JP2004347153A - Microwave heating device with steam generating function - Google Patents

Microwave heating device with steam generating function Download PDF

Info

Publication number
JP2004347153A
JP2004347153A JP2003141723A JP2003141723A JP2004347153A JP 2004347153 A JP2004347153 A JP 2004347153A JP 2003141723 A JP2003141723 A JP 2003141723A JP 2003141723 A JP2003141723 A JP 2003141723A JP 2004347153 A JP2004347153 A JP 2004347153A
Authority
JP
Japan
Prior art keywords
water
heating
heat transfer
steam
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003141723A
Other languages
Japanese (ja)
Other versions
JP3714339B2 (en
Inventor
Masato Matsuda
正人 松田
Koji Kanzaki
浩二 神崎
Yu Kawai
祐 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003141723A priority Critical patent/JP3714339B2/en
Priority to EP04733952A priority patent/EP1626228A1/en
Priority to CNB200480013667XA priority patent/CN100414173C/en
Priority to US10/557,354 priority patent/US7326893B2/en
Priority to PCT/JP2004/007111 priority patent/WO2004104481A1/en
Publication of JP2004347153A publication Critical patent/JP2004347153A/en
Application granted granted Critical
Publication of JP3714339B2 publication Critical patent/JP3714339B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Farming Of Fish And Shellfish (AREA)
  • Electric Ovens (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steam supply mechanism for continuously generating steam while supplying heat energy in well balanced relation between a heat carrier part and an evaporation part. <P>SOLUTION: The steam supply mechanism comprises a heating means body 111 in which a heating means 27 is embedded, a carrier pipe heating part 113 for boiling liquid in a carrier pipe 112, and a heat transfer control part 114 formed of a material having smaller heat conductivity than a material for the evaporation part 25. The deposition of scales with local boiling in the carrier pipe is suppressed by reducing a heat transfer amount to the carrier pipe 112 while setting the heating means at a high temperature for securing heat energy to be supplied to side of evaporation. Thus, the steam supply mechanism continuously generates the steam having a high temperature of nearly 100°C while supplying heat energy in well balanced relation between the carrier part and the evaporation part. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、被加熱物を収容する加熱室内に高周波を出力する高周波発生手段と、加熱室内に蒸気を供給する蒸気供給機構とを備え、高周波と蒸気との少なくともいずれかを加熱室に供給して被加熱物を加熱処理する蒸気発生機能付き高周波加熱装置。
【0002】
【従来の技術】
被加熱物を収容する加熱室内に高周波を出力する高周波発生手段を備えた高周波加熱装置は、加熱室内の被加熱物に対して、短時間で効率のよい加熱ができるため、食材等の加熱調理機器である電子レンジとして急速に普及した。
【0003】
しかし、高周波加熱による加熱だけでは、加熱調理の幅が限られるなどの不便があった。
【0004】
そこで、加熱室内で発熱する電熱器を追加して、オーブン加熱を可能にした高周波加熱装置が提案され、近年では、更に、加熱室内に加熱蒸気を供給する蒸気供給機構を追加して、高温蒸気による加熱調理も可能にした蒸気発生機能付き高周波加熱装置が提案されている(例えば、特許文献1参照)。
【0005】
【特許文献1】
特開昭54−115448号公報
【0006】
【発明が解決しようとする課題】
ところが、従来の高周波加熱装置における蒸気供給機構は、装置本体に着脱可能に装備される貯水タンクと、加熱室内に装備される給水受け皿(蒸発部)と、この給水受け皿(蒸発部)を加熱して給水受け皿(蒸発部)上の水を蒸発させる加熱手段と、貯水タンクの水を給水受け皿(蒸発部)に供給するための専用のポンプ手段とを備えた構成で、このポンプ手段の装備のために、構成が繁雑化したり、大型化するという問題があった。
【0007】
また、専用のポンプ手段を使用した従来の蒸気供給機構では、加熱室への蒸気の供給量を制御するためには、加熱手段の温度制御と同時に、ポンプ手段による供給量の制御も必要になり、蒸気の供給量制御に必要な制御処理が複雑になるという問題もあった。
【0008】
また、貯水タンクに貯めた水は専用のポンプ手段によって給水受け皿(蒸発部)まで送給されるが、その間、予備加熱等を一切受けることなく(温水によるポンプ障害の発生を避けるためにも)送給されるため、給水受け皿(蒸発部)に供給される水温が低く、加熱手段が給水受け皿(蒸発部)を温めて蒸気を発生させるまでの間、長い時間がかかるという問題もあった。
【0009】
更に、蒸気を連続的に発生させる場合、蒸発部側への熱エネルギの供給と、搬送管側への熱エネルギ供給とのバランスが重要な開発課題である。
【0010】
すなわち、搬送管側への熱供給が大きい場合、蒸発部での水溜まりが生じる。そして、温度の低い蒸気の発生となったり、蒸気化の量が不十分となったりする。蒸発部に水分を残さずに蒸発させる為には、蒸発部の有する熱容量を大きくしておくか、水の供給停止後に加熱手段を動作させる必要があるが、蒸発部の熱容量を大きくすると、蒸気発生までの立ちあがり時間が長くなるし、後者では温度を検知するなどの方法が必要となる。
【0011】
一方、蒸発部側への熱供給が大きい場合、搬送管側への供給熱量が不足し搬送不良を生じる。そして、この搬送不良になると加熱手段の発生熱量を消費する負荷がなくなるので、加熱手段自体が自己発熱により高温化する。この高温化に伴って、搬送管側への供給熱量が増大し、ある閾値を超えると急激な局部沸騰を発生して水が搬送される。この結果、蒸発部に熱量を消費する負荷が存在することで、加熱手段は所期の温度に戻る。この所期の温度に低下すると再び搬送不良を呈することになる。これらの現象を繰り返すことで、搬送管内では急激な局部沸騰に伴うスケール付着が進み、搬送管の目詰まりを生じる問題点がある。
【0012】
本発明は、前述した問題点に鑑みてなされたものであり、その目的は、貯水タンクの水を給水受け皿(蒸発部)に供給するための専用のポンプ手段が不要で、ポンプ手段の省略によって蒸気供給機構の構成の単純化や小型化を実現でき、また、蒸気の供給量制御に必要な制御処理を単純にでき、更に、蒸気の発生までの所要時間を短縮して、迅速な蒸気加熱が可能とし、さらに、搬送部側と蒸発部側との熱エネルギ供給バランスを良好に保ち、連続的に蒸気を発生を可能とした蒸気発生機能付き高周波加熱装置を提供することにある。
【0013】
【課題を解決するための手段】
上記従来の課題を解決するために、本発明の蒸気発生機能付き高周波加熱装置は、被加熱物を収容する加熱室内に高周波を出力する高周波発生手段と、前記加熱室内に加熱蒸気を供給する蒸気供給機構とを備え、高周波と加熱蒸気との少なくともいずれかを前記加熱室に供給して前記被加熱物を加熱処理する蒸気発生機能付き高周波加熱装置であって、前記蒸気供給機構は、装置本体に着脱可能に装備される貯水タンクと、前記加熱室内に装備され蒸発部と、この蒸発部を加熱して水を蒸発させる加熱手段と、前記貯水タンクの水を前記加熱手段で発生するエネルギにより局部沸騰を生じさせ前記蒸発部に水を搬送する熱搬送部と、この加熱域を経由して前記蒸発部に導く給水路とを備え、前記蒸発部を形成する材料に比べ熱伝導率が小さい材料からなる伝熱制御部を前記熱搬送部と前記加熱手段の間に介在させることで前記加熱手段から前記熱搬送部へ伝熱される熱エネルギー量を制御するようにしたものである。
【0014】
このように構成された蒸気発生機能付き高周波加熱装置においては、給水路を加熱手段による加熱域を経由するように配索して、加熱手段の発生熱による給水路内の水の熱膨張でポンプ機能を得ているもので、貯水タンクの水を蒸発部に供給するための専用のポンプ手段が不要である。
【0015】
従って、専用のポンプ手段の省略によって蒸気供給機構の構成の単純化や小型化を実現できる。
【0016】
また、蒸発部への給水を、加熱手段の発生熱によって行っているため、蒸気の供給量制御は、加熱手段の発熱動作の制御だけで実現することが可能で、専用のポンプ手段を制御しなければならなかった従来のものと比較すると、蒸気の供給量制御に必要な制御処理を単純にできる。
【0017】
更に、蒸発部に供給される水は、加熱手段の発生熱で昇温した状態にあるため、蒸発部に供給されてから蒸気の発生までの所要時間を短縮することができ、迅速な蒸気加熱が可能になる。
【0018】
また、蒸発部を高い温度に設定し、熱搬送部の温度は沸騰を可能にする100℃を若干上回る温度域に設定できるので、搬送機能を維持しつつ、搬送された水は確実にすばやく蒸発させることができ、熱搬送部である搬送管内のスケール付着を抑制できるとともに高温の蒸気を連続発生させることができる。
【0019】
【発明の実施の形態】
請求項1に記載の発明は、被加熱物を収容する加熱室内に高周波を出力する高周波発生手段と、前記加熱室内に加熱蒸気を供給する蒸気供給機構とを備え、高周波と加熱蒸気との少なくともいずれかを前記加熱室に供給して前記被加熱物を加熱処理する蒸気発生機能付き高周波加熱装置であって、前記蒸気供給機構は、装置本体に着脱可能に装備される貯水タンクと、前記加熱室内に装備され蒸発部と、この蒸発部を加熱して水を蒸発させる加熱手段と、前記貯水タンクの水を前記加熱手段で発生するエネルギにより局部沸騰を生じさせ前記蒸発部に水を搬送する熱搬送部と、この加熱域を経由して前記蒸発部に導く給水路とを備え、前記蒸発部を形成する材料に比べ熱伝導率が小さい材料からなる伝熱制御部を前記熱搬送部と前記加熱手段の間に介在させるようにしたものであり、これにより、蒸発部への給水を、加熱手段の発生熱によって行っているため、蒸気の供給量制御は、加熱手段の発熱動作の制御だけで実現することが可能で、専用のポンプ手段を制御しなければならなかった従来のものと比較すると、蒸気の供給量制御に必要な制御処理を単純でき、蒸発部に供給される水は、加熱手段の発生熱で昇温した状態にあるため、蒸発部に供給されてから蒸気の発生までの所要時間を短縮することができ、迅速な蒸気加熱が可能になる。
【0020】
更に、加熱手段からの熱エネルギにより熱搬送部の温度は沸騰を可能にする100℃を若干上回る温度域に設定できるので搬送機能を維持できるとともに、蒸発部は熱搬送部と比較して高温になるため、搬送された水は確実にすばやく蒸発させることができる。さらに搬送管内のスケール付着を抑制できるとともに高温の蒸気を連続発生させることができる。
【0021】
請求項2に記載の発明は、特に、請求項1に記載の伝熱制御部により、加熱手段から熱搬送部に供給される熱エネルギ量を、蒸発部に供給される熱エネルギ量の1/8以下としたことにより、水温が5℃〜30℃の範囲において搬送水量が蒸発量を超えることなくかつ蒸発部が高温を維持することができるため安定して蒸発が行える。
【0022】
請求項3に記載の発明は、特に、請求項1または2項記載の伝熱制御部に加熱手段の熱エネルギを厚み方向より面方向に熱伝導特性の大きい材料を介して熱搬送部に均一に伝熱する、つまり温度分布差を生じることなく搬送管内の伝熱性能が均一になり、安定した液体の搬送能力と、搬送管内のスケール付着をさらに抑制することができる。
【0023】
請求項4に記載の発明は、特に、請求項1から3項に記載の加熱手段にシーズヒータをアルミダイキャストに埋め込む構成に、蒸発部を凹状に形成したフッ素などの撥水処理を施した鋼板をダイキャストの上面に接合させ、熱搬送部をアルミダイキャストの側面或いは底面にステンレス鋼で形成した伝熱制御部を介して接合するようにする、つまり、蒸発部より伝熱制御部に熱伝導率の小さい材料を用いることで伝熱制御部における温度勾配を容易かつ確実に実現させることができる。また、加熱手段であるシーズヒーターをアルミダイキャストで覆うことで、熱量を保持することができ、安定した蒸気発生性能と液体搬送能力を確保することができる。
【0024】
請求項5に記載の発明は、特に、請求項4記載の蒸発部をアルミダイキャストから着脱可能にした構成にすることで、蒸発部を取り外した状態で丸洗い(水洗いなどの清掃)することができる。よって、蒸発部の清掃が比較的簡単に行うことができる。
【0025】
請求項6に記載の発明は、特に、請求項1から3項に記載の加熱手段にシーズヒータをアルミダイキャストに埋め込む構成に、蒸発部をダイキャストの上面に凹部を設ける一体構成とし、熱搬送部をアルミダイキャストの側面或いは底面にステンレス鋼で形成した伝熱制御部を介して接合するようにする、つまり、蒸発部より伝熱制御部に熱伝導率の小さい材料を用いることで伝熱制御部における温度勾配を容易かつ確実に実現させることができる。また、蒸発部をアルミダイキャストと一体で形成することで、加熱手段の熱エネルギーを効率よく伝熱することができ、安定した蒸気発生性能と液体搬送能力を確保することができる。
【0026】
請求項7に記載の発明は、特に、請求項6記載の蒸発部表面にフッ素などの撥水処理を施すことで、蒸発部の清掃性を向上させることができるため、蒸発部への伝熱量減少して熱搬送部への伝熱量が増加することを防止できる。よって熱搬送部配管内への伝熱量が極端に増加することなく、スケール付着が抑制される。
【0027】
請求項8に記載の発明は、特に、請求項4から7項記載の熱搬送部の配管を熱伝導率の大きいアルミニウムや銅で形成することで、配管内の激しい局部沸騰を抑制できる。よって、液体搬送能力の安定性と、局部沸騰時の沸騰音発生を防止できる。
【0028】
請求項9に記載の発明は、特に、請求項4から8項記載の熱搬送部配管の外側表面積に比べ内側表面積を大きくすることで、配管内の激しい局部沸騰を抑制できる。よって、液体搬送能力の安定性と、局部沸騰時の沸騰音発生を防止できる。
【0029】
請求項10に記載の発明は、特に、請求項9記載の熱搬送部の配管内面にフッ素などの撥水性処理を施したことで、配管内のスケール付着が抑制される。
【0030】
【実施例】
以下、添付図面に基づいて本発明の一実施の形態に係る蒸気発生機能付き高周波加熱装置を詳細に説明する。
【0031】
(実施例1)
図1及び図2は、本発明に係る蒸気発生機能付き高周波加熱装置の一実施の形態の外観図である。
【0032】
この一実施の形態の蒸気発生機能付き高周波加熱装置100は、食材の加熱調理に高周波加熱及び加熱蒸気による加熱が可能な電子レンジとして使用されるもので、食材等の被加熱物を収容する加熱室3内に高周波を出力する高周波発生手段(マグネトロン)5と、加熱室3内に加熱蒸気を供給する蒸気供給機構7とを備え、高周波と加熱蒸気との少なくともいずれかを加熱室3に供給して加熱室3内の被加熱物を加熱処理する。
【0033】
加熱室3は、前面開放の箱形の本体ケース10内部に形成されており、本体ケース10の前面に、加熱室3の被加熱物取出口を開閉する透光窓13a付きの開閉扉13が設けられている。開閉扉13は、下端が本体ケース10の下縁にヒンジ結合されることで、上下方向に開閉可能となっており、上部に装備された取っ手13bを掴んで手前に引くことによって、図2に示す開いた状態にすることができる。
【0034】
加熱室3と本体ケース10との壁面間には所定の断熱空間が確保されており、必要に応じてその空間には断熱材が装填されている。
【0035】
特に加熱室3の背後の空間は、加熱室3内の雰囲気を攪拌する循環ファン及びその駆動モータ(図示略)を収容した循環ファン室となっており、加熱室3の後面の壁が、加熱室3と循環ファン室とを画成する仕切壁となっている。
【0036】
図示はしていないが、加熱室3の後面壁である仕切壁15には、加熱室3側から循環ファン室側への吸気を行う吸気用通風孔と、循環ファン室側から加熱室3側への送風を行う送風用通風口とが形成エリアを区別して設けられている。各通風孔は、多数のパンチ孔として形成されている。
【0037】
本実施の形態の場合、図2に示すように、高周波発生手段(マグネトロン)5は、加熱室3の下側の空間に配置されており、この高周波加熱装置5から発生した高周波を受ける位置にはスタラー羽根17が設けられている。そして、高周波発生手段5からの高周波を、回転するスタラー羽根17に照射することにより、該スタラー羽根17によって高周波を加熱室3内に撹拌しながら供給するようになっている。なお、高周波発生手段5やスタラー羽根17は、加熱室3の底部に限らず、加熱室3の上面や側面側に設けることもできる。
【0038】
蒸気供給機構7は、図3に示すように、装置本体に着脱可能に装備される1基の貯水タンク21と、加熱室3内に装備される2つの給水受け皿(蒸発部)25と、これらの給水受け皿(蒸発部)25を加熱して給水受け皿(蒸発部)25上の水を蒸発させる加熱手段27と、貯水タンク21の水を加熱手段27による加熱域を経由して給水受け皿(蒸発部)25に導く2系統の給水路29と、貯水タンク21と各給水路29との接続部に装備されて貯水タンク21の取り外し時に貯水タンク及び給水路内の水の漏れ出しを防止するタンク側の止水弁33及び給水路側の止水弁45と、給水路側の止水弁45よりも下流に配置されて給水路29から貯水タンク21への水の逆流を防止する逆止弁47とを備えて構成される。
【0039】
上記した2系統よりなる給水路29の特長的構成は、後で詳述するが、各加熱手段27による加熱域から給水路先端の水吹出し口29eまでの距離が等距離に設定されていることにある。
【0040】
なお、蒸気供給機構7は、図4に示すように、1系統の給水路29から一つの給水受け皿(蒸発部)25に水を供給して蒸気を発生させる構成とすることもできる。
【0041】
本実施の形態において、貯水タンク21は、取り扱い性に優れる偏平な直方体状のカートリッジ式で、装置本体(本体ケース10)に対して着脱が容易にでき、しかも、加熱室3内の加熱によって熱的なダメージを受けにくいように、図1にも示すように、本体ケース10の側面に組み付けられたタンク収納部35に差込装着される。
【0042】
タンク収納部35は、図5に示すように、後端側が本体ケース10にヒンジ結合されていて、図5(a)に矢印(イ)で示す前端部の係合を外すと、図5(b)に矢印(ロ)で示すように、前端側が外側に回動して、前端のタンク挿入口36が露出する。
【0043】
タンク挿入口36を露出した状態では、図5(c)に矢印(ハ)で示す方向に、貯水タンク21を抜き取ることができる。
【0044】
貯水タンク21の装着は、抜き取り方向と逆方向に、貯水タンク21をタンク挿入口36に差し込むことで、完了する。
【0045】
貯水タンク21は、図6に示すように、上方を開放した偏平な直方体状の容器本体22と、この容器本体22の上部開口部を覆う開閉蓋23とから構成されている。容器本体22及び開閉蓋23は、樹脂で形成されていている。
【0046】
容器本体22は、内部の水の残量が視認可能なように、透明な樹脂で形成されていて、容器本体22の両側面には、残量水位を示す目盛り22aが装備されている。この目盛り22aを装備した部位は、図5及び図7にも示したように、タンク収納部35の前端縁に形成された切り欠き窓37から外部に露出して、外部から貯水タンク21内の水の残量が視認可能にされている。
【0047】
図6に示すように、容器本体22の背面の下部寄りの位置には、給水路29に嵌合接続する円筒状の接続口22bが突設されている。この接続口22bには、図8(a)に示すように、貯水タンク21を装置本体から取り出した状態では接続口22bを閉じて、貯留水の流出を防止するタンク側の止水弁33が装備されている。
【0048】
本実施の形態の給水受け皿(蒸発部)25は、加熱室3の底板4の一部に給水を受ける窪みを形成したもので、底板4と一体である。
【0049】
給水受け皿(蒸発部)25は、既述したとおり、本実施の形態では、底板4の後部の左右にそれぞれ装備されている。
【0050】
加熱手段27は、それぞれの給水受け皿(蒸発部)25の下面に接触配置されたシーズヒータで、図9に示すように、給水受け皿(蒸発部)25の背面に密着状態に取り付けられるアルミダイキャスト製の組付けブロック27aにヒータ本体が組み付けられた構造である。本実施の形態の場合、組付けブロック27aから延出したヒータ両端の一対の電極27b、27c間には、該加熱手段27の温度を検出する温度検出センサとしてのサーミスタ41が接続されている。
【0051】
サーミスタ41は、一対の電極27b、27c間で、組付けブロック27aに埋設状態に装備されている。このサーミスタ41の検出信号は、図示せぬ制御回路によって監視され、貯水タンク21の残量0検出や、加熱手段27の動作制御(発熱量制御)に利用される。
【0052】
サーミスタ41は、図10に示すように、貯水タンク21より給水されて給水受け皿(蒸発部)25に水が充填されている場合には、加熱手段27の温度上昇に伴い検出温度レベルが上昇する。しかし、図中記号aで示す給水受け皿(蒸発部)25に水が無くなった場合、加熱手段27には通電が行われているので、検出温度レベルが急激に上昇し、bで示す上限基準値を超える。
【0053】
図示略の制御回路は、上限基準値を超えた時点で加熱手段27への通電を遮断する。この時点でオーバシュートは有るものの、サーミスタ41の検出温度レベルは降下する。やがて、サーミスタ41の検出温度レベルが、cで示す下限基準値に達した時点で、制御回路は、再び、加熱手段27への通電を実施してヒータを加熱する。しかし、給水受け皿(蒸発部)25には水が無いため、サーミスタ41の検出温度レベルは再び上昇して、dで示す上限基準値を超える。この時点で、制御回路は、給水受け皿(蒸発部)25に水が無く加熱手段27が空焼き状態であると判断して、eで示すように、加熱手段27への通電を遮断すると共に、警報を発して蒸気加熱処理を停止させる制御を行う。
【0054】
本実施の形態では、上記したように、単一のサーミスタで、蒸気量の発生制御と給水受け皿(蒸発部)に水が無くなったときの異常検出を行うことができる。
【0055】
また、上記した制御によって、ヒータの長寿命化と給水受け皿(蒸発部)の耐熱温度内での使用を可能にして給水受け皿(蒸発部)のフッ素樹脂コーティング面の劣化を防止することができる。
【0056】
なお、本実施の形態では、上記したように、ヒータをオン、オフするサイクルを繰り返してサーミスタが上限基準値となる温度を2回検出したとき給水受け皿(蒸発部)に水が無いと判断する構成としたが、2回に限らず、複数回検出して判定を行うものであっても良い。
【0057】
また、本実施の形態では、加熱手段27としてシーズヒータを使用したが、シーズヒータの代わりに、ガラス管ヒータ、プレートヒータ等を利用することも可能である。
【0058】
給水路29は、図3及び図9に示すように、貯水タンク21の接続口22bに2系統に分岐して接続される基端配管部29aと、この基端配管部29aから各加熱手段27による加熱域を経由するように加熱室3の底板4の下に配索される水平配管部29bと、この水平配管部29bの先端から加熱室3の側方を垂直に立ち上がる垂直配管部29cと、この垂直配管部29cの上端から各給水受け皿(蒸発部)25の上方に延出して、垂直配管部29cから圧送された水を給水受け皿(蒸発部)25に滴下する上部配管部29dと、各上部配管部29dの先端を形成する水吹出し口29eとから構成される。
【0059】
水平配管部29bは、図3に示すように、加熱手段27の組付けブロック27aに接触するように配管されていて、図9に示す組付けブロック27aとの接触部30が加熱手段27による加熱域となる。
【0060】
従って、既述した蒸気供給機構7での2系統における特長的構成は、各接触部0から各水吹出し口29eまでの配管路の長さが等距離に設定されていることを示す。
【0061】
本実施の形態では、このように、各給水路29の水平配管部29bを加熱手段27による加熱域に設定して、各加熱手段27の発生熱による熱伝導を受けて熱膨張する各水平配管部29b内の水をそれぞれの給水受け皿(蒸発部)25に供給する。
【0062】
蒸気発生の様子について更に詳述すると、貯水タンク21がタンク収納部35に差し込まれ、水平配管部29b内に水が充満した状態で、各加熱手段27が発熱すると、組付けブロック27aとの接触部30で配管内の水に熱が供給されて水が膨張する。逆止弁47は膨張する配管内の水の圧力を一次的に止めるため、圧力が垂直配管部29cの方向にのみ向かうこととなる。そして、膨張した水は、上部配管部29dを通過して各水吹出し口29eより滴下され、給水受け皿(蒸発部)25に供給されことになる。
【0063】
このとき、各給水路29の、組付けブロック27aとの接触部30から各水吹出し口29eまでの距離が等距離に設定してあるので、各水平配管部29bには、同じ仕様の加熱手段27を適用して接触部30から同じ熱量を加えることができ、これにより、それぞれの給水受け皿(蒸発部)25に均等に給水を行うことができる。
【0064】
また、接触部30から各水吹出し口29eまでの距離が等距離に設定してあれば、各給水路29や接触部30の温度を同一にすることができ、蒸気発生制御がし易くなる。
【0065】
給水受け皿(蒸発部)25に供給された水は、各加熱手段27の発生熱で昇温した状態にあるため、給水受け皿(蒸発部)25に供給されてから蒸気発生までの所要時間を短縮することができ、迅速な蒸気加熱が可能になる。
【0066】
加熱を中断すれば、各給水路29中の垂直配管部29cの水が膨張しなくなり、空気取入れ口29fまで達することかできず、空気取入れ口29fから大気圧が管内に入って給水は中止する。
【0067】
基端配管部29aは、図8(a)に示すように、容器本体22の接続口22bが嵌合する基端円管部43に、貯水タンク22が取り外された際に水平配管部29b側からの漏水を防止するための管側の止水弁45が装備される共に、水平配管部29bとの接続部には、水平配管部29bでの水の熱膨張による水平配管部29b側からの逆流(図中の矢印(ニ)方向の流れ)を防止する逆止弁47が装備されている。
【0068】
タンク側の止水弁33と管側の止水弁45とは、それぞれ弁体33a、45aを付勢するばね33b、45bの向きが逆で、容器本体22の接続口22bを基端円管部43に適正に嵌合させると、図8(b)に示すように、両者の弁体33a、45a相互の先端部同士が互いに突き当たって、相手をばね33b、45bの付勢力に抗して変位させて、流路を開いた状態にする。
【0069】
容器本体22の接続口22bの外周部には、基端円管部43との間の隙間を塞ぐシール材としてのOリング49が装備されている。
【0070】
図8(a)に示した状態は、容器本体22の接続口22bが基端円管部43に未嵌合の状態で、未だ、タンク側の止水弁33及び管側の止水弁45の双方が流路を閉じた状態にある。
【0071】
容器本体22の接続口22bが、基端円管部43から外れている状態では、給水路29側は、管側の止水弁45で封止されて、給水路29内の水の逆流が確実に防止される。つまり、図3に示すように、貯水タンク21がタンク収納部35に差し込まれると、各給水路29の垂直配管部29c内には貯水タンク21と同じ水位まで水が流入する。このような水圧下で、貯水タンク21が抜き出されても、管側の止水弁45で水の逆流を防止することができる。
【0072】
タンク収納部35の背面側の底部には、貯水タンク21をタンク収納部35から抜き出す時に、タンク側の止水弁33と管側の止水弁45との間に残留した小量の水が滴下するのを受ける凹部51が装備されていて、この凹部51には、滴下した水を吸収する吸水シート53が装備されている。吸水シート53としては、例えば、吸水性に優れた不織布等が使用される。
【0073】
なお、図3及び図4に示すように、上部配管部29dが接続される垂直配管部29cの上端は、貯水タンク21内における貯水の最高レベル位置Hmaxよりも高い位置に設定されている。これは、貯水タンク21側の貯水が、連通管作用で、不用意に、また連続的に、上部配管部29d側に流出することを防止するためである。
【0074】
また、給水路29は、貯水タンク21における貯水の最低レベルHminよりも更に下がった位置で、基端配管部29aを介して、貯水タンク21に接続される。
【0075】
これは、貯水タンク21内の貯水を、残さず、給水路29側に取り込み可能にするためである。
【0076】
本実施の形態の場合、給水受け皿(蒸発部)25及び加熱手段27は、加熱室3の底板4の後部の左右にそれぞれ装備されている。そのため、2系統の給水路29は、図4に示すように、例えば、基端配管部29aの下流で、それぞれに逆止弁47を経て二本の水平配管部29bに分岐し、各加熱手段27に、水平配管部29b、垂直配管部29c、上部配管部29d、組付けブロック27aと接触して配管内の水にヒータの熱を供給する接触部30が敷設されることになるが、各給水受け皿(蒸発部)25に装備される各給水路29相互は、接触部30から配管先端の水吹出し口29eまでの距離を等距離に設定している。
【0077】
以上に説明した蒸気発生機能付き高周波加熱装置100においては、給水路29を加熱手段27による加熱域を経由するように配索して、加熱手段27の発生熱による給水路29内の水の熱膨張でポンプ機能を得るもので、貯水タンク21の水を給水受け皿(蒸発部)25に供給するための専用のポンプ手段が不要である。
【0078】
従って、専用のポンプ手段の省略によって蒸気供給機構7の構成の単純化や小型化を実現できる。
【0079】
また、給水受け皿(蒸発部)25への給水を、加熱手段27の発生熱によって行っているため、蒸気の供給量制御は、加熱手段27の発熱動作の制御だけで実現することが可能で、専用のポンプ手段を制御しなければならなかった従来のものと比較すると、蒸気の供給量制御に必要な制御処理を単純にできる。
【0080】
更に、給水受け皿(蒸発部)25に供給される水は、加熱手段27の発生熱で昇温した状態にあるため、給水受け皿(蒸発部)25に供給されてから蒸気の発生までの所要時間を短縮することができ、迅速な蒸気加熱が可能になる。
【0081】
また、上記の構成において、貯水タンク21の残量が0(ゼロ)になって、給水受け皿(蒸発部)25上の残水量が減ると、水の蒸発に費やされる熱量が減るため、加熱手段27や給水受け皿(蒸発部)25自体の温度の昇温が起こる。
【0082】
しかし、本実施の形態の蒸気供給機構7は、加熱手段27の温度を検出するサーミスタ41を備えているため、そのサーミスタ41の検出信号を監視することで、比較的に簡単に貯水タンク21の残量0検出が可能で、空だき等の不都合の発生を防止することができる。
【0083】
更に、サーミスタの検出信号を利用して、例えば、貯水タンク21の残量0の検出時に、加熱手段27の動作を停止させたり、給水用の警報を行うなどの多種の制御が可能で、高周波加熱装置100の取り扱い性を向上させることができる。
【0084】
なお、本実施の形態では、サーミスタ41は、加熱手段27に直接接触させたが、給水受け皿(蒸発部)25に接触させるように装備してもよい。
【0085】
また、蒸気発生機能付き高周波加熱装置の加熱室内での加熱蒸気による加熱ムラの発生を防止する点では、給水受け皿(蒸発部)25及び加熱手段27によって構成される蒸気発生部を加熱室3内の複数箇所に分散装備することで、加熱室3内での加熱蒸気の供給自体を均等化することが望ましい。しかし、蒸気発生部を複数箇所に分散装備すると、それらの複数箇所の給水受け皿(蒸発部)25に均等に給水を行うための工夫が必要になる。
【0086】
しかし、上記のように、給水受け皿(蒸発部)25及び加熱手段27が複数組装備される場合に、各給水受け皿(蒸発部)25に装備される各給水路29相互は、ヒータの接触部から配管先端の水吹出し口までの距離を等距離に設定した構成とすると、特に給水流量の制御を行わなくとも、それぞれの給水路29での供給量を揃えることができ、加熱室3内での加熱蒸気の均等供給を安価に、実現することができる。 図11は、本発明の第1の実施例における蒸気供給機構の分解斜視図、図12は図11のA−A’断面図を示すものである。
【0087】
図11、図12において、27は加熱手段であるU字形状のシーズヒータ、111は加熱手段27を埋め込んだアルミダイキャスト成型加工からなる加熱手段本体、112はアルミニウムあるいは銅の高熱伝導率を有する材料で構成した熱搬送部を形成する搬送管、113は搬送管112内の液体を沸騰させるための熱搬送部を形成する搬送管加熱部である。114は伝熱制御部であり、加熱手段本体111と搬送管加熱部113との間に配置している。
【0088】
搬送管加熱部113は2つの部材115、116で構成し、これら2つの部材にて搬送管112をサンドイッチする構成としている。部材115には、搬送管112の搬送方向の中央部を中心に切欠部115aを設けており搬送管112との当接は搬送管112の下半分と両端側としている。
【0089】
伝熱制御部114は、熱伝導率が加熱手段本体111の成型材料や搬送管112の材料に比べて一桁以上低い熱伝導率を有する材料を使用している。鉄やステンレスなどが選択できるが、耐腐食性を考慮してステンレスを選択使用している。また、この伝熱制御部114の組立てにあたって加熱手段本体111側との間および搬送管加熱部113との間には、厚さ方向(熱伝導率:5〜7W/mK)より面方向(熱伝導率:100〜200W/mK)に高熱伝導率特性を有するカーボンシート114a、114bを介在させて伝熱制御部114以外の部分での不要な伝熱抑制は排除させている。
【0090】
一方、部材116は、搬送方向の全ての領域が搬送管112に当接する構成としている。これら2部材115、116と搬送管112とは、ねじ117、118、119、120により一次組立てとしている。
【0091】
また、搬送管112と搬送管加熱部113の一次組立て品は、伝熱制御部114を介して加熱手段本体111にねじ121、122を用いて組立てている。
【0092】
123は、液体搬送方向における搬送管加熱部113の上流側に設けた熱搬送部を形成する部品である逆止弁、124、125はシーズヒータ27の電力供給リード線を結線する結線部、126〜129は加熱手段本体111の取り付け用穴、130は搬送された液体を蒸発させるための熱エネルギの伝熱部分である。25は伝熱制御部114より小さな熱伝導率特性を有する材料、特に鉄を主成分とする鋼板などにフッ素などの表面処理を施した材料を上側に凹状に形成された蒸発部である。
【0093】
なお、加熱手段本体111の搬送管112を設けた方向とは反対側には搬送された液体を蒸発させるための熱エネルギを伝熱する部分として用いる。
【0094】
以上のように構成した蒸気供給機構について、以下にその動作、作用を説明する。
【0095】
搬送する液体は、水として説明する。まずこの水を貯水するタンク(図示していない)を逆止弁123側に設置する。これにより搬送管112内に水が注入される。その後、シーズヒータ27を動作させる。シーズヒータ27の動作開始に伴い、加熱手段本体111が加熱されて温度が上昇していく。この加熱手段本体111の熱はカーボンシート114a、114bを介することで、均一な温度分布特性を保持しながら伝熱制御部114、搬送管加熱部113の部材115を経て主部材116に伝熱され、搬送管112が加熱される。搬送管112の管壁温度が100℃を超過する部位では管壁部分で水の局部沸騰が発生する。この沸騰に伴って発生する気泡は気体膨脹して搬送管112内の水を搬送方向の両側に押しやる。搬送方向の上流側には逆止弁123を配しており、搬送管112内の水の押圧により、逆止弁123は閉止状態となる。これを受けて沸騰により発生した気泡は搬送方向の下流側にしか逃げ場がなくなる。この気泡が搬送方向の下流側に移動するのと連動して逆止弁123が開状態になり、貯水タンクから水が搬送管112内に注入される。この現象を繰り返すことで水が搬送されていく。搬送された水は搬送管(図示せず)を介して蒸発部25に導かれる。この蒸発部には加熱手段本体111から熱エネルギが伝達される構成としているので蒸発部に搬送された水はさらに加熱されて蒸発する。
【0096】
以上のような動作において、搬送管112の搬送管加熱部113に当接する領域および蒸発部では水の沸騰を生じさせているので、水に含まれるカルシウムやマグネシウムなどを含む残さが壁面に付着し堆積していく。この付着残渣はスケールと称されている。スケール付着が継続されることで搬送管112の内断面は徐々に狭くなっていき、最悪の場合、搬送機能が働かなくなる。また、蒸発部および搬送管への伝熱量が低下していく。
【0097】
加熱手段本体111が供給する熱エネルギの搬送管側と蒸発部側との配分は蒸発部側を搬送管側に対して約10倍程度にすることで搬送された水を直ちに蒸発させることができる。この場合、蒸発部側でのスケール付着に伴う水への伝熱量が低下すると加熱手段本体111は温度が上昇していく。伝熱制御部114は、この加熱手段本体111の温度上昇に対して搬送管加熱部113側への伝熱量を抑制し、搬送管112の壁面温度をほぼ一定の所望の温度(具体的には105〜120℃程度)に維持し、搬送管112内での局部沸騰の熱エネルギを低く維持することで搬送管12内のスケール付着を抑制することができる。
【0098】
具体的な温度例として、シーズヒータ電力600Wの場合、加熱手段本体111の温度が160℃のとき主部材116の温度は105〜110℃になるように伝熱制御部114を構成している。伝熱制御部114はステンレス材料で板厚さ3mm、断面積300mmである。この条件のもとで蒸発部側にスケールが堆積していくと、加熱手段本体111は20〜30℃の温度上昇を呈するが、伝熱制御部114により、主部材116の温度は5℃未満の昇温であった。
【0099】
また、本実施例の構成図面に示したように、搬送管加熱部113の構成として、重力方向の下方側に主部材116を配置させることで、搬送管112内で沸騰現象により生じた気泡は重力方向の上方に移動する。沸騰により気泡が発生すると水にさらされない内壁面の温度は直ちに高温になろうとするが、この沸騰発生部位に水を直ちに流入させ搬送管壁面温度の上昇を抑制しスケール付着をさらに抑制させることができる。
【0100】
さらにまた、主部材116を搬送管112の水搬送方向に熱拡散する構成としたことや、搬送管を銅やアルミニウムなどの高熱伝導率を有する材料を用いたことにより、沸騰を生じさせる領域に搬送される水をあらかじめ加熱することにより、少ない熱エネルギによって局部沸騰を生じさせることができるのでスケール付着をより抑制できる。
【0101】
また、蒸発部25表面にフッ素などの撥水処理を行っているために、蒸発部25へのスケールの付着力が低減され、ぬれ布巾などで拭き取ることにより、スケールを除去、清掃することができる。
【0102】
(実施例2)
図13は、本発明の第2の実施例における液体蒸発装置の分解斜視図、図14は図13のB−B‘断面図を示すものである。実施例2が実施例1と相違する点は、シーズヒータを埋め込んだアルミダイキャストの上面に凹部を設け蒸発部とした構成と、蒸発部にフッ素などの撥水性処理を行ったことである。
【0103】
図13、図14において、132は加熱手段であるU字形状のシーズヒータ、133は加熱手段132を埋め込んだアルミダイキャスト成型加工からなる加熱手段本体、134はアルミニウムあるいは銅の高熱伝導率を有する材料で構成した搬送管、135は搬送管134内の液体を沸騰させるための搬送管加熱部である。136は伝熱制御部であり、加熱手段本体133と搬送管加熱部135との間に配置している。
【0104】
搬送管加熱部135は2部材137、138で構成し、これら2部材にて搬送管134をサンドイッチする構成としている。部材137には、搬送管134の搬送方向の中央部を中心に切欠部137aを設けており搬送管134との当接は搬送管134の下半分と両端側としている。
【0105】
伝熱制御部136は、熱伝導率が加熱手段本体133の成型材料や搬送管134の材料に比べて一桁以上低い熱伝導率を有する材料を使用している。鉄やステンレスなどが選択できるが、耐腐食性を考慮してステンレスを選択使用している。また、この伝熱制御部136の組立てにあたって加熱手段本体133側との間および搬送管加熱部135との間には、厚さ方向(熱伝導率:5〜7W/mK)より面方向(熱伝導率:100〜200W/mK)に高熱伝導率特性を有するカーボンシート136a、136bを介在させて伝熱制御部136以外の部分での不要な伝熱抑制は排除させている。
【0106】
一方、部材138は、搬送方向の全ての領域が搬送管134に当接する構成としている。これら2部材137、138と搬送管133とは、ねじ139、140、141、142により組立てとしている。
【0107】
また、搬送管134と搬送管加熱部135の一次組立て品は、伝熱制御部136を介して加熱手段本体133にねじ143、144を用いて組立てている。
【0108】
145は、液体搬送方向における搬送管加熱部135の上流側に設けた逆止弁、146、147はシーズヒータ132の電力供給リード線を結線する結線部、148は加熱手段本体133であるアルミダイキャストの上面に凹状に設けられた蒸発部であり、その表面にはフッ素などの撥水性処理が施されている。
【0109】
以上のように構成した蒸気供給機構について、以下にその動作、作用を説明する。
【0110】
実施例2において、加熱手段本体133に蒸発部148が一体に形成されているため、蒸発部148に水が搬送されるまでは、加熱手段本体133の温度と、蒸発部148の温度は同じになる。水が蒸発部148に搬送されて加熱手段本体132の蓄熱エネルギーが消費されると、搬送管134への伝熱量が一時的には低減するが、連続して動作を行うことにより、蒸発部148及び搬送管134への伝熱量がバランスする。これにより、安定して蒸気を発生することになる。また蒸発部148から搬送水への熱伝導効率がよいため、蒸発部148に送られた水は、極短時間で蒸気化することができる。
【0111】
また、蒸発部148表面にフッ素などの撥水処理を行っているために、スケールの付着力が低減され、ぬれ布巾などで拭き取ることにより、スケールを除去、清掃することができる。
【0112】
加熱手段本体133形状、蒸発部148材料に関する以外の内容は、実施例1または実施例2と同様であり説明は省略する。
【0113】
(実施例3)
図15は、本発明の第3の実施例における搬送管加熱部などを含む搬送管の断面図を示すものである。実施例3が実施例1及び2と相違する点は、配管内側表面積を配管外側表面積より大きくした形状と、配管内側に撥水処理を施したことである。
【0114】
図15において、149は加熱手段であるU字形状のシーズヒータ、150は加熱手段149を埋め込んだアルミダイキャスト成型加工からなる加熱手段本体、151はアルミニウムあるいは銅の高熱伝導率を有する材料からなり凹凸状断面積を有し、その表面に撥水処理を施した搬送管、152は搬送管151内の液体を沸騰させるための搬送管加熱部である。153は伝熱制御部であり、加熱手段本体147と搬送管加熱部152との間に配置している。
【0115】
実施例3において、搬送管151表面にはフッ素などの撥水性処理が施されているため、水などの接触角が小さくなり、若干の熱伝導性は低減されるがスケールなどの付着も抑制される。これにより、搬送管151のスケール付着による閉塞が遅延できる。また、クエン酸などで搬送管151内のスケールを除去する際にはスケールの洗浄性能が向上し、短時間で洗浄することも可能となる。また、配管内の単位水あたりの搬送管151の接触面積を大きくする構成にしているため、水を徐々に加熱することにより、少ない熱エネルギによって局部沸騰を生じさせることができるのでスケール付着と沸騰音発生をより抑制できる。
【0116】
搬送管151に関する以外の内容は、実施例1と同様であり説明は省略する。
【0117】
【発明の効果】
本発明の蒸気発生機能付き高周波加熱装置は、加熱手段の発生熱による給水路内の水の熱膨張でポンプ機能を得て、専用のポンプ手段を不要にしているため、蒸気供給機構の構成の単純化や小型化を実現できる。
【0118】
また、蒸気の供給量制御は、加熱手段の発熱動作を制御するだけで達成することができるため、制御処理を単純にできる。
【0119】
また、給水受け皿及び加熱手段によって構成される蒸気発生部を加熱室内の複数箇所に分散装備した場合に、加熱室内での加熱蒸気の均等供給を安価に、実現することができる。
【0120】
また、蒸発部への熱エネルギを確保しつつ熱搬送部への伝熱量を抑制して熱搬送部配管内の局部沸騰に伴うスケール付着を抑制できる。そして、熱搬送部側と蒸発部側との熱エネルギ供給バランスを良好に保つとともに100℃に近い高温の蒸気を連続的に発生する蒸気供給機構を提供することができる。
【図面の簡単な説明】
【図1】本発明に係る蒸気発生機能付き高周波加熱装置の一実施の形態の外観斜視図
【図2】図1に示した蒸気発生機能付き高周波加熱装置の加熱室の開閉扉を開いた状態で、加熱室内を前面から見た時の概略構成図
【図3】図1に示した蒸気発生機能付き高周波加熱装置における蒸気供給機構の概略構成図
【図4】給水受け皿が一つの場合の蒸気供給機構の概略構成図
【図5】図1に示した蒸気発生機能付き高周波加熱装置における貯水タンクの着脱操作の説明図で、
(a)貯水タンクの装着状態の説明図
(b)タンク挿入口を露出させた状態の説明図
(c)貯水タンクの抜き取り状態の説明図
【図6】図4に示した蒸気供給機構で使用する貯水タンクの拡大斜視図
【図7】図4に示した蒸気供給機構の装置側面における取付構造の説明図
【図8】図6に示した貯水タンクと給水路の基端部との連結部における逆流防止構造の説明図
(a)容器本体の接続口が基端円管部に未嵌合の状態を示す図
(b)容器本体の接続口を基端円管部に適正に嵌合された状態を示す図
【図9】図6のA矢視図で、給水路が装置底部に配置された加熱手段によって加熱される構成の説明図
【図10】サーミスタによる蒸発量制御と異常検出とを説明する図
【図11】本発明の実施例1における蒸気供給機構の分解斜視図
【図12】図11のA−A’断面図
【図13】本発明の実施例2における蒸気供給機構の分解斜視図
【図14】図13のB−B’断面図
【図15】本発明の実施例3における搬送管加熱部などを含む搬送管の断面図
【符号の説明】
3 加熱室
4 底板
5 高周波発生手段
7 蒸気供給機構
13 開閉扉
15 仕切壁
17 スタラー羽根
21 貯水タンク
22 容器本体
22b 接続口
23 開閉蓋
25 給水受け皿(蒸発部)
27 加熱手段
27a 組付けブロック
29 給水路
29a 基端配管部
29b 水平配管部
29c 垂直配管部
29d 上部配管部
33 タンク側の止水弁
35 タンク収納部
36 タンク挿入口
41 サーミスタ(温度検出センサ)
45 管側の止水弁
47 逆止弁
132、149 シーズヒータ(加熱手段)
111、133、150 加熱手段本体
112、134、151 搬送管
113、135、152 搬送管加熱部
114、136、153 伝熱制御部
114a、114b、136a、136b カーボンシート
122、143 逆止弁
148 蒸発部(給水受け皿)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention includes a high-frequency generation unit that outputs high-frequency waves into a heating chamber that accommodates an object to be heated, and a steam supply mechanism that supplies steam into the heating chamber, and supplies at least one of the high-frequency waves and steam to the heating chamber. High-frequency heating device with a steam generating function to heat-treat the object to be heated.
[0002]
[Prior art]
A high-frequency heating device including a high-frequency generator that outputs high-frequency waves in a heating chamber that accommodates an object to be heated can efficiently heat the object to be heated in the heating chamber in a short period of time. It has rapidly spread as a microwave oven, a device.
[0003]
However, heating by high-frequency heating alone has inconveniences such as a limited range of cooking.
[0004]
Therefore, a high-frequency heating device that enables oven heating by adding an electric heater that generates heat in the heating chamber has been proposed. In recent years, a steam supply mechanism that supplies heating steam into the heating chamber has been added, and high-temperature steam has been added. There has been proposed a high-frequency heating device with a steam generation function that also enables heating cooking by using a heating method (see, for example, Patent Document 1).
[0005]
[Patent Document 1]
JP-A-54-115448
[0006]
[Problems to be solved by the invention]
However, the steam supply mechanism in the conventional high-frequency heating device has a water storage tank detachably mounted on the device main body, a water supply tray (evaporator) provided in the heating chamber, and heats the water supply tray (evaporator). Heating means for evaporating water on the water supply tray (evaporator), and a dedicated pump means for supplying water from the water storage tank to the water receiver (evaporator). For this reason, there has been a problem that the configuration becomes complicated or large.
[0007]
Further, in the conventional steam supply mechanism using a dedicated pump means, in order to control the supply amount of steam to the heating chamber, it is necessary to control the supply amount by the pump means simultaneously with the temperature control of the heating means. In addition, there is a problem that control processing required for controlling the supply amount of steam becomes complicated.
[0008]
In addition, the water stored in the water storage tank is sent to the water supply tray (evaporator) by a dedicated pump means, without any preheating during that time (to avoid pump failure due to hot water). Since the water is supplied, the temperature of the water supplied to the water supply tray (evaporation unit) is low, and there is a problem that it takes a long time until the heating unit heats the water supply tray (evaporation unit) to generate steam.
[0009]
Further, in the case of continuously generating steam, a balance between supply of heat energy to the evaporator and supply of heat energy to the transfer pipe is an important development task.
[0010]
That is, when the heat supply to the transfer pipe side is large, water accumulation in the evaporating section occurs. Then, low-temperature steam is generated or the amount of vaporization becomes insufficient. In order to evaporate without leaving moisture in the evaporator, it is necessary to increase the heat capacity of the evaporator or to operate the heating means after stopping the supply of water. The rise time until the occurrence is long, and the latter requires a method such as temperature detection.
[0011]
On the other hand, when the heat supply to the evaporating section is large, the amount of heat supplied to the transfer pipe side is insufficient, and a transfer failure occurs. Then, if the conveyance failure occurs, the load for consuming the heat generated by the heating unit is eliminated, and the heating unit itself is heated by self-heating. As the temperature rises, the amount of heat supplied to the transfer pipe increases, and when the heat exceeds a certain threshold, sudden local boiling occurs to transfer water. As a result, the presence of a load that consumes heat in the evaporator causes the heating unit to return to the desired temperature. When the temperature is lowered to the expected temperature, the conveyance failure again occurs. By repeating these phenomena, there is a problem in that the scale adheres to the inside of the transport pipe due to rapid local boiling, causing clogging of the transport pipe.
[0012]
The present invention has been made in view of the above-described problems, and an object of the present invention is to eliminate the need for a dedicated pump means for supplying water from a water storage tank to a water supply tray (evaporator), and to omit the pump means. The structure and size of the steam supply mechanism can be simplified and downsized, and the control processing required for controlling the steam supply amount can be simplified. It is still another object of the present invention to provide a high-frequency heating apparatus with a steam generating function, which can maintain a good balance of heat energy supply between the conveying section side and the evaporating section side and continuously generate steam.
[0013]
[Means for Solving the Problems]
In order to solve the above-mentioned conventional problems, a high-frequency heating device with a steam generation function of the present invention includes a high-frequency generation unit that outputs a high frequency to a heating chamber that accommodates an object to be heated, and a steam that supplies heating steam to the heating chamber. A high-frequency heating device with a steam generating function for heating the object to be heated by supplying at least one of high-frequency waves and heating steam to the heating chamber, wherein the steam supply mechanism comprises: A water storage tank detachably mounted on the heating chamber, an evaporator provided in the heating chamber, heating means for heating the evaporator to evaporate water, and energy generated by the heating means for water in the water storage tank. A heat transfer unit that causes local boiling to transfer water to the evaporating unit, and a water supply passage that leads to the evaporating unit via the heating area, and has a lower thermal conductivity than a material forming the evaporating unit In which the heat transfer control unit comprising a charge has to control the amount of heat energy transferring heat to the heat transport unit from the heating means be interposed between the heating means and the heat transport unit.
[0014]
In the high-frequency heating apparatus with the steam generating function configured as described above, the water supply path is routed so as to pass through a heating area by the heating means, and the pump is driven by thermal expansion of water in the water supply path due to heat generated by the heating means. It has a function and does not require a dedicated pump means for supplying water from the water storage tank to the evaporator.
[0015]
Therefore, simplification and downsizing of the configuration of the steam supply mechanism can be realized by omitting the dedicated pump means.
[0016]
In addition, since the water supply to the evaporator is performed by the heat generated by the heating means, the control of the steam supply amount can be realized only by controlling the heat generation operation of the heating means, and the dedicated pump means is controlled. Compared with the conventional one which had to be performed, the control processing required for controlling the supply amount of steam can be simplified.
[0017]
Furthermore, since the water supplied to the evaporator is in a state of being heated by the heat generated by the heating means, the time required from the supply to the evaporator to the generation of steam can be shortened, and rapid steam heating can be achieved. Becomes possible.
[0018]
In addition, the temperature of the evaporator is set to a high temperature, and the temperature of the heat transfer unit can be set to a temperature range slightly higher than 100 ° C that enables boiling, so that the transferred water is surely evaporated quickly while maintaining the transfer function. It is possible to suppress the adhesion of scale in the transfer pipe, which is the heat transfer section, and to continuously generate high-temperature steam.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
The invention according to claim 1 includes a high-frequency generation unit that outputs a high-frequency wave into a heating chamber that accommodates an object to be heated, and a steam supply mechanism that supplies heating steam into the heating chamber. A high-frequency heating device with a steam generating function for supplying any one of the heating objects to the heating chamber to heat the object to be heated, wherein the steam supply mechanism includes a water storage tank detachably mounted on a device main body; An evaporating unit installed in the room, a heating unit for heating the evaporating unit to evaporate water, and locally boiling the water in the water storage tank by energy generated by the heating unit to convey water to the evaporating unit. A heat transfer unit, comprising a water supply passage leading to the evaporating unit via the heating area, and a heat transfer control unit made of a material having a smaller thermal conductivity than a material forming the evaporating unit; The heating means Since the water is supplied to the evaporating section by the generated heat of the heating means, the control of the steam supply amount is realized only by controlling the heating operation of the heating means. It is possible to simplify the control process required for controlling the supply amount of steam, and the water supplied to the evaporating section is reduced by the heating means, as compared with the conventional one which had to control a dedicated pump means. Since the temperature is raised by the generated heat, the time required from the supply to the evaporator to the generation of steam can be shortened, and rapid steam heating becomes possible.
[0020]
Further, the temperature of the heat transfer unit can be set to a temperature range slightly higher than 100 ° C. that enables boiling by the heat energy from the heating means, so that the transfer function can be maintained, and the evaporating unit has a higher temperature than the heat transfer unit. Therefore, the conveyed water can be reliably and quickly evaporated. Further, it is possible to suppress the adhesion of scale in the transfer pipe and continuously generate high-temperature steam.
[0021]
According to a second aspect of the present invention, in particular, the heat transfer control unit according to the first aspect reduces the amount of heat energy supplied to the heat transfer unit from the heating unit to 1/1 / the amount of heat energy supplied to the evaporation unit. When the water temperature is set to 8 or less, the evaporation amount can be stably performed because the amount of transported water does not exceed the evaporation amount and the evaporating section can maintain a high temperature in the water temperature range of 5 ° C to 30 ° C.
[0022]
According to a third aspect of the present invention, in particular, the heat energy of the heating means is uniformly distributed to the heat transfer section in the heat transfer control section through a material having a higher heat conduction characteristic in the surface direction than in the thickness direction. In other words, the heat transfer performance in the transfer pipe becomes uniform without causing a difference in temperature distribution, that is, the stable liquid transfer capability and the scale adhesion in the transfer pipe can be further suppressed.
[0023]
The invention according to claim 4 is particularly configured such that a sheathing heater is embedded in an aluminum die-cast in the heating means according to claims 1 to 3, and a water-repellent treatment such as fluorine having a concave evaporation portion is performed. The steel plate is joined to the top surface of the die cast, and the heat transfer unit is joined to the side or bottom surface of the aluminum die cast via a heat transfer control unit made of stainless steel. By using a material having a small thermal conductivity, a temperature gradient in the heat transfer control unit can be easily and reliably realized. Further, by covering the sheathed heater, which is a heating means, with an aluminum die-cast, the amount of heat can be maintained, and stable steam generation performance and liquid transfer capability can be secured.
[0024]
According to the fifth aspect of the present invention, in particular, by making the evaporating section according to the fourth aspect detachable from aluminum die-casting, it is possible to perform a round washing (cleaning such as washing with water) with the evaporating section removed. it can. Therefore, cleaning of the evaporating section can be performed relatively easily.
[0025]
According to a sixth aspect of the present invention, in particular, the heating means according to any one of the first to third aspects has a structure in which a sheathed heater is embedded in an aluminum die cast, and the evaporating section has an integral structure in which a concave portion is provided on an upper surface of the die cast. The transfer section is joined to the side or bottom of the aluminum die-cast through a heat transfer control section made of stainless steel. In other words, the transfer section is made by using a material with lower thermal conductivity than the evaporation section. A temperature gradient in the heat control unit can be easily and reliably realized. In addition, by forming the evaporating portion integrally with the aluminum die cast, the heat energy of the heating means can be efficiently transferred, and stable steam generation performance and liquid transfer capability can be secured.
[0026]
According to the seventh aspect of the present invention, since the surface of the evaporator according to the sixth aspect is subjected to a water-repellent treatment such as fluorine to improve the cleanability of the evaporator, the amount of heat transferred to the evaporator can be improved. It is possible to prevent the amount of heat transfer to the heat transfer unit from increasing due to the decrease. Therefore, the scale adhesion is suppressed without an excessive increase in the amount of heat transfer into the heat transfer section piping.
[0027]
The invention according to claim 8 can suppress severe local boiling in the pipe by forming the pipe of the heat transfer unit according to claim 4 from aluminum or copper having a high thermal conductivity. Therefore, the stability of the liquid transfer capacity and the generation of a boiling sound at the time of local boiling can be prevented.
[0028]
According to the ninth aspect of the invention, in particular, by increasing the inner surface area of the heat transfer unit pipe as compared with the outer surface area of the fourth to eighth aspects, severe local boiling in the pipe can be suppressed. Therefore, the stability of the liquid transfer capacity and the generation of a boiling sound at the time of local boiling can be prevented.
[0029]
According to the tenth aspect of the invention, in particular, by applying a water-repellent treatment such as fluorine to the inner surface of the pipe of the heat transfer unit according to the ninth aspect, scale adhesion in the pipe is suppressed.
[0030]
【Example】
Hereinafter, a high-frequency heating device with a steam generating function according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
[0031]
(Example 1)
1 and 2 are external views of one embodiment of a high-frequency heating device with a steam generating function according to the present invention.
[0032]
The high-frequency heating apparatus 100 with a steam generating function according to the embodiment is used as a microwave oven capable of high-frequency heating and heating by heating steam for heating and cooking foods. A high-frequency generating means (magnetron) 5 for outputting high-frequency waves into the chamber 3 and a steam supply mechanism 7 for supplying heating steam into the heating chamber 3 are provided, and at least one of the high-frequency waves and the heating steam is supplied to the heating chamber 3. Then, the object to be heated in the heating chamber 3 is heated.
[0033]
The heating chamber 3 is formed inside a box-shaped main body case 10 having an open front, and an opening / closing door 13 having a light-transmitting window 13 a for opening and closing a heated object outlet of the heating chamber 3 is provided on the front surface of the main body case 10. Is provided. The lower end of the door 13 is hinged to the lower edge of the main body case 10 so that the door 13 can be opened and closed in the up-and-down direction. Can be shown open.
[0034]
A predetermined heat insulating space is provided between the wall surfaces of the heating chamber 3 and the main body case 10, and a heat insulating material is loaded in the space as needed.
[0035]
In particular, the space behind the heating chamber 3 is a circulation fan chamber that houses a circulation fan that stirs the atmosphere in the heating chamber 3 and a drive motor (not shown) for the circulation fan. The partition wall defines the chamber 3 and the circulation fan chamber.
[0036]
Although not shown, a partition wall 15 which is a rear wall of the heating chamber 3 has a ventilation hole for taking air from the heating chamber 3 side to the circulation fan chamber side, and a suction hole from the circulation fan chamber side to the heating chamber 3 side. And a ventilation port for blowing air to the air are provided so as to distinguish the formation area. Each ventilation hole is formed as a number of punch holes.
[0037]
In the case of the present embodiment, as shown in FIG. 2, the high-frequency generation means (magnetron) 5 is disposed in a space below the heating chamber 3, and is located at a position for receiving the high-frequency generated from the high-frequency heating device 5. Is provided with a stirrer blade 17. By irradiating the rotating stirrer blade 17 with the high frequency from the high frequency generator 5, the high frequency is supplied to the heating chamber 3 while being stirred by the stirrer blade 17. The high-frequency generator 5 and the stirrer blades 17 are not limited to the bottom of the heating chamber 3 but may be provided on the upper surface or the side surface of the heating chamber 3.
[0038]
As shown in FIG. 3, the steam supply mechanism 7 includes one water storage tank 21 detachably provided in the apparatus main body, two water supply trays (evaporation units) 25 provided in the heating chamber 3, Heating means 27 for heating the water supply tray (evaporation unit) 25 to evaporate the water on the water supply tray (evaporation unit) 25, and water in the water storage tank 21 via a heating area of the heating means 27. A tank for preventing water leakage from the water storage tank and the water supply channel when the water storage tank 21 is detached when the water storage tank 21 is removed. A water stop valve 33 on the water supply side and a water stop valve 45 on the water supply path side; and a check valve 47 disposed downstream of the water stop valve 45 on the water supply path side to prevent back flow of water from the water supply path 29 to the water storage tank 21. It is comprised including.
[0039]
The characteristic configuration of the water supply channel 29 composed of the two systems described above will be described in detail later, but the distance from the heating area of each heating means 27 to the water outlet 29e at the tip of the water supply channel is set to be equal. It is in.
[0040]
In addition, as shown in FIG. 4, the steam supply mechanism 7 may be configured to supply water from one system water supply passage 29 to one water supply tray (evaporator) 25 to generate steam.
[0041]
In the present embodiment, the water storage tank 21 is a flat rectangular parallelepiped cartridge type excellent in handleability and can be easily attached to and detached from the apparatus main body (main body case 10). As shown in FIG. 1, the main body case 10 is inserted and attached to a tank storage portion 35 attached to the side surface of the main body case 10 so as to be hardly damaged.
[0042]
As shown in FIG. 5, the tank storage section 35 is hinged on the rear end side to the main body case 10. When the engagement of the front end section indicated by the arrow (a) in FIG. As shown by the arrow (b) in b), the front end side rotates outward, and the tank insertion port 36 at the front end is exposed.
[0043]
With the tank insertion opening 36 exposed, the water storage tank 21 can be withdrawn in the direction indicated by the arrow (c) in FIG.
[0044]
The mounting of the water storage tank 21 is completed by inserting the water storage tank 21 into the tank insertion port 36 in a direction opposite to the extracting direction.
[0045]
As shown in FIG. 6, the water storage tank 21 includes a flat rectangular parallelepiped container body 22 having an open top and an opening / closing lid 23 that covers an upper opening of the container body 22. The container body 22 and the opening / closing lid 23 are formed of resin.
[0046]
The container body 22 is formed of a transparent resin so that the remaining amount of water inside can be visually recognized, and scales 22a indicating the remaining water level are provided on both side surfaces of the container body 22. As shown in FIGS. 5 and 7, the portion provided with the scale 22 a is exposed to the outside through a cutout window 37 formed at the front edge of the tank storage portion 35, and is externally provided in the water storage tank 21. The remaining amount of water is made visible.
[0047]
As shown in FIG. 6, a cylindrical connection port 22 b that fits and connects to the water supply channel 29 is protruded at a position near the lower portion on the back surface of the container body 22. As shown in FIG. 8A, the connection port 22b is provided with a water stop valve 33 on the tank side for closing the connection port 22b when the water storage tank 21 is taken out of the apparatus main body and preventing outflow of stored water. Equipped.
[0048]
The water supply tray (evaporator) 25 of the present embodiment is formed by forming a depression for receiving water in a part of the bottom plate 4 of the heating chamber 3 and is integral with the bottom plate 4.
[0049]
As described above, the water supply tray (evaporator) 25 is provided on the left and right of the rear portion of the bottom plate 4 in the present embodiment.
[0050]
The heating means 27 is a sheathed heater that is arranged in contact with the lower surface of each water supply tray (evaporator) 25, and is an aluminum die-cast attached to the back surface of the water supply tray (evaporator) 25 as shown in FIG. The structure is such that the heater main body is assembled to an assembling block 27a made of aluminum. In the case of the present embodiment, a thermistor 41 as a temperature detection sensor for detecting the temperature of the heating means 27 is connected between a pair of electrodes 27b and 27c at both ends of the heater extending from the assembly block 27a.
[0051]
The thermistor 41 is buried in the assembly block 27a between the pair of electrodes 27b and 27c. The detection signal of the thermistor 41 is monitored by a control circuit (not shown), and is used for detecting the remaining amount 0 of the water storage tank 21 and controlling the operation of the heating means 27 (heat generation amount control).
[0052]
As shown in FIG. 10, as shown in FIG. 10, when water is supplied from the water storage tank 21 and the water supply tray (evaporation unit) 25 is filled with water, the detected temperature level increases as the temperature of the heating unit 27 increases. . However, when water is exhausted in the water supply tray (evaporator) 25 indicated by the symbol a in the figure, since the heating means 27 is energized, the detected temperature level sharply increases, and the upper limit reference value indicated by the b Exceeds.
[0053]
The control circuit (not shown) cuts off the power supply to the heating means 27 when the temperature exceeds the upper limit reference value. At this point, although there is an overshoot, the detected temperature level of the thermistor 41 drops. Eventually, when the detected temperature level of the thermistor 41 reaches the lower limit reference value indicated by c, the control circuit again energizes the heating means 27 to heat the heater. However, since there is no water in the water supply tray (evaporator) 25, the detected temperature level of the thermistor 41 rises again and exceeds the upper limit reference value indicated by d. At this point, the control circuit determines that there is no water in the water supply tray (evaporating section) 25 and the heating means 27 is in the state of baking, and as shown by e, cuts off the power supply to the heating means 27. Control is performed to issue an alarm and stop the steam heating process.
[0054]
In the present embodiment, as described above, a single thermistor can control the generation of the steam amount and detect an abnormality when the water in the water supply tray (evaporator) runs out.
[0055]
In addition, the above-described control makes it possible to extend the life of the heater and to use the water supply tray (evaporator) within the allowable temperature range, thereby preventing the fluororesin-coated surface of the water supply tray (evaporator) from deteriorating.
[0056]
In the present embodiment, as described above, when the thermistor detects the temperature at which the upper limit reference value is reached twice by repeating the cycle of turning on and off the heater, it is determined that there is no water in the water supply tray (evaporating section). The configuration is not limited to two times, and the detection may be performed a plurality of times to make a determination.
[0057]
Further, in the present embodiment, a sheath heater is used as the heating means 27, but a glass tube heater, a plate heater, or the like may be used instead of the sheath heater.
[0058]
As shown in FIGS. 3 and 9, the water supply passage 29 includes a base pipe portion 29 a branched and connected to the connection port 22 b of the water storage tank 21 in two systems. A horizontal pipe portion 29b routed under the bottom plate 4 of the heating chamber 3 so as to pass through the heating zone of the heating chamber 3, and a vertical pipe portion 29c which rises vertically to the side of the heating chamber 3 from the tip of the horizontal pipe portion 29b. An upper pipe section 29d extending from the upper end of the vertical pipe section 29c to above each water supply tray (evaporation section) 25, and dropping water fed from the vertical pipe section 29c into the water supply tray (evaporation section) 25; A water outlet 29e which forms the tip of each upper pipe portion 29d.
[0059]
As shown in FIG. 3, the horizontal pipe portion 29b is piped so as to be in contact with the assembly block 27a of the heating means 27, and the contact portion 30 with the assembly block 27a shown in FIG. Area.
[0060]
Therefore, the characteristic configuration of the two systems of the steam supply mechanism 7 described above indicates that the lengths of the pipe paths from the respective contact portions 0 to the respective water outlets 29e are set to be equal.
[0061]
In the present embodiment, as described above, the horizontal pipe portions 29b of the respective water supply passages 29 are set to a heating area by the heating means 27, and the respective horizontal pipes thermally expanded by receiving heat conduction by the heat generated by the respective heating means 27. The water in the section 29b is supplied to each water supply tray (evaporation section) 25.
[0062]
When the water storage tank 21 is inserted into the tank storage section 35 and the heating means 27 generates heat in a state where the horizontal pipe section 29b is filled with water, contact with the assembling block 27a occurs. In the section 30, heat is supplied to the water in the pipe to expand the water. Since the check valve 47 temporarily stops the pressure of the water in the expanding pipe, the pressure is directed only toward the vertical pipe section 29c. Then, the expanded water passes through the upper pipe portion 29d, is dropped from each water outlet 29e, and is supplied to the water supply tray (evaporation unit) 25.
[0063]
At this time, since the distance from the contact portion 30 with the assembly block 27a of each water supply passage 29 to each water outlet 29e is set to be equal, each horizontal piping portion 29b has heating means of the same specification. By applying 27, the same amount of heat can be applied from the contact portion 30, whereby water can be uniformly supplied to each water supply tray (evaporation portion) 25.
[0064]
Further, if the distance from the contact portion 30 to each water outlet 29e is set to be equal, the temperatures of the water supply passages 29 and the contact portion 30 can be made equal, and the steam generation control can be easily performed.
[0065]
Since the water supplied to the water supply tray (evaporator) 25 has been heated by the heat generated by each heating means 27, the time required from the supply to the water supply tray (evaporator) 25 to the generation of steam is reduced. And rapid steam heating becomes possible.
[0066]
If the heating is interrupted, the water in the vertical pipe portion 29c in each water supply passage 29 does not expand, cannot reach the air intake 29f, the atmospheric pressure enters the pipe from the air intake 29f, and the water supply is stopped. .
[0067]
As shown in FIG. 8A, the proximal pipe portion 29a is connected to the horizontal pipe portion 29b when the water storage tank 22 is detached from the proximal circular pipe portion 43 into which the connection port 22b of the container body 22 is fitted. A water stop valve 45 is provided on the pipe side to prevent water leakage from the horizontal pipe part 29b, and a connection part with the horizontal pipe part 29b is provided from the horizontal pipe part 29b side due to thermal expansion of water in the horizontal pipe part 29b. A check valve 47 for preventing backflow (flow in the direction of arrow (d) in the figure) is provided.
[0068]
The water stop valve 33 on the tank side and the water stop valve 45 on the tube side have springs 33b, 45b for urging the valve bodies 33a, 45a, respectively, in opposite directions, and the connection port 22b of the container body 22 is connected to the base circular pipe. When properly fitted to the portion 43, as shown in FIG. 8 (b), the distal ends of the two valve bodies 33a, 45a abut against each other, and oppose each other against the urging force of the springs 33b, 45b. Displace to open the channel.
[0069]
An O-ring 49 is provided on the outer peripheral portion of the connection port 22 b of the container body 22 as a seal material for closing a gap between the container main body 22 and the base circular pipe portion 43.
[0070]
The state shown in FIG. 8A is a state in which the connection port 22b of the container body 22 is not fitted to the base end circular pipe portion 43, and the water stop valve 33 on the tank side and the water stop valve 45 on the tube side are still in use. Are in a state where the flow path is closed.
[0071]
In a state where the connection port 22b of the container main body 22 is disengaged from the base circular pipe portion 43, the water supply channel 29 side is sealed by the water stop valve 45 on the pipe side, and the backflow of water in the water supply channel 29 is prevented. It is reliably prevented. That is, as shown in FIG. 3, when the water storage tank 21 is inserted into the tank storage portion 35, the water flows into the vertical pipe portions 29 c of each water supply passage 29 to the same water level as the water storage tank 21. Under such water pressure, even if the water storage tank 21 is pulled out, the water stop valve 45 on the pipe side can prevent the backflow of water.
[0072]
A small amount of water remaining between the water stop valve 33 on the tank side and the water stop valve 45 on the pipe side when the water storage tank 21 is pulled out from the tank storage part 35 is provided on the bottom part on the back side of the tank storage part 35. A concave portion 51 for receiving the dripping is provided, and the concave portion 51 is provided with a water absorbing sheet 53 for absorbing the dropped water. As the water-absorbing sheet 53, for example, a nonwoven fabric having excellent water-absorbing properties is used.
[0073]
As shown in FIGS. 3 and 4, the upper end of the vertical pipe portion 29 c to which the upper pipe portion 29 d is connected is located at the highest level H of the stored water in the water storage tank 21. max It is set at a higher position. This is to prevent the water stored in the water storage tank 21 from inadvertently and continuously flowing out to the upper pipe portion 29d by the communication pipe action.
[0074]
Further, the water supply passage 29 is connected to the water storage tank 21 via the base end pipe portion 29a at a position further lower than the minimum level Hmin of the stored water in the water storage tank 21.
[0075]
This is because the water stored in the water storage tank 21 can be taken into the water supply channel 29 without being left.
[0076]
In the case of the present embodiment, the water supply tray (evaporator) 25 and the heating means 27 are respectively provided on the left and right of the rear part of the bottom plate 4 of the heating chamber 3. Therefore, as shown in FIG. 4, for example, the two water supply passages 29 are respectively branched to two horizontal piping portions 29b downstream of the base piping portion 29a via check valves 47, respectively, and each heating means 27, a contact portion 30 that contacts the horizontal piping portion 29b, the vertical piping portion 29c, the upper piping portion 29d, and the heater in contact with the assembly block 27a to supply the water in the piping with heat is laid. The distance between the contact portion 30 and the water outlet 29e at the tip of the pipe is set to be equal to each other between the water supply passages 29 provided in the water supply tray (evaporation unit) 25.
[0077]
In the high-frequency heating device 100 with the steam generating function described above, the water supply path 29 is routed so as to pass through a heating area of the heating means 27, and heat generated in the water supply path 29 by heat generated by the heating means 27. A pump function is obtained by expansion, and a dedicated pump means for supplying the water in the water storage tank 21 to the water supply tray (evaporator) 25 is not required.
[0078]
Therefore, simplification and downsizing of the configuration of the steam supply mechanism 7 can be realized by omitting the dedicated pump means.
[0079]
In addition, since water is supplied to the water supply tray (evaporator) 25 by the heat generated by the heating means 27, the control of the steam supply amount can be realized only by controlling the heat generation operation of the heating means 27. Compared with the conventional pump in which the dedicated pump means had to be controlled, the control processing required for controlling the supply amount of steam can be simplified.
[0080]
Further, since the water supplied to the water supply tray (evaporation unit) 25 is in a state of being heated by the heat generated by the heating means 27, the time required from the supply to the water supply tray (evaporation unit) 25 to the generation of steam. , And rapid steam heating becomes possible.
[0081]
Further, in the above configuration, when the remaining amount of the water storage tank 21 becomes 0 (zero) and the amount of remaining water on the water supply tray (evaporation unit) 25 decreases, the amount of heat consumed for water evaporation decreases. 27 and the temperature of the water supply tray (evaporator) 25 itself increase.
[0082]
However, since the steam supply mechanism 7 of the present embodiment includes the thermistor 41 for detecting the temperature of the heating means 27, monitoring the detection signal of the thermistor 41 allows the water storage tank 21 to be relatively easily operated. It is possible to detect the remaining amount 0, and it is possible to prevent occurrence of inconvenience such as emptying.
[0083]
Furthermore, various kinds of control such as stopping the operation of the heating means 27 or issuing an alarm for water supply can be performed by using the detection signal of the thermistor, for example, when the remaining amount of the water storage tank 21 is detected to be zero. The handleability of the heating device 100 can be improved.
[0084]
In the present embodiment, the thermistor 41 is brought into direct contact with the heating means 27, but may be equipped so as to come into contact with the water supply tray (evaporator) 25.
[0085]
In order to prevent the occurrence of heating unevenness due to the heating steam in the heating chamber of the high-frequency heating device with a steam generation function, the steam generation unit including the water supply tray (evaporation unit) 25 and the heating unit 27 is provided inside the heating chamber 3. It is desirable that the supply of the heating steam in the heating chamber 3 be equalized by dispersing equipment at a plurality of locations. However, if the steam generating units are distributed and installed at a plurality of locations, a device for uniformly supplying water to the water receiving trays (evaporating units) 25 at the plurality of locations is required.
[0086]
However, as described above, when a plurality of sets of the water supply tray (evaporator) 25 and the heating means 27 are provided, the respective water supply passages 29 provided in the respective water receivers (evaporator) 25 are connected to each other by the contact portion of the heater. And the distance from the pipe to the water outlet at the tip of the pipe is set to be equidistant, the supply amount in each water supply passage 29 can be made uniform without controlling the water supply flow rate. Can be realized at a low cost. FIG. 11 is an exploded perspective view of the steam supply mechanism according to the first embodiment of the present invention, and FIG. 12 is a sectional view taken along the line AA ′ of FIG.
[0087]
11 and 12, reference numeral 27 denotes a U-shaped sheathed heater as a heating means, 111 denotes a heating means main body made of an aluminum die-cast molding process in which the heating means 27 is embedded, and 112 denotes a high heat conductivity of aluminum or copper. A transfer pipe 113 that forms a heat transfer section made of a material is a transfer pipe heating section that forms a heat transfer section for boiling the liquid in the transfer pipe 112. A heat transfer control unit 114 is disposed between the heating unit main body 111 and the transport tube heating unit 113.
[0088]
The transport tube heating unit 113 is composed of two members 115 and 116, and the transport tube 112 is sandwiched by these two members. The member 115 is provided with a notch 115a centered on the center of the transport tube 112 in the transport direction, and the contact with the transport tube 112 is at the lower half and both ends of the transport tube 112.
[0089]
The heat transfer control unit 114 uses a material having a thermal conductivity that is at least one order of magnitude lower than that of the molding material of the heating unit main body 111 or the material of the transfer pipe 112. Iron and stainless steel can be selected, but stainless steel is selected and used in consideration of corrosion resistance. Further, in assembling the heat transfer control unit 114, the heat transfer control unit 114 is disposed between the heating unit main body 111 side and the transfer tube heating unit 113 in the thickness direction (heat conductivity: 5 to 7 W / mK) rather than in the surface direction (heat conductivity). Conductivity: 100 to 200 W / mK) and unnecessary heat transfer suppression in portions other than the heat transfer control unit 114 is eliminated by interposing carbon sheets 114 a and 114 b having high thermal conductivity characteristics.
[0090]
On the other hand, the member 116 has a configuration in which all regions in the transport direction abut on the transport tube 112. These two members 115 and 116 and the transport pipe 112 are primarily assembled by screws 117, 118, 119 and 120.
[0091]
The primary assembly of the transport pipe 112 and the transport pipe heating unit 113 is assembled to the heating unit main body 111 via the heat transfer control unit 114 by using screws 121 and 122.
[0092]
123 is a check valve which is a component forming a heat transfer section provided on the upstream side of the transfer pipe heating section 113 in the liquid transfer direction, 124 and 125 are connection sections for connecting power supply lead wires of the sheathed heater 27, 126 Reference numerals 129 to 129 denote mounting holes of the heating means main body 111, and 130 denotes a heat energy transfer portion for evaporating the conveyed liquid. Reference numeral 25 denotes an evaporating section formed by forming a material having a smaller thermal conductivity than the heat transfer control section 114, particularly a material obtained by subjecting a steel sheet or the like whose main component is iron to a surface treatment such as fluorine to have a concave shape on the upper side.
[0093]
The heating means main body 111 is used on the opposite side to the direction in which the transfer pipe 112 is provided, as a portion for transferring heat energy for evaporating the transferred liquid.
[0094]
The operation and operation of the steam supply mechanism configured as described above will be described below.
[0095]
The liquid to be conveyed will be described as water. First, a tank (not shown) for storing this water is installed on the check valve 123 side. Thereby, water is injected into the transport pipe 112. Thereafter, the sheath heater 27 is operated. With the start of the operation of the sheath heater 27, the heating means main body 111 is heated and the temperature rises. The heat of the heating means main body 111 is transferred to the main member 116 via the heat transfer control section 114 and the member 115 of the transport pipe heating section 113 while maintaining uniform temperature distribution characteristics through the carbon sheets 114a and 114b. Then, the transfer tube 112 is heated. At a portion where the tube wall temperature of the transfer tube 112 exceeds 100 ° C., local boiling of water occurs at the tube wall portion. Bubbles generated by the boiling expand the gas and push water in the transport pipe 112 to both sides in the transport direction. A check valve 123 is arranged on the upstream side in the transfer direction, and the check valve 123 is closed by pressing water in the transfer pipe 112. In response to this, bubbles generated by boiling have no escape place only on the downstream side in the transport direction. The check valve 123 is opened in conjunction with the movement of the bubble to the downstream side in the transport direction, and water is injected into the transport pipe 112 from the water storage tank. Water is transported by repeating this phenomenon. The transported water is guided to the evaporator 25 via a transport pipe (not shown). Since heat energy is transmitted from the heating means main body 111 to the evaporator, the water conveyed to the evaporator is further heated and evaporated.
[0096]
In the operation as described above, water is caused to boil in the region of the transfer tube 112 that abuts on the transfer tube heating section 113 and in the evaporating section, so that residues including calcium and magnesium contained in water adhere to the wall surface. It accumulates. This adhesion residue is called a scale. As the scale adhesion is continued, the inner cross section of the transfer pipe 112 gradually narrows, and in the worst case, the transfer function does not work. Further, the amount of heat transfer to the evaporating section and the transfer pipe decreases.
[0097]
The distribution of the heat energy supplied by the heating means main body 111 between the transfer pipe side and the evaporator section side is about 10 times the evaporator section side with respect to the transfer pipe side, so that the conveyed water can be immediately evaporated. . In this case, when the amount of heat transfer to water due to the scale adhesion on the evaporating section side decreases, the temperature of the heating means main body 111 increases. The heat transfer control unit 114 suppresses the amount of heat transfer to the transport tube heating unit 113 side in response to the temperature rise of the heating unit main body 111, and reduces the wall surface temperature of the transport tube 112 to a substantially constant desired temperature (specifically, (About 105 to 120 ° C.) and the heat energy of the local boiling in the transfer pipe 112 is kept low, whereby the scale adhesion in the transfer pipe 12 can be suppressed.
[0098]
As a specific temperature example, when the sheathed heater power is 600 W, the heat transfer control unit 114 is configured so that the temperature of the main member 116 is 105 to 110 ° C. when the temperature of the heating unit main body 111 is 160 ° C. The heat transfer control section 114 is made of stainless steel and has a thickness of 3 mm and a cross-sectional area of 300 mm. 2 It is. When the scale accumulates on the evaporating section side under this condition, the heating means main body 111 exhibits a temperature rise of 20 to 30 ° C., but the temperature of the main member 116 is lower than 5 ° C. by the heat transfer control section 114. Was raised.
[0099]
Further, as shown in the configuration drawing of the present embodiment, as the configuration of the transport tube heating unit 113, by arranging the main member 116 on the lower side in the direction of gravity, bubbles generated by the boiling phenomenon in the transport tube 112 are reduced. Move upward in the direction of gravity. When air bubbles are generated by boiling, the temperature of the inner wall surface, which is not exposed to water, tends to immediately become high.However, water can immediately flow into this boiling point to suppress the rise in the temperature of the transport pipe wall surface, thereby further suppressing scale adhesion. it can.
[0100]
Furthermore, the main member 116 is configured to thermally diffuse in the water transport direction of the transport pipe 112, and the transport pipe is made of a material having a high thermal conductivity such as copper or aluminum, so that it can be used in a region where boiling occurs. By preheating the water to be conveyed, local boiling can be generated with a small amount of heat energy, so that scale adhesion can be further suppressed.
[0101]
Further, since the surface of the evaporating section 25 is subjected to a water-repellent treatment such as fluorine, the adhesion of the scale to the evaporating section 25 is reduced, and the scale can be removed and cleaned by wiping with a wet cloth. .
[0102]
(Example 2)
FIG. 13 is an exploded perspective view of a liquid evaporator according to a second embodiment of the present invention, and FIG. 14 is a sectional view taken along line BB ′ of FIG. The second embodiment differs from the first embodiment in that a concave portion is provided on the upper surface of an aluminum die-cast in which a sheathed heater is embedded and an evaporation portion is provided, and a water-repellent treatment such as fluorine is performed on the evaporation portion.
[0103]
13 and 14, 132 is a U-shaped sheathed heater as a heating means, 133 is a heating means main body made of an aluminum die-cast molding process in which the heating means 132 is embedded, and 134 has a high thermal conductivity of aluminum or copper. A transport pipe 135 made of a material is a transport pipe heating unit for boiling the liquid in the transport pipe 134. A heat transfer control unit 136 is disposed between the heating unit main body 133 and the transport tube heating unit 135.
[0104]
The transport tube heating unit 135 is composed of two members 137 and 138, and the transport tube 134 is sandwiched by these two members. The member 137 is provided with a notch 137a centered on the center of the transport pipe 134 in the transport direction, and the contact with the transport pipe 134 is at the lower half and both ends of the transport pipe 134.
[0105]
The heat transfer controller 136 uses a material having a heat conductivity that is at least one order of magnitude lower than that of the molding material of the heating means main body 133 or the material of the transfer pipe 134. Iron and stainless steel can be selected, but stainless steel is selected and used in consideration of corrosion resistance. Further, in assembling the heat transfer control unit 136, the heat transfer control unit 136 and the transfer pipe heating unit 135 are located between the thickness direction (heat conductivity: 5 to 7 W / mK) and the surface direction (heat conductivity). (Conductivity: 100 to 200 W / mK) The carbon sheets 136 a and 136 b having high thermal conductivity are interposed in the heat transfer control unit 136 to eliminate unnecessary heat transfer suppression.
[0106]
On the other hand, the member 138 has a configuration in which all regions in the transport direction abut on the transport pipe 134. The two members 137 and 138 and the transport pipe 133 are assembled by screws 139, 140, 141 and 142.
[0107]
Further, the primary assembly of the transport pipe 134 and the transport pipe heating unit 135 is assembled to the heating means main body 133 via the heat transfer control unit 136 using the screws 143 and 144.
[0108]
145 is a check valve provided on the upstream side of the transport tube heating section 135 in the liquid transport direction, 146 and 147 are connection sections for connecting the power supply lead wires of the sheathed heater 132, and 148 is an aluminum die as the heating means main body 133. An evaporator provided in a concave shape on the upper surface of the cast, the surface of which is subjected to a water-repellent treatment such as fluorine.
[0109]
The operation and operation of the steam supply mechanism configured as described above will be described below.
[0110]
In the second embodiment, since the evaporator 148 is formed integrally with the heating means main body 133, the temperature of the heating means main body 133 and the temperature of the evaporator 148 are the same until water is conveyed to the evaporator 148. Become. When the water is conveyed to the evaporating section 148 and the heat storage energy of the heating means main body 132 is consumed, the amount of heat transfer to the conveying pipe 134 is temporarily reduced. And the amount of heat transfer to the transfer pipe 134 is balanced. Thereby, steam is generated stably. Further, since the heat transfer efficiency from the evaporator 148 to the transport water is high, the water sent to the evaporator 148 can be vaporized in a very short time.
[0111]
Further, since the surface of the evaporating section 148 is subjected to a water-repellent treatment such as fluorine, the adhesive force of the scale is reduced, and the scale can be removed and cleaned by wiping with a wet cloth.
[0112]
The contents other than the shape of the heating means main body 133 and the material of the evaporating section 148 are the same as those of the first or second embodiment, and the description is omitted.
[0113]
(Example 3)
FIG. 15 is a sectional view of a transfer pipe including a transfer pipe heating unit and the like in the third embodiment of the present invention. The third embodiment differs from the first and second embodiments in that the inner surface area of the piping is larger than the outer surface area of the piping and that the inner surface of the piping is subjected to a water-repellent treatment.
[0114]
In FIG. 15, reference numeral 149 denotes a U-shaped sheathed heater serving as a heating means, 150 denotes a heating means main body made of an aluminum die-cast molding process in which the heating means 149 is embedded, and 151 denotes a material having a high thermal conductivity of aluminum or copper. A transport tube 152 having a concave-convex cross-sectional area and having its surface subjected to a water-repellent treatment, and a transport tube heating unit 152 for boiling the liquid in the transport tube 151. A heat transfer control unit 153 is disposed between the heating unit main body 147 and the transport tube heating unit 152.
[0115]
In the third embodiment, since the surface of the transfer tube 151 is subjected to a water-repellent treatment such as fluorine, the contact angle of water or the like is reduced, and the heat conductivity is slightly reduced, but the adhesion of scale or the like is also suppressed. You. Thereby, the blockage of the transport pipe 151 due to the scale adhesion can be delayed. Further, when removing the scale in the transport pipe 151 with citric acid or the like, the cleaning performance of the scale is improved, and the cleaning can be performed in a short time. In addition, since the contact area of the transfer pipe 151 per unit water in the pipe is increased, the local boiling can be generated with a small amount of heat energy by gradually heating the water. Sound generation can be further suppressed.
[0116]
The contents other than those related to the transfer pipe 151 are the same as those of the first embodiment, and the description is omitted.
[0117]
【The invention's effect】
The high-frequency heating device with a steam generating function of the present invention obtains a pump function by thermal expansion of water in the water supply passage due to heat generated by the heating unit, and eliminates the need for a dedicated pump unit. Simplification and downsizing can be realized.
[0118]
Further, since the control of the supply amount of steam can be achieved only by controlling the heat generation operation of the heating means, the control process can be simplified.
[0119]
In addition, when the steam generating section constituted by the water supply tray and the heating means is separately installed at a plurality of locations in the heating chamber, the uniform supply of the heating steam in the heating chamber can be realized at low cost.
[0120]
In addition, it is possible to suppress the amount of heat transfer to the heat transfer section while securing the heat energy to the evaporating section, and to suppress scale adhesion due to local boiling in the heat transfer section piping. In addition, it is possible to provide a steam supply mechanism that keeps good thermal energy supply balance between the heat transfer section side and the evaporation section side and continuously generates high-temperature steam close to 100 ° C.
[Brief description of the drawings]
FIG. 1 is an external perspective view of an embodiment of a high-frequency heating device with a steam generating function according to the present invention.
FIG. 2 is a schematic configuration diagram of the high-frequency heating apparatus with a steam generating function shown in FIG. 1 when the opening and closing door of the heating chamber is opened and the heating chamber is viewed from the front.
FIG. 3 is a schematic configuration diagram of a steam supply mechanism in the high-frequency heating device with a steam generation function shown in FIG. 1;
FIG. 4 is a schematic configuration diagram of a steam supply mechanism when there is one water supply tray;
FIG. 5 is an explanatory diagram of an attaching / detaching operation of a water storage tank in the high-frequency heating device with a steam generating function shown in FIG. 1;
(A) Explanatory drawing of the installed state of the water storage tank
(B) Explanatory drawing of the state where the tank insertion opening was exposed
(C) Explanatory drawing of the state of extracting the water storage tank
6 is an enlarged perspective view of a water storage tank used in the steam supply mechanism shown in FIG.
FIG. 7 is an explanatory view of a mounting structure on a side surface of the device of the steam supply mechanism shown in FIG. 4;
FIG. 8 is an explanatory view of a backflow prevention structure at a connecting portion between the water storage tank and the base end of the water supply channel shown in FIG. 6;
(A) A view showing a state in which the connection port of the container body is not fitted to the base circular pipe portion.
(B) A view showing a state in which the connection port of the container main body is properly fitted to the base circular pipe portion.
FIG. 9 is a view taken in the direction of arrow A in FIG. 6, and is an explanatory view of a configuration in which a water supply channel is heated by a heating means disposed at a bottom of the apparatus.
FIG. 10 is a diagram for explaining evaporation amount control and abnormality detection by a thermistor;
FIG. 11 is an exploded perspective view of a steam supply mechanism according to the first embodiment of the present invention.
FIG. 12 is a sectional view taken along the line AA ′ of FIG. 11;
FIG. 13 is an exploded perspective view of a steam supply mechanism according to a second embodiment of the present invention.
FIG. 14 is a sectional view taken along line BB ′ of FIG. 13;
FIG. 15 is a cross-sectional view of a transfer pipe including a transfer pipe heating unit and the like according to a third embodiment of the present invention.
[Explanation of symbols]
3 heating room
4 Bottom plate
5 High frequency generation means
7 Steam supply mechanism
13 Door
15 Partition wall
17 Stirrer blade
21 Water storage tank
22 Container body
22b Connection port
23 Opening / closing lid
25 Water supply tray (evaporator)
27 heating means
27a Assembly block
29 Water supply channel
29a Base end piping
29b Horizontal piping
29c Vertical piping section
29d Upper piping section
33 Water stop valve on the tank side
35 Tank storage section
36 Tank insertion port
41 Thermistor (Temperature detection sensor)
45 Water stop valve on pipe side
47 Check valve
132, 149 Seeds heater (heating means)
111, 133, 150 heating means main body
112, 134, 151 Transfer tube
113, 135, 152 Transport tube heating unit
114, 136, 153 Heat transfer control unit
114a, 114b, 136a, 136b carbon sheet
122, 143 Check valve
148 Evaporator (water supply tray)

Claims (10)

被加熱物を収容する加熱室内に高周波を出力する高周波発生手段と、前記加熱室内に加熱蒸気を供給する蒸気供給機構とを備え、高周波と加熱蒸気との少なくともいずれかを前記加熱室に供給して前記被加熱物を加熱処理する蒸気発生機能付き高周波加熱装置であって、前記蒸気供給機構は、装置本体に着脱可能に装備される貯水タンクと、前記加熱室内に装備され蒸発部と、この蒸発部を加熱して水を蒸発させる加熱手段と、前記貯水タンクの水を前記加熱手段で発生するエネルギにより局部沸騰を生じさせ前記蒸発部に水を搬送する熱搬送部と、この加熱域を経由して前記蒸発部に導く給水路とを備え、前記蒸発部を形成する材料に比べ熱伝導率が小さい材料からなる伝熱制御部を前記熱搬送部と前記加熱手段の間に介在させることで前記加熱手段から前記熱搬送部へ伝熱される熱エネルギー量を制御することを特徴とする蒸気発生機能付き高周波加熱装置。A high-frequency generating unit that outputs high-frequency waves to a heating chamber that accommodates the object to be heated; and a steam supply mechanism that supplies heating steam to the heating chamber. A high-frequency heating device with a steam generating function of heating the object to be heated, wherein the steam supply mechanism is provided with a water storage tank detachably mounted on a device main body, an evaporator provided in the heating chamber, Heating means for heating the evaporating section to evaporate water, heat transporting section for generating water in the water storage tank, causing local boiling by the energy generated by the heating means, and transporting the water to the evaporating section; A water supply passage leading to the evaporating unit via a heat transfer control unit made of a material having a smaller thermal conductivity than a material forming the evaporating unit, between the heat transfer unit and the heating unit. In front High frequency heating apparatus with steam generation function, characterized by controlling the amount of heat energy transferring heat to the heat transport unit from the heating means. 伝熱抑制部により、加熱手段から熱搬送部に供給される熱エネルギー量を、蒸発部に供給される熱エネルギ量の1/8以下とした請求項1記載の蒸気発生機能付き高周波加熱装置。The high-frequency heating apparatus with a steam generating function according to claim 1, wherein the heat transfer suppressing section makes the amount of heat energy supplied from the heating means to the heat transfer section equal to or less than 1/8 of the amount of heat energy supplied to the evaporating section. 加熱手段の熱エネルギーを厚み方向より面方向に熱伝導特性の大きい材料を介して伝熱抑制部に伝熱する請求項1または2項記載の蒸気発生機能付き高周波加熱装置。The high-frequency heating device with a steam generating function according to claim 1 or 2, wherein the heat energy of the heating means is transferred to the heat transfer suppressing portion via a material having a larger heat conduction characteristic in a surface direction than in a thickness direction. 加熱手段であるシーズヒータをアルミダイキャストに埋め込み、その上面にフッ素などの撥水性処理を施した鋼板を凹状に形成した蒸発部を接合し、熱搬送部を前記アルミダイキャストの側面或いは底面にステンレス鋼で形成した伝熱制御部を介して接合した請求項1〜3のいずれか1項記載の蒸気発生機能付き高周波加熱装置。A sheath heater as a heating means is embedded in an aluminum die cast, and an evaporating section formed by forming a steel sheet subjected to a water repellent treatment such as fluorine into a concave shape on the upper surface thereof is joined, and a heat transfer section is provided on a side surface or a bottom surface of the aluminum die cast. The high-frequency heating device with a steam generating function according to any one of claims 1 to 3, wherein the high-frequency heating device is joined through a heat transfer control unit formed of stainless steel. アルミダイキャストから蒸発部を着脱可能にした請求項4記載の蒸気発生機能付き高周波加熱装置。The high-frequency heating device with a steam generating function according to claim 4, wherein the evaporating section is made detachable from the aluminum die-cast. 加熱手段であるシーズヒータをアルミダイキャストに埋め込み、その上面に凹部を設け蒸発部とし、熱搬送部を前記アルミダイキャストの側面或いは底面にステンレス鋼で形成した伝熱制御部を介して接合した請求項1〜3のいずれか1項記載の蒸気発生機能付き高周波加熱装置。A sheath heater as a heating means was embedded in an aluminum die cast, a concave portion was provided on the upper surface thereof to serve as an evaporator, and a heat transfer portion was joined to a side or bottom surface of the aluminum die cast via a heat transfer controller formed of stainless steel. The high-frequency heating device with a steam generating function according to claim 1. 蒸発部表面にフッ素などの撥水処理を施した請求項6記載の蒸気発生機能付き高周波加熱装置。7. The high-frequency heating apparatus with a steam generating function according to claim 6, wherein a water-repellent treatment such as fluorine is applied to a surface of the evaporating section. 熱搬送部の配管を熱伝導率の大きいアルミニウムや銅で形成した請求項4〜7のいずれか1項記載の蒸気発生機能付き高周波加熱装置。The high-frequency heating device with a steam generating function according to any one of claims 4 to 7, wherein the pipe of the heat transfer section is formed of aluminum or copper having a high thermal conductivity. 熱搬送部の配管の外側表面積に比べ内側表面積を大きくした請求項4〜8のいずれか1項記載の蒸気発生機能付き高周波加熱装置。The high-frequency heating device with a steam generating function according to any one of claims 4 to 8, wherein an inner surface area is larger than an outer surface area of the pipe of the heat transfer unit. 熱搬送部の配管内面にフッ素などの撥水性処理を施した請求項9記載の蒸気発生機能付き高周波加熱装置。The high-frequency heating device with a steam generating function according to claim 9, wherein a water-repellent treatment such as fluorine is applied to an inner surface of the pipe of the heat transfer unit.
JP2003141723A 2003-05-20 2003-05-20 High-frequency heating device with steam generation function Expired - Fee Related JP3714339B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003141723A JP3714339B2 (en) 2003-05-20 2003-05-20 High-frequency heating device with steam generation function
EP04733952A EP1626228A1 (en) 2003-05-20 2004-05-19 High frequency heater with vapor generating function
CNB200480013667XA CN100414173C (en) 2003-05-20 2004-05-19 High frequency heater with vapor generating function
US10/557,354 US7326893B2 (en) 2003-05-20 2004-05-19 High frequency heating apparatus having steam generating function
PCT/JP2004/007111 WO2004104481A1 (en) 2003-05-20 2004-05-19 High frequency heater with vapor generating function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003141723A JP3714339B2 (en) 2003-05-20 2003-05-20 High-frequency heating device with steam generation function

Publications (2)

Publication Number Publication Date
JP2004347153A true JP2004347153A (en) 2004-12-09
JP3714339B2 JP3714339B2 (en) 2005-11-09

Family

ID=33530006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003141723A Expired - Fee Related JP3714339B2 (en) 2003-05-20 2003-05-20 High-frequency heating device with steam generation function

Country Status (2)

Country Link
JP (1) JP3714339B2 (en)
CN (1) CN100414173C (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010159932A (en) * 2009-01-09 2010-07-22 Sharp Corp Heating cooker and method of cleaning steam generator
JP2011149643A (en) * 2010-01-22 2011-08-04 Sharp Corp Heat cooking apparatus

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1626228A1 (en) 2003-05-20 2006-02-15 Matsushita Electric Industrial Co., Ltd. High frequency heater with vapor generating function
JP4586111B1 (en) * 2009-04-16 2010-11-24 シャープ株式会社 Cooker
CN103307687B (en) * 2013-07-09 2016-08-17 温州大学 Based on the electrical heating type air-humidification method and the electrical heating type humidifier that tilt U-rail
CN108369007B (en) * 2015-12-16 2019-10-11 松下知识产权经营株式会社 Heating device
CN105674457B (en) * 2016-01-28 2018-08-24 温州医科大学 The medical air-humidification method of recoverable based on snail like heating track and humidifier

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5922132B2 (en) * 1978-05-08 1984-05-24 株式会社東芝 High frequency heating device with steam generator
JPH06249445A (en) * 1993-02-25 1994-09-06 Sanyo Electric Co Ltd Microwave oven
JPH08135979A (en) * 1994-11-08 1996-05-31 Matsushita Electric Ind Co Ltd High-frequency heating device
JP3603356B2 (en) * 1994-12-28 2004-12-22 松下電器産業株式会社 High frequency heating equipment
IN190221B (en) * 1995-06-22 2003-07-05 Matsushita Electric Ind Co Ltd
FR2754334B1 (en) * 1996-10-07 1998-12-18 Bourgeois Prod Coop STEAM OVEN AND FORCED CONVEXION
JP2001355844A (en) * 2000-06-16 2001-12-26 Matsushita Electric Ind Co Ltd Cooker

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010159932A (en) * 2009-01-09 2010-07-22 Sharp Corp Heating cooker and method of cleaning steam generator
JP2011149643A (en) * 2010-01-22 2011-08-04 Sharp Corp Heat cooking apparatus

Also Published As

Publication number Publication date
JP3714339B2 (en) 2005-11-09
CN1791769A (en) 2006-06-21
CN100414173C (en) 2008-08-27

Similar Documents

Publication Publication Date Title
JP3800190B2 (en) High-frequency heating device with steam generation function
US10835072B2 (en) Steam generator
US10125978B2 (en) Steam generator
US9890946B2 (en) Steam generator
EP2975320B1 (en) Vapor generation device
US7304278B2 (en) Steam generation function-equipped high-frequency heating device
EP2876367B1 (en) Vapor generation device and cooking device with vapor generation device
JP2006058003A (en) Superheated steam cooker
US7326893B2 (en) High frequency heating apparatus having steam generating function
JP5070999B2 (en) Steam generator and cooking device using the same
JP3714339B2 (en) High-frequency heating device with steam generation function
JP3767574B2 (en) High-frequency heating device with steam generation function
JP4059275B2 (en) High-frequency heating device with steam generation function
JP4059139B2 (en) High-frequency heating device with steam generation function
JP3767584B2 (en) High-frequency heating device with steam generation function
JP3788446B2 (en) High-frequency heating device with steam generation function
JP3753135B2 (en) High-frequency heating device with steam generation function
JP3767575B2 (en) High-frequency heating device with steam generation function
JP2006132936A (en) High-frequency heating device with steam generating function
JP4296834B2 (en) Steam generator
JP4059264B2 (en) High-frequency heating device with steam generation function

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050815

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080902

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130902

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees