JP2004351331A - Method and apparatus for water treatment - Google Patents

Method and apparatus for water treatment Download PDF

Info

Publication number
JP2004351331A
JP2004351331A JP2003152442A JP2003152442A JP2004351331A JP 2004351331 A JP2004351331 A JP 2004351331A JP 2003152442 A JP2003152442 A JP 2003152442A JP 2003152442 A JP2003152442 A JP 2003152442A JP 2004351331 A JP2004351331 A JP 2004351331A
Authority
JP
Japan
Prior art keywords
water
oxidizing agent
treated
titanium dioxide
water treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003152442A
Other languages
Japanese (ja)
Inventor
Toshikuni Yonemoto
年邦 米本
Masaki Kubo
正樹 久保
Takeshi Tsuji
猛志 辻
Itaru Sakai
至 坂井
Keisuke Nakahara
啓介 中原
Koji Fuchigami
浩司 渕上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2003152442A priority Critical patent/JP2004351331A/en
Publication of JP2004351331A publication Critical patent/JP2004351331A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To enable easy decomposition of an organic matter, especially hardly decomposable hazardous organic compounds, in water; to enable detoxification of pathogenic microorganisms in water in a short time. <P>SOLUTION: A water treatment apparatus having an ultrasonic irradiation device 2 irradiating titanium dioxide-containing water with an ultrasonic wave is equipped with an oxidizing agent adding means 5 for adding an oxidizing agent into water 4A to be treated. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、水中の有機物、特に難分解性の有害有機化合物を容易に分解することができ、しかも、水中の病原性微生物を短時間に無害化することができる水処理方法および装置に関するものである。
【0002】
【従来の技術】
近年、環境汚染の原因となる有害有機化合物の分解処理法として、あるいは病原性微生物の殺菌方法として、超音波照射法や酸化チタン光照射法が注目されている。しかしいずれの手法も、低分子量化やガス化が完全には進行しないか、あるいは殺菌速度が低いなどの問題があり、有害有機化合物分解あるいは病原性微生物殺菌の有効な手段となり得ていない。
【0003】
そこで、本願発明者らは水中に存在する二酸化チタンに超音波を照射すると、光照射と同様、超音波からのエネルギー伝播によってヒドロキシラジカル生成能が発現することを見出した。超音波は、反応装置全体に照射可能なため、光不透過媒体中でも系内の全ての二酸化チタンに触媒能を発現させることが可能となる。このため、光透過能維持の観点から触媒濃度を低く抑えざるを得ない光照射法に比べて、触媒濃度を著しく高くすることができる。
【0004】
【発明が解決しようとする課題】
しかしながら、分解の対象となる有害有機化合物あるいは殺菌の対象となる病原性微生物は疎水性のものが多く、二酸化チタン粒子表面近傍よりもバルク液体中に多く存在する。二酸化チタン粒子表面で生成したヒドロキシラジカルの一部は、バルク液体中の有害有機化合物あるいは病原性微生物に到達する前にヒドロキシラジカル自身の二分子反応によって消費されることから、ラジカルは分解反応に有効に作用されているとはいえず、分解速度向上の程度がそれほど高くないのが現状である。
【0005】
【課題を解決するための手段】
本願発明者らはこれまでに、有機化合物の一つであるフェノールの二酸化チタン存在下での超音波分解実験および理論計算を行い、ヒドロキシラジカルの生成が、(1)超音波による水の直接分解、(2)超音波により生成した酸素原子と水との反応、(3)二酸化チタン粒子触媒作用による水の分解によって生成することを明らかにした。
【0006】
この発明は、上記の(1)〜(3)に示したヒドロキシラジカルの生成反応を促進せしめ、有害有機化合物の分解速度向上あるいは病原性微生物の殺菌速度向上を実現する方法を提供するものであり、下記を特徴とする。
【0007】
請求項1に記載の発明は、二酸化チタンの存在する水中に超音波を照射する水処理方法において、被処理水中に酸化剤を添加することに特徴を有するものである。被処理水中に酸化剤を添加するタイミングは、超音波照射前および超音波照射と同時の少なくとも1つとする。
【0008】
請求項2に記載の発明は、請求項1記載の発明において、被処理水中に添加する酸化剤が、塩素、次亜塩素酸、二酸化塩素、過酸化水素およびオゾンから選ばれた少なくとも一種類であることに特徴を有するものである。
【0009】
請求項3に記載の発明は、二酸化チタンの存在する水中に超音波を照射する手段を有する水処理装置において、被処理水中に酸化剤を添加する手段を備えることに特徴を有するものである。被処理水中に酸化剤を添加するタイミングは、超音波照射前および超音波照射と同時の少なくとも1つとする。
【0010】
請求項4に記載の発明は、請求項3記載の発明において、被処理水中に添加する酸化剤が、塩素、次亜塩素酸、二酸化塩素、過酸化水素およびオゾンから選ばれた少なくとも一種類であることに特徴を有するものである。
【0011】
【作用】
上記したように、ヒドロキシラジカル生成能は超音波の照射により発現するが、二酸化チタン粒子表面で生成したヒドロキシラジカルの一部は、バルク液体中の有害有機化合物あるいは病原性微生物に到達する前に再結合するため、ラジカルは分解反応に有効に作用されているとはいえず、分解速度向上の程度がそれほど高くない。しかしながら、この発明によるある種の酸化剤を共存させることにより、分解速度の飛躍的な向上が見られ、この問題を解決することができる。すなわち、この発明によるある種の酸化剤を共存させることによる効果は、ヒドロキシラジカルの再結合の抑制および酸化剤自身の分解によるヒドロキシラジカルの生成等によるものと推察される。
【0012】
【発明の実施の形態】
この発明の水処理方法の一実施態様を、図面を参照しながら説明する。
【0013】
図1は、この発明の水処理方法を実施するための回分式水処理装置を示す概略構成図である。
【0014】
図1において、1は、反応槽、2は、超音波照射装置であり、その発振部(ホーン部)3の一部は、反応槽1内の被処理水4A中に浸漬されている。
【0015】
この水処理装置によれば、次のようにして被処理水が処理される。反応槽1の中に二酸化チタン粒子を懸濁させた被処理水4Aを所定量入れ、被処理水4Aに所定量の酸化剤を酸化剤添加手段5から添加する。超音波照射装置2の発振部(ホーン部)の一部は被処理水4Aに浸漬される位置に取り付けられているので、超音波を水中に照射すると、超音波のエネルギー伝播によって二酸化チタンの触媒能が発現し、二酸化チタン粒子の表面でヒドロキシラジカルが生成する。一方、バルク内でも、超音波による水および酸化剤の直接分解、超音波により生成した酸素原子と水との反応などによりヒドロキシラジカルが生成し、処理対象物質の分解が進行する。
【0016】
図2は、この発明の水処理方法を実施するための連続式水処理装置を示す概略構成図である。
【0017】
図2において、1は、反応槽、2は、超音波照射装置であり、その発振部(ホーン部)3の一部は、反応槽1内の被処理水4Aに浸漬されている。6は、固液分離装置である。
【0018】
この水処理装置によれば、次のようにして被処理水が処理される。被処理水4を予め所定量の二酸化チタン粒子を添加した反応槽1に流入させ、結果的に二酸化チタン粒子を反応槽1内で懸濁せしめ、二酸化チタン粒子が懸濁した被処理水4Aに酸化剤を酸化剤添加手段5から連続的に添加すると共に、超音波を被処理水に照射することによって、上述した回分式水処理装置の場合と同様に処理対象物質の分解が進行する。次に分解処理を施した被処理水4Bを固液分離装置6に導入し、処理水7と二酸化チタンを含有する循環水8とに分離する。循環水8は被処理水4と共に反応装置1に流入せしめるため、二酸化チタンは反応槽1と固液分離装置6との間を循環することになり、再利用される。なお、固液分離装置6は二酸化チタン粒子の回収率を目安に選定すればよく、高い回収率を得るためには限外ろ過膜もしくは精密ろ過膜を、そのような必要がない場合には重力沈降などの固液分離手法を選定することができる。
【0019】
図3は、この発明の水処理方法を実施するための他の連続式水処理装置を示す概略構成図である。
【0020】
図3に示す連続式水処理装置は、被処理水4と循環水8との混合液に、酸化剤添加手段5からの酸化剤を添加するための酸化剤注入設備9を備えていることを除けば、上述した図2に示す連続式水処理装置と同様の構成となっている。すなわち、1は、反応槽、2は、発振部(ホーン部)3の一部が反応槽1内の被処理水4Cに浸漬されている超音波照射装置、6は、固液分離装置である。
【0021】
この連続式水処理装置によれば、予め酸化剤添加手段5から酸化剤を酸化剤注入設備9を介して被処理水4と循環水8との混合液に添加することにより酸化剤が液中に均一に分散するため、反応槽1内での反応がより効率良く進行する。
【0022】
この発明において添加する酸化剤としては、塩素、次亜塩素酸、二酸化塩素、過酸化水素およびオゾンから選ばれた少なくとも一種類が良い。また、被処理水中に酸化剤を添加するタイミングは、図1および図2に示す例のように、超音波照射と同時か、図3に示すように、超音波照射前、あるいは、これらの組み合わせとする。さらに、この発明において使用する二酸化チタンの、反応槽1内で水に分散した状態での粒径は、膜分離を想定すると、0.01μm以上が良く、処理効果の面からは粒径は小さい方が良いので、0.01〜1μmが好ましい。
【0023】
【実施例】
(実施例1)
図1と同様の構成の回分式反応槽1に所定量のアナターゼ型二酸化チタン粒子(TiO)および過酸化水素(H)と1.0mol/mのフェノール水溶液を25cm入れ、酸素を通気しながら、遮光下、30.5℃で周波数20kHz、出力50Wの超音波を照射することによりフェノールの分解実験を行った。表1にこの実施例の実施条件を示す。ただし、表1中の二酸化チタン添加量および過酸化水素添加量は、添加した場合の濃度を記載してある。
【0024】
【表1】

Figure 2004351331
【0025】
表2に超音波を3時間照射した後の残留フェノール濃度を示す。表2から明らかなように、超音波のみの場合に比べ、二酸化チタンあるいは過酸化水素を添加した場合にはフェノールの分解が進行し、残留フェノール濃度が低減したことが確認できた。これに対して、二酸化チタンおよび過酸化水素の両方を添加した場合には残留フェノール濃度は検出されず、超音波照射時間内にフェノールの分解反応が完了していることが確認できた。
【0026】
【表2】
Figure 2004351331
【0027】
(実施例2)
次に某下水処理場流入下水中の大腸菌の殺菌例について説明する。
【0028】
反応槽には図1と同様の構成の回分式反応槽を用い、所定量のアナターゼ型二酸化チタン粒子を懸濁させた被処理水150cmに0.75mg/150cm(5mg/l)の次亜塩素酸を添加すると同時に、液温25℃、遮光下で周波数20kHz、出力90Wの超音波照射を行った。操作因子として二酸化チタンの添加量を0.01〜1wt%と変化させた。大腸菌群の生菌数は、超音波照射した被処理水を適宜希釈した後、コロニー計数法により測定した。表3にこの実施例の実施条件を、表4に被処理水である下水の水質を示す。
【0029】
【表3】
Figure 2004351331
【0030】
【表4】
Figure 2004351331
【0031】
図4に、次亜塩素酸を添加した超音波殺菌系(□)、所定量の二酸化チタンおよび次亜塩素酸を添加した超音波殺菌系(▲、■、●印)における大腸菌群数(生菌数)の経時変化を示す。比較のため、下水処理で一般的に行われている次亜塩素酸単独殺菌系(○印)における大腸菌群数の経時変化も併せて示す。
【0032】
同図より、処理時間3分後の大腸菌群数は、次亜塩素酸単独殺菌系(○印)で約20,000個/cm、次亜塩素酸のみを添加した超音波殺菌系(□)で約1,000/cmであるのに対して、二酸化チタン(添加量0.1wt%)および次亜塩素酸を添加した超音波殺菌系(■)、二酸化チタン(添加量0.01wt%)および次亜塩素酸を添加した超音波殺菌系(●)で約500個/cmであった。また、二酸化チタン(添加量1wt%)および次亜塩素酸を添加した超音波殺菌系(▲)で1個/cmであり、この発明の二酸化チタンおよび次亜塩素酸を添加した超音波殺菌系においては際立った殺菌効果が得られることが分かった。
【0033】
【発明の効果】
以上説明したように、この発明によれば、二酸化チタンの存在する水中に超音波を照射する際に、被処理水中に酸化剤を添加することによって、従来技術では分解が困難であった有害有機化合物を容易に分解でき、さらに、この発明によれば、水中の病原性微生物を極短時間に殺菌処理できるので、近年深刻な社会問題となっている合流下水道の雨水処理等の大量の排水の滅菌を、1〜3分程度の非常に短い時間内で行うことができるといった有用な効果がもたらされる。
【図面の簡単な説明】
【図1】この発明の水処理方法を実施するための回分式水処理装置を示す概略構成図である。
【図2】この発明の水処理方法を実施するための連続式水処理装置を示す概略構成図である。
【図3】この発明の水処理方法を実施するための他の連続式水処理装置を示す概略構成図である。
【図4】大腸菌群数と処理時間との関係を示すグラフである。
【符号の説明】
1:反応槽
2:超音波照射装置
3:発振部
4、4A、4B、4C:被処理水
5:酸化剤添加手段
6:固液分離装置
7:処理水
8:循環水
9:酸化剤注入設備[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a water treatment method and apparatus capable of easily decomposing organic substances in water, particularly harmful organic compounds that are hardly decomposable, and detoxifying pathogenic microorganisms in water in a short time. is there.
[0002]
[Prior art]
In recent years, an ultrasonic irradiation method and a titanium oxide light irradiation method have attracted attention as a method for decomposing harmful organic compounds causing environmental pollution or as a method for disinfecting pathogenic microorganisms. However, all of these methods have problems such as low molecular weight or gasification that does not progress completely or low sterilization rate, and cannot be an effective means for decomposing harmful organic compounds or sterilizing pathogenic microorganisms.
[0003]
Thus, the present inventors have found that when ultrasonic waves are applied to titanium dioxide present in water, the ability to generate hydroxyl radicals is exhibited by energy propagation from the ultrasonic waves, similarly to light irradiation. Since ultrasonic waves can be applied to the entire reaction apparatus, it becomes possible to cause all the titanium dioxide in the system to exhibit catalytic ability even in a light-impermeable medium. For this reason, the catalyst concentration can be significantly increased as compared with the light irradiation method in which the catalyst concentration must be kept low from the viewpoint of maintaining the light transmission ability.
[0004]
[Problems to be solved by the invention]
However, many of the harmful organic compounds to be decomposed or the pathogenic microorganisms to be sterilized are hydrophobic, and are more present in the bulk liquid than near the surface of the titanium dioxide particles. Some of the hydroxyl radicals generated on the surface of the titanium dioxide particles are consumed by the bimolecular reaction of the hydroxyl radical itself before reaching harmful organic compounds or pathogenic microorganisms in the bulk liquid, so the radicals are effective in the decomposition reaction At present, the rate of decomposition rate improvement is not so high.
[0005]
[Means for Solving the Problems]
The inventors of the present invention have performed ultrasonic decomposition experiments and theoretical calculations of phenol, one of the organic compounds, in the presence of titanium dioxide, and found that (1) direct decomposition of water by ultrasonic waves (2) reaction between oxygen atoms generated by ultrasonic waves and water, and (3) formation of water by catalytic action of titanium dioxide particles.
[0006]
The present invention provides a method for accelerating the hydroxy radical generation reaction shown in the above (1) to (3), thereby improving the decomposition rate of harmful organic compounds or the sterilization rate of pathogenic microorganisms. , Characterized by the following.
[0007]
The invention according to claim 1 is characterized in that an oxidizing agent is added to water to be treated in a water treatment method of irradiating ultrasonic waves into water in which titanium dioxide is present. The timing of adding the oxidizing agent to the water to be treated is at least one before the ultrasonic irradiation and at the same time as the ultrasonic irradiation.
[0008]
According to a second aspect of the present invention, in the first aspect of the invention, the oxidizing agent added to the water to be treated is at least one selected from chlorine, hypochlorous acid, chlorine dioxide, hydrogen peroxide and ozone. It has a characteristic in a certain thing.
[0009]
The invention according to claim 3 is characterized in that a water treatment apparatus having means for irradiating ultrasonic waves into water in which titanium dioxide exists is provided with means for adding an oxidizing agent to the water to be treated. The timing of adding the oxidizing agent to the water to be treated is at least one before the ultrasonic irradiation and at the same time as the ultrasonic irradiation.
[0010]
The invention according to claim 4 is the invention according to claim 3, wherein the oxidizing agent added to the water to be treated is at least one selected from chlorine, hypochlorous acid, chlorine dioxide, hydrogen peroxide and ozone. It has a characteristic in a certain thing.
[0011]
[Action]
As described above, the ability to generate hydroxyl radicals is manifested by irradiation with ultrasonic waves, but some of the hydroxyl radicals generated on the surface of titanium dioxide particles are regenerated before reaching harmful organic compounds or pathogenic microorganisms in the bulk liquid. Because of the bonding, the radicals cannot be said to be effectively acting on the decomposition reaction, and the degree of improvement in the decomposition rate is not so high. However, the coexistence of a certain oxidizing agent according to the present invention dramatically improves the decomposition rate, and can solve this problem. That is, it is supposed that the effect of coexistence of a certain oxidizing agent according to the present invention is due to suppression of the recombination of the hydroxyl radical and generation of the hydroxyl radical by decomposition of the oxidizing agent itself.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
One embodiment of the water treatment method of the present invention will be described with reference to the drawings.
[0013]
FIG. 1 is a schematic configuration diagram showing a batch type water treatment apparatus for carrying out the water treatment method of the present invention.
[0014]
In FIG. 1, 1 is a reaction tank, 2 is an ultrasonic irradiation device, and a part of an oscillating section (horn section) 3 is immersed in the water 4A to be treated in the reaction tank 1.
[0015]
According to this water treatment apparatus, the water to be treated is treated as follows. A predetermined amount of treated water 4A in which titanium dioxide particles are suspended is put into reaction tank 1, and a prescribed amount of an oxidizing agent is added to treated water 4A from oxidizing agent adding means 5. Since a part of the oscillating portion (horn portion) of the ultrasonic irradiation device 2 is attached at a position immersed in the water 4A to be treated, when ultrasonic waves are irradiated into water, the titanium dioxide catalyst is propagated by ultrasonic energy transmission. And a hydroxyl radical is generated on the surface of the titanium dioxide particles. On the other hand, even in the bulk, hydroxyl radicals are generated by direct decomposition of water and oxidizing agent by ultrasonic waves, reaction between oxygen atoms generated by ultrasonic waves and water, and the decomposition of the substance to be treated proceeds.
[0016]
FIG. 2 is a schematic configuration diagram showing a continuous water treatment apparatus for carrying out the water treatment method of the present invention.
[0017]
In FIG. 2, reference numeral 1 denotes a reaction tank, 2 denotes an ultrasonic irradiation device, and a part of an oscillating section (horn section) 3 is immersed in water 4A to be treated in the reaction tank 1. 6 is a solid-liquid separation device.
[0018]
According to this water treatment apparatus, the water to be treated is treated as follows. The to-be-treated water 4 flows into the reaction tank 1 to which a predetermined amount of titanium dioxide particles have been added in advance, and as a result, the titanium dioxide particles are suspended in the reaction tank 1, and the to-be-treated water 4A in which the titanium dioxide particles are suspended. By continuously adding the oxidizing agent from the oxidizing agent adding means 5 and irradiating the treated water with ultrasonic waves, the decomposition of the substance to be treated proceeds as in the case of the above-mentioned batch type water treatment apparatus. Next, the treated water 4B subjected to the decomposition treatment is introduced into the solid-liquid separation device 6, where it is separated into treated water 7 and circulating water 8 containing titanium dioxide. Since the circulating water 8 flows into the reactor 1 together with the water 4 to be treated, the titanium dioxide circulates between the reactor 1 and the solid-liquid separator 6 and is reused. The solid-liquid separator 6 may be selected based on the recovery rate of the titanium dioxide particles. To obtain a high recovery rate, an ultrafiltration membrane or a microfiltration membrane is used. A solid-liquid separation method such as sedimentation can be selected.
[0019]
FIG. 3 is a schematic configuration diagram showing another continuous water treatment apparatus for carrying out the water treatment method of the present invention.
[0020]
The continuous water treatment apparatus shown in FIG. 3 is provided with an oxidizing agent injection device 9 for adding the oxidizing agent from the oxidizing agent adding means 5 to a mixed liquid of the water 4 to be treated and the circulating water 8. Except for this, the configuration is the same as that of the continuous water treatment apparatus shown in FIG. 2 described above. That is, 1 is a reaction tank, 2 is an ultrasonic irradiation apparatus in which a part of an oscillating section (horn section) 3 is immersed in water 4C to be treated in the reaction tank 1, and 6 is a solid-liquid separation apparatus. .
[0021]
According to this continuous water treatment apparatus, the oxidizing agent is added to the mixture of the water to be treated 4 and the circulating water 8 by the oxidizing agent adding means 5 through the oxidizing agent injecting equipment 9 in advance, so that the oxidizing agent Thus, the reaction in the reaction tank 1 proceeds more efficiently.
[0022]
The oxidizing agent to be added in the present invention is preferably at least one selected from chlorine, hypochlorous acid, chlorine dioxide, hydrogen peroxide and ozone. Further, the timing of adding the oxidizing agent to the water to be treated may be simultaneous with the ultrasonic irradiation as shown in the examples shown in FIGS. 1 and 2, before the ultrasonic irradiation as shown in FIG. 3, or a combination thereof. And Further, the particle size of titanium dioxide used in the present invention in a state of being dispersed in water in the reaction tank 1 is preferably 0.01 μm or more assuming membrane separation, and the particle size is small from the viewpoint of processing effect. Since it is better, the thickness is preferably 0.01 to 1 μm.
[0023]
【Example】
(Example 1)
25 cm 3 of a predetermined amount of anatase-type titanium dioxide particles (TiO 2 ) and hydrogen peroxide (H 2 O 2 ) and an aqueous solution of 1.0 mol / m 3 of phenol are put in a batch reaction tank 1 having the same configuration as that of FIG. A phenol decomposition experiment was performed by irradiating ultrasonic waves with a frequency of 20 kHz and an output of 50 W at 30.5 ° C. while shielding oxygen while passing oxygen. Table 1 shows the working conditions of this example. However, the addition amount of titanium dioxide and the addition amount of hydrogen peroxide in Table 1 indicate the concentration when added.
[0024]
[Table 1]
Figure 2004351331
[0025]
Table 2 shows the residual phenol concentration after irradiation with ultrasonic waves for 3 hours. As is clear from Table 2, when titanium dioxide or hydrogen peroxide was added, the decomposition of phenol proceeded and the residual phenol concentration was reduced as compared with the case of using only ultrasonic waves. In contrast, when both titanium dioxide and hydrogen peroxide were added, no residual phenol concentration was detected, confirming that the phenol decomposition reaction was completed within the ultrasonic irradiation time.
[0026]
[Table 2]
Figure 2004351331
[0027]
(Example 2)
Next, an example of sterilization of E. coli in sewage flowing into a certain sewage treatment plant will be described.
[0028]
A batch-type reaction tank having the same configuration as that of FIG. 1 was used as the reaction tank, and 0.75 mg / 150 cm 3 (5 mg / l) was added to 150 cm 3 of water to be treated in which a predetermined amount of anatase type titanium dioxide particles were suspended. Simultaneously with the addition of chlorous acid, ultrasonic irradiation with a frequency of 20 kHz and an output of 90 W was performed at a liquid temperature of 25 ° C. under light shielding. The addition amount of titanium dioxide was changed to 0.01 to 1 wt% as an operation factor. The viable cell count of the coliform group was measured by a colony counting method after appropriately diluting the treated water irradiated with ultrasonic waves. Table 3 shows the working conditions of this example, and Table 4 shows the quality of the sewage which is the water to be treated.
[0029]
[Table 3]
Figure 2004351331
[0030]
[Table 4]
Figure 2004351331
[0031]
FIG. 4 shows the number of Escherichia coli groups in the ultrasonic sterilization system (□) to which hypochlorous acid was added, and the ultrasonic sterilization system (▲, △, ●) to which predetermined amounts of titanium dioxide and hypochlorous acid were added. 4 shows the change over time in the number of bacteria. For comparison, the time-dependent change in the number of coliforms in the hypochlorite-only sterilizing system (marked with ○) generally performed in sewage treatment is also shown.
[0032]
As shown in the figure, the number of coliform bacteria after 3 minutes of treatment was about 20,000 cells / cm 3 in a hypochlorite-only sterilization system (marked with ○), and an ultrasonic sterilization system with only hypochlorous acid added (□). ) Is about 1,000 / cm 3 , whereas ultrasonic sterilization system (■) to which titanium dioxide (addition amount: 0.1 wt%) and hypochlorous acid are added, titanium dioxide (addition amount: 0.01 wt%) %) And the ultrasonic sterilization system (●) to which hypochlorous acid was added was about 500 cells / cm 3 . The ultrasonic sterilization system (殺菌) to which titanium dioxide (addition amount 1 wt%) and hypochlorous acid were added was 1 / cm 3 , and the ultrasonic sterilization system to which titanium dioxide and hypochlorous acid of the present invention were added. It was found that a remarkable bactericidal effect was obtained in the system.
[0033]
【The invention's effect】
As described above, according to the present invention, when irradiating ultrasonic waves into water in which titanium dioxide is present, by adding an oxidizing agent to the water to be treated, harmful organic substances that have been difficult to decompose in the prior art can be obtained. Compounds can be easily decomposed, and according to the present invention, pathogenic microorganisms in water can be sterilized in an extremely short time. This has a useful effect that sterilization can be performed in a very short time of about 1 to 3 minutes.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing a batch type water treatment apparatus for implementing a water treatment method of the present invention.
FIG. 2 is a schematic configuration diagram showing a continuous water treatment apparatus for carrying out the water treatment method of the present invention.
FIG. 3 is a schematic configuration diagram showing another continuous water treatment apparatus for carrying out the water treatment method of the present invention.
FIG. 4 is a graph showing the relationship between the number of coliform bacteria and the treatment time.
[Explanation of symbols]
1: Reaction tank 2: Ultrasonic irradiation device 3: Oscillator 4, 4A, 4B, 4C: Treated water 5: Oxidizing agent adding means 6: Solid-liquid separator 7: Treated water 8: Circulating water 9: Oxidizing agent injection Facility

Claims (4)

二酸化チタンの存在する水中に超音波を照射する水処理方法において、被処理水中に酸化剤を添加することを特徴とする水処理方法。A water treatment method for irradiating ultrasonic waves into water in which titanium dioxide is present, wherein an oxidizing agent is added to the water to be treated. 前記酸化剤が、塩素、次亜塩素酸、二酸化塩素、過酸化水素およびオゾンから選ばれた少なくとも一種類であることを特徴とする、請求項1記載の水処理方法。The water treatment method according to claim 1, wherein the oxidizing agent is at least one selected from chlorine, hypochlorous acid, chlorine dioxide, hydrogen peroxide, and ozone. 二酸化チタンの存在する水中に超音波を照射する手段を有する水処理装置において、被処理水中に酸化剤を添加する手段を備えていることを特徴とする水処理装置。What is claimed is: 1. A water treatment apparatus comprising: means for irradiating ultrasonic waves into water in which titanium dioxide is present; 前記酸化剤が、塩素、次亜塩素酸、二酸化塩素、過酸化水素およびオゾンから選ばれた少なくとも一種類であることを特徴とする、請求項3記載の水処理装置。The water treatment apparatus according to claim 3, wherein the oxidizing agent is at least one selected from chlorine, hypochlorous acid, chlorine dioxide, hydrogen peroxide, and ozone.
JP2003152442A 2003-05-29 2003-05-29 Method and apparatus for water treatment Pending JP2004351331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003152442A JP2004351331A (en) 2003-05-29 2003-05-29 Method and apparatus for water treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003152442A JP2004351331A (en) 2003-05-29 2003-05-29 Method and apparatus for water treatment

Publications (1)

Publication Number Publication Date
JP2004351331A true JP2004351331A (en) 2004-12-16

Family

ID=34047664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003152442A Pending JP2004351331A (en) 2003-05-29 2003-05-29 Method and apparatus for water treatment

Country Status (1)

Country Link
JP (1) JP2004351331A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102126818A (en) * 2011-01-14 2011-07-20 华南理工大学 Chlorine dioxide/ultrasonic wave-coupled excess sludge decrement pretreating method
CN102180577A (en) * 2011-03-17 2011-09-14 南海发展股份有限公司 Method for decrement pretreatment of excessive sludge by coupling ultrasonic waves/chlorine dioxide
US8515524B2 (en) 2008-06-04 2013-08-20 National Cerebral And Cardiovascular Center Extracorperal ultrasonic irradition of titanium oxide (TiO2) coated implant for angiogenesis stimulation
CN103342411A (en) * 2013-07-17 2013-10-09 北京工业大学 Method for oxidative regulation and control of water quality in original water conveying pipeline through combination of chlorine dioxide and chlorine
CN103478164A (en) * 2013-09-04 2014-01-01 中国石油化工股份有限公司 Oil field sewage bactericide and preparation method thereof
JP6877661B1 (en) * 2020-08-24 2021-05-26 三菱電機株式会社 Water treatment system and water treatment method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8515524B2 (en) 2008-06-04 2013-08-20 National Cerebral And Cardiovascular Center Extracorperal ultrasonic irradition of titanium oxide (TiO2) coated implant for angiogenesis stimulation
CN102126818A (en) * 2011-01-14 2011-07-20 华南理工大学 Chlorine dioxide/ultrasonic wave-coupled excess sludge decrement pretreating method
CN102180577A (en) * 2011-03-17 2011-09-14 南海发展股份有限公司 Method for decrement pretreatment of excessive sludge by coupling ultrasonic waves/chlorine dioxide
CN103342411A (en) * 2013-07-17 2013-10-09 北京工业大学 Method for oxidative regulation and control of water quality in original water conveying pipeline through combination of chlorine dioxide and chlorine
CN103342411B (en) * 2013-07-17 2014-12-31 北京工业大学 Method for oxidative regulation and control of water quality in original water conveying pipeline through combination of chlorine dioxide and chlorine
CN103478164A (en) * 2013-09-04 2014-01-01 中国石油化工股份有限公司 Oil field sewage bactericide and preparation method thereof
CN103478164B (en) * 2013-09-04 2019-01-11 中国石油化工股份有限公司 A kind of oil field sewage bactericide and preparation method thereof
JP6877661B1 (en) * 2020-08-24 2021-05-26 三菱電機株式会社 Water treatment system and water treatment method
WO2022044065A1 (en) * 2020-08-24 2022-03-03 三菱電機株式会社 Water treatment system and water treatment method

Similar Documents

Publication Publication Date Title
Tijani et al. A review of combined advanced oxidation technologies for the removal of organic pollutants from water
Anju et al. Zinc oxide mediated sonophotocatalytic degradation of phenol in water
JP5778911B2 (en) Water sterilizer and water sterilization method
JPH05503252A (en) A method of treating an aqueous liquid in the presence of a photocatalyst using a combination of light energy and ultrasonic energy for the decomposition of halogenated organic compounds in the aqueous liquid.
CN105800768B (en) A method of promote ozone quickly to generate hydroxyl radical free radical
CN101781046A (en) Ship ballast water processing method combining ozone and photocatalysis
EP0997439B1 (en) Method for decomposing bromic acid by photocatalyst
CN112573624B (en) High-salinity wastewater composite catalytic oxidation treatment system
KR102176110B1 (en) Advanced oxidation treatment apparatus including electrolysis device for molecular destruction and advanced oxidation treatment method using same
CN101781044A (en) Ultraviolet light catalyzing and strong oxidizing treatment method of ship ballast water
JP2004351331A (en) Method and apparatus for water treatment
Drosou et al. Peracetic acid‐enhanced photocatalytic and sonophotocatalytic inactivation of E. coli in aqueous suspensions
JP5667122B2 (en) Water treatment method and water treatment apparatus
CN104709964A (en) Method for producing hydroxyl radicals
KR20070026965A (en) Treatment method of hardly-degradable organic compounds in radioactive liquid waste
JPH11226587A (en) Water treatment apparatus
JP3362840B2 (en) Treatment method and treatment device for wastewater containing hydrogen peroxide
JP3826580B2 (en) Brominated acid decomposition method using photocatalyst and apparatus therefor
JPH0255117B2 (en)
Lim et al. Effects of hydrogen peroxide and frequency for the sonochemical degradation of aqueous phenol
JP4522302B2 (en) Detoxification method of organic arsenic
CN103964620B (en) A kind for the treatment of process of percolate
JP2003080276A (en) Method for treating hard-to-decompose organic substance
CN105254132A (en) Method for treating degradation-resistant sewage through advanced oxidation
CN203269708U (en) Graphene sewage purification combined device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080318

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090331