JP2004356076A - Regenerating method for lead-acid battery - Google Patents

Regenerating method for lead-acid battery Download PDF

Info

Publication number
JP2004356076A
JP2004356076A JP2003185790A JP2003185790A JP2004356076A JP 2004356076 A JP2004356076 A JP 2004356076A JP 2003185790 A JP2003185790 A JP 2003185790A JP 2003185790 A JP2003185790 A JP 2003185790A JP 2004356076 A JP2004356076 A JP 2004356076A
Authority
JP
Japan
Prior art keywords
battery
electrolyte
lead
lead battery
organic additive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003185790A
Other languages
Japanese (ja)
Inventor
Akiya Kozawa
昭弥 小沢
Yoshitaka Suzuki
喜隆 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003185790A priority Critical patent/JP2004356076A/en
Priority to US10/634,592 priority patent/US7160645B2/en
Priority to PCT/IB2004/001727 priority patent/WO2004105161A2/en
Publication of JP2004356076A publication Critical patent/JP2004356076A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To regenerate a degraded lead storage battery. <P>SOLUTION: A heavy current is applied into the electrolyte of a lead storage battery for a long time, by adding at least one organic addition agent from a group composed of a polyvinyl alcohol, a polyacrylic acid, and lignin. Consequently, the crystals of lead sulfate of a cathode are fine grained, and then the specific gravity of the electrolyte is raised by charging. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】本発明は劣化した鉛電池の再生方法に関するものである。
【0002】
【従来の技術】従来、希硫酸を電解液とする鉛蓄電池において、電池の充電不足に伴い硫酸鉛の大型結晶が陰極に成長するのを防止するため、均等充電と称する低電流、長時間の充電を定期的に行なう対策が行なわれてきた。しかしながら、一旦陰極で硫酸鉛の大型結晶が成長すると、その結晶は通常の充電では容易には分解されず、電池容量の低下を防止する効果は限定的であった。また、陰極に硫酸鉛の大型結晶が成長する原因としては、陽極活物質を保持するグリッドに主として用いられているアンチモン2ないし6%と残部が鉛よりなる合金からアンチモンイオン(Sb3+またはSb5+)が電解液中に溶出し、これが還元されて陰極に析出し、このアンチモンが析出した陰極の水素過電圧が著しく低下する為に、通常の充電条件でも陰極で水素の発生が起こりやすくなり、硫酸鉛の還元反応が不充分になり、残存する硫酸鉛が次第に成長するものと考えられる。この硫酸鉛の大型結晶を微細結晶に変化させる方法として、本発明者等は先に、電解液にポリビニルアルコール、ポリアクリル酸、リグニン等の有機ポリマーを添加する方法を提案した。しかしながらこれらの添加剤による方法では、対象とする電池の使用状態や、それに伴う劣化の状態に応じて効果の程度にばらつきが生ずるという問題があった。
【0003】
【発明が解決しようとする課題】本発明は、劣化した鉛電池の陰極活物質の微構造が、放電条件により大きく変化し、その放電条件を選択することにより、陰極活物質の微構造を大幅に改良することができることを見出し、更にこの処理と添加剤を組合わせることにより、劣化した鉛電池を初期特性近くに迄ばらつき少なく再生できることを見出したものである。
【0004】
【課題を解決するための手段】本発明は、鉛電池の電解液中にポリビニルアルコール、ポリアクリル酸、リグニンからなる群のうちの少なくとも一つの有機添加剤を加え、0.3C以上、好ましくは1C以上の放電率で該電池の公称容量の2%以上、好ましくは10%以上の電気量を連続または断続して放電させる鉛電池の再生方法、および、鉛電池を0.3C以上、好ましくは1C以上の放電率で該電池の公称容量の2%以上、好ましくは10%以上の電気量を連続または断続して放電させた後、電解液中にポリビニルアルコール、ポリアクリル酸、リグニンからなる群のうちの少なくとも一つの有機添加剤を加える鉛電池の再生方法である。
【0005】本発明において、Cは対象とする電池の定格容量を分母とし、1時間当りの放電電気量を分子とする電流の大きさの放電率を意味し、例えば0.3Cとは、1時間当り、定格容量の30%に相当する電気量を放電する電流の大きさの放電率を意味し、1Cとは、1時間当り、定格容量の100%に相当する電気量を放電する電流の大きさの放電率をを意味する。本発明の放電処理は連続して行なうことが最も好ましいが、電池の発熱対策等が必要な場合には断続的に行なっても良い。また、電解液にポリビニルアルコール、ポリアクリル酸、リグニン等の有機添加剤を加える場合は、本発明者等が先に提案した特開2000−149981号、特開2000−223145号、特開2001−313064号の方法を用いることができ、大電流放電処理と有機添加剤とを組合わせた本発明では有機添加剤単独の場合に比べて、その添加の効果が一層顕著で且つばらつきが少ない。また、電池の電解液中に有機添加剤を加え、0.3C以上、好ましくは1C以上の電流で該電池の公称容量の2%以上、好ましくは10%以上の電気量を連続または断続して放電した後の鉛電池の電解液をアンチモンを実質的に含まない電解液と置換してもよい。更に、劣化した電池を、0.3C以上、好ましくは1C以上の電流で該電池の公称容量の2%以上、好ましくは10%以上の電気量を連続または断続して放電した後の鉛電池の電解液を、アンチモンを実質的に含まず、且つ前記の有機添加剤を含む電解液と置換してもよい。
【0006】本発明で用いる有機添加剤の量は、電解液中に0.002重量%〜1重量%であることが好ましく、0.02重量%〜0.2重量%の範囲で特に効果が大きい。
【0007】
【作用】本発明の大電流、長時間放電と有機添加物との相乗効果について、以下詳細に説明する。
鉛電池の多くは自動車のエンジン始動用や電動フォークリフトの主電源として使われており、大電流放電が必要な自動車のエンジン始動時でも1Cないし1.5C程度の放電率で、その放電時間は数秒間であり、放電される電気量としては電池の公称容量の0.1%程度に過ぎない。また、電動フォークリフトの場合では、通常1回の充電で1シフトの作業を行なっており、0.1C〜0.2Cの放電率で公称容量の100%近い放電を行なっていることになる。これらのいずれの場合でも、放電電気量が少なすぎるか、または、放電率が小さいため、陰極の硫酸鉛の結晶を微細化する効果は認められない。
こてに対して、本発明者は、大電流すなわち0.3C以上、好ましくは1C以上、更に好ましくは1.5C以上の放電率で該電池の公称容量の2%以上、好ましくは5%以上、更に好ましくは10%ないし50%の電気量を連続または断続して放電させると、陰極の硫酸鉛の結晶が明確に微細化することを見出した。更にその際、該電池の電解液中にポリビニルアルコール、ポリアクリル酸、リグニン等の有機添加剤を添加すると微細化が一層促進されること、および、電池の再生効果の指標となる完全充電時の電解液の比重についても、新品の電池の電解液に近い値にまで上昇することを見出した。また、これらの有機添加剤は大電流放電処理の後で電解液中に添加した場合でも、その後の完全充電時の電解液の比重の低下を防止する効果がある。
【0008】
【実施例】
【実施例1】エンジン始動および一般電装品用電源として自動車に3年間使用した公称容量40Ahの鉛電池(5時間率の容量は25Ah)を大自工業株式会社製SL−3型充電器で20時間普通充電(充電電流約1.5A)した際の電解液の比重は1.19であった。この電池の電解液に5%のポリビニルアルコール水溶液を1セル当り5ミリリットル添加し、更に72時間同じ充電器で普通充電した。この結果、電解液の比重は僅かに上昇し1.23となった。この電池を60Aで10分間放電した。この後、さらに同じ充電器で20時間普通充電した。この結果、電解液の比重は1.30にまで上昇した。この電池の放電特性は、60A放電で9Vの端子電圧になる迄の時間は16分であり、十分な容量に再生された。
【0009】
【実施例2】エンジン始動および一般電装品用電源として自動車に3年間使用して劣化したために廃棄された公称容量40Ahの鉛電池について、電解液を新しい電解液と交換し、更に5%のポリビニルアルコール水溶液を1セル当り5ミリリットル添加し、20時間1.8Aで普通充電した。これを60Aで15分間放電した。この電池を再度20時間1.6Aで普通充電した。この電池の電解液の比重は1.28であり、150A−5秒間の放電試験で、閉路電圧(CCV)が11.2Vを示し、実用上十分な性能に再生された。
【0010】
【発明の効果】以上の説明から明らかな通り、本発明の方法によれば、大電流、長時間放電と有機添加物との相乗効果により、陰極の硫酸鉛の結晶が微細化され、これに伴い電解液の比重が顕著に上昇し、電池特性が著しく回復されるものである。
[0001]
The present invention relates to a method for regenerating a deteriorated lead battery.
[0002]
2. Description of the Related Art Conventionally, in a lead-acid battery using dilute sulfuric acid as an electrolytic solution, a large current of lead sulfate is prevented from growing on a cathode due to insufficient charging of the battery. Measures have been taken to charge the battery periodically. However, once a large crystal of lead sulfate grows on the cathode, the crystal is not easily decomposed by ordinary charging, and the effect of preventing a decrease in battery capacity is limited. The reason why large crystals of lead sulfate grow on the cathode is that antimony ions (Sb 3+ or Sb 5+) are formed from an alloy composed mainly of 2 to 6% of antimony and the balance being lead, which is mainly used for the grid holding the anode active material. ) Is eluted into the electrolyte solution, which is reduced and deposited on the cathode, and the hydrogen overvoltage of the cathode on which antimony is deposited is significantly reduced, so that hydrogen is easily generated at the cathode even under normal charging conditions, and sulfuric acid is generated. It is considered that the reduction reaction of lead becomes insufficient and the remaining lead sulfate grows gradually. As a method for changing the large crystals of lead sulfate into fine crystals, the present inventors have previously proposed a method of adding an organic polymer such as polyvinyl alcohol, polyacrylic acid, or lignin to an electrolytic solution. However, the method using these additives has a problem that the degree of the effect varies depending on the use state of the target battery and the state of deterioration accompanying the use state.
[0003]
SUMMARY OF THE INVENTION According to the present invention, the microstructure of a cathode active material of a deteriorated lead battery is greatly changed depending on discharge conditions, and the microstructure of the cathode active material is greatly increased by selecting the discharge conditions. It has been found that by combining this treatment with an additive, a deteriorated lead battery can be regenerated with little variation to near the initial characteristics.
[0004]
According to the present invention, at least one organic additive selected from the group consisting of polyvinyl alcohol, polyacrylic acid, and lignin is added to the electrolyte of a lead battery, and the additive is added at a concentration of 0.3 C or more, preferably A method for regenerating a lead battery in which a quantity of electricity of 2% or more, preferably 10% or more of the nominal capacity of the battery is continuously or intermittently discharged at a discharge rate of 1C or more, and 0.3C or more, preferably A group consisting of polyvinyl alcohol, polyacrylic acid, and lignin in an electrolytic solution after continuously or intermittently discharging an amount of electricity of 2% or more, preferably 10% or more of the nominal capacity of the battery at a discharge rate of 1C or more. A method for regenerating a lead battery, wherein at least one organic additive is added.
In the present invention, C means a discharge rate of a magnitude of a current in which a rated capacity of a target battery is a denominator and a discharge electric quantity per hour is a numerator. The discharge rate is the magnitude of the current that discharges an amount of electricity corresponding to 30% of the rated capacity per hour, and 1C is the discharge rate of the amount of electricity that is equivalent to 100% of the rated capacity per hour. It means the magnitude of the discharge rate. The discharge treatment of the present invention is most preferably carried out continuously, but may be carried out intermittently when measures against heat generation of the battery are required. When organic additives such as polyvinyl alcohol, polyacrylic acid, and lignin are added to the electrolytic solution, JP-A-2000-149981, JP-A-2000-223145, and JP-A-2001-2001 proposed by the present inventors previously. The method of No. 313064 can be used, and in the present invention in which the large current discharge treatment and the organic additive are combined, the effect of the addition of the organic additive is more remarkable and has less variation than the case of using the organic additive alone. Further, an organic additive is added to the electrolyte of the battery to continuously or intermittently charge 2% or more, preferably 10% or more of the nominal capacity of the battery at a current of 0.3C or more, preferably 1C or more. The electrolyte of the lead battery after the discharge may be replaced with an electrolyte substantially not containing antimony. Further, the deteriorated battery is discharged at a current of 0.3 C or more, preferably 1 C or more, by continuously or intermittently discharging 2% or more, preferably 10% or more of the nominal capacity of the battery. The electrolyte may be replaced with an electrolyte substantially free of antimony and containing the above-mentioned organic additive.
[0006] The amount of the organic additive used in the present invention is preferably 0.002% by weight to 1% by weight in the electrolytic solution, and particularly effective in the range of 0.02% by weight to 0.2% by weight. large.
[0007]
The synergistic effect of the large current, long discharge and the organic additive of the present invention will be described in detail below.
Most lead batteries are used for starting the engine of automobiles or as the main power source of electric forklifts. Even when starting the engine of an automobile that requires large current discharge, the discharge rate is about 1C to 1.5C, and the discharge time is several times. Seconds, the amount of electricity discharged is only about 0.1% of the nominal capacity of the battery. In addition, in the case of an electric forklift, one shift operation is usually performed with one charge, and a discharge of about 100% of the nominal capacity is performed at a discharge rate of 0.1 C to 0.2 C. In any of these cases, since the amount of discharge electricity is too small or the discharge rate is small, the effect of refining the lead sulfate crystal of the cathode is not recognized.
On the other hand, the present inventor has found that a large current, that is, 0.3 C or more, preferably 1 C or more, and more preferably 1.5 C or more at a discharge rate of 2% or more, preferably 5% or more of the nominal capacity of the battery Further, it has been found that when the electric charge of 10% to 50% is discharged continuously or intermittently, the crystal of lead sulfate of the cathode is clearly refined. Further, at this time, the addition of an organic additive such as polyvinyl alcohol, polyacrylic acid, or lignin to the electrolyte of the battery further promotes miniaturization, and at the time of full charge, which is an indicator of the battery's regeneration effect. It was also found that the specific gravity of the electrolytic solution also increased to a value close to the electrolytic solution of a new battery. Further, even when these organic additives are added to the electrolytic solution after the high-current discharge treatment, there is an effect of preventing a decrease in the specific gravity of the electrolytic solution at the time of complete charging thereafter.
[0008]
【Example】
EXAMPLE 1 A lead-acid battery with a nominal capacity of 40 Ah (25-hour capacity at a 5-hour rate) used for a car for 3 years as a power source for engine starting and general electrical equipment was charged with a SL-3 type charger manufactured by Daijin Kogyo Co., Ltd. The specific gravity of the electrolytic solution after normal charging for a period of time (charging current of about 1.5 A) was 1.19. 5 ml of a 5% aqueous solution of polyvinyl alcohol was added to the electrolyte of the battery per cell, and the battery was normally charged for another 72 hours with the same charger. As a result, the specific gravity of the electrolyte slightly increased to 1.23. The battery was discharged at 60 A for 10 minutes. Thereafter, the battery was normally charged for another 20 hours using the same charger. As a result, the specific gravity of the electrolytic solution increased to 1.30. As for the discharge characteristics of this battery, it took 16 minutes to reach a terminal voltage of 9 V at a discharge of 60 A, and the battery was regenerated to a sufficient capacity.
[0009]
EXAMPLE 2 For a lead-acid battery having a nominal capacity of 40 Ah, which was discarded because it had been used for three years in an automobile as a power source for engine starting and general electric components, and was discarded, the electrolyte was replaced with a new electrolyte, and a further 5% of polyvinyl was added. 5 ml of an aqueous alcohol solution was added per cell, and the battery was normally charged at 1.8 A for 20 hours. This was discharged at 60 A for 15 minutes. The battery was again charged normally at 1.6 A for 20 hours. The specific gravity of the electrolytic solution of this battery was 1.28, and the discharge test at 150 A for 5 seconds showed a closed circuit voltage (CCV) of 11.2 V, which was reproduced to a practically sufficient performance.
[0010]
As is apparent from the above description, according to the method of the present invention, the lead sulfate crystal of the cathode is refined by the synergistic effect of the large current, the long-time discharge and the organic additive, Accordingly, the specific gravity of the electrolytic solution is significantly increased, and the battery characteristics are significantly restored.

Claims (6)

鉛電池の電解液中にポリビニルアルコール、ポリアクリル酸、リグニンからなる群のうちの少なくとも一つの有機添加剤を加え、0.3C以上、好ましくは1C以上の電流で該電池の公称容量の3%以上、好ましくは10%以上の電気量を連続または断続して放電させることを特徴とする鉛電池の再生方法。At least one organic additive selected from the group consisting of polyvinyl alcohol, polyacrylic acid, and lignin is added to the electrolyte of the lead battery, and at a current of 0.3 C or more, preferably 1 C or more, 3% of the nominal capacity of the battery. As described above, a method for regenerating a lead battery, characterized in that a quantity of electricity of preferably 10% or more is discharged continuously or intermittently. 請求項1において、放電処理後の鉛電池の電解液をアンチモンを実質的に含まない電解液と置換する鉛電池の再生方法。2. The method for regenerating a lead battery according to claim 1, wherein the electrolyte of the lead battery after the discharge treatment is replaced with an electrolyte substantially not containing antimony. 請求項1または請求項2において、有機添加剤の量が電解液に対して0.002重量%ないし1重量%である鉛電池の再生方法。3. The method according to claim 1, wherein the amount of the organic additive is 0.002% by weight to 1% by weight based on the electrolyte. 鉛電池を0.3C以上、好ましくは1C以上の電流で該電池の公称容量の3%以上、好ましくは10%以上の電気量を連続または断続して放電させた後、電解液中にポリビニルアルコール、ポリアクリル酸、リグニンからなる群のうちの少なくとも一つの有機添加剤を加えることを特徴とする鉛電池の再生方法。After discharging a lead battery continuously or intermittently with an electric quantity of 3% or more, preferably 10% or more of the nominal capacity of the battery at a current of 0.3C or more, preferably 1C or more, polyvinyl alcohol is added to the electrolyte solution. A method for regenerating a lead battery, comprising adding at least one organic additive selected from the group consisting of polyacrylic acid and lignin. 請求項4において、放電処理後の鉛電池の電解液を、アンチモンを実質的に含まず、且つ、ポリビニルアルコール、ポリアクリル酸、リグニンからなる群のうちの少なくとも一つの有機添加剤を含む電解液と置換する鉛電池の再生方法。The electrolytic solution according to claim 4, wherein the electrolytic solution of the lead battery after the discharge treatment is substantially free of antimony and contains at least one organic additive selected from the group consisting of polyvinyl alcohol, polyacrylic acid, and lignin. Replacement method of lead battery. 請求項4または請求項5において、有機添加剤の量が電解液に対して0.002重量%ないし1重量%である鉛電池の再生方法。The method for regenerating a lead battery according to claim 4 or 5, wherein the amount of the organic additive is 0.002% by weight to 1% by weight based on the electrolyte.
JP2003185790A 2002-05-16 2003-05-26 Regenerating method for lead-acid battery Pending JP2004356076A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003185790A JP2004356076A (en) 2003-05-26 2003-05-26 Regenerating method for lead-acid battery
US10/634,592 US7160645B2 (en) 2002-05-16 2003-08-05 Lead-acid battery having an organic polymer additive and process thereof
PCT/IB2004/001727 WO2004105161A2 (en) 2003-05-26 2004-05-26 Lead-acid battery having an organic polymer additive and process of charging thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003185790A JP2004356076A (en) 2003-05-26 2003-05-26 Regenerating method for lead-acid battery

Publications (1)

Publication Number Publication Date
JP2004356076A true JP2004356076A (en) 2004-12-16

Family

ID=34055359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003185790A Pending JP2004356076A (en) 2002-05-16 2003-05-26 Regenerating method for lead-acid battery

Country Status (1)

Country Link
JP (1) JP2004356076A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011076930A (en) * 2009-09-30 2011-04-14 Nissan Motor Co Ltd Capacity recovery method of lithium ion secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011076930A (en) * 2009-09-30 2011-04-14 Nissan Motor Co Ltd Capacity recovery method of lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JP6168138B2 (en) Liquid lead-acid battery
WO2010058240A1 (en) Low water loss battery
JP2008130516A (en) Liquid lead-acid storage battery
JP2000149981A (en) Lead-acid battery, and additive therefor
US20030228525A1 (en) Lead-acid battery having an organic polymer additive and process thereof
JP2001313064A (en) Lead storage battery and its additive agent
JP2009016324A (en) Regenerating method for lead storage battery and its device
CN101051687A (en) Active additive for accumulator, activable or regeneratable accumulator and method for activating or regenerating said accumulator
US7160645B2 (en) Lead-acid battery having an organic polymer additive and process thereof
US4166155A (en) Maintenance-free battery
JP4647722B1 (en) Lead acid battery
US4086392A (en) Method for reducing the float current of maintenance-free battery
JP2004356076A (en) Regenerating method for lead-acid battery
JP4356321B2 (en) Lead acid battery
JP2007035339A (en) Control valve type lead-acid storage battery
JPH0869811A (en) Lead-acid battery
JP2003151618A (en) Lead-acid battery and additive for lead-acid battery
JP2012113956A (en) Lead-acid battery
JP2004192870A (en) Lead-acid battery and its manufacturing method
JP2001250589A (en) Charging method of sealed lead storage battery
JP3648761B2 (en) How to charge sealed lead-acid batteries
JP3675027B2 (en) Charging method for sealed lead-acid batteries
JP2001185227A (en) Maintenance method of lead-acid battery
JP4742424B2 (en) Control valve type lead acid battery
JPH01117279A (en) Lead-acid battery