusion is performed using Bi 2 Te 3 and Sb 2 Te 3. However, Bi 2 Se 3 , Sb 2 Se 3 , Sb 2 Se 3 alone, or a mixture of these is used. The same effect can be seen.
[0063]
In the second embodiment, hot extrusion is performed using a green compact of a thermoelectric material. However, the same effect can be obtained by hot extrusion of a sintered body as in Comparative Example 1.
[0064]
Further, the thermoelectric material fine powder used for the production of the green compact may be produced by any method such as a mechanical alloying method, a mechanical grinding method, and a gas atomizing method.
[0065]
【The invention's effect】
As described above, according to the method for producing a thermoelectric material according to claim 1, a method for producing a thermoelectric material containing at least two or more members from the group consisting of bismuth, antimony, tellurium, and selenium is provided. Using (P), a pulverizing step of producing the thermoelectric material powder, a compacting step of compacting the thermoelectric material powder, and a deformation step of hot plastically deforming the compact are performed. In the process, the crystal grain size is remarkably reduced, so that the grain growth during hot plastic deformation can be suppressed, and the crystal orientation is improved, so that a thermoelectric material having a high figure of merit can be produced.
[0066]
The method for producing a thermoelectric material according to claim 2 is a method for producing a thermoelectric material containing at least two or more members from the group consisting of bismuth, antimony, tellurium, and selenium, wherein phosphorus (P) is used as an additive. A pulverizing step of preparing the thermoelectric material powder, a compacting step of compacting the thermoelectric material powder, a sintering step of sintering the compact, and hot plastic deformation of the sintered body. In the pulverization step, the crystal grain size is remarkably fined, and the sintered body also has a fine structure, so that grain growth during hot plastic deformation can be suppressed, and the crystal orientation Has the effect of producing a thermoelectric material having a high figure of merit. In addition, since the sintered body is subjected to hot plastic deformation, there is an effect that the handleability is good and the yield is excellent.
[0067]
In the method for producing a thermoelectric material according to claim 3, since the hot plastic deformation in the invention according to claim 1 or 2 is hot spreading, the c-plane extends in a direction parallel to the spreading direction. Orientation can be performed preferentially, and the figure of merit can be improved.
[0068]
Further, in the method for producing a thermoelectric material according to claim 4, since the hot plastic deformation in the invention according to claim 1 or 2 is hot extrusion, the c-plane is prioritized in a direction parallel to the extrusion direction. Orientation can be achieved to improve the figure of merit.
[0069]
According to a fifth aspect of the present invention, there is provided a method for manufacturing a thermoelectric material, in which the amount of phosphorus added in the invention according to any one of the first to fourth aspects is 3 wt% or less, and when the amount of phosphorus added becomes excessive, Along with performance degradation due to a decrease in conductivity, cracking is likely to occur during hot plastic deformation, and the yield is deteriorated, so that these can be prevented.
[0070]
In the method for producing a thermoelectric material according to claim 6, the hot plastic deformation in the invention according to any one of claims 1 to 5 is performed at a temperature of 573K or more and 823K or less. Is too low, the rate of composition deformation is reduced, and cracks occur to lower the yield. On the other hand, if the plastic deformation temperature is too high, the grain growth becomes too high and the orientation decreases, so that it can be prevented by performing hot plastic deformation at the optimum temperature.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a state before hot spreading in a hot spreading step (deformation step) according to Embodiment 1 of the present invention. FIG. 2 is a hot spreading step in Embodiment 1 of the present invention. FIG. 3 is a schematic view showing a state after hot spreading in a (deformation step). FIG. 3 is a cross-sectional SEM photograph of Comparative Example 1 in Embodiment 1 of the present invention. FIG. 4 is Comparative Example 2 in Embodiment 1 of the present invention. FIG. 5 is a cross-sectional SEM photograph of Example 2 in Embodiment 1 of the present invention. FIG. 6 is a cross-sectional SEM photograph of Example 2 in Embodiment 1 of the present invention before hot extrusion in a hot extrusion step (deformation step). FIG. 7 is a schematic diagram showing a state after hot extrusion processing in a hot extrusion step (deformation step) according to Embodiment 2 of the present invention.
Reference Signs List 1 die 2 punch 3 green compact 4 spread body 5 die 6 space 6 green compact 8 punch 9 opening 8 extruded product

Claims (6)

ビスマス、アンチモン、テルル、セレンからなる群から少なくとも二つ以上を含有した熱電材料の作製方法であって、添加剤として燐を使用し、前記熱電材料粉末を作製する粉砕工程と、前記熱電材料粉末を圧粉する圧粉工程と、前記圧粉体を熱間塑性変形させる変形工程とを含むことを特徴とする熱電材料の作製方法。A method for producing a thermoelectric material containing at least two members from the group consisting of bismuth, antimony, tellurium, and selenium, comprising: And a deforming step of hot plastically deforming the green compact. ビスマス、アンチモン、テルル、セレンからなる群から少なくとも二つ以上を含有した熱電材料の作製方法であって、添加剤として燐を使用し、前記熱電材料粉末を作製する粉砕工程と、前記熱電材料粉末を圧粉する圧粉工程と、前記圧粉体を焼結化する焼結工程と、前記焼結体を熱間塑性変形させる変形工程とを含むことを特徴とする熱電材料の作製方法。A method for producing a thermoelectric material containing at least two members from the group consisting of bismuth, antimony, tellurium, and selenium, comprising: A compacting step of compacting the compact, a sintering step of sintering the compact, and a deforming step of hot plastically deforming the sintered body. 前記熱間塑性変形が、熱間展延であることを特徴とする請求項1または2に記載の熱電材料の作製方法。The method for producing a thermoelectric material according to claim 1, wherein the hot plastic deformation is hot spreading. 前記熱間塑性変形が、熱間押出加工であることを特徴とする請求項1または2に記載の熱電材料の作製方法。The method for producing a thermoelectric material according to claim 1, wherein the hot plastic deformation is hot extrusion. 燐の添加量が3wt%以下であることを特徴とする請求項1から4のいずれか一項に記載の熱電材料の作製方法。The method for producing a thermoelectric material according to any one of claims 1 to 4, wherein the amount of phosphorus added is 3 wt% or less. 前記熱間塑性変形は、573K以上823K以下の温度で行うことを特徴とする請求項1から5のいずれか一項に記載の熱電材料の作製方法。The method for producing a thermoelectric material according to any one of claims 1 to 5, wherein the hot plastic deformation is performed at a temperature of 573K or more and 823K or less.
JP2003150666A 2003-05-28 2003-05-28 Manufacturing method for thermoelectric material Pending JP2004356272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003150666A JP2004356272A (en) 2003-05-28 2003-05-28 Manufacturing method for thermoelectric material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003150666A JP2004356272A (en) 2003-05-28 2003-05-28 Manufacturing method for thermoelectric material

Publications (1)

Publication Number Publication Date
JP2004356272A true JP2004356272A (en) 2004-12-16

Family

ID=34046406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003150666A Pending JP2004356272A (en) 2003-05-28 2003-05-28 Manufacturing method for thermoelectric material

Country Status (1)

Country Link
JP (1) JP2004356272A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018516457A (en) * 2015-04-14 2018-06-21 エルジー エレクトロニクス インコーポレイティド Thermoelectric material, thermoelectric element and thermoelectric module including the same
CN115141019A (en) * 2022-07-15 2022-10-04 湖北赛格瑞新能源科技有限公司 Method for preparing p-type bismuth telluride-based thermoelectric material by utilizing accumulated hot heading

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018516457A (en) * 2015-04-14 2018-06-21 エルジー エレクトロニクス インコーポレイティド Thermoelectric material, thermoelectric element and thermoelectric module including the same
US10600947B2 (en) 2015-04-14 2020-03-24 Lg Electronics Inc. Thermoelectric materials, and thermoelectric element and thermoelectric module comprising the same
CN115141019A (en) * 2022-07-15 2022-10-04 湖北赛格瑞新能源科技有限公司 Method for preparing p-type bismuth telluride-based thermoelectric material by utilizing accumulated hot heading
CN115141019B (en) * 2022-07-15 2023-09-08 湖北赛格瑞新能源科技有限公司 Method for preparing p-type bismuth telluride-based thermoelectric material by utilizing accumulated hot heading

Similar Documents

Publication Publication Date Title
JP4286053B2 (en) THERMOELECTRIC SEMICONDUCTOR MATERIAL, THERMOELECTRIC SEMICONDUCTOR ELEMENT USING THE THERMOELECTRIC SEMICONDUCTOR MATERIAL, THERMOELECTRIC MODULE USING THE THERMOELECTRIC SEMICONDUCTOR ELEMENT, AND METHOD FOR PRODUCING THEM
KR100924054B1 (en) Thermoelectric material and method for producing same
JP2002232026A (en) Thermoelectric material, its manufacturing method and peltier module
CN107530772B (en) Magnetic refrigeration module, sintered body, and method for manufacturing magnetic refrigeration module
CN107074666A (en) The porous thermoelectric generator of nanostructured
KR100991142B1 (en) METHOD FOR MANUFACTURING Bi-Te BASED THERMOELECTRIC MATERIALS BY EQUAL CHANNEL ANGULAR PRESSINGECAP PROCESS
JP5034785B2 (en) Method for manufacturing thermoelectric material
JP4479628B2 (en) Thermoelectric material, manufacturing method thereof, and thermoelectric module
JP2006237460A (en) Process for producing thermoelectric material
JP2004342893A (en) Method of manufacturing thermoelectric material
JP2004356272A (en) Manufacturing method for thermoelectric material
KR101468991B1 (en) Thermoelectric material, method of manufacturing the same, thermoelectric device having the same
JP2022037116A (en) Thermoelectric conversion material, thermoelectric conversion element and method for manufacturing thermoelectric conversion material
JP4467584B2 (en) Thermoelectric material manufacturing method
JP4200770B2 (en) Thermoelectric material ingot, method for producing the same, and method for producing the thermoelectric module
JP2004235278A (en) Thermoelectric material and its manufacturing method
JP2004179264A (en) Thermoelectric material and manufacturing method therefor
JP5353213B2 (en) Thermoelectric material, method for producing thermoelectric material
JP2000138399A (en) Thermoelectric semiconductor material, thermoelectric device, manufacture of them, and manufacturing apparatus of the thermoelectric semiconductor material
JP4373296B2 (en) Raw material for thermoelectric conversion material, method for producing thermoelectric conversion material, and thermoelectric conversion material
JP4166348B2 (en) Thermoelectric semiconductor materials, thermoelectric elements, and methods for producing them
JP4114645B2 (en) Thermoelectric material, manufacturing method thereof, and Peltier module
JP4296784B2 (en) Method for producing thermoelectric conversion material
JP4258086B2 (en) Method for manufacturing thermoelectric semiconductor sintered body
JP4292809B2 (en) Method and apparatus for producing alloy ingot, thermoelectric semiconductor material and method for producing the same