JP2004353891A - 調湿装置 - Google Patents

調湿装置 Download PDF

Info

Publication number
JP2004353891A
JP2004353891A JP2003149252A JP2003149252A JP2004353891A JP 2004353891 A JP2004353891 A JP 2004353891A JP 2003149252 A JP2003149252 A JP 2003149252A JP 2003149252 A JP2003149252 A JP 2003149252A JP 2004353891 A JP2004353891 A JP 2004353891A
Authority
JP
Japan
Prior art keywords
air
refrigerant circuit
switching
opening
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003149252A
Other languages
English (en)
Other versions
JP4179052B2 (ja
Inventor
Shuji Ikegami
周司 池上
Tomohiro Yabu
知宏 薮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2003149252A priority Critical patent/JP4179052B2/ja
Publication of JP2004353891A publication Critical patent/JP2004353891A/ja
Application granted granted Critical
Publication of JP4179052B2 publication Critical patent/JP4179052B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1429Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant alternatively operating a heat exchanger in an absorbing/adsorbing mode and a heat exchanger in a regeneration mode

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Central Air Conditioning (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

【課題】冷凍サイクルを行って吸着材の再生や冷却を行う調湿装置において、冷媒回路の動作切換から吸着材が充分に水分を吸脱着し始めるまでの時間を短縮し、調湿装置の調湿能力を向上させる。
【解決手段】調湿装置(10)の冷媒回路では、第1及び第2熱交換器(61,62)の表面に吸着材が担持される。この冷媒回路は、四方切換弁を操作することで冷媒の循環方向が切り換え可能となっている。調湿装置(10)は、蒸発器となっている熱交換器(61,62)で第1空気を除湿し、凝縮器となっている熱交換器(61,62)で第2空気を加湿する。そして、第2空気が第1空気よりも高温の時は、冷媒回路の動作切換前に空気流通経路を切り換える。逆に、第1空気が第2空気よりも高温の時は、冷媒回路の動作切換後に空気流通経路を切り換える。
【選択図】 図4

Description

【0001】
【発明の属する技術分野】
本発明は、空気の湿度調節を行う調湿装置であって、特に、冷凍サイクルを行って吸着材の再生や冷却を行うものに関する。
【0002】
【従来の技術】
従来より、例えば特許文献1に開示されているように、吸着材と冷凍サイクルとを利用して空気の湿度調節を行う調湿装置が知られている。この調湿装置は、2つの吸着ユニットを備えている。各吸着ユニットは、吸着材が充填されたメッシュ容器と、このメッシュ容器を貫通する冷媒管とによって構成されている。各吸着ユニットの冷媒管は、冷凍サイクルを行う冷媒回路に接続されている。また、上記調湿装置には、各吸着ユニットへ送られる空気を切り換えるためのダンパが設けられている。
【0003】
上記調湿装置の運転中には、冷媒回路の圧縮機が運転され、2つの吸着ユニットの一方が蒸発器となって他方が凝縮器となる冷凍サイクルが行われる。また、冷媒回路では、四方切換弁を操作することによって冷媒の循環方向が切り換わり、各吸着ユニットは交互に蒸発器として機能したり凝縮器として機能したりする。
【0004】
上記調湿装置の加湿運転では、室外から室内へ向けて流れる給気を凝縮器となる吸着ユニットへ導き、吸着材から脱離した水分で給気を加湿する。その際、室内から室外へ向けて流れる排気を蒸発器となる吸着ユニットへ導き、排気中の水分を吸着材に回収する。一方、調湿装置の除湿運転では、室外から室内へ向けて流れる給気を蒸発器となる吸着ユニットへ導き、給気中の水分を吸着材に吸着させる。その際、室内から室外へ向けて流れる排気を凝縮器となる吸着ユニットへ導き、吸着材から脱離した水分を排気と共に室外へ排出する。
【0005】
尚、上記吸着ユニットと同様の機能を有するものとしては、例えば特許文献2に開示されているような熱交換部材も知られている。この熱交換部材では、銅管の周囲に板状のフィンが設けられ、この銅管やフィンの表面に吸着材が担持されている。そして、この熱交換部材は、銅管内を流れる流体によって吸着材の加熱や冷却を行うように構成されている。
【0006】
【特許文献1】
特開平8−189667号公報
【特許文献2】
特開平7−265649号公報
【0007】
【発明が解決しようとする課題】
上記特許文献1に開示された調湿装置の冷媒回路では、四方切換弁を操作することによって2つの冷凍サイクル動作が交互に切り換わる。この冷媒回路において冷凍サイクル動作が切り換わると、それまで蒸発器として機能していた吸着ユニットが凝縮器となる一方、それまで凝縮器として機能していた吸着ユニットが蒸発器となる。
【0008】
例えば、第1の吸着ユニットが蒸発器から凝縮器に切り換わり、第2の吸着ユニットが凝縮器から蒸発器に切り換わったとする。この場合、この第1の吸着ユニットでは、それまで冷却されていた低温の吸着材を加熱しなければならず、第2の吸着ユニットでは、それまで加熱されていた高温の吸着材を冷却しなければならない。そして、第1の吸着ユニットでは吸着材の温度が充分に上昇するまで空気の加湿が不充分となり、第2の吸着ユニットでは吸着材の温度が充分に低下するまで空気の除湿が不充分となっていた。
【0009】
このように、上記従来の調湿装置では、冷媒回路の冷凍サイクル動作が切り換わってから吸着材が充分に水分を吸脱着可能な温度に達するまでに時間を要し、それに起因して充分な調湿能力を発揮させることができないという問題があった。
【0010】
本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、冷凍サイクルを行って吸着材の再生や冷却を行う調湿装置において、冷媒回路の動作切換から吸着材が充分に水分を吸脱着し始めるまでの時間を短縮し、調湿装置の調湿能力を向上させることにある。
【0011】
【課題を解決するための手段】
請求項1の発明は、第1空気及び第2空気を取り込み、除湿した第1空気又は加湿した第2空気を室内へ供給する調湿装置を対象とする。そして、第1の熱交換器(61)が凝縮器となって第2の熱交換器(62)が蒸発器となる冷凍サイクル動作と第2の熱交換器(62)が凝縮器となって第1の熱交換器(61)が蒸発器となる冷凍サイクル動作とが切り換え可能な冷媒回路(60)と、上記第1及び第2の熱交換器(61,62)の表面に設けられて該熱交換器(61,62)を通過する空気と接触する吸着材と、第1空気及び第2空気の流通経路を切り換える切換機構(50)とを備え、上記冷媒回路(60)の動作切換と上記切換機構(50)による空気流通経路の切換とを周期的に行い、蒸発器となっている上記熱交換器(61,62)で第1空気を除湿すると同時に凝縮器となっている上記熱交換器(61,62)で第2空気を加湿するように構成される一方、上記冷媒回路(60)の動作切換が行われる所定時間前に予め上記切換機構(50)によって空気流通経路を切り換える制御動作を、上記熱交換器(61,62)の上流において第2空気が第1空気よりも高温であるときに行う切換制御手段(73)が設けられるものである。
【0012】
請求項2の発明は、第1空気及び第2空気を取り込み、除湿した第1空気又は加湿した第2空気を室内へ供給する調湿装置を対象とする。そして、第1の熱交換器(61)が凝縮器となって第2の熱交換器(62)が蒸発器となる冷凍サイクル動作と第2の熱交換器(62)が凝縮器となって第1の熱交換器(61)が蒸発器となる冷凍サイクル動作とが切り換え可能な冷媒回路(60)と、上記第1及び第2の熱交換器(61,62)の表面に設けられて該熱交換器(61,62)を通過する空気と接触する吸着材と、第1空気及び第2空気の流通経路を切り換える切換機構(50)とを備え、上記冷媒回路(60)の動作切換と上記切換機構(50)による空気流通経路の切換とを周期的に行い、蒸発器となっている上記熱交換器(61,62)で第1空気を除湿すると同時に凝縮器となっている上記熱交換器(61,62)で第2空気を加湿するように構成される一方、上記冷媒回路(60)の動作切換が行われてから所定時間後に上記切換機構(50)によって空気流通経路を切り換える制御動作を、上記熱交換器(61,62)の上流において第1空気が第2空気よりも高温であるときに行う切換制御手段(73)が設けられるものである。
【0013】
請求項3の発明は、請求項1又は2に記載の調湿装置において、冷媒回路(60)に設けられた圧縮機(63)が容量可変に構成されており、上記冷媒回路(60)の動作切換の周期と同じ周期で上記圧縮機(63)の容量を変化させる容量制御手段(71)が設けられるものである。
【0014】
請求項4の発明は、請求項3に記載の調湿装置において、容量制御手段(71)は、冷媒回路(60)の動作切換前に予め圧縮機(63)の容量を一時的に低下させて上記冷媒回路(60)の動作切換が行われると上記圧縮機(63)の容量を増大させる制御動作を、上記冷媒回路(60)の動作切換ごとに行うものである。
【0015】
請求項5の発明は、請求項3に記載の調湿装置において、容量制御手段(71)は、冷媒回路(60)の動作切換直後は一時的に圧縮機(63)の容量を調湿装置の負荷に対応した基準容量よりも大きくして上記冷媒回路(60)の動作切換から所定時間が経過すると上記圧縮機(63)の容量を低下させる制御動作を、上記冷媒回路(60)の動作切換ごとに行うように構成されるものである。
【0016】
請求項6の発明は、請求項1又は2に記載の調湿装置において、冷媒回路(60)に設けられる冷媒の膨張機構が開度可変の膨張弁(65)により構成されており、上記冷媒回路(60)の動作切換の周期と同じ周期で上記膨張弁(65)の開度を変化させる開度制御手段(72)が設けられるものである。
【0017】
請求項7の発明は、請求項6に記載の調湿装置において、開度制御手段(72)は、冷媒回路(60)の動作切換前に予め膨張弁(65)の開度を一時的に増大させて上記冷媒回路(60)の動作切換が行われると上記膨張弁(65)の開度を低下させる制御動作を、上記冷媒回路(60)の動作切換ごとに行うように構成されるものである。
【0018】
請求項8の発明は、請求項6に記載の調湿装置において、開度制御手段(72)は、冷媒回路(60)の動作切換直後は一時的に膨張弁(65)の開度を該冷媒回路(60)の運転状態に対応した基準開度よりも小さくして上記冷媒回路(60)の動作切換から所定時間が経過すると上記膨張弁(65)の開度を増大させる制御動作を、上記冷媒回路(60)の動作切換ごとに行うように構成されるものである。
【0019】
−作用−
請求項1及び請求項2の発明では、冷媒回路(60)で2つの冷凍サイクル動作が交互に繰り返し行われる。また、切換機構(50)は、冷媒回路(60)の動作切換に対応して、第1空気や第2空気の流通経路を切り換える。
【0020】
これらの発明の冷媒回路(60)において、第1の冷凍サイクル動作中には、凝縮器となる第1の熱交換器(61)へ第2空気が送られて、蒸発器となる第2の熱交換器(62)へ第1空気が送られる。そして、第1の熱交換器(61)では、冷媒により加熱されて吸着材が再生され、吸着材から脱離した水分が第2空気に付与される。また、第2の熱交換器(62)では、第1空気中の水分が吸着材に吸着され、その際に生じる吸着熱を冷媒が吸熱する。一方、第2の冷凍サイクル動作中には、蒸発器となる第1の熱交換器(61)へ第1空気が送られて、凝縮器となる第2の熱交換器(62)へ第2空気が送られる。そして、第1の熱交換器(61)では、第1空気中の水分が吸着材に吸着され、その際に生じる吸着熱を冷媒が吸熱する。また、第2の熱交換器(62)では、冷媒により加熱されて吸着材が再生され、吸着材から脱離した水分が第2空気に付与される。
【0021】
これらの発明において、調湿装置(10)は、除湿した第1空気又は加湿した第2空気を室内へ供給する。つまり、この調湿装置(10)は、除湿した第1空気だけを室内へ供給するものであってもよいし、加湿した第2空気だけを室内へ供給するものであってもよい。また、この調湿装置(10)は、除湿した第1空気を室内へ供給する運転と、加湿した第2空気を室内へ供給する運転とが切換可能なものであってもよい。
【0022】
請求項1の発明において、調湿装置(10)の切換制御手段(73)は、冷媒回路(60)の動作切換が行われる前に切換機構(50)による空気流通経路の切換を行わせる。このような切換制御手段(73)の制御動作は、熱交換器(61,62)を通過する前において第2空気が第1空気よりも高温であるときに行われる。
【0023】
ここで、凝縮器となっている第1の熱交換器(61)へ第2空気が送られて、蒸発器となっている第2の熱交換器(62)へ第1空気が送られる状態であると仮定する。この状態において、請求項1の発明では、空気流通経路が切り換えられ、第1の熱交換器(61)へ第1空気が送られて第2の熱交換器(62)へ第2空気が送られる状態になり、その後に所定時間が経過すると冷媒回路(60)の冷凍サイクル動作が切り換わる。
【0024】
このため、凝縮器から蒸発器に切り換わる第1の熱交換器(61)に対しては、それまでの第2空気よりも低温の第1空気が供給される。そして、第1の熱交換器(61)に設けられた吸着材は、第1の熱交換器(61)が蒸発器に切り換わる前に予め第1空気によって冷却される。一方、蒸発器から凝縮器に切り換わる第2の熱交換器(62)に対しては、それまでの第1空気よりも高温の第2空気が供給される。そして、第2の熱交換器(62)に設けられた吸着材は、第2の熱交換器(62)が凝縮器に切り換わる前に予め第2空気によって加熱される。
【0025】
請求項2の発明において、調湿装置(10)の切換制御手段(73)は、冷媒回路(60)の動作切換が行われた後に切換機構(50)による空気流通経路の切換を行わせる。このような切換制御手段(73)の制御動作は、熱交換器(61,62)を通過する前において第1空気が第2空気よりも高温であるときに行われる。
【0026】
ここで、凝縮器となっている第1の熱交換器(61)へ第2空気が送られて、蒸発器となっている第2の熱交換器(62)へ第1空気が送られる状態であると仮定する。この状態において、請求項2の発明では、空気の流通経路を維持したままで冷媒回路(60)の冷凍サイクル動作が切り換わり、それから所定時間が経過すると空気の流通経路が切り換わる。
【0027】
このため、凝縮器から蒸発器に切り換わった第1の熱交換器(61)に対しては、第1空気よりも低温の第2空気が所定時間に亘って供給され続ける。そして、第1の熱交換器(61)に設けられた吸着材は、冷媒回路(60)の冷媒と第2空気の両方によって冷却され、その後に第1空気と接触する。一方、蒸発器から凝縮器に切り換わった第2の熱交換器(62)に対しては、第2空気よりも高温の第1空気が所定時間に亘って供給され続ける。そして、第2の熱交換器(62)に設けられた吸着材は、冷媒回路(60)の冷媒と第1空気の両方によって加熱され、その後に第2空気と接触する。
【0028】
請求項3の発明では、冷媒回路(60)の圧縮機(63)が容量可変となっている。圧縮機(63)の容量制御は、容量制御手段(71)により行われる。この容量制御手段(71)は、圧縮機(63)の容量を周期的に増減させる。この容量制御手段(71)による圧縮機(63)の容量変化の周期は、冷媒回路(60)の冷凍サイクル動作が切り換わる周期と同じである。つまり、圧縮機(63)の容量は、冷媒回路(60)における冷凍サイクル動作の切り換えに対応して規則的に調節される。
【0029】
請求項4の発明では、冷媒回路(60)の冷凍サイクル動作が切り換わる毎に、容量制御手段(71)が所定の制御動作を行う。この制御動作において、容量制御手段(71)は、冷媒回路(60)の動作切換に際して圧縮機(63)の容量を事前に低下させる。つまり、冷媒回路(60)の冷凍サイクル動作は、圧縮機(63)の容量が一時的に小さくなった状態で切り換えられる。そして、冷媒回路(60)の冷凍サイクル動作が切り換わると、容量制御手段(71)は、一旦低下させた圧縮機(63)の容量を増大させる。
【0030】
上述のように、調湿装置(10)の運転中には、蒸発器となる熱交換器(61,62)の吸着材に空気中の水分が吸着されてゆき、凝縮器となる熱交換器(61,62)の吸着材から水分が脱離してゆく。そして、冷媒回路(60)の冷凍サイクル動作が切り換わる間際になると、蒸発器となる熱交換器(61,62)の吸着材を冷却し続けても吸着材がさほど水分を吸着しなくなり、凝縮器となる熱交換器(61,62)の吸着材を加熱し続けても水分がさほど吸着材から脱離しなくなる。つまり、冷媒回路(60)の冷凍サイクル動作が切り換わる間際まで圧縮機(63)を大容量で運転し続けても、第1空気からの除湿量や第2空気への加湿量を増大させる効果は、さほど望めない。
【0031】
そこで、請求項4の発明では、冷媒回路(60)の動作切換の少し前であって既に除湿量や加湿量の増大が見込めないときには、容量制御手段(71)が圧縮機(63)の容量を小さくし、圧縮機(63)の運転に必要な電力等を削減する。また、冷媒回路(60)の動作切換前において、圧縮機(63)の容量が小さくなると、その分だけ吸着材に対する加熱能力や冷却能力が少なくなる。このため、冷媒回路(60)の冷凍サイクル動作が切り換わってから吸着材が充分に水分を吸脱着可能な温度に達するまでの時間が更に短縮される。
【0032】
請求項5の発明では、冷媒回路(60)の冷凍サイクル動作が切り換わる毎に、容量制御手段(71)が所定の制御動作を行う。この制御動作において、容量制御手段(71)は、冷媒回路(60)の冷凍サイクル動作が切り換わると、その直後から圧縮機(63)の容量を一時的に増大させる。その際、容量制御手段(71)は、圧縮機(63)の容量を調湿装置(10)の負荷に対応した基準容量よりも大きくする。そして、冷媒回路(60)の冷凍サイクル動作が切り換わった時点から所定時間が経過すると、一旦増大させた圧縮機(63)の容量を低下させる。
【0033】
つまり、請求項5の発明では、冷媒回路(60)の冷凍サイクル動作が切り換わった直後で吸着材の加熱や冷却を素早く行いたい状態において、容量制御手段(71)が圧縮機(63)の容量を一時的に増大させる。そして、凝縮器に切り換わった熱交換器(61,62)では吸着材の温度を更に素早く上昇させて空気への加湿量を確保し、蒸発器に切り換わった熱交換器(61,62)では吸着材の温度を更に素早く低下させて空気からの除湿量を確保している。
【0034】
請求項6の発明では、開度可変の膨張弁(65)が冷媒の膨張機構として冷媒回路(60)に設けられる。膨張弁(65)の開度制御は、開度制御手段(72)によって行われる。この開度制御手段(72)は、膨張弁(65)の開度を周期的に増減させる。この開度制御手段(72)による膨張弁(65)の開度変化の周期は、冷媒回路(60)の冷凍サイクル動作が切り換わる周期と同じである。つまり、膨張弁(65)の開度は、冷媒回路(60)における冷凍サイクル動作の切り換えに対応して規則的に調節される。
【0035】
請求項7の発明では、冷媒回路(60)の冷凍サイクル動作が切り換わる毎に、開度制御手段(72)が所定の制御動作を行う。この制御動作において、開度制御手段(72)は、冷媒回路(60)の動作切換に際して膨張弁(65)の開度を事前に増大させる。つまり、冷媒回路(60)の冷凍サイクル動作は、膨張弁(65)の開度が一時的に大きくなった状態で切り換えられる。そして、冷媒回路(60)の冷凍サイクル動作が切り換わると、開度制御手段(72)は、一旦増大させた膨張弁(65)の開度を低下させる。
【0036】
上述のように、冷媒回路(60)の動作切換の少し前は、既に除湿量や加湿量の増大が見込めない状態となっている。そこで、請求項7の発明では、このような状態になると開度制御手段(72)が膨張弁(65)の開度を増大させる。膨張弁(65)の開度が増すと、冷凍サイクルにおける高低圧差が縮小し、冷媒を圧縮する圧縮機(63)への入力が減少する。また、冷媒回路(60)の動作切換前において、膨張弁(65)の開度が大きくなると、その分だけ吸着材に対する加熱能力や冷却能力が少なくなる。このため、冷媒回路(60)の冷凍サイクル動作が切り換わってから吸着材が充分に水分を吸脱着可能な温度に達するまでの時間が更に短縮される。
【0037】
請求項8の発明では、冷媒回路(60)の冷凍サイクル動作が切り換わる毎に、開度制御手段(72)が所定の制御動作を行う。この制御動作において、開度制御手段(72)は、冷媒回路(60)の冷凍サイクル動作が切り換わると、その直後から膨張弁(65)の開度を一時的に低下させる。その際、開度制御手段(72)は、膨張弁(65)の開度を冷媒回路(60)の運転状態に対応した基準開度よりも小さくする。そして、開度制御手段(72)は、冷媒回路(60)の冷凍サイクル動作が切り換わった時点から所定時間が経過すると、一旦削減した膨張弁(65)の開度を拡大する。
【0038】
つまり、請求項8の発明では、冷媒回路(60)の冷凍サイクル動作が切り換わった直後で吸着材の加熱や冷却を素早く行いたい状態において、開度制御手段(72)が膨張弁(65)の開度を一時的に削減する。膨張弁(65)の開度が小さくなると、冷凍サイクルにおける高低圧差が拡大し、冷媒の凝縮温度が上昇して蒸発温度が低下する。そして、凝縮器に切り換わった熱交換器(61,62)では吸着材の温度を更に素早く上昇させて空気への加湿量を確保し、蒸発器に切り換わった熱交換器(61,62)では吸着材の温度を更に素早く低下させて空気からの除湿量を確保している。
【0039】
【発明の実施の形態1】
以下、本発明の実施形態を図面に基づいて詳細に説明する。
【0040】
図1に示すように、本実施形態の調湿装置(10)は、室内空気の除湿と加湿とを行うものであり、箱状のケーシング(11)を備えている。尚、図1(B)においては、下側がケーシング(11)の正面側であって、上側がケーシング(11)の背面側である。また、以下の説明における「右」「左」は、何れも参照する図面におけるものを意味する。
【0041】
上記ケーシング(11)内には、冷媒回路(60)等が収納されている。この冷媒回路(60)は、第1熱交換器(61)、第2熱交換器(62)、圧縮機(63)、四方切換弁(64)、及び電動膨張弁(65)が設けられた閉回路であって、冷媒が充填されている。冷媒回路(60)では、充填された冷媒を循環させることにより蒸気圧縮式の冷凍サイクルが行われる。尚、冷媒回路(60)の詳細については後述する。
【0042】
上記ケーシング(11)は、平面視が概ね正方形状で扁平な箱型に形成されている。上記ケーシング(11)の左側面板(12)には、その背面板(15)寄りに室外空気吸込口(21)が形成され、その正面板(14)寄りに室内空気吸込口(22)が形成されている。一方、ケーシング(11)の右側面板(13)には、その背面板(15)寄りに排気吹出口(23)が形成され、その正面板(14)寄りに給気吹出口(24)が形成されている。
【0043】
上記ケーシング(11)の内部には、左右方向の中心部よりも右側面板(13)寄りに第1仕切板(31)が立設されている。ケーシング(11)の内部空間(16)は、この第1仕切板(31)によって、左右に仕切られている。そして、第1仕切板(31)の左側が第1空間(17)となり、第1仕切板(31)の右側が第2空間(18)となっている。
【0044】
上記ケーシング(11)の第2空間(18)には、冷媒回路(60)の圧縮機(63)が配置されている。また、図1には図示しないが、冷媒回路(60)の電動膨張弁(65)や四方切換弁(64)も第2空間(18)に配置されている。更に、第2空間(18)には、排気ファン(26)及び給気ファン(25)が収納されている。上記排気ファン(26)は、排気吹出口(23)に接続されている。上記給気ファン(25)は、給気吹出口(24)に接続されている。
【0045】
上記ケーシング(11)の第1空間(17)には、第2仕切板(32)と第3仕切板(33)と第6仕切板(36)とが設けられている。第2仕切板(32)は正面板(14)寄りに立設され、第3仕切板(33)は背面板(15)寄りに立設されている。そして、第1空間(17)は、第2仕切板(32)及び第3仕切板(33)により、正面側から背面側に向かって3つの空間に仕切られている。第6仕切板(36)は、第2仕切板(32)と第3仕切板(33)に挟まれた空間に設けられている。この第6仕切板(36)は、第1空間(17)の左右幅方向の中央に立設されている。
【0046】
第2仕切板(32)と第3仕切板(33)に挟まれた空間は、第6仕切板(36)によって左右に仕切られる。このうち、右側の空間は、第1熱交換室(41)を構成しており、その内部に第1熱交換器(61)が配置されている。一方、左側の空間は、第2熱交換室(42)を構成しており、その内部に第2熱交換器(62)が配置されている。
【0047】
各熱交換器(61,62)は、全体として厚肉の平板状に形成されている。そして、第1熱交換器(61)は、第1熱交換室(41)を水平方向へ横断するように設置されている。また、第2熱交換器(62)は、第2熱交換室(42)を水平方向へ横断するように設置されている。尚、第1,第2熱交換器(61,62)の詳細については後述する。
【0048】
上記第1空間(17)のうち第3仕切板(33)とケーシング(11)の背面板(15)に挟まれた空間には、第5仕切板(35)が設けられている。第5仕切板(35)は、この空間の高さ方向の中央部を横断するように設けられ、この空間を上下に仕切っている(図1(A)を参照)。そして、第5仕切板(35)の上側の空間が第1流入路(43)を構成し、その下側の空間が第1流出路(44)を構成している。また、第1流入路(43)は室外空気吸込口(21)に連通し、第1流出路(44)は排気ファン(26)を介して排気吹出口(23)に連通している。
【0049】
一方、上記第1空間(17)のうち第2仕切板(32)とケーシング(11)の正面板(14)に挟まれた空間には、第4仕切板(34)が設けられている。第4仕切板(34)は、この空間の高さ方向の中央部を横断するように設けられ、この空間を上下に仕切っている(図1(C)を参照)。そして、第4仕切板(34)の上側の空間が第2流入路(45)を構成し、その下側の空間が第2流出路(46)を構成している。また、第2流入路(45)は室内空気吸込口(22)に連通し、第2流出路(46)は給気ファン(25)を介して給気吹出口(24)に連通している。
【0050】
上記第3仕切板(33)には、4つの開口(51,52,53,54)が形成されている(図1(A)を参照)。第3仕切板(33)の右上部に形成された第1開口(51)は、第1熱交換室(41)における第1熱交換器(61)の上側を第1流入路(43)と連通させている。第3仕切板(33)の左上部に形成された第2開口(52)は、第2熱交換室(42)における第2熱交換器(62)の上側を第1流入路(43)と連通させている。第3仕切板(33)の右下部に形成された第3開口(53)は、第1熱交換室(41)における第1熱交換器(61)の下側を第1流出路(44)と連通させている。第3仕切板(33)の左下部に形成された第4開口(54)は、第2熱交換室(42)における第2熱交換器(62)の下側を第1流出路(44)と連通させている。
【0051】
第2仕切板(32)には、4つの開口(55,56,57,58)が形成されている(図1(C)を参照)。第2仕切板(32)の右上部に形成された第5開口(55)は、第1熱交換室(41)における第1熱交換器(61)の上側を第2流入路(45)と連通させている。第2仕切板(32)の左上部に形成された第6開口(56)は、第2熱交換室(42)における第2熱交換器(62)の上側を第2流入路(45)と連通させている。第2仕切板(32)の右下部に形成された第7開口(57)は、第1熱交換室(41)における第1熱交換器(61)の下側を第2流出路(46)と連通させている。第2仕切板(32)の左下部に形成された第8開口(58)は、第2熱交換室(42)における第2熱交換器(62)の下側を第2流出路(46)と連通させている。
【0052】
上記第3仕切板(33)の各開口(51,52,53,54)、及び第2仕切板(32)の各開口(55,56,57,58)は、それぞれが開閉自在のダンパを備えている。これらの各開口(51,…,55,…)は、ダンパを開閉することによって開口状態と閉鎖状態とに切り換わる。そして、各開口(51,…,55,…)に設けられたダンパは、ケーシング(11)内での第1空気及び第2空気の流通経路を切り換える切換機構(50)を構成している。
【0053】
上記冷媒回路(60)について、図2を参照しながら説明する。
【0054】
上記圧縮機(63)は、その吐出側が四方切換弁(64)の第1のポートに接続され、その吸入側が四方切換弁(64)の第2のポートに接続されている。第1熱交換器(61)の一端は、四方切換弁(64)の第3のポートに接続されている。第1熱交換器(61)の他端は、電動膨張弁(65)を介して第2熱交換器(62)の一端に接続されている。第2熱交換器(62)の他端は、四方切換弁(64)の第4のポートに接続されている。
【0055】
上記圧縮機(63)は、いわゆる全密閉型に構成されている。図示しないが、この圧縮機(63)の電動機には、インバータを介して電力が供給されている。このインバータの出力周波数を変更すると、上記電動機の回転速度が変化し、それに伴って圧縮機(63)の押しのけ容積が変化する。つまり、上記圧縮機(63)は、その容量が可変に構成されている。
【0056】
上記第1及び第2熱交換器(61,62)は、何れも、伝熱管と多数のフィンとを備えた、いわゆるクロスフィン型のフィン・アンド・チューブ熱交換器により構成されている。また、第1及び第2熱交換器(61,62)の外表面には、その概ね全面に亘り、例えばゼオライト等の吸着材が担持されている。
【0057】
上記四方切換弁(64)は、第1のポートと第3のポートが連通して第2のポートと第4のポートが連通する状態(図2(A)に示す状態)と、第1のポートと第4のポートが連通して第2のポートと第3のポートが連通する状態(図2(B)に示す状態)とに切り換え自在に構成されている。そして、冷媒回路(60)は、この四方切換弁(64)を切り換えることにより、第1熱交換器(61)が凝縮器として機能して第2熱交換器(62)が蒸発器として機能する第1冷凍サイクル動作と、第1熱交換器(61)が蒸発器として機能して第2熱交換器(62)が凝縮器として機能する第2冷凍サイクル動作とを切り換えて行うように構成されている。
【0058】
上記調湿装置(10)には、コントローラ(70)が設けられている。図3に示すように、コントローラ(70)には、容量制御部(71)と開度制御部(72)と切換制御部(73)とが設けられている。
【0059】
上記容量制御部(71)は、圧縮機(63)の容量制御を行うように構成されている。具体的に、この容量制御部(71)は、インバータの出力周波数を調節することによって、圧縮機(63)の容量を調節する。この容量制御部(71)は、調湿装置(10)の運転状態に応じて圧縮機(63)の容量を調節する。
【0060】
上記開度制御部(72)は、電動膨張弁(65)の開度制御を行うように構成されている。この開度制御部(72)は、冷媒回路(60)の運転状態に応じて電動膨張弁(65)の開度を調節する。
【0061】
上記切換制御部(73)は、冷媒回路(60)の動作切換と第1空気及び第2空気の流通経路切換とを所定のタイミングで行う切換制御手段を構成している。具体的に、この切換制御部(73)は、四方切換弁(64)の操作と切換機構(50)を構成する各開口(51,…,55,…)のダンパの操作とを行う。
【0062】
また、上記切換制御部(73)は、2つの切換制御動作が可能となっており、第1空気や第2空気としてケーシング(11)内へ取り込まれる空気の温度に応じて何れか一方の切換制御動作を選択して行うように構成されている。
【0063】
具体的に、切換制御部(73)は、冷媒回路(60)の冷凍サイクル動作を切り換える所定時間前に予めケーシング(11)内での空気流通経路を切り換える第1切換制御動作と、冷媒回路(60)の冷凍サイクル動作を切り換えてから所定時間後にケーシング(11)内での空気流通経路を切り換える第2切換制御動作とを行う。そして、切換制御部(73)は、熱交換器(61,62)へ至る迄において第2空気の温度が第1空気の温度よりも高い場合には第1切換動作を行い、逆に第1空気の温度が第2空気の温度よりも高い場合には第2切換動作を行う。
【0064】
−調湿装置の調湿動作−
上記調湿装置(10)の調湿動作について説明する。この調湿装置(10)では、換気除湿運転と換気加湿運転と循環除湿運転と循環加湿運転とが切り換え可能になっている。また、上記調湿装置(10)において、上記の各運転中は第1動作と第2動作とが比較的短い時間間隔(例えば3分間隔)で交互に繰り返される。
【0065】
《換気除湿運転》
換気除湿運転時において、調湿装置(10)では、給気ファン(25)及び排気ファン(26)が運転される。そして、調湿装置(10)は、室外空気(OA)を第1空気として取り込んで室内に供給する一方、室内空気(RA)を第2空気として取り込んで室外に排出する。
【0066】
先ず、換気除湿運転時の第1動作について、図2及び図4を参照しながら説明する。この第1動作では、第1熱交換器(61)において吸着材の再生が行われ、第2熱交換器(62)において第1空気である室外空気(OA)の除湿が行われる。
【0067】
第1動作時において、冷媒回路(60)では、四方切換弁(64)が図2(A)に示す状態に切り換えられる。この状態で圧縮機(63)を運転すると、冷媒回路(60)で冷媒が循環し、第1熱交換器(61)が凝縮器となって第2熱交換器(62)が蒸発器となる第1冷凍サイクル動作が行われる。
【0068】
具体的に、圧縮機(63)から吐出された冷媒は、第1熱交換器(61)で放熱して凝縮し、その後に電動膨張弁(65)へ送られて減圧される。減圧された冷媒は、第2熱交換器(62)で吸熱して蒸発し、その後に圧縮機(63)へ吸入されて圧縮される。そして、圧縮された冷媒は、再び圧縮機(63)から吐出される。
【0069】
また、第1動作時において、切換機構(50)を構成する各開口(51,…,55,…)のダンパは、換気除湿運転時の第1流通状態に設定される。これにより、第2開口(52)と第3開口(53)と第5開口(55)と第8開口(58)とが開口状態になり、第1開口(51)と第4開口(54)と第6開口(56)と第7開口(57)とが閉鎖状態になる。そして、図4に示すように、第1熱交換器(61)へ第2空気としての室内空気(RA)が供給され、第2熱交換器(62)へ第1空気としての室外空気(OA)が供給される。
【0070】
具体的に、室内空気吸込口(22)より流入した第2空気は、第2流入路(45)から第5開口(55)を通って第1熱交換室(41)へ送り込まれる。第1熱交換室(41)では、第2空気が第1熱交換器(61)を上から下へ向かって通過してゆく。第1熱交換器(61)では、外表面に担持された吸着材が冷媒により加熱され、この吸着材から水分が脱離する。吸着材から脱離した水分は、第1熱交換器(61)を通過する第2空気に付与される。第1熱交換器(61)で水分を付与された第2空気は、第1熱交換室(41)から第3開口(53)を通って第1流出路(44)へ流出する。その後、第2空気は、排気ファン(26)へ吸い込まれ、排気吹出口(23)から排出空気(EA)として室外へ排出される。
【0071】
一方、室外空気吸込口(21)より流入した第1空気は、第1流入路(43)から第2開口(52)を通って第2熱交換室(42)へ送り込まれる。第2熱交換室(42)では、第1空気が第2熱交換器(62)を上から下へ向かって通過してゆく。第2熱交換器(62)では、その表面に担持された吸着材に第1空気中の水分が吸着される。その際に生じる吸着熱は、冷媒が吸熱する。第2熱交換器(62)で除湿された第1空気は、第2熱交換室(42)から第8開口(58)を通って第2流出路(46)へ流出する。その後、第1空気は、給気ファン(25)へ吸い込まれ、給気吹出口(24)から供給空気(SA)として室内へ供給される。
【0072】
次に、換気除湿運転時の第2動作について、図2及び図5を参照しながら説明する。この第2動作では、第2熱交換器(62)において吸着材の再生が行われ、第1熱交換器(61)において第1空気である室外空気(OA)の除湿が行われる。
【0073】
第2動作時において、冷媒回路(60)では、四方切換弁(64)が図2(B)に示す状態に切り換えられる。この状態で圧縮機(63)を運転すると、冷媒回路(60)で冷媒が循環し、第1熱交換器(61)が蒸発器となって第2熱交換器(62)が凝縮器となる第2冷凍サイクル動作が行われる。
【0074】
具体的に、圧縮機(63)から吐出された冷媒は、第2熱交換器(62)で放熱して凝縮し、その後に電動膨張弁(65)へ送られて減圧される。減圧された冷媒は、第1熱交換器(61)で吸熱して蒸発し、その後に圧縮機(63)へ吸入されて圧縮される。そして、圧縮された冷媒は、再び圧縮機(63)から吐出される。
【0075】
また、第2動作時において、切換機構(50)を構成する各開口(51,…,55,…)のダンパは、換気除湿運転時の第2流通状態に設定される。これにより、第1開口(51)と第4開口(54)と第6開口(56)と第7開口(57)とが開口状態となり、第2開口(52)と第3開口(53)と第5開口(55)と第8開口(58)とが閉鎖状態となる。そして、図5に示すように、第1熱交換器(61)へ第1空気としての室外空気(OA)が供給され、第2熱交換器(62)へ第2空気としての室内空気(RA)が供給される。
【0076】
具体的に、室内空気吸込口(22)より流入した第2空気は、第2流入路(45)から第6開口(56)を通って第2熱交換室(42)へ送り込まれる。第2熱交換室(42)では、第2空気が第2熱交換器(62)を上から下へ向かって通過してゆく。第2熱交換器(62)では、外表面に担持された吸着材が冷媒により加熱され、この吸着材から水分が脱離する。吸着材から脱離した水分は、第2熱交換器(62)を通過する第2空気に付与される。第2熱交換器(62)で水分を付与された第2空気は、第2熱交換室(42)から第4開口(54)を通って第1流出路(44)へ流出する。その後、第2空気は、排気ファン(26)へ吸い込まれ、排気吹出口(23)から排出空気(EA)として室外へ排出される。
【0077】
一方、室外空気吸込口(21)より流入した第1空気は、第1流入路(43)から第1開口(51)を通って第1熱交換室(41)へ送り込まれる。第1熱交換室(41)では、第1空気が第1熱交換器(61)を上から下へ向かって通過してゆく。第1熱交換器(61)では、その表面に担持された吸着材に第1空気中の水分が吸着される。その際に生じる吸着熱は、冷媒が吸熱する。第1熱交換器(61)で除湿された第1空気は、第1熱交換室(41)から第7開口(57)を通って第2流出路(46)へ流出する。その後、第1空気は、給気ファン(25)へ吸い込まれ、給気吹出口(24)から供給空気(SA)として室内へ供給される。
【0078】
《換気加湿運転》
換気加湿運転時において、調湿装置(10)では、給気ファン(25)及び排気ファン(26)が運転される。そして、調湿装置(10)は、室内空気(RA)を第1空気として取り込んで室外に排出する一方、室外空気(OA)を第2空気として取り込んで室内に供給する。
【0079】
先ず、換気加湿運転時の第1動作について、図2及び図6を参照しながら説明する。この第1動作では、第1熱交換器(61)において第2空気である室外空気(OA)の加湿が行われ、第2熱交換器(62)において第1空気である室内空気(RA)から水分の回収が行われる。
【0080】
第1動作時において、冷媒回路(60)では、四方切換弁(64)が図2(A)に示す状態に切り換えられる。この状態で圧縮機(63)を運転すると、冷媒回路(60)で冷媒が循環し、第1熱交換器(61)が凝縮器となって第2熱交換器(62)が蒸発器となる第1冷凍サイクル動作が行われる。
【0081】
また、第1動作時において、切換機構(50)を構成する各開口(51,…,55,…)のダンパは、換気加湿運転時の第1流通状態に設定される。これにより、第1開口(51)と第4開口(54)と第6開口(56)と第7開口(57)とが開口状態になり、第2開口(52)と第3開口(53)と第5開口(55)と第8開口(58)とが閉鎖状態になる。そして、図6に示すように、第1熱交換器(61)には第2空気としての室外空気(OA)が供給され、第2熱交換器(62)には第1空気としての室内空気(RA)が供給される。
【0082】
具体的に、室内空気吸込口(22)より流入した第1空気は、第2流入路(45)から第6開口(56)を通って第2熱交換室(42)へ送り込まれる。第2熱交換室(42)では、第1空気が第2熱交換器(62)を上から下へ向かって通過してゆく。第2熱交換器(62)では、その表面に担持された吸着材に第1空気中の水分が吸着される。その際に生じる吸着熱は、冷媒が吸熱する。その後、水分を奪われた第1空気は、第4開口(54)、第1流出路(44)、排気ファン(26)を順に通過し、排出空気(EA)として排気吹出口(23)から室外へ排出される。
【0083】
一方、室外空気吸込口(21)より流入した第2空気は、第1流入路(43)から第1開口(51)を通って第1熱交換室(41)へ送り込まれる。第1熱交換室(41)では、第2空気が第1熱交換器(61)を上から下へ向かって通過してゆく。第1熱交換器(61)では、外表面に担持された吸着材が冷媒により加熱され、この吸着材から水分が脱離する。吸着材から脱離した水分は、第1熱交換器(61)を通過する第2空気に付与される。その後、加湿された第2空気は、第7開口(57)、第2流出路(46)、給気ファン(25)を順に通過し、供給空気(SA)として給気吹出口(24)から室内へ供給される。
【0084】
次に、換気加湿運転時の第2動作について、図2及び図7を参照しながら説明する。この第2動作では、第2熱交換器(62)において第2空気である室外空気(OA)の加湿が行われ、第1熱交換器(61)において第1空気である室内空気(RA)から水分の回収が行われる。
【0085】
第2動作時において、冷媒回路(60)では、四方切換弁(64)が図2(B)に示す状態に切り換えられる。この状態で圧縮機(63)を運転すると、冷媒回路(60)で冷媒が循環し、第1熱交換器(61)が蒸発器となって第2熱交換器(62)が凝縮器となる第2冷凍サイクル動作が行われる。
【0086】
また、第2動作時において、切換機構(50)を構成する各開口(51,…,55,…)のダンパは、換気加湿運転時の第2流通状態に設定される。これにより、第2開口(52)と第3開口(53)と第5開口(55)と第8開口(58)とが開口状態になり、第1開口(51)と第4開口(54)と第6開口(56)と第7開口(57)とが閉鎖状態になる。そして、図7に示すように、第1熱交換器(61)には第1空気としての室内空気(RA)が供給され、第2熱交換器(62)には第2空気としての室外空気(OA)が供給される。
【0087】
具体的に、室内空気吸込口(22)より流入した第1空気は、第2流入路(45)から第5開口(55)を通って第1熱交換室(41)に送り込まれる。第1熱交換室(41)では、第1空気が第1熱交換器(61)を上から下に向かって通過してゆく。第1熱交換器(61)では、その表面に担持された吸着材に第1空気中の水分が吸着される。その際に生じる吸着熱は、冷媒が吸熱する。その後、水分を奪われた第1空気は、第3開口(53)、第1流出路(44)、排気ファン(26)を順に通過し、排出空気(EA)として排気吹出口(23)から室外へ排出される。
【0088】
一方、室外空気吸込口(21)より流入した第2空気は、第1流入路(43)から第2開口(52)を通って第2熱交換室(42)に送り込まれる。第2熱交換室(42)では、第2空気が第2熱交換器(62)を上から下へ向かって通過してゆく。第2熱交換器(62)では、外表面に担持された吸着材が冷媒により加熱され、この吸着材から水分が脱離する。吸着材から脱離した水分は、第2熱交換器(62)を通過する第2空気に付与される。その後、加湿された第2空気は、第8開口(58)、第2流出路(46)、給気ファン(25)を順に通過し、供給空気(SA)として給気吹出口(24)から室内へ供給される。
【0089】
《循環除湿運転》
循環除湿運転時において、調湿装置(10)では、給気ファン(25)及び排気ファン(26)が運転される。そして、調湿装置(10)は、室内空気(RA)を第1空気として取り込んで除湿後に室内へ送り返す一方、室外空気(OA)を第2空気として取り込んで吸着材から脱離した水分と共に室外へ排出する。
【0090】
先ず、循環除湿運転時の第1動作について、図2及び図8を参照しながら説明する。この第1動作では、第1熱交換器(61)において吸着材の再生が行われ、第2熱交換器(62)において第1空気である室内空気(RA)の除湿が行われる。
【0091】
第1動作時において、冷媒回路(60)では、四方切換弁(64)が図2(A)に示す状態に切り換えられて第1冷凍サイクル動作が行われる。また、切換機構(50)を構成する各開口(51,…,55,…)のダンパは、循環除湿運転時の第1流通状態に設定される。これにより、第1開口(51)と第3開口(53)と第6開口(56)と第8開口(58)とが開口状態になり、第2開口(52)と第4開口(54)と第5開口(55)と第7開口(57)とが閉鎖状態になる。そして、図8に示すように、第1熱交換器(61)へ第2空気としての室外空気(OA)が供給され、第2熱交換器(62)へ第1空気としての室内空気(RA)が供給される。
【0092】
具体的に、室外空気吸込口(21)より流入した第2空気は、第1熱交換室(41)へ導入されて第1熱交換器(61)を通過する。第1熱交換器(61)では、外表面に担持された吸着材が冷媒により加熱されて再生される。そして、吸着材から脱離した水分を付与された第2空気は、排気吹出口(23)から排出空気(EA)として室外へ排出される。
【0093】
一方、室内空気吸込口(22)より流入した第1空気は、第2熱交換室(42)へ導入されて第2熱交換器(62)を通過する。第2熱交換器(62)では、その表面に担持された吸着材に第1空気中の水分が吸着され、その際に生じる吸着熱を冷媒が吸熱する。そして、第2熱交換器(62)で除湿された第1空気は、給気吹出口(24)から供給空気(SA)として室内へ供給される。
【0094】
次に、循環除湿運転時の第2動作について、図2及び図9を参照しながら説明する。この第2動作では、第2熱交換器(62)において吸着材の再生が行われ、第1熱交換器(61)において第1空気である室内空気(RA)の除湿が行われる。
【0095】
第2動作時において、冷媒回路(60)では、四方切換弁(64)が図2(B)に示す状態に切り換えられて第2冷凍サイクル動作が行われる。また、切換機構(50)を構成する各開口(51,…,55,…)のダンパは、循環除湿運転時の第2流通状態に設定される。これにより、第2開口(52)と第4開口(54)と第5開口(55)と第7開口(57)とが開口状態となり、第1開口(51)と第3開口(53)と第6開口(56)と第8開口(58)とが閉鎖状態となる。そして、図9に示すように、第1熱交換器(61)へ第1空気としての室内空気(RA)が供給され、第2熱交換器(62)へ第2空気としての室外空気(OA)が供給される。
【0096】
具体的に、室外空気吸込口(21)より流入した第2空気は、第2熱交換室(42)へ導入されて第2熱交換器(62)を通過する。第2熱交換器(62)では、外表面に担持された吸着材が冷媒により加熱されて再生される。そして、吸着材から脱離した水分を付与された第2空気は、排気吹出口(23)から排出空気(EA)として室外へ排出される。
【0097】
一方、室内空気吸込口(22)より流入した第1空気は、第1熱交換室(41)へ導入されて第1熱交換器(61)を通過する。第1熱交換器(61)では、その表面に担持された吸着材に第1空気中の水分が吸着され、その際に生じる吸着熱を冷媒が吸熱する。そして、第1熱交換器(61)で除湿された第1空気は、給気吹出口(24)から供給空気(SA)として室内へ供給される。
【0098】
《循環加湿運転》
循環加湿運転時において、調湿装置(10)では、給気ファン(25)及び排気ファン(26)が運転される。そして、調湿装置(10)は、室外空気(OA)を第1空気として取り込んで水分を奪った後に室外へ排出する一方、室内空気(RA)を第2空気として取り込んで加湿後に室内へ送り返す。
【0099】
先ず、循環加湿運転時の第1動作について、図2及び図10を参照しながら説明する。この第1動作では、第1熱交換器(61)において第2空気である室内空気(RA)の加湿が行われ、第2熱交換器(62)において第1空気である室外空気(OA)から水分の回収が行われる。
【0100】
第1動作時において、冷媒回路(60)では、四方切換弁(64)が図2(A)に示す状態に切り換えられて第1冷凍サイクル動作が行われる。また、切換機構(50)を構成する各開口(51,…,55,…)のダンパは、循環加湿運転時の第1流通状態に設定される。これにより、第2開口(52)と第4開口(54)と第5開口(55)と第7開口(57)とが開口状態になり、第1開口(51)と第3開口(53)と第6開口(56)と第8開口(58)とが閉鎖状態になる。そして、図10に示すように、第1熱交換器(61)には第2空気としての室内空気(RA)が供給され、第2熱交換器(62)には第1空気としての室外空気(OA)が供給される。
【0101】
具体的に、室外空気吸込口(21)より流入した第1空気は、第2熱交換室(42)へ導入されて第2熱交換器(62)を通過する。第2熱交換器(62)では、その表面に担持された吸着材に第1空気中の水分が吸着され、その際に生じる吸着熱を冷媒が吸熱する。そして、水分を奪われた第1空気は、排出空気(EA)として排気吹出口(23)から室外へ排出される。
【0102】
一方、室内空気吸込口(22)より流入した第2空気は、第1熱交換室(41)へ導入されて第1熱交換器(61)を通過する。第1熱交換器(61)では、外表面に担持された吸着材が冷媒により加熱されて再生される。そして、吸着材から脱離した水分により加湿された第2空気は、供給空気(SA)として給気吹出口(24)から室内へ供給される。
【0103】
次に、循環加湿運転時の第2動作について、図2及び図11を参照しながら説明する。この第2動作では、第2熱交換器(62)において第2空気である室内空気(RA)の加湿が行われ、第1熱交換器(61)において第1空気である室外空気(OA)から水分の回収が行われる。
【0104】
第2動作時において、冷媒回路(60)では、四方切換弁(64)が図2(B)に示す状態に切り換えられ、第2冷凍サイクル動作が行われる。また、切換機構(50)を構成する各開口(51,…,55,…)のダンパは、循環加湿運転時の第2流通状態に設定される。これにより、第1開口(51)と第3開口(53)と第6開口(56)と第8開口(58)とが開口状態となり、第2開口(52)と第4開口(54)と第5開口(55)と第7開口(57)とが閉鎖状態となる。そして、図11に示すように、第1熱交換器(61)には第1空気としての室外空気(OA)が供給され、第2熱交換器(62)には第2空気としての室内空気(RA)が供給される。
【0105】
具体的に、室外空気吸込口(21)より流入した第1空気は、第1熱交換室(41)へ導入されて第1熱交換器(61)を通過する。第1熱交換器(61)では、その表面に担持された吸着材に第1空気中の水分が吸着され、その際に生じる吸着熱を冷媒が吸熱する。そして、水分を奪われた第1空気は、排出空気(EA)として排気吹出口(23)から室外へ排出される。
【0106】
一方、室内空気吸込口(22)より流入した第2空気は、第2熱交換室(42)へ流入して第2熱交換器(62)を通過する。第2熱交換器(62)では、外表面に担持された吸着材が冷媒により加熱されて再生される。そして、吸着材から脱離した水分により加湿された第2空気は、供給空気(SA)として給気吹出口(24)から室内へ供給される。
【0107】
−コントローラの制御動作−
上記コントローラ(70)の制御動作について、図12及び図13を参照しながら説明する。図12及び図13は、切換機構(50)の状態、圧縮機(63)の容量、電動膨張弁(65)の開度、第1,第2熱交換器(61,62)における吸着材温度のそれぞれについて、冷媒回路(60)の冷凍サイクル動作が第1→第2→第1→第2の順で交互に切り換わった場合における変化を図示したものである。
【0108】
コントローラ(70)の容量制御部(71)は、圧縮機(63)の容量を基準容量に保持する。つまり、この容量制御部(71)は、切換機構(50)の状態や冷媒回路(60)の動作切換とは関係なく、圧縮機(63)を一定の容量に保ち続ける。尚、基準容量とは、調湿装置(10)の負荷(即ち室内の潜熱負荷に応じて調湿装置(10)に要求される除湿量や加湿量)に応じて設定される圧縮機(63)の容量である。
【0109】
コントローラ(70)の開度制御部(72)は、電動膨張弁(65)の開度を基準開度に保持する。つまり、この開度制御部(72)は、切換機構(50)の状態や冷媒回路(60)の動作切換とは関係なく、電動膨張弁(65)を一定の開度に保ち続ける。尚、基準開度とは、冷媒回路(60)の運転状態(例えば熱交換器(61,62)へ第1空気や第2空気として送られる空気の温度、冷媒回路(60)の各部分における冷媒の温度や圧力など)に応じて設定される電動膨張弁(65)の開度である。
【0110】
コントローラ(70)の切換制御部(73)は、ケーシング(11)内へ取り込まれる第1空気及び第2空気の温度に応じ、第1切換制御動作及び第2切換制御動作のうち何れか一方を選択して行う。
【0111】
ケーシング(11)内へ取り込まれる第2空気が第1空気よりも高温の場合には、切換制御部(73)が第1切換制御動作を行う。この場合としては、夏季に室内を冷房している状態で循環除湿運転を行う場合や、冬季に室内を暖房している状態で循環加湿運転を行う場合が該当する。
【0112】
図12に示すように、第1切換制御動作では、冷媒回路(60)の冷凍サイクル動作が切り換わる所定時間前に切換機構(50)が切り換えられる。この第1切換制御動作について、冷媒回路(60)の動作が3分間隔で切り換わる場合、即ち四方切換弁(64)の切り換え周期が3分間の場合を例に説明する。この場合、切換制御部(73)は、四方切換弁(64)が切り換わってから例えば2分45秒経過すると、切換機構(50)を操作して第1空気及び第2空気の流通経路を切り換える。そして、切換制御部(73)は、切換機構(50)を操作してから15秒経過すると、四方切換弁(64)を操作して冷媒回路(60)の冷凍サイクル動作を切り換える。
【0113】
例えば、第1冷凍サイクル動作から第2冷凍サイクル動作への切り換えでは、第1熱交換器(61)が凝縮器から蒸発器に切り換わり、第2熱交換器(62)が蒸発器から凝縮器に切り換わる。その際、切換制御部(73)が第1切換制御動作を行うと、第1熱交換器(61)に対しては、第1熱交換器(61)が凝縮器から蒸発器に切り換わる少し前に比較的低温の第1空気が送られる。また、第2熱交換器(62)に対しては、第2熱交換器(62)が蒸発器から凝縮器に切り換わる前に比較的高温の第2空気が送られる。このため、四方切換弁(64)と切換機構(50)を同時に操作する比較例に比べると、四方切換弁(64)が切り換わる時点では、第1熱交換器(61)に設けられた吸着材の温度が低下し、第2熱交換器(62)に設けられた吸着材の温度が上昇する。
【0114】
一方、ケーシング(11)内へ取り込まれる第1空気が第2空気よりも高温の場合には、切換制御部(73)が第2切換制御動作を行う。この場合としては、夏季に室内を冷房している状態で換気除湿運転を行う場合や、冬季に室内を暖房している状態で換気加湿運転を行う場合が該当する。
【0115】
図13に示すように、第2切換制御動作では、冷媒回路(60)の冷凍サイクル動作が切り換わってから所定時間後に切換機構(50)が切り換えられる。この第2切換制御動作について、冷媒回路(60)の動作が3分間隔で切り換わる場合、即ち四方切換弁(64)の切り換え周期が3分間の場合を例に説明する。この場合、切換制御部(73)は、四方切換弁(64)が切り換わる時点で切換機構(50)を操作せずに空気流通経路を保持する。その後、切換制御部(73)は、四方切換弁(64)の切り換え時点から例えば15秒経過すると、切換機構(50)を操作して第1空気及び第2空気の流通経路を切り換える。そして、切換制御部(73)は、切換機構(50)を操作した時点から2分45秒経過すると、四方切換弁(64)を操作して冷媒回路(60)の冷凍サイクル動作を切り換える。
【0116】
例えば、第1冷凍サイクル動作から第2冷凍サイクル動作への切り換えでは、第1熱交換器(61)が凝縮器から蒸発器に切り換わり、第2熱交換器(62)が蒸発器から凝縮器に切り換わる。その際、切換制御部(73)が第2切換制御動作を行うと、第1熱交換器(61)に対しては、第1熱交換器(61)が凝縮器から蒸発器に切り換わってからも暫くは比較的低温の第2空気が供給され続ける。また、第2熱交換器(62)に対しては、第2熱交換器(62)が蒸発器から凝縮器に切り換わってからも暫くは比較的高温の第1空気が供給され続ける。このため、四方切換弁(64)と切換機構(50)を同時に操作する比較例に比べると、四方切換弁(64)の切り換え後において、第1熱交換器(61)に設けられた吸着材の温度が素早く低下し、第2熱交換器(62)に設けられた吸着材の温度が素早く上昇する。
【0117】
−実施形態1の効果−
本実施形態において、調湿装置(10)に取り込まれる第2空気が第1空気よりも高温であるときには、切換制御部(73)が第1切換制御動作を行うことにより、凝縮器から蒸発器に切り換わる熱交換器(61,62)の吸着材が第1空気によって予め冷却され、蒸発器から凝縮器に切り換わる熱交換器(61,62)の吸着材が第2空気によって予め加熱される。また、調湿装置(10)に取り込まれる第1空気が第2空気よりも高温であるときには、切換制御部(73)が第2切換制御動作を行うことにより、凝縮器から蒸発器に切り換わった熱交換器(61,62)の吸着材が冷媒と第2空気の両方で冷却され、蒸発器から凝縮器に切り換わった熱交換器(61,62)の吸着材が冷媒と第1空気の両方で加熱される。
【0118】
従って、本実施形態によれば、冷媒回路(60)の冷凍サイクル動作が切り換わってから吸着材が充分に水分を吸脱着可能な温度に達するまでの時間を短縮することができ、吸着材に吸着される水分量や吸着材から脱離する水分量を増大させることができる。そして、その結果、調湿装置(10)の調湿能力を向上させることができる。
【0119】
【発明の実施の形態2】
本発明の実施形態2は、上記実施形態1のコントローラ(70)において、容量制御部(71)の構成を変更したものである。ここでは、本実施形態について、上記実施形態1と異なる点を説明する。
【0120】
図14に示すように、本実施形態の容量制御部(71)は、冷媒回路(60)で冷凍サイクル動作が切り換わる周期と同じ周期で圧縮機(63)の容量を変化させる容量制御手段を構成している。
【0121】
具体的に、上記容量制御部(71)は、冷媒回路(60)で冷凍サイクル動作が切り換わる前に圧縮機(63)を一時的に低容量に保持し、冷凍サイクル動作が切り換わると圧縮機(63)を基準容量に戻す制御動作を行う。容量制御部(71)は、この制御動作を冷媒回路(60)で冷凍サイクル動作が切り換わる毎に行う。また、容量制御部(71)は、切換制御部(73)が第1切換制御動作中であるか第2切換制御動作中であるかとは無関係に、この制御動作を繰り返し行う。
【0122】
上記容量制御部(71)の制御動作について、冷媒回路(60)の動作が3分間隔で切り換わる場合を例に説明する。この場合、容量制御部(71)は、四方切換弁(64)の切り換え直後から圧縮機(63)を基準容量で運転する一方、その切り換え時点から例えば2分30秒経過すると圧縮機(63)容量を所定の低容量へと低下させる。その後、容量制御部(71)は、四方切換弁(64)が再び切り換えられるまでの30秒間に亘って圧縮機(63)の容量を低容量に保持し、四方切換弁(64)が切り換わると圧縮機(63)の容量を元の基準容量に戻す。
【0123】
ここで、冷媒回路(60)が第1冷凍サイクル動作から第2冷凍サイクル動作へ切り換わる場合を考える。第1冷凍サイクル動作中には、凝縮器となる第1熱交換器(61)の吸着材から水分が脱離してゆく一方、蒸発器となる第2熱交換器(62)の吸着材に空気中の水分が吸着されてゆく。そして、第1冷凍サイクル動作が終了する間際になると、凝縮器となる第1熱交換器(61)の吸着材を加熱し続けても水分がさほど吸着材から脱離しなくなり、蒸発器となる第2熱交換器(62)の吸着材を冷却し続けても吸着材がさほど水分を吸着しなくなる。つまり、冷媒回路(60)の冷凍サイクル動作が切り換わる間際まで圧縮機(63)を大容量で運転し続けても、第1空気からの除湿量や第2空気への加湿量を増大させる効果は、さほど望めない。
【0124】
そこで、上記容量制御部(71)は、冷媒回路(60)の動作切換の少し前であって既に除湿量や加湿量の増大が見込めない状態になると、圧縮機(63)の容量を低下させて圧縮機(63)への入力を削減している。従って、本実施形態によれば、調湿装置(10)で得られる除湿量や加湿量を維持しつつ圧縮機(63)の消費電力を削減でき、調湿装置(10)の省エネ化を図ることができる。
【0125】
また、冷媒回路(60)の動作切換前において、圧縮機(63)の容量が小さくなると、その分だけ吸着材に対する加熱能力や冷却能力が少なくなる。このため、圧縮機(63)の容量を一定のまま保持する場合との比較において、冷媒回路(60)の冷凍サイクル動作が切り換わる時点での吸着材の温度は、凝縮器から蒸発器に切り換わる熱交換器(61,62)では低下し、蒸発器から凝縮器に切り換わる熱交換器(61,62)では上昇する。従って、本実施形態によれば、冷媒回路(60)の冷凍サイクル動作が切り換わってから吸着材が充分に水分を吸脱着可能な温度に達するまでの時間を更に短縮することができ、調湿装置(10)の調湿能力を更に向上させることができる。
【0126】
【発明の実施の形態3】
本発明の実施形態3は、上記実施形態1のコントローラ(70)において、開度制御部(72)の構成を変更したものである。ここでは、本実施形態について、上記実施形態1と異なる点を説明する。
【0127】
図15に示すように、本実施形態の開度制御部(72)は、冷媒回路(60)で冷凍サイクル動作が切り換わる周期と同じ周期で電動膨張弁(65)の開度を変化させる開度制御手段を構成している。
【0128】
具体的に、上記開度制御部(72)は、冷媒回路(60)で冷凍サイクル動作が切り換わる少し前から電動膨張弁(65)の開度を次第に拡大してゆき、冷凍サイクル動作が切り換わると電動膨張弁(65)の開度を低下させて基準開度に戻す制御動作を行う。開度制御部(72)は、この制御動作を冷媒回路(60)で冷凍サイクル動作が切り換わる毎に行う。また、開度制御部(72)は、切換制御部(73)が第1切換制御動作中であるか第2切換制御動作中であるかとは無関係に、この制御動作を繰り返し行う。
【0129】
上記開度制御部(72)の制御動作について、冷媒回路(60)の冷凍サイクル動作が3分間隔で切り換わる場合を例に説明する。この場合、開度制御部(72)は、四方切換弁(64)の切り換え直後から電動膨張弁(65)を基準開度に保持する一方、その切り換え時点から例えば2分30秒経過すると電動膨張弁(65)の開度を増やし始める。その後、開度制御部(72)は、四方切換弁(64)が再び切り換えられるまでの30秒間に亘って電動膨張弁(65)の開度を拡大し続け、四方切換弁(64)が切り換わると電動膨張弁(65)の開度を元の基準開度に戻す。
【0130】
上記実施形態2の説明で述べたように、冷媒回路(60)の冷凍サイクル動作が切り換わる少し前は、既に除湿量や加湿量の増大が見込めない状態となっている。そこで、上記開度制御部(72)は、このような状態になると電動膨張弁(65)の開度を拡大する。電動膨張弁(65)の開度が増すと、冷凍サイクルにおける高低圧差が縮小し、冷媒を圧縮する圧縮機(63)での消費電力が減少する。従って、本実施形態によれば、上記実施形態2と同様に、調湿装置(10)で得られる除湿量や加湿量を維持しつつ圧縮機(63)の消費電力を削減でき、調湿装置(10)の省エネ化を図ることができる。
【0131】
また、冷媒回路(60)の動作切換前において、電動膨張弁(65)の開度が大きくなると、その分だけ吸着材に対する加熱能力や冷却能力が少なくなる。このため、冷媒回路(60)の冷凍サイクル動作が切り換わってから吸着材が充分に水分を吸脱着可能な温度に達するまでの時間が更に短縮される。従って、本実施形態によれば、上記実施形態2と同様に、調湿装置(10)の調湿能力を更に向上させることができる。
【0132】
−実施形態3の変形例−
本実施形態では、コントローラ(70)の容量制御部(71)を上記実施形態2と同様に構成してもよい。つまり、本実施形態の容量制御部(71)は、冷媒回路(60)で冷凍サイクル動作が切り換わる周期と同じ周期で圧縮機(63)の容量を変化させるように構成されていてもよい。そして、本変形例では、開度制御部(72)による電動膨張弁(65)の開度制御と容量制御部(71)による圧縮機(63)の容量制御の両方が、冷媒回路(60)の動作切換に対応して行われる。
【0133】
【発明の実施の形態4】
本発明の実施形態4は、上記実施形態1のコントローラ(70)において、容量制御部(71)の構成を変更したものである。ここでは、本実施形態について、上記実施形態1と異なる点を説明する。
【0134】
図16に示すように、本実施形態の容量制御部(71)は、冷媒回路(60)で冷凍サイクル動作が切り換わる周期と同じ周期で圧縮機(63)の容量を変化させる容量制御手段を構成している。
【0135】
具体的に、上記容量制御部(71)は、冷媒回路(60)の動作切換の直後から所定の時間が経過するまで圧縮機(63)の容量を基準容量よりも大きな容量に保持し、その後に圧縮機(63)の容量を基準容量に戻して保持する制御動作を行う。容量制御部(71)は、この制御動作を冷媒回路(60)で冷凍サイクル動作が切り換わる毎に行う。また、容量制御部(71)は、切換制御部(73)が第1切換制御動作中であるか第2切換制御動作中であるかとは無関係に、この制御動作を繰り返し行う。
【0136】
上記容量制御部(71)の制御動作について、冷媒回路(60)の冷凍サイクル動作が3分間隔で切り換わる場合を例に説明する。この場合、容量制御部(71)は、四方切換弁(64)の切り換え直後から例えば30秒間に亘り、圧縮機(63)の容量を基準容量よりも大きく保持する。その後、容量制御部(71)は、圧縮機(63)の容量を低下させて基準容量に戻し、四方切換弁(64)が次に切り換わるまでの2分30秒間に亘って圧縮機(63)の容量を一定に保持する。
【0137】
上述したように、調湿装置(10)の調湿能力を充分に発揮させるには、凝縮器から蒸発器に切り換わった熱交換器(61,62)では吸着材の温度を速やかに低下させるのが望ましく、逆に蒸発器から凝縮器に切り換わった熱交換器(61,62)では吸着材の温度を速やかに上昇させるのが望ましい。
【0138】
そこで、本実施形態では、コントローラ(70)の容量制御部(71)が上記の制御動作を行い、冷媒回路(60)の動作切換直後に圧縮機(63)を一時的に大きな容量で運転するようにしている。つまり、熱交換器(61,62)表面の吸着材の温度を素早く変化させたい冷媒回路(60)の動作切換直後には、容量制御部(71)の制御動作によって圧縮機(63)の容量を一時的に増大させている。
【0139】
このため、例えば第1冷凍サイクル動作から第2冷凍サイクル動作への切り換え時において、凝縮器から蒸発器に切り換わった第1熱交換器(61)では吸着材の温度が速やかに低下し、蒸発器から凝縮器に切り換わった第2熱交換器(62)では吸着材の温度が速やかに上昇する。従って、本実施形態によれば、冷媒回路(60)における冷凍サイクル動作の切り換え時点から熱交換器(61,62)の吸着材が充分な性能を発揮し始めるまでの時間を更に短縮することができ、調湿装置(10)の調湿能力を一層向上させることができる。
【0140】
【発明の実施の形態5】
本発明の実施形態5は、上記実施形態1のコントローラ(70)において、開度制御部(72)の構成を変更したものである。ここでは、本実施形態について、上記実施形態1と異なる点を説明する。
【0141】
図17に示すように、本実施形態の開度制御部(72)は、冷媒回路(60)で冷凍サイクル動作が切り換わる周期と同じ周期で電動膨張弁(65)の開度を変化させる開度制御手段を構成している。
【0142】
具体的に、上記開度制御部(72)は、冷媒回路(60)の動作切換直後に電動膨張弁(65)の開度を一旦縮小した後に再び増大させ、その後は次の動作切換まで電動膨張弁(65)を基準開度に保持する。つまり、開度制御部(72)は、冷媒回路(60)で冷凍サイクル動作が切り換わった直後から電動膨張弁(65)の開度を縮小してゆき、電動膨張弁(65)が所定の開度になると再び電動膨張弁(65)を開いて元の基準開度に戻す制御動作を行う。開度制御部(72)は、この制御動作を冷媒回路(60)で冷凍サイクル動作が切り換わる毎に行う。また、開度制御部(72)は、切換制御部(73)が第1切換制御動作中であるか第2切換制御動作中であるかとは無関係に、この制御動作を繰り返し行う。
【0143】
本実施形態では、冷媒回路(60)の冷凍サイクル動作が切り換わった直後で吸着材の加熱や冷却を素早く行いたい状態において、開度制御部(72)が電動膨張弁(65)の開度を一時的に削減する。電動膨張弁(65)の開度が小さくなると、冷凍サイクルにおける高低圧差が拡大し、冷媒の凝縮温度が上昇して蒸発温度が低下する。これに伴い、凝縮器に切り換わった熱交換器(61,62)では吸着材の温度が素早く上昇し、蒸発器に切り換わった熱交換器(61,62)では吸着材の温度が素早く低下する。従って、本実施形態によれば、冷媒回路(60)の冷凍サイクル動作が切り換わってから吸着材が充分に水分を吸脱着可能な温度に達するまでの時間を更に短縮することができ、調湿装置(10)の調湿能力を更に向上させることができる。
【0144】
−実施形態5の変形例−
本実施形態では、コントローラ(70)の容量制御部(71)を上記実施形態4と同様に構成してもよい。つまり、本実施形態の容量制御部(71)は、冷媒回路(60)で冷凍サイクル動作が切り換わる周期と同じ周期で圧縮機(63)の容量を変化させるように構成されていてもよい。そして、本変形例では、開度制御部(72)による電動膨張弁(65)の開度制御と容量制御部(71)による圧縮機(63)の容量制御の両方が、冷媒回路(60)の動作切換に対応して行われる。
【0145】
【発明の効果】
請求項1の発明では、調湿装置(10)に取り込まれる第2空気が第1空気よりも高温である運転状態において、凝縮器から蒸発器に切り換わる熱交換器(61,62)の吸着材を第1空気で予め冷却し、蒸発器から凝縮器に切り換わる熱交換器(61,62)の吸着材を第2空気で予め加熱している。また、請求項2の発明では、調湿装置(10)に取り込まれる第1空気が第2空気よりも高温である運転状態において、凝縮器から蒸発器に切り換わった熱交換器(61,62)の吸着材を冷媒と第2空気の両方で冷却し、蒸発器から凝縮器に切り換わった熱交換器(61,62)の吸着材を冷媒と第1空気の両方で加熱している。
【0146】
従って、これらの発明によれば、冷媒回路(60)の冷凍サイクル動作が切り換わってから吸着材が充分に水分を吸脱着可能な温度に達するまでの時間を短縮することができ、吸着材に吸着される水分量や吸着材から脱離する水分量を増大させることができる。そして、その結果、調湿装置(10)の調湿能力を向上させることができる。
【0147】
請求項4の発明では、冷媒回路(60)の動作切換が間近に迫っていて冷凍サイクル動作による除湿量や加湿量の増大効果がさほど見込めない状態になると、容量制御手段(71)が圧縮機(63)の容量を低下させて圧縮機(63)の運転に要する電力等を削減している。一方、請求項7の発明では、冷媒回路(60)の動作切換が間近に迫っていて冷凍サイクル動作による除湿量や加湿量の増大効果がさほど見込めない状態になると、開度制御手段(72)が膨張弁(65)の開度を増大させて圧縮機(63)の運転に要する電力等を削減している。従って、これらの発明によれば、調湿装置(10)で得られる除湿量や加湿量を維持しつつ調湿装置(10)の運転に要する電力等を削減でき、調湿装置(10)の省エネ化を図ることができる。
【0148】
また、請求項4及び請求項7の発明において、冷媒回路(60)の動作切換が間近になったときには、吸着材に対する加熱能力や冷却能力が一時的に低くなる。従って、これらの発明によれば、冷媒回路(60)の冷凍サイクル動作が切り換わってから吸着材が充分に水分を吸脱着可能な温度に達するまでの時間を更に短縮することができ、調湿装置(10)の調湿能力を更に向上させることができる。
【0149】
請求項5の発明では、冷媒回路(60)の冷凍サイクル動作が切り換わった直後で吸着材の温度を速やかに変化させたい状態において、容量制御手段(71)が圧縮機(63)の容量を一時的に増大させて吸着材に対する加熱能力や冷却能力を増大させている。一方、請求項8の発明では、冷媒回路(60)の冷凍サイクル動作が切り換わった直後で吸着材の温度を速やかに変化させたい状態において、開度制御手段(72)が膨張弁(65)の開度を一時的に減少させて吸着材に対する加熱能力や冷却能力を増大させている。従って、これらの発明によれば、冷媒回路(60)の冷凍サイクル動作が切り換わってから吸着材が充分に水分を吸脱着可能な温度に達するまでの時間を更に短縮することができ、調湿装置(10)の調湿能力を更に向上させることができる。
【図面の簡単な説明】
【図1】実施形態1における調湿装置の概略構成図である。
【図2】実施形態1における調湿装置の冷媒回路を示す配管系統図である。
【図3】実施形態1における調湿装置のコントローラの構成を示すブロック図である。
【図4】換気除湿運転の第1動作における空気の流れを示す調湿装置の概略構成図である。
【図5】換気除湿運転の第2動作における空気の流れを示す調湿装置の概略構成図である。
【図6】換気加湿運転の第1動作における空気の流れを示す調湿装置の概略構成図である。
【図7】換気加湿運転の第2動作における空気の流れを示す調湿装置の概略構成図である。
【図8】循環除湿運転の第1動作における空気の流れを示す調湿装置の概略構成図である。
【図9】循環除湿運転の第2動作における空気の流れを示す調湿装置の概略構成図である。
【図10】循環加湿運転の第1動作における空気の流れを示す調湿装置の概略構成図である。
【図11】循環加湿運転の第2動作における空気の流れを示す調湿装置の概略構成図である。
【図12】実施形態1の調湿装置における第1切換制御動作中の運転状態を示すタイムチャートである。
【図13】実施形態1の調湿装置における第2切換制御動作中の運転状態を示すタイムチャートである。
【図14】実施形態2における調湿装置の運転状態を示すタイムチャートである。
【図15】実施形態3における調湿装置の運転状態を示すタイムチャートである。
【図16】実施形態4における調湿装置の運転状態を示すタイムチャートである。
【図17】実施形態5における調湿装置の運転状態を示すタイムチャートである。
【符号の説明】
(50) 切換機構
(60) 冷媒回路
(61) 第1熱交換器(第1の熱交換器)
(62) 第2熱交換器(第2の熱交換器)
(63) 圧縮機
(65) 電動膨張弁(膨張弁)
(71) 容量制御部(容量制御手段)
(72) 開度制御部(開度制御手段)
(73) 切換制御部(切換制御手段)

Claims (8)

  1. 第1空気及び第2空気を取り込み、除湿した第1空気又は加湿した第2空気を室内へ供給する調湿装置であって、
    第1の熱交換器(61)が凝縮器となって第2の熱交換器(62)が蒸発器となる冷凍サイクル動作と第2の熱交換器(62)が凝縮器となって第1の熱交換器(61)が蒸発器となる冷凍サイクル動作とが切り換え可能な冷媒回路(60)と、
    上記第1及び第2の熱交換器(61,62)の表面に設けられて該熱交換器(61,62)を通過する空気と接触する吸着材と、
    第1空気及び第2空気の流通経路を切り換える切換機構(50)とを備え、
    上記冷媒回路(60)の動作切換と上記切換機構(50)による空気流通経路の切換とを周期的に行い、蒸発器となっている上記熱交換器(61,62)で第1空気を除湿すると同時に凝縮器となっている上記熱交換器(61,62)で第2空気を加湿するように構成される一方、
    上記冷媒回路(60)の動作切換が行われる所定時間前に予め上記切換機構(50)によって空気流通経路を切り換える制御動作を、上記熱交換器(61,62)の上流において第2空気が第1空気よりも高温であるときに行う切換制御手段(73)が設けられている調湿装置。
  2. 第1空気及び第2空気を取り込み、除湿した第1空気又は加湿した第2空気を室内へ供給する調湿装置であって、
    第1の熱交換器(61)が凝縮器となって第2の熱交換器(62)が蒸発器となる冷凍サイクル動作と第2の熱交換器(62)が凝縮器となって第1の熱交換器(61)が蒸発器となる冷凍サイクル動作とが切り換え可能な冷媒回路(60)と、
    上記第1及び第2の熱交換器(61,62)の表面に設けられて該熱交換器(61,62)を通過する空気と接触する吸着材と、
    第1空気及び第2空気の流通経路を切り換える切換機構(50)とを備え、
    上記冷媒回路(60)の動作切換と上記切換機構(50)による空気流通経路の切換とを周期的に行い、蒸発器となっている上記熱交換器(61,62)で第1空気を除湿すると同時に凝縮器となっている上記熱交換器(61,62)で第2空気を加湿するように構成される一方、
    上記冷媒回路(60)の動作切換が行われてから所定時間後に上記切換機構(50)によって空気流通経路を切り換える制御動作を、上記熱交換器(61,62)の上流において第1空気が第2空気よりも高温であるときに行う切換制御手段(73)が設けられている調湿装置。
  3. 請求項1又は2に記載の調湿装置において、
    冷媒回路(60)に設けられた圧縮機(63)が容量可変に構成されており、
    上記冷媒回路(60)の動作切換の周期と同じ周期で上記圧縮機(63)の容量を変化させる容量制御手段(71)が設けられている調湿装置。
  4. 請求項3に記載の調湿装置において、
    容量制御手段(71)は、冷媒回路(60)の動作切換前に予め圧縮機(63)の容量を一時的に低下させて上記冷媒回路(60)の動作切換が行われると上記圧縮機(63)の容量を増大させる制御動作を、上記冷媒回路(60)の動作切換ごとに行う調湿装置。
  5. 請求項3に記載の調湿装置において、
    容量制御手段(71)は、冷媒回路(60)の動作切換直後は一時的に圧縮機(63)の容量を調湿装置の負荷に対応した基準容量よりも大きくして上記冷媒回路(60)の動作切換から所定時間が経過すると上記圧縮機(63)の容量を低下させる制御動作を、上記冷媒回路(60)の動作切換ごとに行うように構成されている調湿装置。
  6. 請求項1又は2に記載の調湿装置において、
    冷媒回路(60)に設けられる冷媒の膨張機構が開度可変の膨張弁(65)により構成されており、
    上記冷媒回路(60)の動作切換の周期と同じ周期で上記膨張弁(65)の開度を変化させる開度制御手段(72)が設けられている調湿装置。
  7. 請求項6に記載の調湿装置において、
    開度制御手段(72)は、冷媒回路(60)の動作切換前に予め膨張弁(65)の開度を一時的に増大させて上記冷媒回路(60)の動作切換が行われると上記膨張弁(65)の開度を低下させる制御動作を、上記冷媒回路(60)の動作切換ごとに行うように構成されている調湿装置。
  8. 請求項6に記載の調湿装置において、
    開度制御手段(72)は、冷媒回路(60)の動作切換直後は一時的に膨張弁(65)の開度を該冷媒回路(60)の運転状態に対応した基準開度よりも小さくして上記冷媒回路(60)の動作切換から所定時間が経過すると上記膨張弁(65)の開度を増大させる制御動作を、上記冷媒回路(60)の動作切換ごとに行うように構成されている調湿装置。
JP2003149252A 2003-05-27 2003-05-27 調湿装置 Expired - Fee Related JP4179052B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003149252A JP4179052B2 (ja) 2003-05-27 2003-05-27 調湿装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003149252A JP4179052B2 (ja) 2003-05-27 2003-05-27 調湿装置

Publications (2)

Publication Number Publication Date
JP2004353891A true JP2004353891A (ja) 2004-12-16
JP4179052B2 JP4179052B2 (ja) 2008-11-12

Family

ID=34045420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003149252A Expired - Fee Related JP4179052B2 (ja) 2003-05-27 2003-05-27 調湿装置

Country Status (1)

Country Link
JP (1) JP4179052B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006284078A (ja) * 2005-03-31 2006-10-19 Daikin Ind Ltd 調湿装置
EP1898163A1 (en) * 2005-05-30 2008-03-12 Daikin Industries, Ltd. Humidity conditioner
WO2009057307A1 (ja) * 2007-10-31 2009-05-07 Daikin Industries, Ltd. 調湿装置
EP1898162B1 (en) * 2005-05-30 2016-03-09 Daikin Industries, Ltd. Moisture conditioning device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006284078A (ja) * 2005-03-31 2006-10-19 Daikin Ind Ltd 調湿装置
JP4497012B2 (ja) * 2005-03-31 2010-07-07 ダイキン工業株式会社 調湿装置
EP1898163A1 (en) * 2005-05-30 2008-03-12 Daikin Industries, Ltd. Humidity conditioner
EP1898163A4 (en) * 2005-05-30 2009-04-08 Daikin Ind Ltd CONDITIONER OF MOISTURE
AU2006253461B2 (en) * 2005-05-30 2010-04-22 Daikin Industries, Ltd. Humidity control system
KR100978442B1 (ko) * 2005-05-30 2010-08-26 다이킨 고교 가부시키가이샤 조습 장치
US7886551B2 (en) 2005-05-30 2011-02-15 Daikin Industries, Ltd. Humidity control system
EP1898162B1 (en) * 2005-05-30 2016-03-09 Daikin Industries, Ltd. Moisture conditioning device
WO2009057307A1 (ja) * 2007-10-31 2009-05-07 Daikin Industries, Ltd. 調湿装置
JP2009109115A (ja) * 2007-10-31 2009-05-21 Daikin Ind Ltd 調湿装置

Also Published As

Publication number Publication date
JP4179052B2 (ja) 2008-11-12

Similar Documents

Publication Publication Date Title
JP3624910B2 (ja) 調湿装置
KR100742074B1 (ko) 조습장치
AU2004295536B2 (en) Air conditioning system
JP2003314856A (ja) 調湿装置
JP2006329593A (ja) 空調システム
WO2005095868A1 (ja) 調湿装置
JP7113659B2 (ja) 空気調和装置
WO2005103577A1 (ja) 調湿装置
JP3695417B2 (ja) 調湿装置
JP4590901B2 (ja) 空気調和装置
JP3624893B2 (ja) 調湿装置
JP2013190177A (ja) 調湿装置
JP2004060954A (ja) 調湿装置
WO2006103968A1 (ja) 調湿装置
JP3807320B2 (ja) 調湿装置
US20060218943A1 (en) Moisture conditioner
JP4525138B2 (ja) 調湿装置
JP4179051B2 (ja) 調湿装置
JP4179052B2 (ja) 調湿装置
JP3668764B2 (ja) 調湿装置
JP2003232538A (ja) 調湿装置
JP4273818B2 (ja) 調湿装置
JP2004060958A (ja) 調湿装置
JP2006078100A (ja) 調湿装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080818

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees