JP2004350848A - 内視鏡装置 - Google Patents

内視鏡装置 Download PDF

Info

Publication number
JP2004350848A
JP2004350848A JP2003151023A JP2003151023A JP2004350848A JP 2004350848 A JP2004350848 A JP 2004350848A JP 2003151023 A JP2003151023 A JP 2003151023A JP 2003151023 A JP2003151023 A JP 2003151023A JP 2004350848 A JP2004350848 A JP 2004350848A
Authority
JP
Japan
Prior art keywords
objective optical
optical system
observation
solid
imaging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003151023A
Other languages
English (en)
Other versions
JP4184156B2 (ja
Inventor
Takayuki Kato
貴之 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2003151023A priority Critical patent/JP4184156B2/ja
Publication of JP2004350848A publication Critical patent/JP2004350848A/ja
Application granted granted Critical
Publication of JP4184156B2 publication Critical patent/JP4184156B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Endoscopes (AREA)

Abstract

【課題】高倍率と低倍率との明るさのバランスが取れていて、2つの画像の視野中心のずれがなく、煩雑な操作をすることなく拡大観察あるいは特殊光観察と通常観察とを同時に行うことが可能な内視鏡装置を提供すること。
【解決手段】第1の対物光学系4及び第2の対物光学系5からなる2つの対物光学系と、1つの固体撮像素子6とを備え、第1の対物光学系4あるいは第2の対物光学系5の前方にある被写体を第1の対物光学系4あるいは第2の対物光学系5を介して固体撮像素子6の各々異なる領域に結像して、第1の対物光学系4の視野範囲が第2の対物光学系5の視野範囲内に含まれ若しくはそれらの視野範囲が重なっている内視鏡装置であって、固体撮像素子6上における第1の対物光学系4の結像の大きさが、固体撮像素子6上における第2の対物光学系5の結像の大きさの2倍以上5倍未満の条件を満たすことを特徴とする。
【選択図】 図5

Description

【0001】
【発明の属する技術分野】
この発明は、内視鏡装置、特に、2つの対物光学系と1つの固体撮像素子とを備え、各々の対物光学系を介して得た物体の像を前記固体撮像素子上の異なる部分に結像させるようにした内視鏡装置に関する。
【0002】
【従来の技術】
近年、内視鏡において病変等の精密診断を行うため、通常の観察に加えて拡大観察を行い得るようにすることが要求されている。このような要求を満たすため、ズーム機構を備えた内視鏡装置(例えば、特許文献1参照)、あるいは、先端に倍率の異なる2つの対物光学系を配置し、各々の対物光学系により結像された像を各々の対物光学系に対応する固体撮像素子上に結像させ、拡大観察と通常観察の2つの画像を同時に観察できる内視鏡装置が提案されている(例えば、特許文献2参照)。
【0003】
これらの技術においては、ズーム機構を備えた内視鏡装置の場合、可動部が必要となることで構造が複雑となり、先端硬質部が長くなるとともに挿入部径が大きくなるため、製造コストが増加する。また、固体撮像素子を2つ備えた内視鏡装置の場合、固体撮像素子の占有する空間が大きくなることで、ズーム機構を備えた内視鏡装置と同様に製造コストが増加する。そこで、構造をより簡略化しあるいは固体撮像素子の占有空間を縮小して製造コストを削減する内視鏡装置として、先端部を倍率の異なる2つの対物光学系と1つの固体撮像素子とを備え、各々の対物光学系により結像された像を1つの固体撮像素子上の各々の異なる領域に結像させ、倍率の異なる像を同時に観察可能な内視鏡装置が提案されている(例えば、特許文献3参照)。
【0004】
内視鏡装置の先端に設けられた倍率の異なる2つの対物光学系について、例えば体腔内を観察する場合、高倍率を有する第1の対物光学系は、内視鏡装置の先端を体腔内に挿入してその体腔内の拡大観察を行うために必要な拡大倍率を有している。一方、低倍率を有する第2の対物光学系は、内視鏡装置の先端を体腔内に挿入する際のガイド用あるいは体腔内の拡大観察を行いたい部位に第1の対物光学系の視野範囲を導くためのオリエンテーション用の役割を負うように、広い視野角を有している。
また、高倍率を有する第1の対物光学系の被写界深度は、対象物を見失うことなく、その観察窓の先端と観察対象の距離によってピントが合うように、低倍率を有する第2の対物光学系の被写界深度と少なくとも一部が重なるようになっている。
【0005】
また、近年の医療分野では、例えば早期癌の検査等において、所謂通常の可視光すなわち白色光下での観察だけではなく、発見率向上のため正常組織と癌組織による自家蛍光の差異を観察する方法、インドシアニングリーン(ICG)という薬剤を造影剤として注入し、ICGの吸収帯域の赤外光により観察を行う方法、あるいは特定の波長領域の光のみを照射することで白色光では得られない画像情報から観察や診断を行う方法等、特殊光を用いた観察が内視鏡装置によって行われている。
【0006】
このICGを用いて赤外光による観察を行う方法の具体例としては、センチネルリンパ節の観察がある。センチネルリンパ節は、腫瘍から最初にリンパ流を受けるリンパ節であり、ここに最初の微小転移が生ずると言われている。つまり、センチネルリンパ節を調べれば、その症例のリンパ節転移状況を把握できる。したがって、センチネルリンパ節の同定を内視鏡装置によって行うことは、医学的に重要と言える。
【0007】
【特許文献1】
特開平11−316339号公報(第12−13頁、第1図)
【特許文献2】
特開平1−197716号公報(第2−3頁、第1図)
【特許文献3】
特開平9−122068号公報(第2−3頁、第1図)
【0008】
【発明が解決しようとする課題】
ところで、上記従来の内視鏡装置において、高倍率を有する第1の対物光学系は、体腔内等の拡大観察に用いられており、高倍率になるほど被写界深度が浅くなるため、観察窓と被写体までの距離が僅かでもずれると観察像がいわゆるピンボケになってしまうという問題があった。したがって、必要な拡大倍率を確保しつつ被写界深度をなるべく広く取る必要があり、そのためには、第1の対物光学系の開口比Fmをなるべく大きくする必要がある。ただし、第1の対物光学系の開口比Fmを大きくしすぎると、光の回折の影響で解像力が劣化してしまう。
【0009】
また、低倍率を有する第2の対物光学系は、内視鏡先端を体腔内に挿入する際のガイド用、高倍率を有する第1の対物光学系の視野範囲を導くためのオリエンテーション用、といった役割を負うように、体腔内を観察できる十分な明るさを有している。
しかしながら、2つの対物光学系の明るさの違いが大きいと、例えば第1の対物光学系による像に対して最適な明るさ調整がなされた際、第2の対物光学系の観察像がハレーションを起こし、あるいは暗くて観察しづらくなってしまうという問題があった。
【0010】
また、このような先端に倍率の異なる2つの対物光学系と1つの固体撮像素子を備えた内視鏡装置では、2つの対物光学系が平行に並ぶように配置されるため、光軸が平行であると、2つの対物光学系それぞれの視野中心には若干のずれが生じてしまうという問題があった。
すなわち、被写体の拡大観察のため、第1の対物光学系の先端と被写体とを近づけると、2つの対物光学系それぞれの視野中心のずれも拡大されてしまう。したがって、第2の対物光学系によって映し出された画面を見ながら、第1の対物光学系によって拡大観察したい部位を視野中心に導いても、その部位が第1の対物光学系によって実際に拡大されて見える部位に一致しない。
そこで、上記問題点を解決するために、対物光学系に備えられた対物レンズの光軸を傾けて視野中心を合わせようとした場合、対物レンズを保持する枠の構造が複雑となってしまうため、組立作業の難易度が増し、製造コストが上がってしまう。
【0011】
また、特殊光観察用の内視鏡装置においては、特殊光観察により発見された病変部や処置を行いたい部位に対して白色光に切り替えて観察を行う場合、その内視鏡装置を一度体内から取り出し、通常観察用の内視鏡装置を再度挿入したり、光源やカメラコントロールユニットを特殊光観察用のものから通常光観察用のものに切り替えたりする操作が必要となる。また、特殊光観察と拡大観察とを組み合わせて行う場合においても、特殊光により拡大観察して発見した病変部や処置を行いたい部位に対して位置確認や処置のため白色光に切り替えて観察を行う場合、一旦スコープを体内から取りだし、通常観察用のスコープを挿入し直して観察部位を再度探す操作あるいは光源やカメラコントロールユニットを通常光観察用のものに切り替える操作に加えて、スコープ先端を観察部位より遠ざけ視野範囲を広く取る操作が必要となる。この方法では、倍率の大きな変化は望めない。
【0012】
本発明は、上記のような問題点に鑑み、高倍率と低倍率との明るさのバランスが取れていて、2つの画像の視野中心のずれがなく、煩雑な操作をすることなく拡大観察あるいは特殊光観察と通常観察とを同時に行うことが可能な内視鏡装置を提供することを目的とする。
【0013】
【課題を解決するための手段】
この発明は、上記課題を解決するため、以下の手段を採用する。
請求項1に係る発明は、第1の対物光学系及び前記第1の対物光学系より低倍率である第2の対物光学系からなる2つの対物光学系と、1つの固体撮像素子とを備え、前記第1の対物光学系あるいは前記第2の対物光学系の前方にある被写体を前記第1の対物光学系あるいは前記第2の対物光学系を介して前記固体撮像素子の各々異なる領域に結像して、前記第1の対物光学系の視野範囲が前記第2の対物光学系の視野範囲内に含まれ若しくはそれらの視野範囲が重なっている内視鏡装置であって、前記固体撮像素子上における前記第1の対物光学系の結像の大きさが、前記固体撮像素子上における前記第2の対物光学系の結像の大きさの2倍以上5倍未満の条件を満たすことを特徴とする。
【0014】
この発明によれば、固体撮像素子上における第1の対物光学系の結像の大きさが、固体撮像素子上における第2の対物光学系の結像の大きさの2倍以上の条件を満たすことにより、例えば内視鏡装置によって体腔内を撮像する場合、内視鏡の先端を体腔内に挿入する際のガイド用として、あるいは拡大観察を行いたい体腔内の部位に第1の対物光学系の視野範囲を導くためのオリエンテーション用として第2の対物光学系を用い、その第2の対物光学系の拡大観察用として第1の対物光学系を用いるのに適当な倍率となる。
また、固体撮像素子上における第1の対物光学系の結像の大きさが、固体撮像素子上における第2の対物光学系の結像の大きさの5倍未満の条件を満たすことにより、第1の対物光学系の被写界深度が狭くなることが回避され、第1の対物光学系の実用上必要な被写界深度が得られることとなる。
【0015】
請求項2に係る発明は、請求項1記載の内視鏡装置において、前記固体撮像素子がモノクロの場合、前記固体撮像素子の画素ピッチP(μm)、波長λ(μm)、前記第1の対物光学系の開口比Fmとすると、1×P<1.22×λ×Fm<2.2×Pの条件を満たすことを特徴とする。
【0016】
請求項3に係る発明は、請求項1記載の内視鏡装置において、前記固体撮像素子がカラーの場合、前記固体撮像素子の画素ピッチP(μm)、波長λ(μm)、前記第1の対物光学系の開口比Fmとすると、1.5×P<1.22×λ×Fm<3.3×Pの条件を満たすことを特徴とする。
【0017】
一般に、固体撮像素子で2つの点像を識別するためには、少なくとも、点像の距離に対して、モノクロの固体撮像素子で2画素、カラーの固体撮像素子では3画素が必要である。一方、レンズによる結像の際、回折の影響を受けるため、光学系に収差がなくても、接近した2つの点像を別々の像として識別できる距離には限界がある。Rayleighの分解能の式によると、2つの点像が接近した時、別々の像として識別できる限界の距離は、波長λ(=0.588(μm))、第1の対物光学系の開口比Fmとすると、1.22×λ×Fmで表される。したがって、2つの点像を識別するために必要な画素数分の距離よりも、1.22×λ×Fmの値が大きくなると、固体撮像素子の画素数を生かせず、被写体の細部がぼけたように見えてしまう。実際には、対物レンズの収差の影響等を考慮すると、2つの点像を識別するために必要な画素数は、モノクロの固体撮像素子では2.2画素分、カラーの固体撮像素子では3.3画素分とするのが適当である。したがって、これらの発明によれば、固体撮像素子の画素ピッチP(μm)とすると、1.22×λ×Fmの値がモノクロの固体撮像素子で2.2×P以下、カラーの固体撮像素子で3.3×P以下となることにより、固体撮像素子の画素数を生かして被写体の細部が鮮明に映し出されることとなる。
【0018】
しかしながら、これらの条件を満たしていても、むやみにFmを小さくしすぎてしまうと、第1の対物光学系では被写界深度が非常に狭くなってしまい、観察窓と被写体までの距離が僅かでもずれると観察像がいわゆるピンボケになってしまうため、Fmをある程度大きく設定する必要がある。したがって、1.22×λ×Fmの値が、モノクロの固体撮像素子で1×P以上、カラーの固体撮像素子で1.5×P以上となることにより、観察像のピンボケが回避されることとなる。
【0019】
請求項4に係る発明は、請求項2または3記載の内視鏡装置において、前記第1の対物光学系の開口比Fm、前記第2の対物光学系の開口比Foとすると、1<Fm/Fo<2の条件を満たすことを特徴とする。
【0020】
一般に、電子式の内視鏡装置においては、得られる像の明るさに応じて照明光を自動的に調光し、最適な像の明るさで観察が行えるようになっている。したがって、1つの固体撮像素子上に2つの対物光学系の像がそれぞれ同時に結像する場合、第1及び第2の対物光学系の明るさをそれぞれ1/Fm,1/Foとし、Fm/Fo<2、すなわち第2の対物光学系の明るさを第1の対物光学系の明るさの2倍以内に設定することにより、2つの画像に対して同時に最適な明るさが得られるとともに、ハレーションが回避されることとなる。
【0021】
しかしながら、例えば内視鏡装置によって体腔内を撮像する場合において、内視鏡装置の先端を体腔内の観察したい部位に導く際は、第2の体物光学系の画像を見ながら行うことになるため、このとき、ある程度遠方まで明るく見えないと第2の体物光学系がオリエンテーションとしての役割を果たせない。したがって、1<Fm/Foとなり、すなわち第2の対物光学系は第1の対物光学系よりも明るく設定されることとなる。
【0022】
請求項5に係る発明は、請求項1から4のいずれかに記載の内視鏡装置において、前記2つの対物光学系が平行に並んで配置され、前記2つの対物光学系の少なくとも一方の光軸を結像範囲中心からずらして配置して、前記第1の対物光学系の視野中心を被写界深度内において前記第2の対物光学系の視野中心とほぼ一致させることを特徴とする。
【0023】
この発明によれば、2つの対物光学系が平行に並んで配置され、2つの対物光学系の少なくとも一方の光軸を結像範囲中心からずらして配置して、第1の対物光学系の視野中心を被写界深度内において第2の対物光学系の視野中心とほぼ一致させることにより、第1及び第2の対物光学系の組立作業を行う際、第1及び第2の対物光学系を保持する枠の構造を複雑にすることがないため、容易に組立てられる。
また、第1及び第2の対物光学系の光軸のずらし量に応じて視野方向が傾くため、拡大観察を行いたい部位に第1の対物光学系の画面を導く作業を容易な操作で行えるようになる。
【0024】
請求項6に係る発明は、請求項1から5のいずれかに記載の内視鏡装置において、前記第1の対物光学系あるいは前記第2の対物光学系の内部あるいは後方には、赤外光観察用の可視光カットフィルタ、狭帯域光観察用のバンドパスフィルタ、もしくは蛍光観察用の励起光カットフィルタが設けられていることを特徴とする。
【0025】
この発明によれば、従来の体腔内の観察に用いられる内視鏡装置のように、観察中に一旦特殊光観察用の内視鏡装置を体腔内から取り出して、通常光観察用として別の内視鏡装置を再度挿入し、あるいは光源の切替えを行うといった煩雑な操作を行うことなく、赤外光、狭帯域光、あるいは蛍光による特殊光観察により病変部を探しながら、通常光観察で同時に位置確認や処置を行い、あるいは特殊光観察による観察像と通常の白色光による像と対比させて観察することが可能となる。
【0026】
請求項7に係る発明は、請求項6記載の内視鏡装置において、前記固体撮像素子に近傍に2つの切り通し部を有する視野マスクが配置されていることを特徴とする。
【0027】
この発明によれば、固体撮像素子に近傍に2つの切り通し部を有する視野マスクを配置したことにより、2つの対物光学系の視野周辺から視野外にかけての領域から固体撮像素子に入射する光線が、それぞれ視野マスクで制限されるので、撮像素子の受光面上で互いの像に対してゴーストフレアなどの悪影響を与えることを防ぐことができる。
【0028】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照して説明する。
図1は、本発明におけるの実施の形態を示す図であって、この発明を適用した内視鏡装置を示す図である。
内視鏡装置は、フレキシブルな挿入部2と硬質の先端部3とを備えた内視鏡1と、この内視鏡1に接続された図示しないテレビモニタとからなり、内視鏡1により形成された物体像をそのテレビモニタに表示して観察できるようになっている。
【0029】
図2は、先端部3の構成を示す光軸に沿う断面図である。内視鏡1の先端部3の内部には、第1の対物光学系4及び第1の対物光学系4より低倍率である第2の対物光学系5からなり、それら第1の対物光学系4及び第2の対物光学系5が平行に並んで配置された2つの対物光学系と、1つの固体撮像素子としてのCCD6とが設けられている。
【0030】
第1の対物光学系4は、肉厚及び曲率半径の異なる複数のレンズ4a〜4cを備えている。また、第2の対物光学系5は、肉厚及び曲率半径の異なる複数のレンズ5a〜5cを備えている。また、レンズ4b,4c間には明るさ絞り4’が設けられ、レンズ5b,5c間には明るさ絞り5’が設けられている。
内視鏡1によって撮像された被写体が第1の対物光学系4あるいは第2の対物光学系5を介してCCD6の各々異なる領域に結像し、第1の対物光学系4の視野範囲が、前記第2の対物光学系の視野範囲内に含まれ、若しくはそれらの視野範囲が重なって、テレビモニタに映し出されるようになっている。このとき、第1の対物光学系4及び第2の対物光学系5のそれぞれの光軸がCCD6の結像面に対して垂直とされている。
【0031】
このCCD6上における第1の対物光学系4の結像の大きさが、CCD6上における第2の対物光学系5の結像の大きさの2倍以上5倍未満となっている。
ここで、CCD6がモノクロの場合、CCD6の画素ピッチP(μm)、波長λ、第1の対物光学系4の開口比Fmとすると、
1×P<1.22×λ×Fm<2.2×P
とされている。また、CCD6がカラーの場合、
1.5×P<1.22×λ×Fm<3.3×P
とされている。さらに、第1の対物光学系4の開口比Fm、第2の対物光学系5の開口比Foとすると、
1<Fm/Fo<2
とされている。
【0032】
また、内視鏡1の先端部3の内部には、第1の対物光学系4及び第2の対物光学系5の前方には、カバーガラス9a,9bがそれぞれ設けられ、第1の対物光学系4及び第2の対物光学系5とCCD6との間には、カバーガラス10が設けられている。
また、CCD6とカバーガラス10との間には視野マスク11が設けられている。この視野マスク11の形状の一例を図3に示す。第1の対物光学系4及び第2の対物光学系5を通った光は、この視野マスク11により光束の通る範囲を制限され、図4に示すCCD6上の結像領域7,8内にそれぞれ結像するようになっている。
【0033】
図5は、図2と同じ構成の内視鏡1の先端部3の断面図である。この先端部3において、第2の対物光学系5の光軸がCCD6の結像面に垂直のまま結像範囲中心からずらして配置されており、第1の対物光学系4の視野中心と第2の対物光学系5の視野中心とが被写界深度内においてほぼ一致するようになっている。
ここで、図2のように光軸と結像範囲中心が一致している場合の視野の概念図を図6に示す。図6において、(a)は第2の対物光学系5の視野の中心を示し、(b)は第1の対物光学系4の視野の中心を示す。
また、図5のように光軸が結像範囲中心からずらして配置された場合の視野の概念図を図7に示す。図7において、(a)は第2の対物光学系5の視野の中心を示し、(b)は第1の対物光学系4の視野の中心を示す。
【0034】
次に、上記の構成からなる内視鏡装置の作用について説明する。
この内視鏡装置を用いて被写体、例えば体腔内を観察する場合、第2の対物光学系5を用いて拡大観察を行いたい体腔内の部位を見つけ出すとともに、同時にほぼ同じ部位を撮像している第1の対物光学系4によって拡大観察を行う。
【0035】
この場合、CCD6上における第1の対物光学系4の結像の大きさが、CCD6上における第2の対物光学系5の結像の大きさの2倍以上の条件を満たすことにより、例えば内視鏡装置によって体腔内を撮像する場合、内視鏡1の先端部3を体腔内に挿入する際のガイド用として、あるいは拡大観察を行いたい体腔内の部位に第1の対物光学系の視野範囲を導くためのオリエンテーション用として第2の対物光学系を用い、その第2の対物光学系の拡大観察用として第1の対物光学系を用いるのに適当な倍率となる。
【0036】
また、CCD6上における第1の対物光学系4の結像の大きさが、CCD6上における第2の対物光学系5の結像の大きさの5倍未満の条件を満たすことにより、第1の対物光学系4の被写界深度が狭くなることが回避され、第1の対物光学系4の実用上必要な被写界深度が得られることとなる。
【0037】
また、CCD6で2つの点像を識別するためには、少なくとも、点像の距離に対して、モノクロのCCD6で2画素、カラーのCCD6では3画素が必要である。一方、第1の対物光学系4及び第2の対物光学系5による結像の際、回折の影響を受けるため、光学系に収差がなくても、接近した2つの点像を別々の像として識別できる距離には限界があり、その距離は、波長λ(=0.588(μm))、第1の対物光学系の開口比Fmとすると、1.22×λ×Fmで表される。
【0038】
したがって、2つの点像を識別するために必要な画素数分の距離よりも、1.22×λ×Fmの値が大きくなると、CCD6の画素数を生かせず、被写体の細部がぼけたように見えてしまうため、モノクロのCCD6では2.2画素分、カラーのCCD6では3.3画素分の画素数が必要である。したがって、CCD6の画素ピッチP(μm)とすると、1.22×λ×Fmの値がモノクロのCCD6で2.2×P以下、カラーのCCD6で3.3×P以下となることにより、CCD6の画素数を生かして被写体の細部が鮮明に映し出されることとなる。
【0039】
しかしながら、Fmを小さくしすぎてしまうと、第1の対物光学系4では被写界深度が非常に狭くなってしまい、観察窓と被写体までの距離が僅かでもずれると観察像がいわゆるピンボケになってしまうため、Fmをある程度大きく設定する必要がある。したがって、1.22×λ×Fmの値が、モノクロのCCD6で1×P以上、カラーのCCD6で1.5×P以上となることにより、観察像のピンボケが回避されることとなる。
【0040】
また、電子式の内視鏡装置においては、得られる像の明るさに応じて照明光を自動的に調光し、最適な像の明るさで観察が行えるようになっている。したがって、1つのCCD6上に第1の対物光学系4及び第2の対物光学系5の像がそれぞれ同時に結像する場合、第1の対物光学系4及び第2の対物光学系5の明るさをそれぞれ1/Fm,1/Foとし、Fm/Fo<2、すなわち第2の対物光学系5の明るさを第1の対物光学系4の明るさの2倍以内に設定することにより、2つの画像に対して同時に最適な明るさが得られるとともに、ハレーションが回避されることとなる。
【0041】
しかしながら、例えば内視鏡装置によって体腔内を撮像する場合において、内視鏡装置の先端部3を体腔内の観察したい部位に導く際は、第2の対物光学系5の画像を見ながら行うことになるため、このとき、ある程度遠方まで明るく見えないと第2の体物光学系5がオリエンテーションとしての役割を果たせない。したがって、1<Fm/Foとなり、すなわち第2の対物光学系5は第1の対物光学系4よりも明るく設定されることとなる。
【0042】
また、図5に示すように、第1の対物光学系4及び第2の対物光学系5が平行に並んで配置され、第2の対物光学系5の光軸を結像範囲中心からずらして配置して、第1の対物光学系4の視野中心を被写界深度内において第2の対物光学系5の視野中心とほぼ一致させることにより、第1の対物光学系4及び第2の対物光学系5の組立作業を行う際、第1の対物光学系4及び第2の対物光学系5を保持する枠の構造を複雑にすることがないため、容易に組立てられる。
また、第2の対物光学系5の光軸のずらし量に応じて視野方向が傾くため、拡大観察を行いたい部位に第1の対物光学系4の画面を導く作業を容易な操作で行えるようになる。
【0043】
また、CCD6に近い位置に2つの切り通し部を有する視野マスク11を配置することにより、2つの対物光学系の視野周辺から視野外にかけての領域からCCD6に入射する光線が、それぞれ視野マスクで制限されるので、撮像素子の受光面上で互いの像に対してゴーストフレアなどの悪影響を与えることを防ぐことができる。
【0044】
上記の構成によれば、例えば内視鏡装置によって体腔内を撮像する場合、内視鏡の先端を体腔内に挿入する際のガイド用として、あるいは拡大観察を行いたい体腔内の部位に第1の対物光学系4の視野範囲を導くためのオリエンテーション用として第2の対物光学系5を用い、その第2の対物光学系5の拡大観察用として第1の対物光学系4を用いるのに適当な倍率となるとともに、第1の対物光学系4の被写界深度が狭くなることが回避され、第1の対物光学系4の実用上必要な被写界深度が得られることとなるので、拡大観察と通常観察とを同時に行うことができる。
【0045】
また、CCD6の画素ピッチP(μm)とすると、1.22×λ×Fmの値がモノクロのCCD6で1×P以上2.2×P以下、カラーのCCD6で1.5×P以上3.3×P以下となることにより、CCD6の画素数を生かして被写体の細部が鮮明に映し出されることとなるので、拡大観察と通常観察とを同時に行うことができる。
【0046】
また、第2の対物光学系5の明るさを第1の対物光学系4より明るく設定し、かつその明るさを2倍以内に設定することにより、2つの画像に対して同時に最適な明るさが得られるとともに、ハレーションが回避されることとなるので、高倍率と低倍率との明るさのバランスが取れていて、拡大観察と通常観察とを同時に行うことができる。
【0047】
第1の対物光学系4及び第2の対物光学系5の組立作業を行う際、第1の対物光学系4及び第2の対物光学系5を保持する枠の構造を複雑にすることがないため、容易に組立てられるので、煩雑な操作をすることなく拡大観察あるいは特殊光観察と通常観察とを同時に行うことができる。
また、第1の対物光学系4及び第2の対物光学系5の光軸のずらし量に応じて視野方向が傾くため、拡大観察を行いたい部位に第1の対物光学系4の画面を導く作業を容易な操作で行えるようになるので、2つの画像の視野中心のずれがなく拡大観察と通常観察とを同時に行うことができる。
【0048】
なお、上記実施の形態においては、第1の対物光学系4の内部あるいは後方に、赤外光観察用の可視光カットフィルタ、狭帯域光観察用のバンドパスフィルタ、もしくは蛍光観察用の励起光カットフィルタが設けられてもよい。これにより、従来の体腔内の観察に用いられる内視鏡装置のように、観察中に一旦特殊光観察用の内視鏡装置を体腔内から取り出して、通常光観察用として別の内視鏡装置を再度挿入し、あるいは光源の切替えを行うといった煩雑な操作を行うことなく、赤外光、狭帯域光、あるいは蛍光による特殊光観察により病変部を探しながら、通常光観察で同時に位置確認や処置を行い、あるいは特殊光観察による観察像と通常の白色光による像と対比させて観察することが可能となる。
【0049】
特に、第1の対物光学系4の後方に可視光の一部を遮断するフィルタを設けることで、例えばセンチネルリンパ管の観察を行う場合、組織にインドシアニングリーン(ICG)の注入を行い、第2の対物光学系5の通常光観察により観察を行いたい部位まで視野範囲を導き、第1の対物光学系4の近接拡大画面による赤外光観察にて、ICGが蓄積されたセンチネルリンパ節の同定を行い、第2の対物光学系5の通常光観察画面を見ながら必要な処置を行うといった操作を容易に行えるようになる。さらに、センチネルリンパ節を切除した後に切除部位周辺組織の蛍光観察を行い、病変組織の取り残しの有無を確認することが可能である。
【0050】
また、視野マスク11を、半導体製造プロセスで使用されるエッチング手法におけるブラックシリコン化処理を応用して製作してもよい。それによって、視野マスク11の表面の反射率をほぼゼロ%にすることが可能である。また、視野マスク11の表面に入射した光は全て吸収されるので、例えば撮像素子の受光面で反射して視野マスク11へ入射した光が、視野マスク11で反射して再び受光面に入射し、ゴーストフレアとなるのを防ぐことができる。
【0051】
【実施例】
本発明の内視鏡装置について、内視鏡1の先端部3に設けられた第1の対物光学系4及び第2の対物光学系5のデータ及び断面図を実施例として示す。以下の実施例における断面図については、第1の対物光学系4、第2の対物光学系5、及びカバーガラス10の構成のみ示すものとする。ただし、第1の対物光学系4の開口比Fm、第2の対物光学系5の開口比Fo、最大像高IH、各レンズ面の曲率半径R、各レンズの肉厚及びレンズ間隔D、d線での屈折率Nd、アッベ数Vd、波長λ=0.588(μm)とする。
【0052】
[実施例1]
図8は、本実施例の第1の対物光学系4、第2の対物光学系5及びカバーガラス10の構成を示す概略断面図である。
第1の対物光学系4は、3つのレンズ4a,4b,4cを備えている。また、第2の対物光学系5は、4つのレンズ5a,5b,5c,5dを備えている。さらに、カバーガラス10は、3つのカバーガラス10a,10b,10cを備えている。なお、カバーガラス10cの後方には、図示しないモノクロのCCDが設けられている。また、レンズ4bの後端には明るさ絞り4’が設けられ、レンズ5dの先端には明るさ絞り5’が設けられている。
このとき、表1に示すように、第1の対物光学系4の開口比Fm、第2の対物光学系5の開口比Fo、最大像高IH、各レンズ面の曲率半径R、各レンズの肉厚及びレンズ間隔D、d線での屈折率Nd、アッベ数Vdを設定すると、第1の対物光学系4の結像の大きさが、第2の対物光学系5の結像の大きさの2倍以上5倍未満となる。また、CCDがモノクロの場合、CCDの画素ピッチP(μm)、波長λ、第1の対物光学系4の開口比Fmとすると、
1×P<1.22×λ×Fm<2.2×P
となり、第1の対物光学系4の開口比Fm、第2の対物光学系5の開口比Foとすると、
1<Fm/Fo<2
となる。
【0053】
【表1】
Figure 2004350848
【0054】
【表2】
Figure 2004350848
【0055】
[実施例2]
図9は、本実施例の第1の対物光学系4、第2の対物光学系5及びカバーガラス10の構成を示す概略断面図である。
第1の対物光学系4は、4つのレンズ4a,4b,4c,4dを備えている。また、第2の対物光学系5は、5つのレンズ5a,5b,5c,5d,5eを備えている。さらに、カバーガラス10は、2つのカバーガラス10a,10bを備えている。なお、カバーガラス10bの後方には、図示しないカラーのCCDが設けられている。また、レンズ4bの後端には明るさ絞り4’が設けられ、レンズ5dの先端には明るさ絞り5’が設けられている。
このとき、表2に示すように、第1の対物光学系4の開口比Fm、第2の対物光学系5の開口比Fo、最大像高IH、各レンズ面の曲率半径R、各レンズの肉厚及びレンズ間隔D、d線での屈折率Nd、アッベ数Vdを設定すると、第1の対物光学系4の結像の大きさが、第2の対物光学系5の結像の大きさの2倍以上5倍未満となる。また、CCDがカラーの場合、CCDの画素ピッチP(μm)、波長λ、第1の対物光学系4の開口比Fmとすると、
1.5×P<1.22×λ×Fm<3.3×P
となり、第1の対物光学系4の開口比Fm、第2の対物光学系5の開口比Foとすると、
1<Fm/Fo<2
となる。
【0056】
【表3】
Figure 2004350848
【0057】
【表4】
Figure 2004350848
【0058】
[実施例3]
図10は、本実施例の第1の対物光学系4、第2の対物光学系5及びカバーガラス10の構成を示す概略断面図である。
第1の対物光学系4は、3つのレンズ4a,4b,4cを備えている。また、第2の対物光学系5は、3つのレンズ5a,5b,5cを備えている。さらに、カバーガラス10は、3つのカバーガラス10a,10b,10cを備えている。なお、カバーガラス10cの後方には、図示しないモノクロのCCDが設けられている。また、レンズ4aの後端には明るさ絞り4’が設けられ、レンズ5bの後端には明るさ絞り5’が設けられている。
このとき、表3に示すように、第1の対物光学系4の開口比Fm、第2の対物光学系5の開口比Fo、最大像高IH、各レンズ面の曲率半径R、各レンズの肉厚及びレンズ間隔D、d線での屈折率Nd、アッベ数Vdを設定すると、第1の対物光学系4の結像の大きさが、第2の対物光学系5の結像の大きさの2倍以上5倍未満となる。また、CCDがモノクロの場合、CCDの画素ピッチP(μm)、波長λ、第1の対物光学系4の開口比Fmとすると、
1×P<1.22×λ×Fm<2.2×P
となり、第1の対物光学系4の開口比Fm、第2の対物光学系5の開口比Foとすると、
1<Fm/Fo<2
となる。
なお、第2の対物光学系5の光軸を結像範囲中心からずらしており、これにより、第1の対物光学系4と第2の対物光学系5との視野中心を一致させている。このときの第1の対物光学系4及び第2の対物光学系5の光路図を図11に示す。
【0059】
【表5】
Figure 2004350848
【0060】
【表6】
Figure 2004350848
【0061】
[実施例4]
図12は、本実施例の第1の対物光学系4、第2の対物光学系5及びカバーガラス10の構成を示す概略断面図である。
第1の対物光学系4は、3つのレンズ4a,4b,4cを備えている。また、第2の対物光学系5は、4つのレンズ5a,5b,5c,5dを備えている。さらに、カバーガラス10は、5つのカバーガラス10a〜10eを備えている。なお、カバーガラス10cの後方には、図示しないモノクロのCCDが設けられている。また、第1の対物光学系4の後方のカバーガラス10d,10eは、赤外観察のための可視光カットフィルタの機能を有している。
カバーガラス10b,10c間及びカバーガラス10e,10c間には、視野マスク11が設けられている。また、レンズ4aの後端には明るさ絞り4’が設けられ、レンズ5bの後端には明るさ絞り5’が設けられている。
赤外観察の詳細については後述する。
このとき、表4に示すように、第1の対物光学系4の開口比Fm、第2の対物光学系5の開口比Fo、最大像高IH、各レンズ面の曲率半径R、各レンズの肉厚及びレンズ間隔D、d線での屈折率Nd、アッベ数Vdを設定すると、第1の対物光学系4の結像の大きさが、第2の対物光学系5の結像の大きさの2倍以上5倍未満となる。また、CCD6がモノクロの場合、CCD6の画素ピッチP(μm)、波長λ、第1の対物光学系4の開口比Fmとすると、
1×P<1.22×λ×Fm<2.2×P
となり、第1の対物光学系4の開口比Fm、第2の対物光学系5の開口比Foとすると、
1<Fm/Fo<2
となる。
【0062】
【表7】
Figure 2004350848
【0063】
【表8】
Figure 2004350848
【0064】
[実施例5]
図13は、本実施例の第1の対物光学系4、第2の対物光学系5及びカバーガラス10の構成を示す概略断面図である。
第1の対物光学系4は、7つのレンズ4a〜4gを備えている。また、第2の対物光学系5は、6つのレンズ5a〜5fを備えている。さらに、カバーガラス10は、2つのカバーガラス10a,10bを備えている。なお、カバーガラス10bの後方には、図示しないカラーのCCDが設けられている。また、レンズ4dは、蛍光観察のための励起光カットフィルタの機能を有している。
カバーガラス10a,10b間には、2つの切り通し部を有する視野マスク11が配置されている。また、レンズ4dの後端には明るさ絞り4’が設けられ、レンズ5cの後端には明るさ絞り5’が設けられている。
このとき、表5に示すように、第1の対物光学系4の開口比Fm、第2の対物光学系5の開口比Fo、最大像高IH、各レンズ面の曲率半径R、各レンズの肉厚及びレンズ間隔D、d線での屈折率Nd、アッベ数Vdを設定すると、第1の対物光学系4の結像の大きさが、第2の対物光学系5の結像の大きさの2倍以上5倍未満となる。また、CCD6がカラーの場合、CCD6の画素ピッチP(μm)、波長λ、第1の対物光学系4の開口比Fmとすると、
1.5×P<1.22×λ×Fm<3.3×P
となり、第1の対物光学系4の開口比Fm、第2の対物光学系5の開口比Foとすると、
1<Fm/Fo<2
となる。
【0065】
【表9】
Figure 2004350848
【0066】
【表10】
Figure 2004350848
【0067】
ここで、赤外観察について以下に説明する。
赤外観察では、照明光として680nmから1100nmの赤外波長範囲から任意の狭い波長範囲の光を選び、これを生体組織へ照射することによって、生体組織の粘膜下層からの情報を取得することができる。生体組織の粘膜下層付近には比較的太い血管やリンパ管が存在する。そこで、近赤外光に吸収ピークをもつインドシアニングリーン(ICG)などを造影剤として上記血管やリンパ管に注入し、上記血管やリンパ管に陰影をつけることでこれらを明瞭に観察することができる。
【0068】
例えば、センチネルリンパ節の同定および切除は、赤外観察画像を観察しながら内視鏡的に行うことができる。すでに述べたように、センチネルリンパ節は、癌などの病変からのリンパ液が流れ込んで、最初の微小転移が生じる場所であり、更に体内の別の場所への転移はセンチネルリンパ節を基点として起こるといわれている。つまり、センチネルリンパ節を調べれば、その症例のリンパ節転移状況を把握できる。また、早期癌の場合には、内視鏡下で病変部付近のセンチネルリンパ節を同定し、病変部とともにセンチネルリンパ節まで含めて切除することで、体内の別の場所への転移を防ぐことができる。
【0069】
センチネルリンパ節の切除では、その付近を走行する血管を誤って傷つけて出血させないように、リンパ管と血管が明瞭に区別できるような赤外観察画像を提供する必要がある。本実施例の変形例として、ICGの吸収ピーク波長である805nm付近の近赤外光と、ICGの吸収率の低い930nm付近の近赤外光と、静脈血に含まれる酸化ヘモグロビンの吸収波長である550nm付近の可視光とを照明光として病変部付近の生体組織に照射し、生体組織からの反射光を撮像してリンパ管内のICGと血管の分布をそれぞれ擬似的に着色して表示するようにしたものを以下に示す。
【0070】
図14に酸化ヘモグロビン(HbO)の吸光特性を示した。これによると、酸化ヘモグロビンは550nm付近の可視光を大きく吸収するのに比べて、805nmおよび930nm付近の光の吸収は少なく、しかも805nmおよび930nm付近ではほぼ同じような吸光特性を示すことがわかる。一方、ICGは体内において、805nm付近の近赤外光を大きく吸収するのに比べて、550nmおよび930nm付近の光をほとんど吸収しない。そこで、画像処理する時点で上記3つの波長の光に対してそれぞれ青色、緑色、赤色を擬似的に割り当て、撮像素子の受光強度に応じて混色して画像表示することによって、リンパ管と血管を異なる色調として明瞭に区別できる赤外観察画像を提供することができる。
【0071】
この場合、光源装置は内視鏡の照明ユニットを通して図15に示した波長範囲の光を被写体に向けて順番に繰り返し照明する。図15の分光強度曲線Aは可視領域に属する550nmを中心として半値幅で30nmの波長範囲の照明光である。また、分光強度曲線Bは近赤外領域に属する790nmから820nmの波長範囲の照明光である。また、分光強度曲線Cは近赤外領域に属する920nmから950nmの波長範囲の照明光である。
【0072】
光源装置の光学系の構成を図16に示した。上記光学系は、ランプ100の開口窓の像を縮小して投影するレンズ系101aと、前記ランプの光束を内視鏡のライトガイド入射端面102に集光するレンズ系101bから構成されている。ランプ100から上記レンズ系を通って内視鏡のライトガイド入射端面102に至るまでの光路中に設置されたターレット103と回転ディスク104がそれぞれ配置されている。
【0073】
ターレット103および回転ディスク104には数種類の光学フィルタが取付けられており、ターレット103および回転ディスク104が光源光学系の光軸に対して垂直な面にそって移動し、かつ光軸に平行な回転軸を中心にして回転することによって、光源光学系の光束中に光学フィルタを挿入するようになっている。赤外光観察時にはターレット103が回転して図17の光学フィルタ111が光路中に挿入される。また、回転ディスク104が移動して上記回転ディスクの外周部が光路中に挿入される。そして、上記回転ディスクが回転して、外周部に取付けられた図17の光学フィルタ115、116、117が一定の周期で繰り返し挿入される。
【0074】
図17の光学フィルタ111は、535nmから565nmと790nmから950nmの透過範囲を持つフィルタである。また、図18の光学フィルタ115は、385nmから495nmの透過範囲を持ち、かつ920nm以上の光を透過するフィルタであり、光学フィルタ115が光路中に挿入されているときには、920nmから950nmの波長範囲の赤外領域の照明光が生成される。
【0075】
図18の光学フィルタ116は、500nmから575nmの透過範囲を持つフィルタであり、光学フィルタ116が光路中に挿入されているときには、535nmから565nmの波長範囲の可視領域の照明光が生成される。
図18の光学フィルタ117は、585nmから655nmの透過範囲を持ち、かつ745nmから820nmの透過範囲をもつフィルタであり、光学フィルタ117が光路中に挿入されているときには、790nmから820nmの波長範囲の赤外領域の照明光が生成される。
また、内視鏡の高倍側の対物光学系には、図19の光学フィルタ130が配置されている。光学フィルタ130は500nmより長波長側の光を透過する特性をもつフィルタである。したがって、生体組織を反射した上記3種類の波長範囲の照明光は、対物光学系を通して撮像素子の撮像面に到達する。
【0076】
上記の内視鏡は、内視鏡下で病変部とその付近のセンチネルリンパ節を切除した後にそれらが確実に除去できているかどうかを確認するために、切除された部分に励起光を照射して生体組織の自家蛍光を観察することもできる。正常な生体組織が発する蛍光の分光強度分布と癌などの病変部が発する蛍光の分光強度分布を比較すると、上記病変部の生体組織が発する蛍光の強度が相対的に低下することが知られている。
【0077】
そこで、上記のような蛍光強度の差を利用して生体組織から病変部分を分離して表示するようにビデオプロセッサで画像処理した蛍光画像を観察することで病変の取り残しの有無を確認することができる。この場合、光源装置のターレット103が回転して図17の光学フィルタ112が光路中に挿入される。光学フィルタ112は440nmより短波長側の光を透過する特性をもつフィルタであり、回転ディスク104に取付けられた光学フィルタ115が光路中に挿入されたときに、385nmから440nmの波長範囲の励起光が生成される。上記励起光によって、生体組織は510nm付近に強度ピークを持つ蛍光を発するので、内視鏡の高倍側の対物光学系は、励起光をカットして生体組織の自家蛍光のみを撮像素子の撮像面に到達させることができる。
【0078】
一方、内視鏡の低倍側の対物光学系には、図19の光学フィルタ131が配置されている。図19の光学フィルタ131は、455nmから680nmの波長範囲の光を透過する特性をもつフィルタである。このため、低倍側の対物光学系を通して励起光が撮像素子の撮像面に到達することはない。通常観察時には、光源装置のターレット103が回転して図17の光学フィルタ113が光路中に挿入される。
【0079】
図17の光学フィルタ113は、390nmから695nmの透過範囲をもつバンドパスフィルタであり、図18の光学フィルタ115、116、117と組み合わされて、385nmから495nmの青色光、500nmから575nmの緑色光、585nmから655nmの赤色光がそれぞれ生成される。したがって、生体組織を反射した青色光は、対物光学系を通して455nmから495nmの波長成分の光のみが撮像素子の撮像面に到達する。
なお、光学フィルタの透過特性を表す場合、透過率T=50%となる波長λとλ2を使って、λからλの透過範囲をもつバンドパスフィルタとかλ以上の光を透過するフィルタとかλからλの光をカットするフィルタのように表した。
【0080】
【発明の効果】
以上説明したこの発明の内視鏡装置においては、以下の効果を奏する。
請求項1に係る発明によれば、例えば内視鏡装置によって体腔内を撮像する場合、内視鏡の先端を体腔内に挿入する際のガイド用として、あるいは拡大観察を行いたい体腔内の部位に第1の対物光学系の視野範囲を導くためのオリエンテーション用として第2の対物光学系を用い、その第2の対物光学系の拡大観察用として第1の対物光学系を用いるのに適当な倍率となるとともに、第1の対物光学系の被写界深度が狭くなることが回避され、第1の対物光学系の実用上必要な被写界深度が得られることとなるので、拡大観察と通常観察とを同時に行うことができる。
【0081】
請求項2に係る発明によれば、固体撮像素子の画素ピッチP(μm)とすると、1.22×λ×Fmの値がモノクロの固体撮像素子で1×P以上2.2×P以下となることにより、固体撮像素子の画素数を生かして被写体の細部が鮮明に映し出されることとなるので、拡大観察と通常観察とを同時に行うことができる。
【0082】
請求項3に係る発明によれば、固体撮像素子の画素ピッチP(μm)とすると、1.22×λ×Fmの値がカラーの固体撮像素子で1.5×P以上3.3×P以下となることにより、固体撮像素子の画素数を生かして被写体の細部が鮮明に映し出されることとなるので、拡大観察と通常観察とを同時に行うことができる。
【0083】
請求項4に係る発明によれば、第2の対物光学系の明るさを第1の対物光学系より明るく設定され、かつその明るさを2倍以内に設定することにより、2つの画像に対して同時に最適な明るさが得られるとともに、ハレーションが回避されることとなるので、高倍率と低倍率との明るさのバランスが取れていて、拡大観察と通常観察とを同時に行うことができる。
【0084】
請求項5に係る発明によれば、第1及び第2の対物光学系の組立作業を行う際、第1及び第2の対物光学系を保持する枠の構造を複雑にすることがないため、容易に組立てられるので、煩雑な操作をすることなく拡大観察あるいは特殊光観察と通常観察とを同時に行うことができる。
また、第1及び第2の対物光学系の光軸のずらし量に応じて視野方向が傾くため、拡大観察を行いたい部位に第1の対物光学系の画面を導く作業を容易な操作で行えるようになるので、2つの画像の視野中心のずれがなく拡大観察と通常観察とを同時に行うことができる。
【0085】
請求項6に係る発明によれば、従来の体腔内の観察に用いられる内視鏡装置のように、観察中に一旦特殊光観察用の内視鏡装置を体腔内から取り出して、通常光観察用として別の内視鏡装置を再度挿入し、あるいは光源の切替えを行うといった煩雑な操作を行うことなく、赤外光、狭帯域光、あるいは蛍光による特殊光観察により病変部を探しながら、通常光観察で同時に位置確認や処置を行い、あるいは特殊光観察による観察像と通常の白色光による像と対比させて観察することが可能となるので、煩雑な操作をすることなく特殊光観察と通常観察とを同時に行うことができる。
【0086】
請求項7に係る発明によれば、2つの対物光学系の視野周辺から視野外にかけての領域から固体撮像素子に入射する光線が、それぞれ視野マスクで制限されるので、撮像素子の受光面上で互いの像に対してゴーストフレアなどの悪影響を与えることを防いで拡大観察あるいは特殊光観察と通常観察とを同時に行うことができる。
【図面の簡単な説明】
【図1】本発明における実施の形態に係る内視鏡装置の部分側面図である。
【図2】本発明における実施の形態に係る内視鏡装置の先端部の部分断面図である。
【図3】本発明における実施の形態に係る視野マスクの一例を示す図である。
【図4】本発明における実施の形態に係る固体撮像素子とその結像領域を示す図である。
【図5】本発明における実施の形態に係る内視鏡装置の先端部の部分断面図である。
【図6】本発明における実施の形態に係る内視鏡装置によって光軸と結像範囲中心とを一致させて撮像された視野範囲の概念図である。
【図7】本発明における実施の形態に係る内視鏡装置によって光軸を結像中心からずらして撮像された視野範囲の概念図である。
【図8】本発明における実施例1に係る内視鏡装置に備えられた対物光学系の概略断面図である。
【図9】本発明における実施例2に係る内視鏡装置に備えられた対物光学系の概略断面図である。
【図10】本発明における実施例3に係る内視鏡装置に備えられた対物光学系の概略断面図である。
【図11】本発明における実施例3に係る内視鏡装置に備えられた対物光学系の光路図である。
【図12】本発明における実施例4に係る内視鏡装置に備えられた対物光学系の概略断面図である。
【図13】本発明における実施例5に係る内視鏡装置に備えられた対物光学系の概略断面図である。
【図14】本発明における実施例4に係る赤外観察における酸化ヘモグロビンの吸光特性を示す図である。
【図15】本発明における実施例4に係る赤外観察における分光強度曲線を示す図である。
【図16】本発明における実施例4に係る赤外観察における光源装置の光学系の構成を示す図である。
【図17】本発明における実施例4に係る赤外観察における分光強度曲線を示す図である。
【図18】本発明における実施例4に係る赤外観察における分光強度曲線を示す図である。
【図19】本発明における実施例4に係る赤外観察における分光強度曲線を示す図である。
【符号の説明】
1 内視鏡
2 挿入部
3 先端部
4 第1の対物光学系
5 第2の対物光学系
6 CCD(固体撮像素子)

Claims (7)

  1. 第1の対物光学系及び前記第1の対物光学系より低倍率である第2の対物光学系からなる2つの対物光学系と、1つの固体撮像素子とを備え、前記第1の対物光学系あるいは前記第2の対物光学系の前方にある被写体を前記第1の対物光学系あるいは前記第2の対物光学系を介して前記固体撮像素子の各々異なる領域に結像して、前記第1の対物光学系の視野範囲が前記第2の対物光学系の視野範囲内に含まれ若しくはそれらの視野範囲が重なっている内視鏡装置であって、
    前記固体撮像素子上における前記第1の対物光学系の結像の大きさが、前記固体撮像素子上における前記第2の対物光学系の結像の大きさの2倍以上5倍未満の条件を満たすことを特徴とする内視鏡装置。
  2. 前記固体撮像素子がモノクロの場合、前記固体撮像素子の画素ピッチP(μm)、波長λ(μm)、前記第1の対物光学系の開口比Fmとすると、
    1×P<1.22×λ×Fm<2.2×P
    の条件を満たすことを特徴とする請求項1記載の内視鏡装置。
  3. 前記固体撮像素子がカラーの場合、前記固体撮像素子の画素ピッチP(μm)、波長λ(μm)、前記第1の対物光学系の開口比Fmとすると、
    1.5×P<1.22×λ×Fm<3.3×P
    の条件を満たすことを特徴とする請求項1記載の内視鏡装置。
  4. 前記第1の対物光学系の開口比Fm、前記第2の対物光学系の開口比Foとすると、
    1<Fm/Fo<2
    の条件を満たすことを特徴とする請求項2または3記載の内視鏡装置。
  5. 前記2つの対物光学系が平行に並んで配置され、前記2つの対物光学系の少なくとも一方の光軸を結像範囲中心からずらして配置して、前記第1の対物光学系の視野中心と前記第2の対物光学系の視野中心とを被写界深度内においてほぼ一致させることを特徴とする請求項1から4のいずれかに記載の内視鏡装置。
  6. 前記第1の対物光学系あるいは前記第2の対物光学系の内部あるいは後方には、赤外光観察用の可視光カットフィルタ、狭帯域光観察用のバンドパスフィルタ、もしくは蛍光観察用の励起光カットフィルタが設けられていることを特徴とする請求項1から5のいずれかに記載の内視鏡装置。
  7. 前記固体撮像素子に近傍に2つの切り通し部を有する視野マスクが配置されていることを特徴とする請求項6記載の内視鏡装置。
JP2003151023A 2003-05-28 2003-05-28 内視鏡装置 Expired - Fee Related JP4184156B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003151023A JP4184156B2 (ja) 2003-05-28 2003-05-28 内視鏡装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003151023A JP4184156B2 (ja) 2003-05-28 2003-05-28 内視鏡装置

Publications (2)

Publication Number Publication Date
JP2004350848A true JP2004350848A (ja) 2004-12-16
JP4184156B2 JP4184156B2 (ja) 2008-11-19

Family

ID=34046662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003151023A Expired - Fee Related JP4184156B2 (ja) 2003-05-28 2003-05-28 内視鏡装置

Country Status (1)

Country Link
JP (1) JP4184156B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005110201A1 (ja) * 2004-05-14 2005-11-24 Olympus Corporation 内視鏡および内視鏡装置
JP2008012213A (ja) * 2006-07-10 2008-01-24 Pentax Corp 拡大観察用内視鏡
JP2008012211A (ja) * 2006-07-10 2008-01-24 Pentax Corp 拡大観察用内視鏡装置
WO2017073292A1 (ja) * 2015-10-29 2017-05-04 オリンパス株式会社 内視鏡撮像ユニット
WO2018167969A1 (ja) * 2017-03-17 2018-09-20 株式会社島津製作所 イメージング装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005110201A1 (ja) * 2004-05-14 2005-11-24 Olympus Corporation 内視鏡および内視鏡装置
US7789823B2 (en) 2004-05-14 2010-09-07 Olympus Corporation Endoscope and endoscope apparatus
JP2008012213A (ja) * 2006-07-10 2008-01-24 Pentax Corp 拡大観察用内視鏡
JP2008012211A (ja) * 2006-07-10 2008-01-24 Pentax Corp 拡大観察用内視鏡装置
WO2017073292A1 (ja) * 2015-10-29 2017-05-04 オリンパス株式会社 内視鏡撮像ユニット
JPWO2017073292A1 (ja) * 2015-10-29 2018-01-11 オリンパス株式会社 内視鏡撮像ユニット
WO2018167969A1 (ja) * 2017-03-17 2018-09-20 株式会社島津製作所 イメージング装置
JPWO2018167969A1 (ja) * 2017-03-17 2019-11-21 株式会社島津製作所 イメージング装置

Also Published As

Publication number Publication date
JP4184156B2 (ja) 2008-11-19

Similar Documents

Publication Publication Date Title
JP4855728B2 (ja) 照明装置及び観察装置
US9345389B2 (en) Additional systems and methods for providing real-time anatomical guidance in a diagnostic or therapeutic procedure
EP1149591B1 (en) Sentinel lymph node detection method and system therefor
JP4147033B2 (ja) 内視鏡装置
JP4054222B2 (ja) 内視鏡装置用光源装置
JP3621704B2 (ja) 光力学的診断用装置
JP6057921B2 (ja) 生体観察装置
US20060247537A1 (en) Endoscope apparatus
US20080027286A1 (en) Removable Filter Apparatus and Endoscope Apparatus
WO2011007435A1 (ja) 開口絞り
WO1999001749A1 (en) Fluorescence imaging system
JPH10295633A (ja) 内視鏡観察装置
JP2007311114A (ja) 白色光を発する固体発光素子を用いた照明光学系、及びそれを備えた光学装置
JP2006068488A (ja) カプセル内視鏡
CN103857322B (zh) 内窥镜系统
JP2000097859A (ja) 蛍光観察方法及び装置
JP2007125245A (ja) 蛍光内視鏡装置及び体腔内残渣検出方法
WO2019176253A1 (ja) 医療用観察システム
CN105852784A (zh) 一种多谱医用内窥镜镜头及系统
JP4184156B2 (ja) 内視鏡装置
JP3619801B2 (ja) 内視鏡用撮像装置
JP4409322B2 (ja) 内視鏡及びビデオシステム
CA3040851A1 (en) Multi-wavelength endoscopic system and image processing method using same
JP2008086680A (ja) Pdt用内視鏡
JP3535609B2 (ja) 眼底カメラ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees