JP2004353735A - Rotating device with sensor and its forming method - Google Patents

Rotating device with sensor and its forming method Download PDF

Info

Publication number
JP2004353735A
JP2004353735A JP2003151004A JP2003151004A JP2004353735A JP 2004353735 A JP2004353735 A JP 2004353735A JP 2003151004 A JP2003151004 A JP 2003151004A JP 2003151004 A JP2003151004 A JP 2003151004A JP 2004353735 A JP2004353735 A JP 2004353735A
Authority
JP
Japan
Prior art keywords
sensor
retainer
magnet
rotating device
annular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003151004A
Other languages
Japanese (ja)
Inventor
Mamoru Aoki
護 青木
Koichiro Ono
浩一郎 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2003151004A priority Critical patent/JP2004353735A/en
Priority to EP04734408A priority patent/EP1627156B1/en
Priority to US10/558,267 priority patent/US20070014498A1/en
Priority to DE602004023836T priority patent/DE602004023836D1/en
Priority to KR1020057022723A priority patent/KR100839395B1/en
Priority to PCT/JP2004/007303 priority patent/WO2004113746A1/en
Priority to CN 200480014639 priority patent/CN1795338A/en
Publication of JP2004353735A publication Critical patent/JP2004353735A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotating device with a sensor and its forming method, having high disassembling workability and capable of being miniaturized. <P>SOLUTION: In this rotating device with the sensor comprising annular magnets 8 mounted on rotating parts of rolling bearings 2, 3 and magnetized in multiple poles, and a magnetic sensitive sensor 5 mounted at a device main body 34 side at a specific interval in a state of being faced to the annular magnets 8, the annular magnets 8 and a back yoke forming member are integrally mounted on a cage 6 in opposition to the magnetic sensitive sensor 5. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、回転装置に使用される軸受の保持器の回転数を測定することにより、回転軸の回転数を検出したり、軸受に負荷された荷重を推定可能にしたセンサ付き回転装置及びその形成方法に関するものである。
【0002】
【従来の技術】
従来より、軸受に支持された回転軸の回転数を検出する回転装置は、例えば、軸受の回転部分に磁気エンコーダを取り付け、このエンコーダに対向する位置に磁気エンコーダを設置して磁気の変化に応じた回転数を測定することが一般的であった。
【0003】
また、近年では、回転軸を支持する軸受に回転数センサを組み込む方式も広く採用されている。この軸受に回転数センサを組み込む方法としては、軸受の回転輪(例えば内輪)の一端部に多極に着磁した磁石を固定し、この磁石に対向する位置の固定輪(例えば外輪)の一端部に磁気感応センサを固定する方法が一般的である。
【0004】
また、その他の方法としては、特許文献1に開示されたものがある。この方法は、磁石と磁気感応センサを転動体の両側に配置することにより、転動体の通過速度を検出し、この速度から回転装置の回転数を計測するというものである。
【0005】
【特許文献1】
特開2001−033469号公報
【0006】
【発明が解決しようとする課題】
しかしながら、従来の上記センサ付き回転装置の内、特許文献1に開示された方法においては、磁気感応センサを上述のように回転装置に取り付けると、磁気エンコーダやセンサ、また、これらを固定するための部材によって装置の小型化がむずかしくなるという問題点があった。また、転動体の速度を計測する方法では、転動体数によって分解能が制限されてしまうという問題点もあった。
【0007】
この小型化が可能な回転数検出装置としては、保持器に保持されている複数の転動体の内、特定の転動体のみを磁化しておき、この転動体に対向する位置にホール素子等の磁気感応センサを配設し、転動体の公転による磁界の変化に応じた電圧変化をホール素子により検出するという構成のものがある。
【0008】
しかし、磁化転動体の磁極の向きは常にホール素子と対向するとは限らず、ホール素子の受感面と磁束の向きが平行になれば、ホール素子には磁束の変化が生じず、磁化転動体の通過を検出できなくなるので、測定の精度が低下するという問題点があった。
【0009】
本発明は、上述した従来例の有する不都合を改善し、高い分解能を有し、小型化が可能なセンサ付き回転装置及びその形成方法を提供することを課題としている。
【0010】
【課題を解決するための手段】
上記課題を達成するために、本発明の請求項1では、外輪、内輪、及び転動体を回転自在に保持した保持器を有する転がり軸受と、この転がり軸受の回転部分に取り付けられ、多極に着磁した円環状磁石と、この円環状磁石に対向するように所定の間隔を置いて装置本体側に配置された磁気感応センサと、を備えたセンサ付き回転装置において、前記保持器には一体的に前記磁気感応センサに対向して前記円環状磁石とバックヨーク形成部材とが設けてあることを特徴とする。
【0011】
請求項2では、前記保持器は磁性材で形成され、この保持器の側面に前記円環状磁石が取り付けられていることを特徴としている。
【0012】
請求項3では、前記保持器は非磁性材から成っており、この保持器の側面に磁性材から成り、前記バックヨーク形成部材となる円環部材を、この円環部材の表面に前記多極に着磁した円環状磁石を各々固定し積層したことを特徴としている。
【0013】
請求項4では、前記多極に着磁した円環状磁石をプラスチック磁石で形成したことを特徴としている。
【0014】
以上のように構成されたことで、保持器の側面に円環状磁石が取り付けられているため、円環状磁石を軸受の他の部分に配置する場合に比較して、装置の小型化に寄与するものとなる。
【0015】
また、保持器にバックヨーク形成部材と多極の円環状磁石を設けたので、磁気感応センサ側への磁束密度が高くなるため、円環状磁石とセンサのエアギャップを比較的大きく取ることができ、製造上の誤差範囲を大きく取ることができると共に、円環部材のバックヨーク機能により磁気の漏洩が少なくなる。
【0016】
さらに、多極の円環状磁石をプラスチック磁石で形成したため、磁石の重さによるアンバランスで生じる保持器の振れ回り等の振動が抑制される。
【0017】
尚、保持器の回転数は軸受に負荷される荷重によって変化する。例えば、軸方向荷重が増加すると軸受の転動体と軌道輪間の接触角が大きくなり、その結果、転動体の公転速度が増加し、保持器の回転速度も増加する。
従って、保持器回転数を測定することで軸受に負荷された荷重を推定することが可能になる。
【0018】
【発明の実施の形態】
本発明の一実施形態を図面に基づいて説明する。
図1は本発明の第一の実施形態を示すセンサ付き回転装置の断面図である。
同図において、回転軸1は転がり軸受である玉軸受2,3を介してハウジング4に支持されている。ハウジング4の両端部にはハウジング蓋4aが各々固定されている。玉軸受2,3は、ハウジング4に内嵌・固定された外輪2a,3aと、回転軸1に外嵌・固定された内輪2b,3bと、これらの間に挟持され、保持器6によって回転自在に保持された玉7と、から成っている。一方の玉軸受2の保持器6は磁性材で形成され、この保持器6の側面には多極に着磁された円環状磁石8が固定されている。図中左側のハウシング蓋4aの、磁石8に対向する位置には所定のエアギャップを配して磁気感応センサ5が取り付けられている。尚、保持器6は冠型保持器でも良い。
【0019】
この構成において、回転軸1およびこれに一体的な内輪2b,3bが回転するのに伴って保持器6も回転し、保持器6の円環状磁石8の極がNS交互に磁気感応センサ5を横切ることにより保持器6の回転数が検出される。その検出結果から、軸1の回転速度が算出される。
【0020】
このように、保持器6に多極の円環状磁石8を固定し、これに対向する位置に磁気感応センサ5を配置しているので、円環状磁石8を玉軸受2,3の他の部分に配置する場合に比較して、装置の小型化を図ることができる。
【0021】
図2は本発明の第2の実施形態を示す冠型保持器の斜視図、図3は冠型保持器とセンサの位置関係を示す模式図である。
この第2の実施形態は、図1に示した回転装置の構成と略同様であるので全体構成図は省略するが、図2に示す非磁性の冠型保持器10を用いている点が異なっている。この冠型保持器10は、ポリアミド等の樹脂材をグラスファイバ等で補強した材料から成っており、その底面には、SPCC材、珪素鋼板、マルテンサイト系又はフェライト系SUS材、等の磁性材から成る円環部材である円環状鋼板11が貼り付けられている。さらに、この円環状鋼板11の表面には、多極に着磁され、プラスチック磁石から成る円環状磁石8が貼り付けられている。尚、保持器10は必ずしも冠型ではなく、他の型のものであっても良い。
【0022】
この円環状磁石8の着磁は、円環状鋼板11への固定後に実施しても良い。また、保持器10と磁性材から成る円環状鋼板11をインサート成形で固定し、さらに、プラスチック磁石から成る円環状磁石8を2色成形で固定するのが効率的である。
【0023】
このような構成にすることにより、図3に示すように、磁性材の円環状鋼板11が円環状磁石8のバックヨークとして機能し、磁束が矢印のように配向するため、磁気感応センサ5(図1参照)側への磁束密度を高くすることができ、磁石8とセンサ5とのエアギャップGを比較的大きく取ることができるので、製造上の誤差範囲を大きく取ることができ、部材の精度や組み立て精度に余裕を持たせることができる。また、円環状鋼板11のバックヨーク機能により、磁気の漏洩を少なくすることができるので、他の装置や機構に悪影響が及ぶのを防止することができる。
【0024】
尚、第1及び第2の実施形態で採用した円環状磁石8を、軽量なプラスチック磁石で形成することにより、磁石8の重さによるアンバランスで生じる保持器の振れ回り等の振動が生じるのを抑制することができる。
【0025】
図4は第3の実施形態を示すもので本発明を自動車の車輪支持用ハブユニットに適用した断面図である。
上記第1の実施形態では、磁気感応センサ5を2列の軸受2,3の外側に配置していたが、この第3の実施形態では、図4に示すように、2列の軸受(2つの保持器14)間に磁気感応センサ5を配置している。
【0026】
同図において、車輪支持用ハブユニットは、ハブホイール13とアンギュラ玉軸受17とから成っている。ハブホイール13は、図示しない車輪が取り付けられる径方向外向きのフランジ13aと、アンギュラ玉軸受17に回転自在に支持される軸受嵌合領域を有する中空軸13bとを有している。アンギュラ玉軸受17は、複列外向きの形式であって、中空軸13bに直接形成された内輪軌道15aと中空軸13bの小径外周面に外嵌されて内軌道15bを有する内輪要素15cとから形成された内輪と、これら内輪軌道15a,15bにそれぞれ対向した2列の軌道16a,16bを有する単一の外輪16と、内外輪の対応する軌道間に介在された複数の玉18a,18bと、玉18a,18bを回転自在に保持する2つの冠型保持器14a,14bとを備えている。外輪16の外周には径方向外向きのフランジ16bが形成されていて、懸架装置に取り付けられる。
【0027】
内輪要素15c側の保持器14bの側面には多極の円環状磁石8が取り付けられており、この円環状磁石8に所定のエアギャップで対向するように、磁気感応センサ5が外輪16に固定されている。
【0028】
このように、円環状磁石8を2つの保持器14a,14b間の内側になるように保持器14bの側面に配設し、磁気感応センサ5をそれら保持器14a,14bの間に配置することにより、第1及び第2の実施形態よりも、さらに小型化を図っている。
【0029】
【発明の効果】
以上説明したように、本発明によれば、保持器には一体的にバックヨーク形成部材と円環状磁石を取り付けたので、円環状磁石を軸受の他の部分に配置する場合に比較して、装置の小型化を図ることができると共に、従来の転動体の通過速度を検出する方法において、高分解能化を容易に達成することができる。
【0030】
また、本発明によれば、磁気感応センサ側への磁束密度が高くなるため、磁石とセンサとのエアギャップを比較的大きく取ることができる。このため、製造上の誤差範囲を大きく取ることができ、部材の精度や組み立て精度に余裕を持たせることができる。
【0031】
また、バックヨーク形成部材により、磁気の漏洩を少なくすることができるので、他の装置や機構に悪影響が及ぶのを防止することができる。
【図面の簡単な説明】
【図1】本発明の第一の実施形態を示すセンサ付き回転装置の断面図である。
【図2】第2の実施形態を示す冠型保持器の斜視図である。
【図3】冠型保持器とセンサの位置関係を示す模式図である。
【図4】本発明を自動車の車輪支持用ハブユニットに適用した第3の実施形態を示す断面図である。
【符号の説明】
1 回転軸
2,3 転がり軸受(玉軸受)
2a,3a 外輪
2b,3b 内輪
5 磁気感応センサ
6 保持器
7 転動体(玉)
8 円環状磁石
10 冠型保持器
11 円環部材(円環状鋼板)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a sensor-equipped rotating device that measures the rotational speed of a bearing retainer used in a rotating device, thereby detecting the rotational speed of a rotating shaft, and estimating a load applied to a bearing, and a device therefor. It relates to a forming method.
[0002]
[Prior art]
Conventionally, a rotating device that detects the number of rotations of a rotating shaft supported by a bearing, for example, mounts a magnetic encoder on a rotating portion of the bearing, and installs a magnetic encoder at a position facing the encoder to respond to a change in magnetism. It was common to measure the number of revolutions.
[0003]
In recent years, a method of incorporating a rotation speed sensor into a bearing that supports a rotating shaft has been widely adopted. As a method of incorporating a rotation speed sensor into this bearing, a multi-polarized magnet is fixed to one end of a rotating ring (for example, an inner ring) of the bearing, and one end of a fixed wheel (for example, an outer ring) at a position facing the magnet. A method of fixing a magnetically responsive sensor to a part is general.
[0004]
As another method, there is a method disclosed in Patent Document 1. In this method, a magnet and a magnetically sensitive sensor are arranged on both sides of a rolling element, thereby detecting a passing speed of the rolling element and measuring the rotation speed of the rotating device from this speed.
[0005]
[Patent Document 1]
JP 2001-033469 A
[Problems to be solved by the invention]
However, among the conventional rotating devices with sensors, in the method disclosed in Patent Document 1, when the magnetically responsive sensor is attached to the rotating device as described above, a magnetic encoder, a sensor, and a device for fixing these components are provided. There has been a problem that it is difficult to reduce the size of the device due to the members. Further, the method of measuring the speed of the rolling elements has a problem that the resolution is limited by the number of the rolling elements.
[0007]
As a rotation speed detecting device capable of downsizing, among a plurality of rolling elements held by a retainer, only a specific rolling element is magnetized, and a Hall element or the like is provided at a position facing the rolling element. There is a configuration in which a magnetically sensitive sensor is provided and a Hall element detects a voltage change according to a change in a magnetic field due to the revolution of a rolling element.
[0008]
However, the direction of the magnetic pole of the magnetized rolling element is not always opposed to the Hall element, and if the sensing surface of the Hall element and the direction of the magnetic flux are parallel, the magnetic flux does not change in the Hall element, and the magnetized rolling element does not change. Since it becomes impossible to detect the passage of the light, there is a problem that the accuracy of the measurement is reduced.
[0009]
SUMMARY OF THE INVENTION It is an object of the present invention to provide a sensor-equipped rotating device which can solve the above-described disadvantages of the conventional example, has high resolution, and can be downsized, and a method of forming the same.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, in claim 1 of the present invention, a rolling bearing having a retainer that rotatably holds an outer ring, an inner ring, and a rolling element, and a multi-pole mounted on a rotating portion of the rolling bearing. In a rotating device with a sensor, comprising: a magnetized toroidal magnet; and a magnetically responsive sensor disposed on a device main body side at a predetermined interval so as to face the toroidal magnet. Preferably, the annular magnet and a back yoke forming member are provided so as to face the magnetically responsive sensor.
[0011]
According to a second aspect of the present invention, the retainer is formed of a magnetic material, and the annular magnet is attached to a side surface of the retainer.
[0012]
According to claim 3, the retainer is made of a non-magnetic material, and a side surface of the retainer is made of a magnetic material, and the annular member serving as the back yoke forming member is provided on the surface of the annular member by the multi-pole. In this case, the ring-shaped magnets are fixed and laminated.
[0013]
According to a fourth aspect of the present invention, the multi-pole magnetized annular magnet is formed of a plastic magnet.
[0014]
With the configuration described above, the annular magnet is attached to the side surface of the retainer, which contributes to downsizing of the device as compared with the case where the annular magnet is arranged in another part of the bearing. Will be something.
[0015]
In addition, since the back yoke forming member and the multi-pole annular magnet are provided in the retainer, the magnetic flux density toward the magnetically responsive sensor increases, so that the air gap between the annular magnet and the sensor can be relatively large. In addition, the manufacturing error range can be widened, and magnetic leakage is reduced by the back yoke function of the annular member.
[0016]
Furthermore, since the multipole annular magnet is formed of a plastic magnet, vibrations such as whirling of the retainer caused by imbalance due to the weight of the magnet are suppressed.
[0017]
Note that the rotation speed of the cage changes depending on the load applied to the bearing. For example, when the axial load increases, the contact angle between the rolling element of the bearing and the bearing ring increases, and as a result, the revolving speed of the rolling element increases and the rotation speed of the cage also increases.
Therefore, it is possible to estimate the load applied to the bearing by measuring the rotation speed of the cage.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a sectional view of a rotation device with a sensor according to a first embodiment of the present invention.
In FIG. 1, a rotating shaft 1 is supported by a housing 4 via ball bearings 2 and 3 which are rolling bearings. Housing lids 4a are fixed to both ends of the housing 4, respectively. The ball bearings 2, 3 are sandwiched between the outer races 2 a, 3 a fitted and fixed to the housing 4 and the inner races 2 b, 3 b fitted and fixed to the rotating shaft 1, and are rotated by the retainer 6. And a ball 7 held freely. The cage 6 of one of the ball bearings 2 is formed of a magnetic material, and an annular magnet 8 magnetized in multiple poles is fixed to a side surface of the cage 6. A magnet-sensitive sensor 5 is attached to a housing lid 4a on the left side in the drawing at a position facing the magnet 8 with a predetermined air gap. Incidentally, the cage 6 may be a crown type cage.
[0019]
In this configuration, as the rotating shaft 1 and the inner races 2b, 3b integral therewith rotate, the retainer 6 also rotates, and the poles of the annular magnet 8 of the retainer 6 alternately switch the NS sensor 5 to NS. The number of rotations of the cage 6 is detected by crossing. From the detection result, the rotation speed of the shaft 1 is calculated.
[0020]
As described above, since the multi-pole annular magnet 8 is fixed to the retainer 6 and the magnetically responsive sensor 5 is disposed at a position opposed to the multi-pole annular magnet 8, the annular magnet 8 is connected to the other parts of the ball bearings 2 and 3. The size of the device can be reduced as compared with the case where the device is arranged in a space.
[0021]
FIG. 2 is a perspective view of a crown type cage showing a second embodiment of the present invention, and FIG. 3 is a schematic diagram showing a positional relationship between the crown type cage and a sensor.
The second embodiment is substantially the same as the configuration of the rotating device shown in FIG. 1 and thus the overall configuration is omitted, but differs in that a non-magnetic crown type retainer 10 shown in FIG. 2 is used. ing. The crown type retainer 10 is made of a material in which a resin material such as polyamide is reinforced with glass fiber or the like, and the bottom surface thereof is formed of a magnetic material such as SPCC material, silicon steel plate, martensitic or ferritic SUS material. An annular steel plate 11, which is an annular member composed of: Further, on the surface of the annular steel plate 11, an annular magnet 8 made of a plastic magnet, which is magnetized in multiple poles, is attached. The retainer 10 is not necessarily of a crown type, but may be of another type.
[0022]
The magnetization of the annular magnet 8 may be performed after the annular magnet 8 is fixed to the annular steel plate 11. Further, it is efficient to fix the retainer 10 and the annular steel plate 11 made of a magnetic material by insert molding, and further fix the annular magnet 8 made of a plastic magnet by two-color molding.
[0023]
With such a configuration, as shown in FIG. 3, the annular steel plate 11 of the magnetic material functions as a back yoke of the annular magnet 8 and the magnetic flux is oriented as shown by the arrow, as shown in FIG. (See FIG. 1) The magnetic flux density to the side can be increased, and the air gap G between the magnet 8 and the sensor 5 can be made relatively large. A margin can be given to the accuracy and the assembly accuracy. Also, the back yoke function of the annular steel plate 11 can reduce the leakage of magnetism, thereby preventing other devices and mechanisms from being adversely affected.
[0024]
By forming the annular magnet 8 used in the first and second embodiments with a lightweight plastic magnet, vibration such as whirling of the retainer caused by imbalance due to the weight of the magnet 8 occurs. Can be suppressed.
[0025]
FIG. 4 shows a third embodiment, and is a cross-sectional view in which the present invention is applied to a wheel supporting hub unit of an automobile.
In the first embodiment, the magnetically responsive sensor 5 is arranged outside the two rows of bearings 2 and 3, but in the third embodiment, as shown in FIG. The magnetically sensitive sensor 5 is arranged between the two cages 14).
[0026]
In FIG. 1, the wheel supporting hub unit includes a hub wheel 13 and an angular ball bearing 17. The hub wheel 13 has a radially outwardly directed flange 13a to which a wheel (not shown) is attached, and a hollow shaft 13b having a bearing fitting region rotatably supported by an angular ball bearing 17. The angular ball bearing 17 has a double row outward direction, and includes an inner raceway 15a formed directly on the hollow shaft 13b and an inner race element 15c having an inner raceway 15b externally fitted on a small-diameter outer peripheral surface of the hollow shaft 13b. A single outer ring 16 having two rows of tracks 16a and 16b opposed to the inner ring tracks 15a and 15b, and a plurality of balls 18a and 18b interposed between the corresponding tracks of the inner and outer rings. And two crown-shaped retainers 14a and 14b for rotatably holding the balls 18a and 18b. A radially outward flange 16b is formed on the outer periphery of the outer race 16, and is attached to the suspension.
[0027]
A multipolar annular magnet 8 is attached to the side surface of the retainer 14b on the side of the inner ring element 15c, and the magnetically responsive sensor 5 is fixed to the outer ring 16 so as to face the annular magnet 8 with a predetermined air gap. Have been.
[0028]
As described above, the annular magnet 8 is disposed on the side of the holder 14b so as to be inside the two holders 14a and 14b, and the magnetically responsive sensor 5 is disposed between the holders 14a and 14b. Thus, the size is further reduced as compared with the first and second embodiments.
[0029]
【The invention's effect】
As described above, according to the present invention, since the back yoke forming member and the annular magnet are integrally attached to the retainer, compared with the case where the annular magnet is arranged in another part of the bearing, The size of the device can be reduced, and high resolution can be easily achieved by the conventional method for detecting the passing speed of the rolling elements.
[0030]
Further, according to the present invention, since the magnetic flux density toward the magnetically responsive sensor increases, the air gap between the magnet and the sensor can be made relatively large. For this reason, a large error range in manufacturing can be obtained, and a margin can be given to the accuracy of members and the accuracy of assembly.
[0031]
In addition, since the back yoke forming member can reduce the leakage of magnetism, it is possible to prevent adverse effects on other devices and mechanisms.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a rotation device with a sensor according to a first embodiment of the present invention.
FIG. 2 is a perspective view of a crown type cage showing a second embodiment.
FIG. 3 is a schematic diagram showing a positional relationship between a crown type cage and a sensor.
FIG. 4 is a sectional view showing a third embodiment in which the present invention is applied to a wheel supporting hub unit of an automobile.
[Explanation of symbols]
1 rotating shaft 2, 3 rolling bearing (ball bearing)
2a, 3a Outer ring 2b, 3b Inner ring 5 Magnetic sensor 6 Cage 7 Rolling element (ball)
8 Toroidal magnet 10 Crown type retainer 11 Toroidal member (annular steel plate)

Claims (7)

外輪、内輪、及び転動体を回転自在に保持した保持器を有する転がり軸受と、この転がり軸受の回転部分に取り付けられ、多極に着磁した円環状磁石と、この円環状磁石に対向するように所定の間隔を置いて装置本体側に配置された磁気感応センサと、を備えたセンサ付き回転装置において、
前記保持器は一体的に、前記磁気感応センサに対向して前記円環状磁石とバックヨーク形成部材とが設けてあることを特徴とするセンサ付き回転装置。
A rolling bearing having a retainer rotatably holding an outer ring, an inner ring, and a rolling element; a toroidal magnet attached to a rotating portion of the rolling bearing and magnetized to have multiple poles; A magnetically responsive sensor disposed on the apparatus body side at a predetermined interval, and a sensor-equipped rotating apparatus comprising:
The rotating device with a sensor, wherein the retainer is integrally provided with the annular magnet and a back yoke forming member facing the magnetically responsive sensor.
前記保持器は磁性材で形成され、この保持器の側面に前記円環状磁石が取り付けられていることを特徴とする請求項1に記載のセンサ付き回転装置。The rotating device with a sensor according to claim 1, wherein the retainer is formed of a magnetic material, and the annular magnet is attached to a side surface of the retainer. 前記保持器は非磁性材から成っており、この保持器の側面に磁性材から成り、前記バックヨーク形成部材となる円環部材を、この円環部材の表面に前記多極に着磁した円環状磁石を各々固定し積層したことを特徴とする請求項1に記載のセンサ付き回転装置。The retainer is made of a non-magnetic material, and a side surface of the retainer is made of a magnetic material, and an annular member serving as the back yoke forming member is formed on the surface of the annular member with the multipolar magnetized circle. The rotating device with a sensor according to claim 1, wherein the ring magnets are fixed and laminated. 前記多極に着磁した円環状磁石をプラスチック磁石で形成したことを特徴とする請求項1〜3のいずれかに記載のセンサ付き回転装置。The rotating device with a sensor according to any one of claims 1 to 3, wherein the ring-shaped magnet magnetized in multiple poles is formed of a plastic magnet. 請求項3に記載のセンサ付き回転装置において、前記円環状磁石への着磁を前記保持器への固定後に実施することを特徴とするセンサ付き回転装置の形成方法。4. The method of forming a rotating device with a sensor according to claim 3, wherein the magnetizing of the annular magnet is performed after the magnet is fixed to the retainer. 請求項3、又は4に記載のセンサ付き回転装置において、前記保持器と磁性材から成る前記円環部材をインサート成形で固定し、さらに、プラスチック磁石から成る前記円環状磁石を2色成形で固定することを特徴とするセンサ付き回転装置の形成方法。The rotating device with a sensor according to claim 3 or 4, wherein the retainer and the annular member made of a magnetic material are fixed by insert molding, and the annular magnet made of a plastic magnet is fixed by two-color molding. A method for forming a rotating device with a sensor, comprising: 前記保持器の回転速度を計測することで軸受に負荷された荷重を推定可能にした、請求項1〜6いずれかに記載のセンサ付き回転装置。The rotation device with a sensor according to any one of claims 1 to 6, wherein a load applied to the bearing can be estimated by measuring a rotation speed of the cage.
JP2003151004A 2003-05-28 2003-05-28 Rotating device with sensor and its forming method Withdrawn JP2004353735A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2003151004A JP2004353735A (en) 2003-05-28 2003-05-28 Rotating device with sensor and its forming method
EP04734408A EP1627156B1 (en) 2003-05-28 2004-05-21 Rotary device with sensor and method for forming apparatus for measuring load on rolling bearing unit
US10/558,267 US20070014498A1 (en) 2003-05-28 2004-05-21 Rotary device with sensor and method for forming apparatus for measuring load on rolling bearing unit
DE602004023836T DE602004023836D1 (en) 2003-05-28 2004-05-21 ROTATING DEVICE WITH SENSOR AND PROCEDURE EQUIPPED IN A ROLLER BEARING UNIT
KR1020057022723A KR100839395B1 (en) 2003-05-28 2004-05-21 Rotary device with sensor and method for forming apparatus for measuring load on rolling bearing unit
PCT/JP2004/007303 WO2004113746A1 (en) 2003-05-28 2004-05-21 Rotary device with sensor and method for forming apparatus for measuring load on rolling bearing unit
CN 200480014639 CN1795338A (en) 2003-05-28 2004-05-21 Rotary device with sensor and method for forming apparatus for measuring load on rolling bearing unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003151004A JP2004353735A (en) 2003-05-28 2003-05-28 Rotating device with sensor and its forming method

Publications (1)

Publication Number Publication Date
JP2004353735A true JP2004353735A (en) 2004-12-16

Family

ID=34046647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003151004A Withdrawn JP2004353735A (en) 2003-05-28 2003-05-28 Rotating device with sensor and its forming method

Country Status (2)

Country Link
JP (1) JP2004353735A (en)
CN (1) CN1795338A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007259608A (en) * 2006-03-24 2007-10-04 Nidec Copal Electronics Corp Geared motor and position detector for the geared motor
DE102011016049A1 (en) * 2011-03-25 2012-09-27 Imo Holding Gmbh Pivotable roll bearing for construction machine, has rolling elements that are contacted with magnetic element, and recess that is provided to enclose the magnetic element of material of spacer
WO2017171067A1 (en) * 2016-04-01 2017-10-05 日本精工株式会社 Bearing with wireless sensor
JP2017187062A (en) * 2016-04-01 2017-10-12 日本精工株式会社 Bearing with wireless sensor
JP2017187061A (en) * 2016-04-01 2017-10-12 日本精工株式会社 Bearing with wireless sensor
JP2018009613A (en) * 2016-07-12 2018-01-18 日本精工株式会社 Bearing with wireless sensor
JP2018096516A (en) * 2016-12-16 2018-06-21 日本精工株式会社 Bearing with wireless sensor and bearing power feed system

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1398895B1 (en) * 2010-03-16 2013-03-21 Skf Ab MEASUREMENT OF THE CONTACT ANGLE OF A BALL BEARING
US8622621B2 (en) * 2011-09-28 2014-01-07 Seiko Instruments Inc. Rolling bearing apparatus, manufacture method thereof, and hard disk apparatus
US20160017914A1 (en) * 2013-03-06 2016-01-21 Aktiebolaget Skf Method of setting bearing preload
DE102014219336B3 (en) 2014-09-24 2016-01-21 Schaeffler Technologies AG & Co. KG Method and arrangement for measuring a force or a moment with a plurality of magnetic field sensors
CN104459182B (en) * 2014-11-18 2017-11-03 哈尔滨工业大学 High speed roller bearing retainer optical fiber speed measuring device and speed-measuring method that Internal and external cycle is rotated simultaneously
US9644735B2 (en) * 2014-11-24 2017-05-09 Ford Global Technologies, Llc Powertrain control based on bearing speed
DE102015218993B3 (en) * 2015-10-01 2016-12-22 Schaeffler Technologies AG & Co. KG Bearing arrangement with a strain sensor device
CN106525430B (en) * 2016-12-26 2019-04-05 河南科技大学 A kind of birotor bearing tester experimental cabin
CN107941252A (en) * 2017-12-28 2018-04-20 长春禹衡光学有限公司 A kind of grating angle encoder
EP3543656A1 (en) * 2018-03-24 2019-09-25 Melexis Technologies SA Offaxis insensitive multipole magnet, and sensor system comprising same
CN108561436A (en) * 2018-05-30 2018-09-21 湖北新火炬科技有限公司 A kind of plastic cage of carrying magnetic encoder
WO2020012714A1 (en) * 2018-07-11 2020-01-16 日本精工株式会社 Bearing device and machine tool spindle apparatus
CN110672288B (en) * 2019-06-26 2021-01-01 扬州市舜意机械有限公司 Joint bearing rigidity test device and test method
KR20210049481A (en) 2019-10-25 2021-05-06 현대모비스 주식회사 Parking brake apparatus for vehicle

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007259608A (en) * 2006-03-24 2007-10-04 Nidec Copal Electronics Corp Geared motor and position detector for the geared motor
DE102011016049A1 (en) * 2011-03-25 2012-09-27 Imo Holding Gmbh Pivotable roll bearing for construction machine, has rolling elements that are contacted with magnetic element, and recess that is provided to enclose the magnetic element of material of spacer
DE102011016049B4 (en) 2011-03-25 2021-12-30 Imo Holding Gmbh Rotary connection (s) and roller bearings with magnetic or magnetized spacing components
WO2017171067A1 (en) * 2016-04-01 2017-10-05 日本精工株式会社 Bearing with wireless sensor
JP2017187062A (en) * 2016-04-01 2017-10-12 日本精工株式会社 Bearing with wireless sensor
JP2017187061A (en) * 2016-04-01 2017-10-12 日本精工株式会社 Bearing with wireless sensor
US10408269B2 (en) 2016-04-01 2019-09-10 Nsk Ltd. Wireless sensor-equipped bearing
JP2018009613A (en) * 2016-07-12 2018-01-18 日本精工株式会社 Bearing with wireless sensor
JP2018096516A (en) * 2016-12-16 2018-06-21 日本精工株式会社 Bearing with wireless sensor and bearing power feed system

Also Published As

Publication number Publication date
CN1795338A (en) 2006-06-28

Similar Documents

Publication Publication Date Title
JP2004353735A (en) Rotating device with sensor and its forming method
JP4862685B2 (en) Deep groove ball bearing with encoder and wheel rotation speed detection device for motorcycle
JP2008045881A (en) Rotation angle position detector
JP2008019933A (en) Bearing device with sensor and bearing system
JP5857470B2 (en) Rolling bearing device with sensor
JP2006336753A (en) Rolling bearing unit with sensor
JP2017160974A (en) Bearing device with sensor
JP2007315765A (en) Rotation sensor and bearing with rotation sensor
JP2006090831A (en) Bearing with rotation sensor
JP2010193554A (en) Electric motor
JP2002328133A (en) Bearing for wheel with revolution speed detector
JP5321115B2 (en) Rolling bearing with rotation sensor
JPH1123597A (en) Bearing provided with rotating speed sensor
JP2007327575A (en) Wheel supporting rolling bearing
JP2980939B2 (en) Wheel bearing device with built-in rotation detection mechanism
JP2000346673A5 (en)
JP4066145B2 (en) Rolling bearing with sensor
JP2004045176A (en) Rotation detector
JP2002340919A (en) Rotational speed detector and bearing for wheel having the same
JP2006300704A (en) Rotation angle detecting sensor
JP2002122445A (en) Encoder and anti-friction bearing unit with encoder
JPH11326353A (en) Rolling bearing unit with rotational speed detector
JP2005337751A (en) Rotation supporting apparatus with rotation angle detecting device
JP2003254347A (en) Bearing unit with sensor
JPH11304828A (en) Rolling bearing unit with rotating speed detector

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060801