JP2004350403A - スイッチング電源装置 - Google Patents

スイッチング電源装置 Download PDF

Info

Publication number
JP2004350403A
JP2004350403A JP2003144280A JP2003144280A JP2004350403A JP 2004350403 A JP2004350403 A JP 2004350403A JP 2003144280 A JP2003144280 A JP 2003144280A JP 2003144280 A JP2003144280 A JP 2003144280A JP 2004350403 A JP2004350403 A JP 2004350403A
Authority
JP
Japan
Prior art keywords
voltage
power supply
switching power
transformer
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003144280A
Other languages
English (en)
Inventor
Saburo Kitano
三郎 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2003144280A priority Critical patent/JP2004350403A/ja
Publication of JP2004350403A publication Critical patent/JP2004350403A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

【課題】直流安定電圧を供給する電子機器に適した値の直流安定電圧を出力することができるとともに直流安定電圧の設定値を低くしても最大出力電力の低下を抑えることができるスイッチング電源装置を提供する。
【解決手段】トランス19が複数の二次巻き線19b及び19cを有する。
そして、トランジスタ20が、複数の二次巻き線19b及び19cと変換回路(高電圧用整流ダイオード8a、低電圧用整流ダイオード8b、及びコンデンサ11によって構成される回路)との導通状態を、巻き線切替制御ターミナル22aに入力される外部制御信号に応じて切り替える。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、直流安定電圧を出力するスイッチング電源装置に関するものである。
【0002】
【従来の技術】
従来の一般的なスイッチング電源装置では出力電圧の値が固定されているため、特定の定格電圧の電子機器にしか対応することができなかった。このため、定格電圧が異なる電子機器毎に出力電圧の値の異なるスイッチング電源装置が必要であった。
【0003】
このような問題を解決するスイッチング電源装置、すなわち定格電圧が異なる電子機器に対して、それぞれの電子機器の定格電圧に対応した直流安定電圧を出力することができるスイッチング電源装置に関する特許出願が本出願人によって先になされている(特願2002−27677号、特願2002−129658号)。
【0004】
上記先行出願(特願2002−27677号)に係る発明は、出力電圧を抵抗分割回路で分圧することにより作成した参照電圧と基準電圧とを比較し、この比較結果に基づいてトランスの一次巻き線に直列接続されるスイッチング素子のスイッチングタイミングを制御することによって出力電圧を安定化制御するスイッチング電源装置において、抵抗分割回路の一部又は全部を外部抵抗によって構成するとともに外部抵抗に接続される外部抵抗接続用ターミナルを設ける。かかるスイッチング電源装置では、外部抵抗接続用ターミナルに接続される外部抵抗を変えることによって、抵抗分割回路の分割比を変更することができ、直流安定電圧を供給する電子機器に適した値の直流安定電圧を出力することが可能となる。
【0005】
また、上記先行出願(特願2002−129658号)に係る発明は、出力電圧を抵抗分割回路で分圧することにより作成した参照電圧と基準電圧とを比較し、この比較結果に基づいてトランスの一次巻き線に直列接続されるスイッチング素子のスイッチングタイミングを制御することによって出力電圧を安定化制御するスイッチング電源装置において、出力コネクタにスイッチを備える。かかるスイッチング電源装置では、直流安定電圧の供給先である電子機器がスイッチング電源装置の出力コネクタに備えられたスイッチの状態を制御することによって、抵抗分割回路の分割比を変更することができ、直流安定電圧を供給する電子機器に適した値の直流安定電圧を出力することが可能となる。
【0006】
上記先行出願の二つの発明によると、抵抗分割回路の分割比を変更することで、直流安定電圧を供給する電子機器に適した値の直流安定電圧を出力するスイッチング電源装置を実現することができる。
【0007】
上記先行出願のいずれかの発明をフライバック方式スイッチング電源装置に適用した場合のスイッチング電源装置の構成例を図5に示す。商用交流電源1から出力される交流電圧が全波整流回路2及びコンデンサ3により整流且つ平滑されて直流電圧に変換される。そして、その直流電圧がトランス7の一次巻き線7aとスイッチング素子であるNチャネルMOSFET6とによって構成される直列回路に供給される。スイッチング制御回路4は、MOSFET6のゲートに駆動信号を供給することによってMOSFET6をスイッチング制御する。MOSFET6がスイッチングされると、トランス7の一次巻き線7aとMOSFET6とによって構成される直列回路に供給される直流電圧が交流電圧に変換されてトランス7の一次巻き線7aに供給され、トランスの二次巻き線7bに誘起電圧が発生する。この誘起電圧がダイオード8及びコンデンサ11によって整流且つ平滑されて直流電圧Voに変換され、正極性出力ターミナル12及び負極性出力ターミナル13を介して電子機器(図示せず)に供給される。
【0008】
抵抗分割回路10は、スイッチング電源装置の正極性出力ターミナル12−負極性出力ターミナル13間の電圧Voを分圧して参照電圧を作成して、その参照電圧を出力電圧検出回路9に送出する。出力電圧検出回路9は、参照電圧と内蔵する基準電圧源によって生成される基準電圧とを比較し、その比較情報をフォトカプラ等の絶縁回路5を介してスイッチング制御回路4に伝送する。スイッチング制御回路4は、上記比較情報に基づいてMOSFET6のスイッチングタイミングを制御する。これにより、スイッチング電源装置の出力電圧Voが、抵抗分割回路10の分割比及び出力電圧検出回路9の基準電圧に基づいた値に安定化される。
【0009】
次に、上記先行出願のいずれかの発明をフォワード方式スイッチング電源装置に適用した場合のスイッチング電源の構成例を図8に示す。尚、図8において図5と同一の部分には同一の符号を付す。商用交流電源1から出力される交流電圧が全波整流回路2及びコンデンサ3により整流且つ平滑されて直流電圧に変換される。そして、その直流電圧がトランス18の一次巻き線18aとMOSFET6とによって構成される直列回路に供給される。スイッチング制御回路4は、MOSFET6のゲートに駆動信号を供給することによってMOSFET6をスイッチング制御する。MOSFET6のオン期間において、トランス18の二次巻き線18bの巻き始め端子から、ダイオード8及びフライホイルチョークコイル17を介してコンデンサ11に電流が供給される。一方、MOSFET6のオフ期間において、MOSFET6のオン期間中にフライホイルチョークコイル17に蓄積された励磁エネルギーが放出されることにより、フライホイルチョークコイル17からコンデンサ11及びフライホイルダイオード16を通ってフライホイルチョークコイル17に戻る経路を電流が流れ、コンデンサ11が充電される。そして、コンデンサ11の両端電圧Voが、正極性出力ターミナル12及び負極性出力ターミナル13を介して電子機器(図示せず)に供給される。
【0010】
抵抗分割回路10は、スイッチング電源装置の正極性出力ターミナル12−負極性出力ターミナル13間の電圧Voを分圧して参照電圧を作成して、その参照電圧を出力電圧検出回路9に送出する。出力電圧検出回路9は、参照電圧と内蔵する基準電圧源によって生成される基準電圧とを比較し、その比較情報をフォトカプラ等の絶縁回路5を介してスイッチング制御回路4に伝送する。スイッチング制御回路4は、上記比較情報に基づいてMOSFET6のスイッチングタイミングを制御する。これにより、スイッチング電源装置の出力電圧Voが、抵抗分割回路10の分割比及び出力電圧検出回路9の基準電圧に基づいた値に安定化される。
【0011】
尚、図5及び図8において、抵抗分割回路10を構成する一方の抵抗10bを可変抵抗として抵抗分割回路10の分割比が可変であることを示したが、抵抗分割回路10の分割比が可変であれば他の構成でも構わない。例えば抵抗10bを先行出願(特願2002−27677号)のように外部抵抗にしてもよく、抵抗分割回路10を構成する全ての抵抗が可変抵抗であってもよい。
【0012】
【特許文献1】
特開平3−225403号公報
【0013】
【発明が解決しようとする課題】
しかしながら、図5及図8のスイッチング電源装置のいずれにおいても、出力電圧Voの設定値が低くなるに従って最大出力電力が減少するので、要求される出力電圧設定可変範囲が広い場合、出力電圧の設定を下限にすると最大出力電力が低くなりすぎるという問題があった。
【0014】
例えば、図5に示すフライバック方式スイッチング電源装置が具備するスイッチング制御回路4が、RCC(Ringing Choke Converter)方式にてMOSFET6をスイッチング制御している場合、その要部電流波形のタイムチャートは図6のようになる。図6(a)は、RCC方式にてスイッチング制御される図5のスイッチング電源装置の出力電圧Voが比較的高い値に設定されている場合におけるMOSFET6のドレイン電流IQ1とダイオード8を流れる電流ID2のタイムチャートを示し、図6(b)は、RCC方式にてスイッチング制御される図5のスイッチング電源装置の出力電圧Voが比較的低い値に設定されている場合におけるMOSFET6のドレイン電流IQ1とダイオード8を流れる電流ID2のタイムチャートを示している。
【0015】
RCC方式にてスイッチング制御される図5のスイッチング電源装置は、MOSFET6のオン期間TonにMOSFET6のドレイン電流IQ1が直線的に増加してトランス7に励磁エネルギーを蓄積し、MOSFET6のオフ期間Toffにトランス7からダイオード8を介してコンデンサ11に充電電流が流れることによりトランス7に蓄積されていた励磁エネルギーが放出され、当該充電電流が零になると、トランス7の帰還巻き線(図5のおいて図示せず)に発生するリンギングパルスによりMOSFET6を再度オンさせる動作を繰り返す。
【0016】
以上の通り動作するRCC方式にてスイッチング制御される図5のスイッチング電源装置の最大出力電力Pmaxは、下記(1)式により求められる。ただし、下記(1)式において、Lはトランス7の一次巻き線7aのインダクタンスを、IQ1PはMOSFET6のドレイン電流のピーク値(図6参照)を、Fはスイッチング周波数を、Kはスイッチング電源装置の電力変換効率をそれぞれ示している。
【数1】
Figure 2004350403
【0017】
MOSFET6のドレイン電流のピーク値IQ1Pは、トランス7およびMOSFET6等の電流定格により一定値以下に制限されている。トランス7の一次巻き線7aのインダクタンスLはトランス固有のものであるため固定値である。スイッチング電源装置の電力変換効率Kは、スイッチング電源装置の出力電圧Voの設定値の影響を受け多少変化するものの、その変動幅が小さく略一定とみなすことができる。トランス7に蓄積されていた励磁エネルギーが放出される期間すなわちMOSFET6のオフ期間Toffは、スイッチング電源装置の出力電圧Voの設定値が低くなるに従って長くなる特性があり、これに伴ってスイッチング周波数Fも低くなる。したがって、上記(1)式から明らかなように、RCC方式にてスイッチング制御される図5のスイッチング電源装置の最大出力電力Pmaxは、スイッチング電源装置の出力電圧Voの設定値が低下するに従って減少する。
【0018】
また、図5に示すフライバック方式スイッチング電源装置が具備するスイッチング制御回路4が、PWM(Pulse Width Modulation)方式にてMOSFET6をスイッチング制御している場合、その要部電流波形のタイムチャートは図7のようになる。図7(a)は、PWM方式にてスイッチング制御される図5のスイッチング電源装置の出力電圧Voが比較的高い値に設定されている場合におけるMOSFET6のドレイン電流IQ1とダイオード8を流れる電流ID2を示し、図7(b)は、PWM方式にてスイッチング制御される図5のスイッチング電源装置の出力電圧Voが比較的低い値に設定されている場合におけるMOSFET6のドレイン電流IQ1とダイオード8を流れる電流ID2を示している。
【0019】
PWM方式にてスイッチング制御される図5のスイッチング電源装置の出力電圧Voが比較的高い値に設定されている場合、図7(a)に示すように、ダイオード8を流れる電流ID2は、MOSFET6のオフ期間Toff中に急峻に降下するため、次回のMOSFET6のオン期間Tonに切り替わるタイミングまでに零となり、オフ期間Toffにおける波形は三角形の体を成す。ダイオード8を流れる電流ID2のオフ期間Toffにおける波形が三角形の状態で動作している限りにおいて、スイッチング電源装置の最大出力電力Pmaxは上述の(1)式と同一の式にて求められ、PWM方式ではスイッチング周波数Fが固定であることから、出力電圧Voを低い値に設定してもスイッチング電源装置の最大出力電力Pmaxはほとんど低下しない。
【0020】
しかし、更に出力電圧Voを低い値に設定すると、図7(b)に示すとおり、ダイオード8を流れる電流ID2がMOSFET6のオフ期間Toff中に緩やかに降下するため、次回のMOSFET6のオン期間Tonに切り替わるタイミングまでに零に到達しなくなり、MOSFET6のドレイン電流IQ1のオン期間Tonにおける波形及びダイオード8を流れる電流ID2のオフ期間Toffにおける波形は台形の体を成すようになる。ダイオード8を流れる電流ID2のオフ期間Toffにおける波形が台形の状態で動作している場合のスイッチング電源装置の最大出力電力Pmaxは、下記(2)式にて求められる。ただし、下記(2)式において、Lはトランス7の一次巻き線7aのインダクタンスを、IQ1PはMOSFET6のドレイン電流のピーク値(図7参照)を、Fはスイッチング周波数を、Kはスイッチング電源装置の電力変換効率を、IはMOSFET6がオンした瞬間におけるMOSFET6のドレイン電流値(図7参照)をそれぞれ示している。
【数2】
Figure 2004350403
【0021】
ダイオード8を流れる電流ID2のオフ期間Toffにおける波形が台形の状態で動作している場合、スイッチング電源装置の出力電圧Voを低く設定するに従ってダイオード8を流れる電流ID2のオフ期間Toff中における降下勾配が更に緩やかになるるため、電流Iが大きくなる。また、上述のとおり、MOSFET6のドレイン電流のピーク値IQ1Pが、トランス7およびMOSFET6等の電流定格により、一定値以下に制限される。したがって、スイッチング電源装置の最大出力電力Pmaxは、スイッチング電源装置の出力電圧Voの設定値が低下するに従って減少することになる。この問題を解決する手法として、トランス7の二次巻き線7bの巻き数を減らし、MOSFET6のオフ期間Toff中にダイオード8を流れる電流ID2を急峻に降下させる方法もあるが、この方法を採用すると一次巻き線7aの巻き数Nと二次巻き線7bの巻き数Nとの巻き数比N/Nが大きくなる。MOSFET6のソース−ドレイン間電圧EDSは下記(3)式により求められ、一次巻き線7aの巻き数Nと二次巻き線7bの巻き数Nとの巻き数比N/Nが大きくなるに伴って大きくなる。ただし、下記(3)式において、EACは商用交流電源1の電圧値(実効値)を、Nはトランスの一次巻き線の巻き数を、Nはトランスの二次巻き線の巻き数を、Voはスイッチング電源装置の出力電圧をそれぞれ示している。
【数3】
Figure 2004350403
【0022】
このようにトランス7の二次巻き線7bの巻き数を減らすと、オフ期間ToffにMOSFET6のドレイン−ソース間に高電圧が印加されることになり、MOSFET6に高耐圧のものを用いなければならない。そして、一般に高耐圧のMOSFETはオン時の導通抵抗値が大きくなる特性を有することから、電力変換効率Kの劣化をきたすことになる。また、トランス7の二次巻き線7bの巻き数Nを減らすと、トランス7の二次巻き線電流のピーク電流値が大きくなり、これも電力変換効率Kが低下する要因となる。
【0023】
また、図8に示すフォワード方式スイッチング電源装置の最大出力電力Pmaxは、概略下記(4)式にて求められる。ただし、下記(4)式において、IQ1PはMOSFET6のドレイン電流のピーク値を、Nはトランス18の一次巻き線18aの巻き数を、Nはトランス18の二次巻き線18bの巻き数を、Voはスイッチング電源装置の出力電圧を、Kはスイッチング電源装置の電力変換効率をそれぞれ示している。
【数4】
Figure 2004350403
【0024】
MOSFET6のドレイン電流IQ1のピーク値IQ1Pが、トランス18およびMOSFET6の定格により制限されるため、上記(4)式から明らかなようにスイッチング電源装置の最大出力電力Pmaxは、出力電圧Voの設定値が低くなるに従って減少することになる。
【0025】
本発明は、上記の問題点に鑑み、直流安定電圧を供給する電子機器に適した値の直流安定電圧を出力することができるとともに直流安定電圧の設定値を低くしても最大出力電力の低下を抑えることができるスイッチング電源装置を提供することを目的とする。
【0026】
【課題を解決するための手段】
上記目的を達成するために、本発明に係るスイッチング電源装置においては、トランスと、オン/オフ動作により直流入力電圧を交流電圧に変換して前記トランスの一次巻き線に供給するスイッチング素子と、前記トランスの二次巻き線に誘起された交流電圧を直流電圧に変換して出力する変換回路と、前記変換回路の出力電圧が所定値となるように前記スイッチング素子をオン/オフ制御するとともに外部抵抗が接続されることによって又は出力電圧設定制御信号が外部から入力されることによって前記所定値が可変する制御部と、前記トランスの交流電圧が誘起する二次巻き線の巻き数を外部制御信号に応じて可変する巻き数可変手段と、を備える構成とする。
【0027】
スイッチング電源装置から直流安定電圧を受け取る電子機器が外部抵抗の抵抗値又は出力電圧設定制御信号を設定することによって、上記構成のスイッチング電源装置は直流安定電圧を供給する電子機器に適した値の直流安定電圧を出力することができる。また、スイッチング電源装置から直流安定電圧を受け取る電子機器が、スイッチング電源装置に比較的低い出力電圧を要求する場合に、トランスの交流電圧が誘起する二次巻き線の巻き数を少なくする旨の外部制御信号を上記構成のスイッチング電源装置に送出することによって、上記構成のスイッチング電源装置において直流安定電圧の設定値を低くしても最大出力電力の低下を抑えることができる。
【0028】
また、前記トランスが複数の二次巻き線を有し、前記巻き数可変手段を、前記複数の二次巻き線と前記変換回路との導通状態を前記外部制御信号に応じて切り替えるスイッチング手段としてもよい。
【0029】
このような構成によると、巻き数可変手段が簡単な回路構成により実現される。
【0030】
【発明の実施の形態】
以下に本発明の一実施形態について図面を参照して説明する。本発明に係るフライバック方式スイッチング電源装置の一構成例を図1に示す。なお、図1において図5と同一に部分には同一の符号を付す。本発明に係るフライバック方式スイッチング電源装置101は、商用交流電源1から出力される交流電圧を直流安定電圧に変換する。
【0031】
商用交流電源1は、全波整流回路2の入力側に接続される。また、全波整流回路2の出力側がコンデンサ3に接続される。そして、コンデンサ3の両端がトランス19の一次巻き線19aとMOSFET6との直列回路に接続される。コンデンサ3の正極性側がトランス19の一次巻き線19aの一端に接続され、コンデンサ3の負極性側がMOSFET6のソースに接続される。そして、スイッチング制御回路4の駆動信号出力端子がMOSFET6のゲートに接続される。
【0032】
トランス19は互いに直列接続される二つの二次巻き線19b及び19cを有している。二次巻き線19bと二次巻き線19cの接続点のタップが低電圧用整流ダイオード8bのアノードに接続され、、二次巻き線19bの他端が高電圧用整流ダイオード8aのアノードに接続され、二次巻き線19cの他端が負極性出力ターミナル13aに接続される。そして、低電圧用整流ダイオード8bのカソードが正極性出力ターミナル12aに接続され、高電圧用整流ダイオード8aのカソードが巻き線切替スイッチであるPNP形トランジスタ20のエミッタに接続され、トランジスタ20のコレクタが正極性出力ターミナル12aに接続される。そして、トランジスタ20のベースが抵抗21を介して巻き線切替制御ターミナル22aに接続される。更に、コンデンサ11の正極性側及び抵抗10aの一端が正極性出力ターミナル12aに接続され、コンデンサ11の負極性側が負極正側出力ターミナル13aに接続され、抵抗10aの他端及び出力電圧検出回路9の参照電圧入力端子が出力電圧設定ターミナル23aに接続される。出力電圧検出回路9の出力信号は絶縁回路5を介してスイッチング制御回路4に入力される。
【0033】
続いて、スイッチング電源装置101から電力供給を受ける電子機器201について説明する。電子機器201は、正極性受電プラグ12bと、負極性受電プラグ13bと、巻き線切替制御プラグ22bと、出力電圧設定プラグ23bと、可変抵抗10bと、スイッチ22cと、負荷24とを備えている。負荷24は正極性受電プラグ12bと負極性受電プラグ13bとの間の電圧を電源電圧とする。また、巻き線切替制御プラグ22bとグランドライン(負極性受電プラグ13bと負荷24との接続ライン)とがスイッチ22cを介して接続され、出力電圧設定プラグ23bとグランドライン(負極性受電プラグ13bと負荷24との接続ライン)とが可変抵抗10bを介して接続される。
【0034】
正極性出力ターミナル12aと正極性受電プラグ12bが接続され、負極性出力ターミナル13aと負極性受電プラグ13bとが接続され、巻き線切替制御ターミナル22aと巻き線切替制御プラグ22bとが接続され、出力電圧設定ターミナル23aと出力電圧設定プラグ23bとが接続されることによって、スイッチング電源装置101と電子機器201とが接続接続される。このように接続されることによって、スイッチング電源装置101の出力電圧が電子機器201に供給され、負荷24の電源電圧となる。また、このように接続されることによって、抵抗10aと可変抵抗10bとがスイッチング電源装置101の出力電圧を分圧する抵抗分割回路を構成し、この抵抗分割回路の分割比及び出力電圧検出回路9内部で生成される基準電圧によってスイッチング電源装置101の出力電圧が設定される。また、このように接続されることによって、スイッチ22cがオンであればトランジスタ20がオンになり、スイッチ22cがオフであればトランジスタ20がオフになる。
【0035】
電子機器201は、スイッチング電源装置101に比較的高い出力電圧を要求するときには、可変抵抗10bの抵抗値を小さくするとともにスイッチ22cをオンにする。上述したようにスイッチ22cがオンになるとトランジスタ20がオンになり、MOSFET6のオフ期間にトランス19の二次巻き線19bと二次巻き線19cの直列回路から高電圧用整流ダイオード8a及びトランジスタ20を介してコンデンサ11に充電電流が流れる。電子機器201がスイッチング電源装置101に比較的高い出力電圧を要求する場合、トランス19の二次巻き線の巻き数は二次巻き線19bの巻き数と二次巻き線19cの巻き数の合計となるので、一次巻き線の巻き数Nと二次巻き線の巻き数Nとの巻き数比N/Nを小さくすることができ、MOSFET6のソース−ドレイン間電圧が大きくなることを抑えることができる(上記(3)式参照)。これにより、MOSFET6にオン抵抗の小さい比較的低耐圧のものを用いることができ、スイッチング電源装置の電力損失を低減することができる。なお、電子機器201がスイッチング電源装置102に比較的高い出力電圧を要求する場合、低電圧用整流ダイオード8bのアノード電位は低電圧用整流ダイオード8bのカソード電位より低いため、低電圧用整流ダイオード8bは常にオフになる。
【0036】
一方、電子機器201は、スイッチング電源装置101に比較的低い出力電圧を要求するときには、可変抵抗10bの抵抗値を大きくするとともにスイッチ22cをオフにする。上述したようにスイッチ22cがオフになるとトランジスタ20がオフになり、MOSFET6のオフ期間にトランス19の二次巻き線19cから低電圧用整流ダイオード8bを介してコンデンサ11に充電電流が流れる。電子機器201がスイッチング電源装置101に比較的低い出力電圧を要求する場合、トランス19の二次巻き線の巻き数は二次巻き線19cの巻き数となるので、電子機器201がスイッチング電源装置101に比較的高い出力電圧を要求するときに比べて二次巻き線の巻き数を減らすことができる。したがって、電子機器201がスイッチング電源装置101に比較的高い出力電圧を要求するときに比べて、MOSFET6のオフ期間中に低電圧用整流ダイオード8を流れる電流を急峻に降下させることができる。これにより、スイッチング電源装置101がRCC方式にてスイッチング制御されている場合においてはスイッチング周波数の低下を抑制することができ、スイッチング電源装置101がPWM方式にてスイッチング制御されている場合においてはMOSFET6のオフ期間での低電圧用整流ダイオード8bを流れる電流の波形が台形になることを回避することができる。このため、スイッチング電源装置101の出力電圧の設定値が低くてもスイッチング電源装置101の最大出力電力の低下を抑えることができる。電子機器201がスイッチング電源装置101に比較的低い出力電圧を要求する場合、上述したようにトランス19の二次巻き線の巻き数は二次巻き線19cの巻き数となるので、一次巻き線の巻き数Nと二次巻き線の巻き数Nとの巻き数比N/Nは大きくなるが、スイッチング電源装置の出力電圧の設定値が小さいのでMOSFET6のソース−ドレイン間電圧が大きくなることはない(上記(3)式参照)。
【0037】
なお、本実施形態では、トランス19が二つの二次巻き線19b及び19cを有する構成としたが、トランスの二次巻き線の数を更に増やし、これに対応して巻き線切替スイッチの数を増やすようにしてもよい。これにより、スイッチング電源装置の最大出力電圧の低下をよりきめ細かく抑制することができる。
【0038】
また、本実施形態では、二次巻き線19bと二次巻き線19cが直列接続される構成としたが、図3に示すスイッチング電源装置103のように二次巻き線19bと二次巻き線19cが並列接続される構成にしてもよい。この場合、二次巻き線19bの巻き数が二次巻き線19cの巻き数より大きくなるようにする。
【0039】
次に、本発明に係るフォワード方式スイッチング電源装置の一構成例を図2に示す。なお、図2において図1と同一に部分には同一の符号を付し、詳細な説明を省略する。
【0040】
図2に示すスイッチング電源装置102が、図1に示すスイッチング電源装置101と異なる点は、トランス19の代わりにトランス19とは二次巻き線の極性が異なるトランス25を備えている点と、フライホイルチョークコイル17及びフライホイルダイオード16を新たに備えている点である。
【0041】
そして、フライホイルチョークコイル17の一端及びフライホイルダイオード16のカソードが低電圧用整流ダイオード8bのカソード及びトランジスタ20のコレクタに接続され、フライホイルチョークコイル17の他端がコンデンサ11の正極性側、抵抗10a、及び正極性出力ターミナル12aに接続され、フライホイルダイオード16のアノードがトランス25の二次巻き線25c、コンデンサ11の負極性側、及び負極性出力ターミナル13aに接続される。
【0042】
正極性出力ターミナル12aと正極性受電プラグ12bが接続され、負極性出力ターミナル13aと負極性受電プラグ13bとが接続され、巻き線切替制御ターミナル22aと巻き線切替制御プラグ22bとが接続され、出力電圧設定ターミナル23aと出力電圧設定プラグ23bとが接続されることによって、スイッチング電源装置102と電子機器201とが接続接続される。このように接続されることによって、スイッチング電源装置102の出力電圧が電子機器201に供給され、負荷24の電源電圧となる。また、このように接続されることによって、抵抗10aと可変抵抗10bとがスイッチング電源装置102の出力電圧を分圧する抵抗分割回路を構成し、この抵抗分割回路の分割比及び出力電圧検出回路9内部で生成される基準電圧によってスイッチング電源装置102の出力電圧が設定される。また、このように接続されることによって、スイッチ22cがオンであればトランジスタ20がオンになり、スイッチ22cがオフであればトランジスタ20がオフになる。
【0043】
電子機器201は、スイッチング電源装置102に比較的高い出力電圧を要求するときには、可変抵抗10bの抵抗値を小さくするとともにスイッチ22cをオンにする。上述したようにスイッチ22cがオンになるとトランジスタ20がオンになり、MOSFET6のオン期間において、二次巻き線25bと二次巻き線25cの直列回路に誘起する電圧によって、二次巻き線25bと二次巻き線25cの直列回路から高電圧用整流ダイオード8、トランジスタ20、及びフライホイルチョークコイル17を介してコンデンサ11に電流が供給される。そして、MOSFET6のオン期間中にフライホイルチョークコイル17に蓄積された励磁エネルギーが放出されることにより、フライホイルチョークコイル17からコンデンサ11及びフライホイルダイオード16を通ってフライホイルチョークコイル17に戻る経路を電流が流れ、コンデンサ11が充電される。なお、電子機器201がスイッチング電源装置102に比較的高い出力電圧を要求する場合、低電圧用整流ダイオード8bのアノード電位は低電圧用整流ダイオード8bのカソード電位より低いため、低電圧用整流ダイオード8bは常にオフになる。
【0044】
スイッチング電源装置102はフォワード方式であるため、MOSFET6のオン時にトランス25の2次巻き線に誘起する電圧を、少なくとも出力電圧(正極性出力ターミナル12a−負極性出力ターミナル13a間の電圧)より高い値にする必要がある。なぜならば、MOSFET6のオン時にトランス5の2次巻き線に誘起する電圧をスイッチング電源装置102の出力電圧より高い値にしないと、スイッチング電源装置102が設定通りの電圧を出力しないという問題が生じるからである。そして、当然のことながら、スイッチング電源装置102の出力電圧を高い値に設定した場合にこの問題が発生し易い。このため、本実施形態では、電子機器201がスイッチング電源装置102に比較的高い出力電圧を要求するときは、上述したようにMOSFET6のオン期間において、二次巻き線25bと二次巻き線25cの直列回路に電圧が誘起するようにして、二次巻き線25bのみや二次巻き線25cのみに電圧が誘起する場合に比べてトランス25の2次巻き線に誘起する電圧を高くしている。
【0045】
一方、電子機器201は、スイッチング電源装置102に比較的低い出力電圧を要求するときには、可変抵抗10bの抵抗値を大きくするとともにスイッチ22cをオフにする。上述したようにスイッチ22cがオフになるとトランジスタ20がオフになり、MOSFET6のオン期間において、二次巻き線25cのみに誘起する電圧によって、二次巻き線25cから低電圧用整流ダイオード8b及びフライホイルチョークコイル17を介してコンデンサ11に電流が供給される。そして、MOSFET6のオン期間中にフライホイルチョークコイル17に蓄積された励磁エネルギーが放出されることにより、フライホイルチョークコイル17からコンデンサ11及びフライホイルダイオード16を通ってフライホイルチョークコイル17に戻る経路を電流が流れ、コンデンサ11が充電される。
【0046】
電子機器201がスイッチング電源装置102に比較的低い出力電圧を要求する場合、トランス25の二次巻き線の巻き数は二次巻き線25cの巻き数のみとなるので、一次巻き線の巻き数Nと二次巻き線の巻き数Nとの巻き数比N/Nは大きくなり、最大出力電力の低下を抑えることができる(上記(4)式参照)。
【0047】
なお、本実施形態では、トランス25が二つの二次巻き線25b及び25cを有する構成としたが、トランスの二次巻き線の数を更に増やし、これに対応して巻き線切替スイッチの数を増やすようにしてもよい。これにより、スイッチング電源装置の最大出力電圧の低下をよりきめ細かく抑制することができる。
【0048】
また、本実施形態では、二次巻き線25bと二次巻き線25cが直列接続される構成としたが、図4に示すスイッチング電源装置104のように二次巻き線25bと二次巻き線25cが並列接続される構成にしてもよい。この場合、二次巻き線25bの巻き数が二次巻き線25cの巻き数より大きくなるようにする。
【0049】
なお、上述した実施形態では電子機器201内にスイッチ22cを設けたが(図1〜図4参照)、このスイッチ22cの代わりに巻き線切替制御プラグ23bとグランドライン(負極性受電プラグ13bと負荷24との接続ライン)との間を結ぶジャンパー線の有無によってトランジスタ20の動作状態を制御してもよい。すなわち、電子機器201がスイッチング電源装置に比較的高い出力電圧を要求するときは巻き線切替制御プラグ23bとグランドラインとの間を結ぶジャンパー線を設けてトランジスタ20をオンにし、電子機器201がスイッチング電源装置に比較的低い出力電圧を要求するときは巻き線切替制御プラグ23bとグランドラインとの間を結ぶジャンパー線を設けないようにしてトランジスタ20をオフにする。このようにスイッチの代わりジャンパー線の有無によって巻き線切替スイッチの動作状態を制御すると、電子機器がスイッチング電源装置に要求する出力電圧の設定値をプログラマブルに変更する場合であってもこの変更に対応して二次巻き線の切替ができないという短所が発生するが、スイッチよりジャンパー線の方が安価であるので電子機器の製造コストを低減できるという長所が発生する。
【0050】
また、上述した実施形態では抵抗分割回路を構成する抵抗の一部(抵抗10b)を電子機器側に設けたが(図1〜図4参照)、抵抗分割回路を構成する抵抗の全部を電子機器側に設けてもよい。また、抵抗分割回路を構成する複数の抵抗及び当該複数の抵抗間の導通状態を切り替えるスイッチをスイッチング電源装置内部に設け、当該スイッチの状態を電子機器が制御することで抵抗分割回路の分割比を変えるようにしてもよい。
【0051】
【発明の効果】
本発明によると、直流安定電圧を供給する電子機器に適した値の直流安定電圧を出力することができるとともに直流安定電圧の設定値を低くしても最大出力電力の低下を抑えることができるスイッチング電源装置を実現することができる。
【図面の簡単な説明】
【図1】本発明に係るフライバック方式スイッチング電源装置の一構成例を示す図である。
【図2】本発明に係るフォワード方式スイッチング電源装置の一構成例を示す図である。
【図3】本発明に係るフライバック方式スイッチング電源装置の他の構成例を示す図である。
【図4】本発明に係るフォワード方式スイッチング電源装置の他の構成例を示す図である。
【図5】従来のフライバック方式スイッチング電源装置の一構成例を示す図である。
【図6】RCC方式にてスイッチング制御される図5のスイッチング電源装置の要部電流波形のタイムチャートである。
【図7】PWM方式にてスイッチング制御される図5のスイッチング電源装置の要部電流波形のタイムチャートである。
【図8】従来のフォワード方式スイッチング電源装置の一構成例を示す図である。
【符号の説明】
4 スイッチング制御回路
6 NチャネルMOSFET
8a 高電圧用整流ダイオード
8b 低電圧用整流ダイオード
9 出力電圧検出回路
10a 抵抗
10b 可変抵抗
11 コンデンサ
16 フライホイルダイオード
17 フライホイルチョークコイル
19、25 トランス
20 PNP形トランジスタ
22c スイッチ

Claims (2)

  1. トランスと、
    オン/オフ動作により直流入力電圧を交流電圧に変換して前記トランスの一次巻き線に供給するスイッチング素子と、
    前記トランスの二次巻き線に誘起された交流電圧を直流電圧に変換して出力する変換回路と、
    前記変換回路の出力電圧が所定値となるように前記スイッチング素子をオン/オフ制御するとともに外部抵抗が接続されることによって又は出力電圧設定制御信号が外部から入力されることによって前記所定値が可変する制御部と、
    前記トランスの交流電圧が誘起する二次巻き線の巻き数を外部制御信号に応じて可変する巻き数可変手段と、を備えることを特徴とするスイッチング電源装置。
  2. 前記トランスが複数の二次巻き線を有し、
    前記巻き数可変手段が、前記複数の二次巻き線と前記変換回路との導通状態を前記外部制御信号に応じて切り替えるスイッチング手段である請求項1に記載のスイッチング電源装置。
JP2003144280A 2003-05-22 2003-05-22 スイッチング電源装置 Pending JP2004350403A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003144280A JP2004350403A (ja) 2003-05-22 2003-05-22 スイッチング電源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003144280A JP2004350403A (ja) 2003-05-22 2003-05-22 スイッチング電源装置

Publications (1)

Publication Number Publication Date
JP2004350403A true JP2004350403A (ja) 2004-12-09

Family

ID=33531762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003144280A Pending JP2004350403A (ja) 2003-05-22 2003-05-22 スイッチング電源装置

Country Status (1)

Country Link
JP (1) JP2004350403A (ja)

Similar Documents

Publication Publication Date Title
CN107979288B (zh) 强迫式零电压开关反激变换器
US6469913B2 (en) Switching power supply device having series capacitance
JP4844674B2 (ja) スイッチング電源装置
US7023186B2 (en) Two stage boost converter topology
KR100741872B1 (ko) 액티브 클램프회로를 갖는 스위칭 전원장치
US6587358B1 (en) Switching power supply circuit
JP2001197740A (ja) スイッチング電源装置
KR100681689B1 (ko) 스위칭 전원장치
KR20100018061A (ko) 다중 출력 스위칭 전원 장치
JP2006129548A (ja) 電力変換装置
US6980447B1 (en) Active snubber circuit for synchronous rectifier
JPWO2005074113A1 (ja) スイッチング電源装置
US9490717B2 (en) Switching power supply circuit
TWI650927B (zh) 用於主開關切換轉換的零電壓開關式返馳變換器
JP5012404B2 (ja) 同期整流型dc−dcコンバータ
JP3733440B2 (ja) スイッチング電源
US7848119B2 (en) Direct current to direct current converter
US11356029B2 (en) Rectifying circuit and switched-mode power supply incorporating rectifying circuit
KR20110138068A (ko) 역률 보상 컨버터 및 그 구동 방법
JP2005073335A (ja) スイッチング電源回路
JP6393962B2 (ja) スイッチング電源装置
TWI653813B (zh) 強迫式零電壓開關返馳變換器及其運行方法
JP3159261B2 (ja) スナバ回路並びにそれを用いたスイッチング電源装置
JP2009171829A (ja) 絶縁型スイッチング電源装置
JP2009232519A (ja) 絶縁型dc−dcコンバータ