JP2004353637A - Self-rotating blade/vertical shaft type wind mill - Google Patents

Self-rotating blade/vertical shaft type wind mill Download PDF

Info

Publication number
JP2004353637A
JP2004353637A JP2003185792A JP2003185792A JP2004353637A JP 2004353637 A JP2004353637 A JP 2004353637A JP 2003185792 A JP2003185792 A JP 2003185792A JP 2003185792 A JP2003185792 A JP 2003185792A JP 2004353637 A JP2004353637 A JP 2004353637A
Authority
JP
Japan
Prior art keywords
canvas
wind
shaft
rotor
attached
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003185792A
Other languages
Japanese (ja)
Other versions
JP2004353637A5 (en
JP4280798B2 (en
Inventor
Takayoshi Onodera
孝好 小野寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003185792A priority Critical patent/JP4280798B2/en
Publication of JP2004353637A publication Critical patent/JP2004353637A/en
Publication of JP2004353637A5 publication Critical patent/JP2004353637A5/ja
Application granted granted Critical
Publication of JP4280798B2 publication Critical patent/JP4280798B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Wind Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wind mill, heightening the wind receiving efficiency of a canvas blade, taking measures for safety against a strong wind, and facilitating transmission maintenance for a wind direction blade shaft and the self-rotating canvas blade shaft. <P>SOLUTION: The canvas blade is shaped linear, the lateral length : the longitudinal length is 1:3, the lateral length is provided with sag 1.2 times as long as the length of the canvas blade frame, and wind force utilizing lift and resistance is obtained to form a sail having high wind receiving efficiency. The rotational frequency in the case of a strong wind is measured, and the rotational frequency of a rotor can be adjusted by brake control provided on a power generator. A planetary gear having an idle gear between the wind direction blade shaft and the canvas blade shaft is provided in the lower part of the rotor and stored in a gear case, a timing belt is stretched between the planetary gear shaft and the canvas blade shaft, oil feeding to the gear is facilitated, the tension of the timing belt is adjusted, and the belt is easily replaced. Further, the rotating angle of the canvas blade is electronically controlled to a change in wind speed due to the rotation of the rotor to obtain a wind receiving angle at higher efficiency. Further, in the case of a destructive strong wind, the rotating angle of the canvas blade is made parallel to the wind direction to take measures for safety. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【001】
【発明の属する技術分野】
本発明は、小電力発生装置として、自転羽根式垂直軸型風車の帆布翼枠軸の自転する伝動装置、並びに受風羽根の構造と強風時に対する安全対策に関するものである。
【002】
【従来の技術】
従来のこの種の発電は水平軸型としてはプロペラ式、垂直軸型としてはダリウス型風車が主流だが、どちらの風車も揚力タイプであり、その性能は風速を10m/s以上でないと発揮できない。次に、弱風でも発電可能なサポニウス型風車・パドル風車・自転羽根式風車等があるが、これらの風車は抗力型風車で、周速比(ロータ周速/風速)の小さい時は良く作動するが、大きくなると作動性能が落ちる。即ち弱風時には能力を発揮し、強風時には能力を生かせない。
また、風向翼軸と自転する羽根の回転軸との伝動は、例えば特開昭57−372号公報、特開昭57−56674号公報、特開平成11−117850号公報に開示されたように両軸のプーリをタイミングベルトで直接結ぶ、又は両軸の歯車に別の歯車を挟んでの歯車伝動、又は両軸にベベルギヤーを取付けたベベルギヤー伝動が知られるが、現実的メンテナンスを考慮したものではない。
従来の自転羽根式風車は、破壊的強風時の実用的安全対策がなされていない。
【003】
【発明が解決しようとする課題】
従来の自転羽根式風車は、周速比(ロータ周速/風速)の小さい時は良く作動するが、大きくなると作動性能が落ちる弱点を持つ。即ち弱風時には能力を発揮し、強風時には能力を生かせない弱点を持つ。
公知例でみると
【図3】の様に、今までの自転羽根式風車は抗力型風車で、195°〜345°の範囲では風力回転を生み出せないのみならず逆回転力として作用する。更に風車がまわってその周速が風速近くなると、風力を垂直に受ける位置の付近では全く回転力を生み出せなくなる。このことを考えると、これまでの自転羽根式風車は全く効率の悪い風車となっている。これまでの公知の帆の形状を張着した風車も抗力型で基本的には効率が悪い。
また、風向翼軸と自転する帆布翼軸の伝動に、両軸のプーリを設け、タイミングベルト伝動では、構造上伝動両軸間が離れているためタイミングベルトの延びて、タイミグのずれや、タイミングベルトの外れが起つている、また両軸の歯車に別歯車を挟んでの歯車伝動又は両軸間のベベルギヤー伝動では、騒音と、給油、メンテナンスの問題がある。
更には、破壊的強風時に対する安全対策を解決する問題が残されている。本発明は、これ等の課題を解消するためになされたものである。
【004】
【課題を解決するための手段】
複数の各帆布翼枠(5)内に、帆布(6)を縦長形状とし、横長さ:縦長さ=1:3以上をとり、横長さは帆布翼枠(5)長さの1.2倍以上のたるみを設ける。このようにすると帆は風を受けて横方向に膨らみ翼として働くようになる。その結果、揚力+抗力を利用した風力を得、これまでに類を見ない受風効率の高い帆を形成することができる。
【005】
騒音と、給油、メンテナンス等の目的を達成するために、支持台(3)の中央に風向翼軸(2)を設け、風向翼軸(2)に公転するロータ(4)内を自転する複数の帆布翼枠(5)を設ける、風向翼軸(2)の下部に歯車(8)を取付け、該歯車(8)を中心に帆布翼枠(5)の数のアイドルギヤー(9)を挟んだ遊星歯車(10)を設ける、これ等の歯車をギヤー箱(14)に収め、遊星歯車軸(10)と帆布翼枠軸(7)下部にプーリ(12),(13)を取付け、タイミングベルト(15)を取付け、ギヤー箱(14)を風向翼軸(2)を中心に回転して位置を決め、タイミングベルト(15)に張力を持たせて、ギヤー箱(11)をロータ(4)の下部に取付ける、風向翼軸(2)と帆布翼枠軸(7)の回転比は周知の2:1で伝動する。
【006】
ロータ軸(16)下端に回転センサー(17)を取り付け、ブレーキ装置付発電機(18)を設けたものである。
【007】
複数の帆布翼枠軸(7)下部に自転用の駆動モータ(19)を取り付け、角度を電子制御にて最適にして、より高効率の受風角度を得る。また、破壊的強風時には帆布翼枠(5)の自転角度を風向に対し、平行とする事により安全対策を講じるものとする。
【008】
【発明の実施の形態】
発明の実施例について図面を参照して説明する。
帆布(6)を縦長形状とし、横長さ:縦長さ=1:3以上をとり、横長さは帆布翼枠(5)長さの1.2倍以上のたるみを設ける。このようにすると帆は風を受けて横方向に膨らみ翼として働くようになる。
【図4】の位置P1,P2,P4,P5,では抗力と共に揚力を生み出し、この揚力が回転力を加算する。P6,P8では抗力がマイナスとして働くが揚力がこれに打ち勝ち回転力を生む。回転力が生み出せないのは、240°〜300°の狭い範囲となる。その結果、揚力+抗力を利用した風力を得、これまでの実験の結果、周速が風速の1.8倍で回転することが確認できた。結論として、この方式では、これまでに類を見ない受風効率の高い帆を形成することができた。
【009】
風向翼(1)を取付けた風向翼軸(2)を支持台(3)の中央に設け、風向翼軸(2)を公転するロータ(4)内に、自転する複数の帆布翼枠(5)を設け、帆布翼枠軸(7)を設けてロータ(4)内を自転する。
【010】
風向翼軸(2)の下部に歯車(8)を取付け、該歯車(8)を中心に帆布翼枠(5)の数のアイドルギヤー(9)を挟んだ遊星歯車(10)を設ける、これ等の歯車をギヤー箱(14)に収め、遊星歯車軸(10)と帆布翼枠軸(7)下部にプーリ(12),(13)を取付け、タイミングベルト(15)を取付け、ギヤー箱(14)を風向翼軸(2)を中心に回転して位置を決め、タイミングベルト(15)に張力を持たせて、ギヤー箱(11)をロータ(4)の下部に取付ける、風向翼軸(2)と帆布翼枠軸(7)の回転比は周知の2:1で伝動した。
【011】
ロータ軸(16)下端に回転センサー(17)を取り付け、ブレーキ装置付発電機(18)を設け、ロータ回転数の調整可能な構造とした。
【012】
複数の帆布翼枠軸(7)下部に自転用の駆動モータ(19)を取り付け、角度を電子制御にて受風角度の調整を行う。また、破壊的強風時には帆布翼枠(5)の自転角度を風向に対し、平行とする事により安全対策を講じた。
【013】
ロータ(4)下部に設けた回転伝達用ギアー(20)で発電機用ピニオン(21)の回転を増速してブレーキ付き発電機(18)を回転して発電した。
【014】
【発明の効果】
本発明は、以上説明したようなに構成されているので、以下に記載する効果を奏する。
【015】
帆布(6)を縦長形状とし、横長さ:縦長さ=1:3以上をとり、横長さは帆布翼枠(5)長さの1.2倍以上のたるみを設ける。このようにすると帆は風を受けて横方向に膨らみ翼として働くようになる。この帆布(6)形状によって、これまでのものより3〜4倍受風効率の高い帆を形成することができた。
【016】
ロータ軸(16)下端に回転センサー(17)を取り付け、ブレーキ装置付発電機(18)を設け、ロータ回転数の調整可能な構造とし、強風時の安全対策を講じることができた。
【017】
風向翼軸(2)の下部に歯車(8)を取付け、該歯車(8)を中心に帆布翼枠(5)の数のアイドルギヤー(9)を挟んだ遊星歯車(10)を設ける、これ等の歯車をギヤー箱(14)に収め給油を容易にした。また遊星歯車軸(10)と帆布翼枠軸(7)下部にプーリ(12),(13)を取付け、タイミングベルト(15)を取付け、ギヤー箱(14)を風向翼軸(2)を中心に回転して位置を決めして取付けることより、タイミングベルト(15)が延びた後の張りの調整、また新規タイミングベルト(15)の取替えが容易に出来た。
【018】
複数の帆布翼枠軸(7)下部に自転用の駆動モータ(19)を取り付け、角度を電子制御にて受風角度の調整を行う。また、破壊的強風時には帆布翼枠(5)の自転角度を風向に対し、平行とする事により安全対策を講じることができた。
【図面の簡単な説明】
【図1】本発明の実施例(請求項1・請求項2・請求項3)の立体図を示す。
【図2】本発明の実施例(請求項2・請求項3・請求項4)の立体図を示す。
【図3】従来の抗力型風車の風力図。
【図4】今回の自転羽根式垂直軸型風車の風力図。
【符号の説明】
(1)風向翼
(2)風向翼軸
(3)支持台
(4)ロータ
(5)帆布翼枠
(6)帆布
(7)帆布翼枠軸
(8)歯車
(9)アイドルギヤー
(10)遊星歯車
(11)遊星歯車軸
(12.13) プーリ
(14)ギヤー箱
(15)タイミングベルト
(16)ロータ軸
(17)回転センサー
(18)ブレーキ付発電機
(19)自転用駆動モータ
(20)回転伝達用ギアー
(21)発電機用ピニオン
[0101]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transmission device for rotating a sail frame shaft of a rotating blade type vertical axis wind turbine as a small power generating device, and a structure of a receiving blade and safety measures against strong wind.
[0092]
[Prior art]
Conventionally, this type of power generation is mainly of a propeller type as a horizontal axis type and a Darrieus type wind turbine as a vertical axis type, but both of them are of a lift type, and their performance cannot be exhibited unless the wind speed is 10 m / s or more. Next, there are Saponius type windmills, paddle windmills, and rotating blade type windmills that can generate electricity even in a weak wind. These windmills are drag-type windmills and work well when the peripheral speed ratio (rotor peripheral speed / wind speed) is small. However, as the size increases, the operating performance decreases. In other words, the ability is demonstrated when the wind is weak, and cannot be used when the wind is strong.
Further, the transmission between the wind direction blade axis and the rotating shaft of the rotating blade is described in, for example, JP-A-57-372, JP-A-57-56674, and JP-A-11-117850. Directly connecting pulleys of both shafts with a timing belt, or gear transmission in which another gear is sandwiched between gears of both shafts, or bevel gear transmission with bevel gears attached to both shafts is known, but in consideration of realistic maintenance Absent.
Conventional spinning blade type wind turbines do not have any practical safety measures against destructive strong winds.
[0093]
[Problems to be solved by the invention]
The conventional rotating blade type wind turbine operates well when the peripheral speed ratio (rotor peripheral speed / wind speed) is small, but has a weak point that the operating performance decreases as the peripheral speed ratio increases. In other words, it has the weakness that it exerts its ability in low winds and cannot use its ability in strong winds.
As shown in FIG. 3, in the known example, the conventional rotating blade type wind turbine is a drag type wind turbine. In the range of 195 ° to 345 °, not only cannot generate wind rotation but also acts as a reverse rotation force. Furthermore, when the peripheral speed of the windmill is close to the wind speed, no rotational force can be generated near a position where the windmill is vertically received. In view of this, the conventional rotating blade type wind turbine has become a totally inefficient wind turbine. Wind turbines with a known sail shape are also of the drag type and are basically inefficient.
In addition, a pulley for both shafts is provided for the transmission of the wind wing shaft and the rotating canvas wing shaft, and in the timing belt transmission, since the transmission shafts are separated from each other in terms of structure, the timing belt extends, causing misalignment of timing and timing. In the case where the belt is disengaged, and the transmission of the gears with the separate gears interposed between the gears of the two shafts or the transmission of the bevel gear between the two shafts, there are problems of noise, refueling, and maintenance.
Further, there remains a problem of solving safety measures against a destructive strong wind. The present invention has been made to solve these problems.
[0093]
[Means for Solving the Problems]
In each of the plurality of canvas wing frames (5), the canvas (6) is formed into a vertically long shape, and the horizontal length: the vertical length = 1: 3 or more, and the horizontal length is 1.2 times the length of the canvas wing frame (5). Provide the above sag. This allows the sails to expand laterally in the wind and act as wings. As a result, it is possible to obtain wind power utilizing lift + drag, and to form a sail with high wind receiving efficiency unprecedented.
[0056]
A wind vane shaft (2) is provided at the center of the support (3) to achieve the purpose of noise, refueling, maintenance, etc., and a plurality of rotors revolving around the rotor (4) revolving around the wind vane shaft (2). Gears (8) are attached to the lower part of the wind wing shaft (2), and the number of the idle gears (9) is equal to the number of the canvas wing frames (5) around the gear (8). A planetary gear (10) is provided. These gears are housed in a gear box (14), and pulleys (12) and (13) are attached below the planetary gear shaft (10) and the canvas wing frame shaft (7). Attach the belt (15), rotate the gear box (14) about the wind vane shaft (2) to determine the position, apply tension to the timing belt (15), and move the gear box (11) to the rotor (4). ), The rotation ratio of the wind wing axis (2) to the canvas wing frame axis (7) is a well-known 2: 1 transmission. That.
[0086]
A rotation sensor (17) is attached to the lower end of the rotor shaft (16), and a generator (18) with a brake device is provided.
007
A drive motor (19) for rotation is mounted below the plurality of canvas wing frame shafts (7), and the angle is optimized by electronic control to obtain a more efficient wind receiving angle. In the case of destructive strong wind, safety measures shall be taken by making the rotation angle of the canvas wing frame (5) parallel to the wind direction.
[0098]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described with reference to the drawings.
The canvas (6) is formed in a vertically long shape, and the horizontal length: the vertical length = 1: 3 or more, and the horizontal length is provided with a slack of 1.2 times or more the length of the canvas wing frame (5). This allows the sails to expand laterally in the wind and act as wings.
In FIG. 4, at positions P1, P2, P4, and P5, lift is generated together with the drag, and the lift adds the rotational force. In P6 and P8, the drag acts as a minus, but the lift overcomes this and generates rotational force. The rotation force cannot be generated in a narrow range of 240 ° to 300 °. As a result, a wind force utilizing lift + drag was obtained, and as a result of the experiments so far, it was confirmed that the peripheral speed was rotated at 1.8 times the wind speed. In conclusion, this method has made it possible to form a sail with high wind receiving efficiency that has never been seen before.
[0099]
A wind wing shaft (2) to which the wind wing (1) is attached is provided at the center of the support base (3), and a plurality of rotating canvas wing frames (5) are rotated in a rotor (4) revolving around the wind wing shaft (2). ), And a canvas wing frame shaft (7) is provided to rotate in the rotor (4).
[0102]
A gear (8) is attached to the lower part of the wind direction wing shaft (2), and a planetary gear (10) is provided around the gear (8) and sandwiches the number of idle gears (9) equal to the number of canvas wing frames (5). Gears (14), pulleys (12) and (13) are mounted below the planetary gear shaft (10) and the canvas frame shaft (7), and a timing belt (15) is mounted. 14) is rotated about the wind vane shaft (2) to determine the position, the tension is applied to the timing belt (15), and the gear box (11) is attached to the lower part of the rotor (4). The transmission ratio between 2) and the canvas frame shaft (7) was transmitted at a known ratio of 2: 1.
[0111]
A rotation sensor (17) was attached to the lower end of the rotor shaft (16), a generator (18) with a brake device was provided, and the structure was such that the rotor speed could be adjusted.
[0122]
A drive motor (19) for rotation is attached to the lower portion of the plurality of canvas wing frame shafts (7), and the angle is adjusted electronically to adjust the wind receiving angle. In addition, safety measures were taken by making the rotation angle of the canvas wing frame (5) parallel to the wind direction in the case of destructive strong winds.
[0113]
The rotation of the generator pinion (21) was increased by the rotation transmitting gear (20) provided below the rotor (4), and the generator with brake (18) was rotated to generate power.
[0141]
【The invention's effect】
The present invention is configured as described above, and has the following effects.
[0152]
The canvas (6) is formed in a vertically long shape, and the horizontal length: the vertical length = 1: 3 or more, and the horizontal length is provided with a slack of 1.2 times or more the length of the canvas wing frame (5). This allows the sails to expand laterally in the wind and act as wings. With the shape of the canvas (6), it was possible to form a sail having 3 to 4 times higher wind receiving efficiency than the conventional one.
[0162]
A rotation sensor (17) was attached to the lower end of the rotor shaft (16), a generator (18) with a brake device was provided, and the structure was such that the number of rotations of the rotor could be adjusted, and safety measures could be taken in strong winds.
[0173]
A gear (8) is attached to the lower part of the wind direction wing shaft (2), and a planetary gear (10) is provided around the gear (8) and sandwiches the number of idle gears (9) equal to the number of canvas wing frames (5). And the like were stored in a gear box (14) to facilitate lubrication. Also, pulleys (12) and (13) are mounted below the planetary gear shaft (10) and the canvas blade frame shaft (7), a timing belt (15) is mounted, and the gear box (14) is centered on the wind direction blade shaft (2). By adjusting the position of the timing belt (15) and mounting it, the tension after the timing belt (15) was extended and the replacement of the new timing belt (15) were easily achieved.
[0182]
A drive motor (19) for rotation is attached to the lower portion of the plurality of canvas wing frame shafts (7), and the angle is adjusted electronically to adjust the wind receiving angle. Also, safety measures could be taken by setting the rotation angle of the canvas wing frame (5) parallel to the wind direction in the case of destructive strong wind.
[Brief description of the drawings]
FIG. 1 shows a three-dimensional view of an embodiment (claim 1, claim 2, claim 3) of the present invention.
FIG. 2 shows a three-dimensional view of an embodiment (claims 2, 3 and 4) of the present invention.
FIG. 3 is a wind diagram of a conventional drag type wind turbine.
FIG. 4 is a wind diagram of a rotating blade type vertical axis wind turbine of this time.
[Explanation of symbols]
(1) Wind wing (2) Wind wing shaft (3) Support stand (4) Rotor (5) Canvas wing frame (6) Canvas (7) Canvas wing frame shaft (8) Gear (9) Idle gear (10) Planet Gear (11) Planetary gear shaft (12.13) Pulley (14) Gear box (15) Timing belt (16) Rotor shaft (17) Rotation sensor (18) Generator with brake (19) Drive motor for rotation (20) Gear for rotation transmission (21) Pinion for generator

Claims (4)

支持台(3)中央の風向翼軸(2)に公転するロータ(4)を取り付ける。該ロータ(4)内に複数の帆布翼枠(5)を設け、帆布翼枠(5)内に帆布(6)を張り、風向翼(1)を取り付けた風向翼軸(2)下部に歯車(8)を取付け、該歯車(8)を中心に帆布翼枠(5)の数のアイドルギヤー(9)を挟み遊星歯車(10)を設け、これ等のギヤーをギヤー箱(14)に収め、ロータ(4)の下部に取付ける。遊星歯車軸(11)と帆布翼枠軸(7)下部にプーリ(12,13)を設け、プーリ(12,13)にタイミングベルト(15)を取付けた自転羽根式垂直軸型風車の伝動装置。A revolving rotor (4) is attached to the center of the support table (3) and the wind direction axis (2). A plurality of canvas wing frames (5) are provided in the rotor (4), a canvas (6) is stretched in the canvas wing frame (5), and a gear is provided below the wind wing shaft (2) to which the wind wing (1) is attached. (8) is attached, and planetary gears (10) are provided around the idle gears (9) of the number of the canvas wing frames (5) around the gears (8), and these gears are put in a gear box (14). , Attached to the lower part of the rotor (4). A transmission device for a rotating blade type vertical shaft wind turbine in which pulleys (12, 13) are provided below the planetary gear shaft (11) and the canvas blade frame shaft (7), and a timing belt (15) is attached to the pulleys (12, 13). . 複数の各帆布翼枠(5)内に、帆布(6)を縦長形状とし、横長さ縦長さ=1:3以上をとり、横長さは帆布翼枠(5)長さの1.2倍以上のたるみを設け、各帆布翼枠(5)の左右両側縁に固定し、上下両側縁を自由にした自転羽根式垂直軸型風車の帆布の構造。In each of the plurality of canvas wing frames (5), the canvas (6) is formed into a vertically long shape, and the horizontal length is set to at least 1: 3, and the horizontal length is at least 1.2 times the length of the canvas wing frame (5). The structure of the rotating blade type vertical axis windmill, which has slack and is fixed to the left and right edges of each canvas wing frame (5), and the upper and lower edges are free. ロータ軸(16)下端に回転センサー(17)を取り付け、ブレーキ装置付発電機(18)を設けた請求項2記載の、自転羽根式垂直軸型風車の強風安全対策装置。3. A strong wind safety device for a rotating blade type vertical shaft type wind turbine according to claim 2, wherein a rotation sensor (17) is attached to a lower end of the rotor shaft (16) and a generator (18) with a brake device is provided. 請求項1記載の伝動装置とは異なり、複数の各帆布翼枠軸(7)下部に、自転用の駆動モータ(19)を取り付けた電子制御による伝動装置で、歯車類(8.9.10.11.12.13.14.15)を必要としないシンプルな構造。また請求項2記載の自転羽根式垂直軸型風車の帆布の構造、及び請求項3記載の、強風安全対策装置。In contrast to the transmission according to claim 1, an electronically controlled transmission in which a drive motor (19) for rotation is attached to the lower part of each of the plurality of canvas frame shafts (7). .11.12.13.14.15) with a simple structure. The structure of the canvas of the rotating blade type vertical axis wind turbine according to claim 2, and the strong wind safety measures device according to claim 3.
JP2003185792A 2003-05-26 2003-05-26 Rotating blade type vertical axis wind turbine Expired - Fee Related JP4280798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003185792A JP4280798B2 (en) 2003-05-26 2003-05-26 Rotating blade type vertical axis wind turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003185792A JP4280798B2 (en) 2003-05-26 2003-05-26 Rotating blade type vertical axis wind turbine

Publications (3)

Publication Number Publication Date
JP2004353637A true JP2004353637A (en) 2004-12-16
JP2004353637A5 JP2004353637A5 (en) 2006-12-14
JP4280798B2 JP4280798B2 (en) 2009-06-17

Family

ID=34055361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003185792A Expired - Fee Related JP4280798B2 (en) 2003-05-26 2003-05-26 Rotating blade type vertical axis wind turbine

Country Status (1)

Country Link
JP (1) JP4280798B2 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006078090A1 (en) * 2005-01-19 2006-07-27 Byung-Sue Ryu Wind turbine
KR100620948B1 (en) 2005-01-19 2006-09-07 유병수 Wind turbine
WO2007126129A1 (en) 2006-04-25 2007-11-08 Tatumi Akamine Wind power generating rotor blades utilizing inertial force, wind power generating apparatus using the rotor blades, and wind power generating system
KR100807798B1 (en) * 2006-09-05 2008-03-10 아이알윈드파워 주식회사 Housing structure which using of wind direction system
WO2010082699A1 (en) * 2009-01-16 2010-07-22 (주)티넷 Blade angle adjusting device for wind power generator
WO2010085019A1 (en) * 2009-01-20 2010-07-29 Kim Hong Geun Vertical axis wind turbine having radial wind chambers
KR101042683B1 (en) 2008-10-31 2011-06-20 윤미현 Wind power generation apparatus
KR101060294B1 (en) 2009-01-16 2011-08-30 (주)티넷 Blade Angle Adjuster of Wind Power Generator
KR101080323B1 (en) * 2009-08-07 2011-11-04 남도우 Control apparatus of blade direction for a wind power plant and rotation power generating apparatus
US8109727B2 (en) * 2009-04-20 2012-02-07 Barber Gerald L Wind turbine
EP2447526A1 (en) * 2009-06-25 2012-05-02 Takayoshi Onodera Rotation blade-type vertical axis wind turbine
JP2012515868A (en) * 2009-01-21 2012-07-12 曽鳳玲 Impeller device and automatic switching regeneration charging system using kinetic energy and wind energy
CN102619695A (en) * 2012-03-12 2012-08-01 山东斯巴特电力驱动技术有限公司 Wind wheel power generator
KR101235683B1 (en) * 2009-08-28 2013-02-21 승애림 Blade of wind power generator
WO2013053251A1 (en) * 2011-10-14 2013-04-18 Deng Yunhe Verticalshaft wind motor
WO2013060166A1 (en) * 2011-10-29 2013-05-02 Deng Yunhe Method for on-site installation of vertical-axis wind generator
RU2481497C2 (en) * 2010-02-26 2013-05-10 ЧЕМПИОН Инжиниринг Текнолоджи Компани, Лтд. Planetary gear of sail plant
JP2013545019A (en) * 2010-11-05 2013-12-19 リェ カン,オク Wind direction adjusting blade type vertical axis windmill
WO2014056179A1 (en) * 2012-10-12 2014-04-17 美商风光能源开发股份有限公司 Wind power generation apparatus
US8858177B2 (en) 2007-04-12 2014-10-14 Momentum Holdings Limited Fluid turbine
KR101609955B1 (en) 2014-11-27 2016-04-07 정민시 wind-blade for wind power generator
CN107701363A (en) * 2017-10-27 2018-02-16 沈阳雷安特新能源科技发展有限公司 A kind of single-column resistance type vertical shaft wind driven generator group
WO2019194180A1 (en) * 2018-04-06 2019-10-10 智紀 米澤 Vertical shaft type wind power generator
CN113236494A (en) * 2021-05-08 2021-08-10 郑州亨特利电子科技有限公司 New forms of energy vertical axis aerogenerator
CN113279913A (en) * 2021-06-15 2021-08-20 卢海 Self-driven frame wind driven generator
JP2022049021A (en) * 2022-01-14 2022-03-28 英廣 久米 Device for converting moving energy of moving fluid to rotational energy and power generator

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101846040B (en) * 2009-03-27 2012-10-17 王泽思 Vertical-axis wind turbine
CN103670913A (en) * 2012-09-11 2014-03-26 北京航空航天大学 Novel lift-to-drag combination H-S type vertical shaft wind machine
CN102926926B (en) * 2012-11-15 2015-12-09 重庆理工大学 The offset distance formula vertical axis windmill of blade rotary limited

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55131585A (en) * 1979-02-26 1980-10-13 Hideo Sakai Windmill with rotating blades
JPS6441672A (en) * 1987-08-10 1989-02-13 Ichiro Tomobe Wind force prime mover
JPH0322554Y2 (en) * 1987-07-15 1991-05-16
JPH11117850A (en) * 1997-10-20 1999-04-27 Takemaro Sakurai Wind mill
JP2001107838A (en) * 1999-08-02 2001-04-17 Hirai Sekkei Jimusho:Kk Windmill and its control method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55131585A (en) * 1979-02-26 1980-10-13 Hideo Sakai Windmill with rotating blades
JPH0322554Y2 (en) * 1987-07-15 1991-05-16
JPS6441672A (en) * 1987-08-10 1989-02-13 Ichiro Tomobe Wind force prime mover
JPH11117850A (en) * 1997-10-20 1999-04-27 Takemaro Sakurai Wind mill
JP2001107838A (en) * 1999-08-02 2001-04-17 Hirai Sekkei Jimusho:Kk Windmill and its control method

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100620948B1 (en) 2005-01-19 2006-09-07 유병수 Wind turbine
US7591635B2 (en) 2005-01-19 2009-09-22 Byung-Sue Ryu Wind turbine
WO2006078090A1 (en) * 2005-01-19 2006-07-27 Byung-Sue Ryu Wind turbine
US7980823B2 (en) 2006-04-25 2011-07-19 Tatumi Akamine Wind turbine generator rotor, wind turbine generator and wind turbine generator system
WO2007126129A1 (en) 2006-04-25 2007-11-08 Tatumi Akamine Wind power generating rotor blades utilizing inertial force, wind power generating apparatus using the rotor blades, and wind power generating system
KR100807798B1 (en) * 2006-09-05 2008-03-10 아이알윈드파워 주식회사 Housing structure which using of wind direction system
US8858177B2 (en) 2007-04-12 2014-10-14 Momentum Holdings Limited Fluid turbine
KR101042683B1 (en) 2008-10-31 2011-06-20 윤미현 Wind power generation apparatus
KR101060294B1 (en) 2009-01-16 2011-08-30 (주)티넷 Blade Angle Adjuster of Wind Power Generator
WO2010082699A1 (en) * 2009-01-16 2010-07-22 (주)티넷 Blade angle adjusting device for wind power generator
WO2010085019A1 (en) * 2009-01-20 2010-07-29 Kim Hong Geun Vertical axis wind turbine having radial wind chambers
JP2012515868A (en) * 2009-01-21 2012-07-12 曽鳳玲 Impeller device and automatic switching regeneration charging system using kinetic energy and wind energy
US8109727B2 (en) * 2009-04-20 2012-02-07 Barber Gerald L Wind turbine
EP2447526A4 (en) * 2009-06-25 2014-04-23 Sec Elevator Co Ltd Rotation blade-type vertical axis wind turbine
EP2447526A1 (en) * 2009-06-25 2012-05-02 Takayoshi Onodera Rotation blade-type vertical axis wind turbine
KR101080323B1 (en) * 2009-08-07 2011-11-04 남도우 Control apparatus of blade direction for a wind power plant and rotation power generating apparatus
KR101235683B1 (en) * 2009-08-28 2013-02-21 승애림 Blade of wind power generator
RU2481497C2 (en) * 2010-02-26 2013-05-10 ЧЕМПИОН Инжиниринг Текнолоджи Компани, Лтд. Planetary gear of sail plant
JP2013545019A (en) * 2010-11-05 2013-12-19 リェ カン,オク Wind direction adjusting blade type vertical axis windmill
WO2013053251A1 (en) * 2011-10-14 2013-04-18 Deng Yunhe Verticalshaft wind motor
WO2013060166A1 (en) * 2011-10-29 2013-05-02 Deng Yunhe Method for on-site installation of vertical-axis wind generator
CN102619695A (en) * 2012-03-12 2012-08-01 山东斯巴特电力驱动技术有限公司 Wind wheel power generator
WO2014056179A1 (en) * 2012-10-12 2014-04-17 美商风光能源开发股份有限公司 Wind power generation apparatus
KR101609955B1 (en) 2014-11-27 2016-04-07 정민시 wind-blade for wind power generator
CN107701363A (en) * 2017-10-27 2018-02-16 沈阳雷安特新能源科技发展有限公司 A kind of single-column resistance type vertical shaft wind driven generator group
WO2019194180A1 (en) * 2018-04-06 2019-10-10 智紀 米澤 Vertical shaft type wind power generator
CN113236494A (en) * 2021-05-08 2021-08-10 郑州亨特利电子科技有限公司 New forms of energy vertical axis aerogenerator
CN113279913A (en) * 2021-06-15 2021-08-20 卢海 Self-driven frame wind driven generator
CN113279913B (en) * 2021-06-15 2023-11-28 卢海 Self-driven frame wind driven generator
JP2022049021A (en) * 2022-01-14 2022-03-28 英廣 久米 Device for converting moving energy of moving fluid to rotational energy and power generator

Also Published As

Publication number Publication date
JP4280798B2 (en) 2009-06-17

Similar Documents

Publication Publication Date Title
JP2004353637A (en) Self-rotating blade/vertical shaft type wind mill
AU2005246966B2 (en) Wind turbine generator
KR100754790B1 (en) Wind powered generator
KR960001479A (en) Combined input wind turbine
KR20110025162A (en) Improvements in and relating to electrical power generation from fluid flow
GB2275085A (en) Wind powered turbine
CN201730751U (en) Megawatt-level vertical axis wind driven generator with adjustable angle of attack
EP2458199A4 (en) Wind turbine with compensated motor torque
CN201925096U (en) Vertical axis wind-driven generator with variable-rotating-angle blades
GB2471272A (en) Vertical axis magnus effect wind turbine
JPH10246173A (en) Planetary accelerator
JP2005528556A5 (en)
CN109854448A (en) It is a kind of adjustable to wind electricity generating system
KR101525553B1 (en) Wind power generator with vertical rotor
JPH11117850A (en) Wind mill
AU2011333460B2 (en) A wind turbine
JP5187974B2 (en) Savonius wind turbine generator and Savonius wind turbine
JP2002339852A (en) Wind power generation device
CN101793231A (en) Vertical-type self-opening and self-closing adjustable wind generator device
CN201714566U (en) Wind turbine generator with cage-type vanes
CN205618299U (en) Double wind wheel aerogenerator with wind changes speed
CN104121149B (en) Rotation sail wind machine
CA2371694A1 (en) Powertrain for power generator
JPH05231297A (en) Wind power generating device
CN101696673A (en) Coaxial-direction wind-driven generator with double fan blade

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A681

Effective date: 20030526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060922

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20080327

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20080513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081224

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090223

R150 Certificate of patent or registration of utility model

Ref document number: 4280798

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees