JP2004347083A - Revolving superstructure type hydraulic vehicle, and cooling method for traveling system thereof - Google Patents

Revolving superstructure type hydraulic vehicle, and cooling method for traveling system thereof Download PDF

Info

Publication number
JP2004347083A
JP2004347083A JP2003147679A JP2003147679A JP2004347083A JP 2004347083 A JP2004347083 A JP 2004347083A JP 2003147679 A JP2003147679 A JP 2003147679A JP 2003147679 A JP2003147679 A JP 2003147679A JP 2004347083 A JP2004347083 A JP 2004347083A
Authority
JP
Japan
Prior art keywords
traveling
oil
circuit
pump
hydraulic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003147679A
Other languages
Japanese (ja)
Other versions
JP4069803B2 (en
Inventor
Yoichiro Yamazaki
洋一郎 山崎
Koichi Shimomura
耕一 下村
Masanao Nakatsuka
正尚 仲塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobelco Construction Machinery Co Ltd
Original Assignee
Kobelco Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Construction Machinery Co Ltd filed Critical Kobelco Construction Machinery Co Ltd
Priority to JP2003147679A priority Critical patent/JP4069803B2/en
Priority to PCT/JP2004/003572 priority patent/WO2004083689A1/en
Priority to EP04721287.3A priority patent/EP1610040B1/en
Publication of JP2004347083A publication Critical patent/JP2004347083A/en
Application granted granted Critical
Publication of JP4069803B2 publication Critical patent/JP4069803B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently cool equipment of a traveling circuit, while shortening length of a drain pipe by directly connecting the drain pipe of a traveling system to a tank. <P>SOLUTION: The drain pipes 32, 33 and 34 of the travelling circuit are directly connected to the oil tank T. On the other hand, during traveling, a working hydraulic pump 3 is driven to circulate the oil between a working circuit 6 and the oil tank T through an oil cooler 8, and the cooled tank oil is supplied to a pump circuit A and a motor circuit B of the traveling circuit by an auxiliary pump 16. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明はホイールクレーンのような上部旋回式でかつHST(Hydrostatic Transmission=静油圧式無段変速機)付きの油圧走行車両、及びその走行系の冷却方法に関するものである。
【0002】
【従来の技術】
HST車両においては、走行用の油圧ポンプと油圧モータを主管路で接続して閉回路を構成するため、この走行回路内の油の入れ替えは、ドレンによって不足した分を回路に補充するだけの少量となる。
【0003】
従って、走行回路内の油温が高くなり、機器の過熱が起こり易いため、走行回路を冷却する必要がある。
【0004】
従来、HST車両において機器を冷却する技術として、走行回路からのドレン油をモータケース及びポンプケースに一旦溜めて油圧モータ及び油圧ポンプを冷却し、熱を吸収したドレン油をタンクに戻す技術が公知である(たとえば特許文献1参照)。
【0005】
【特許文献1】
実開平5−27421号公報
【0006】
【発明が解決しようとする課題】
ところが、このようにドレン油を冷却媒体として機器を冷却する公知技術を上部旋回式のHST車両に転用すると、次の問題が生じる。
【0007】
たとえば、ホイールクレーンの一種であるラフテレーンクレーンにおいて、下部走行体をHST付きの油圧モータで駆動する構成をとる場合、油圧モータが下部走行体に設けられるのに対し、原動機、油圧ポンプ、タンクは上部旋回体に設けられるため、油圧ポンプ側の主管路及びドレン管路と、油圧モータ側の主管路及びドレン管路とはそれぞれスイベルジョイントを介して長い管路で接続されることとなる。
【0008】
従って、上記公知技術をそのまま転用すると、走行系のドレン管路の全長が長くなって背圧が高くなるため、走行回路の機器各部(たとえば油圧モータのシール)の背圧負荷が大きくなってこれらが損傷するおそれがある。
【0009】
一方、走行回路のドレン管路が最短ですむように、同管路を、公知技術のようにモータケース、ポンプケースで中継するのではなく、直接油タンクに接続すると、肝腎のドレン油による走行回路の機器(モータ及びポンプ)の冷却作用が失われてしまう。
【0010】
そこで本発明は、走行系のドレン管路を直接油タンクに接続する構成をとりながら、走行回路の機器を効率良く冷却することができる上部旋回式油圧走行車両、及びその走行系の冷却方法を提供するものである。
【0011】
【課題を解決するための手段】
請求項1の発明(冷却方法)は、下部走行体上に上部旋回体が旋回自在に搭載され、この上部旋回体に原動機と、走行時にこの原動機によって駆動される作業用及び走行用両油圧ポンプと、上記作業用油圧ポンプを油圧源として作業用油圧アクチュエータを駆動する作業回路と、油タンクと、上記作業回路からこの油タンクに戻る油を冷却するオイルクーラーとを設ける一方、上記下部走行体に走行駆動源としての走行用油圧モータを設け、この走行用油圧モータと上記走行用油圧ポンプとをスイベルジョイントを介して接続して閉回路の走行回路を構成し、走行時に、上記走行回路のドレン油をドレン管路によって直接上記油タンクに戻す一方、上記作業用油圧ポンプを駆動して油を上記オイルクーラー経由で上記作業回路と油タンクとの間で循環させ、油タンク内の油を油補給ポンプにより上記走行回路に補給して走行系を冷却するものである。
【0012】
請求項2の発明(油圧走行車両)は、下部走行体上に上部旋回体が旋回自在に搭載され、この上部旋回体に原動機と、走行時にこの原動機により駆動される走行用油圧ポンプと、作業時及び走行時を通じて上記原動機により駆動される作業用油圧ポンプと、上記作業用油圧ポンプを油圧源として作業用油圧アクチュエータを駆動する作業回路と、油タンクと、上記作業回路からこの油タンクに戻る油を冷却するオイルクーラーとが設けられる一方、上記下部走行体に走行駆動源としての走行用油圧モータが設けられ、この走行用油圧モータと上記走行用油圧ポンプとがスイベルジョイントを介して接続されて閉回路の走行回路が構成され、かつ、この走行回路のドレン油を直接上記油タンクに戻すドレン管路と、上記油タンクから上記走行回路に油を補給する油補給ポンプとがそれぞれ設けられ、走行時に上記作業用油圧ポンプにより油を上記オイルクーラー経由で上記作業回路と油タンクとの間で循環させ、油タンク内の油を上記油補給ポンプにより上記走行回路に補給するように構成されたものである。
【0013】
請求項3の発明は、請求項2の構成において、作業用油圧ポンプとして可変容量型の油圧ポンプが用いられるとともに、この油圧ポンプの吐出量を油温上昇時に増加させる方向に制御するポンプ制御手段が設けられたものである。
【0014】
請求項4の発明は、請求項3の構成において、ポンプ制御手段は、作業用油圧ポンプの傾転を制御するポンプレギュレータと、このポンプレギュレータに作動圧を送る電磁比例弁と、油温を検出する油温検出手段と、この油温検出手段によって検出される油温に応じて電磁比例弁の作動を制御するコントローラとによって構成されたものである。
【0015】
請求項5の発明は、請求項2乃至4のいずれかの構成において、ドレン管路にドレン用オイルクーラーが設けられたものである。
【0016】
請求項6の発明は、請求項2乃至5のいずれかの構成において、走行回路のドレン油の一部を、走行用油圧モータの回転力を減速する走行減速機に通す減速機冷却管路が設けられたものである。
【0017】
上記油圧走行車両及び冷却方法によると、走行回路のドレン油を直接油タンクに戻すため、モータケースやポンプケースに一旦溜める公知技術と比較してドレン管路の全長を最小限に短縮することができる。このため、ドレン管路の背圧を抑え、機器各部の損傷を防止することができる。
【0018】
しかも、走行中、作業用油圧ポンプを駆動して作業回路の油をオイルクーラー経由で循環させ、これによって冷却された油を補給ポンプによって走行回路に補給するため、走行回路の油温を低下させ、走行回路を効率良く冷却することができる。
【0019】
また、作業用油圧ポンプを利用して補給油を冷却するため、別ポンプを追加する場合と比較してコスト及びエネルギー効率の点で有利となる。
【0020】
この場合、請求項3,4の構成によると、油温上昇時に作業用油圧ポンプの吐出量を増加させるため、オイルクーラーによる冷却効率を高めて油温を適温に保ち、走行回路の冷却性能を一定に維持することができる。
【0021】
また、請求項5の構成によると、ドレン管路にもオイルクーラーを設けているため、走行回路のドレン油をこのドレン用オイルクーラーによって冷却し、作業回路のオイルクーラーによる冷却作用と合わせて高い冷却性能を得ることができる。
【0022】
請求項6の構成によると、ドレン油の一部を走行減速機に通すため、走行回路とともにこの走行減速機をも冷却し、そのオーバーヒートを防止することができる。
【0023】
【発明の実施の形態】
本発明の実施形態を図によって説明する。
【0024】
第1実施形態(図1,2参照)
図1において、1は原動機で、この原動機1により動力分配機2を介して作業用及び走行用両油圧ポンプ(以下、作業ポンプ、走行ポンプという)3,4が駆動される。
【0025】
作業ポンプ3は、作業ポンプ用レギュレータ5によって傾転が制御される可変容量型ポンプとして構成され、同ポンプ3からの圧油により、作業回路6に設けられた図示しない複数の作業用油圧アクチュエータ(ラフテレーンクレーンの例でいえば、ブーム起伏シリンダ、ウィンチモータ、旋回モータ等)が駆動される。
【0026】
作業回路6のタンクライン7にオイルクーラー8が設けられ、作業回路6のアクチュエータから出た戻り油がこのオイルクーラー8により冷却されて油タンクTに戻る。9はオイルクーラー8と並列に設けられたチェック弁である。
【0027】
作業ポンプ用レギュレータ5は、コントローラ10によって制御される電磁比例弁11を介してパイロット圧源12に接続され、油温センサ13によって検出されるタンク油温に応じて、コントローラ10からの信号に基づいて電磁比例弁11の二次圧が変化し、これにより作業ポンプ用レギュレータ5の作動ストロークが変化してポンプ傾転が大小制御される(この点は後に詳述する)。
【0028】
一方、走行ポンプ4は、双方向型でかつ走行用ポンプレギュレータ14によって傾転が制御される可変容量型ポンプとして構成されている。
【0029】
この走行ポンプ4を油圧源とする走行回路は、ポンプ回路Aとモータ回路Bとによって構成され、ポンプ回路Aが作業ポンプ3及び作業回路6とその関連機器とともに上部旋回体に、モータ回路Bが下部走行体にそれぞれ設置される。
【0030】
ポンプ回路Aは、走行ポンプ4と、コントローラ10からの信号に基づいて走行用ポンプレギュレータ14の作動を制御する電磁切換弁15と、油タンクTから油を吸い上げる固定容量型の補助ポンプ(油補給ポンプ)16と、この補助ポンプ16の吐出量に応じた圧力を発生させる絞り17と、この絞り17によって発生した圧力を減圧して電磁切換弁15経由で走行用ポンプレギュレータ14に送る減圧弁18と、低圧リリーフ弁19と、回路圧力の最大値を規制するオーバーロードリリーフ弁20,20と、補助ポンプ16からの油の一部を回路に補充するためのチェック弁21,21とを具備している。
【0031】
モータ回路Bは、走行用油圧モータ(以下、走行モータという)22と、余剰油を回路外に排出するフラッシングバルブ23と、このフラッシングバルブ23の下流側に設けられた絞り24及び流量制御弁25とを具備し、このモータ回路Bの両側モータ管路26,27とポンプ回路Aの両側主管路28,29とがスイベルジョイント30経由で接続されて閉回路が構成されている。
【0032】
31は走行モータ22の回転力を減速して図示しない走行駆動輪に伝える走行減速機である。
【0033】
また、ポンプ回路Aには、走行ポンプ4からの洩れ油及び低圧リリーフ弁19からのリリーフ油が流入するポンプ側ドレン管路32、モータ回路Bには、走行モータ22からの洩れ油及びフラッシングバルブ23からの排出油が流入するモータ側ドレン管33がそれぞれ設けられ、この両ドレン管路32,33が、スイベルジョイント30及び合流ドレン管路34を介してタンクTに接続されている。
【0034】
このように、ドレン管路32,33,34が最短経路でタンクTに接続されているため、管路長が最小限に短くてすむ。従って、ドレン管路長が長くなる上部旋回式の車両においても、ドレン管路32,33,34によって走行回路に発生する背圧を低く抑えることができるため、機器各部(たとえば走行モータ22のシール)の背圧負荷が軽減され、これらの損傷が防止される。
【0035】
上記構成において、図示しないシフトレバーが操作されると、その操作信号に基づくコントローラ10からの信号によって電磁切換弁15が切換わり作動し、補助ポンプ16からの油がこの電磁切換弁15経由で走行ポンプ用レギュレータ14に送られて走行ポンプ4の傾転が増加する。
【0036】
これにより、同ポンプ4から吐出された油がモータ回路Bに送られて走行モータ22が回転し、車両が走行する。
【0037】
この走行中、走行ポンプ4及び走行モータ22から洩れ出た油、それに低圧リリーフ弁19及びフラッシングバルブ23を介して排出された油がドレン管路32,33、合流ドレン管路34を介して油タンクTに戻される。
【0038】
一方、このとき作業回路6は停止しているが、作業ポンプ3は駆動され、同ポンプ3から吐出された油が作業回路6を通り、オイルクーラー8で冷却されて油タンクT、さらにポンプ3へと循環する。
【0039】
この作業系の油の循環作用により、上記走行回路からのドレン油が冷却され、その上で補助ポンプ16により走行回路に補給されるため、走行ポンプ4及び走行モータ2を含む閉回路である走行回路(ポンプ回路A及びモータ回路B)が冷却される。
【0040】
すなわち、ドレン管路32,33,34を、公知技術のようにポンプケースやモータケースに通さずに直接油タンクTに接続した構成をとりながら、走行回路を、オイルクーラー8を通した低温の油によって冷却し適温に保持することができる。
【0041】
この場合、作業ポンプ3から吐出される大流量の油をオイルクーラー8で冷却するため、タンク油温を効率良く冷却でき、これにより走行回路の冷却作用を効率良く行わせることができる。
【0042】
また、この実施形態においては、タンク油温に応じて冷却運転が制御される。これを図2のフローチャートを併用して説明する。
【0043】
コントローラ10には、予め油温について、冷却能力を上げるべき温度としての基準値と、この基準値よりも低温の設定値とが定められ、ステップS1で、油温センサ13によって検出されたタンク油温と基準値とが比較される。
【0044】
ここでYESの場合、すなわち、タンク油温が基準値以上の高温である場合は、ステップS2で電磁比例弁11を通じて作業ポンプ用レギュレータ5に大傾転を指令する。
【0045】
これにより、作業ポンプ3の吐出量が増加し、大流量がオイルクーラー8によって冷却されるため、油温が速やかに低下し、走行回路の冷却能力が高められる。
【0046】
一方、ステップS1でNO(基準値未満)の場合は、ステップS3でさらにタンク油温が設定値以上か否かが判別され、NO(設定値未満)の場合は冷却能力を上げる必要がないため、ステップS4で作業ポンプ3を小傾転側(たとえば最小傾転)に制御する。
【0047】
これに対し、ステップS3でタンク油温が設定値以上であると判別されると、ステップS5で前回ポンプが大傾転側に制御されたか否かが判別され、NOの場合はステップS4で作業ポンプ3が小傾転側に、YESの場合はステップS2で作業ポンプ3が大傾転側にそれぞれ制御される。
【0048】
このステップS3→ステップS5→ステップS2の制御により、作業ポンプ3が一旦大傾転側に制御されたときはタンク油温が設定値未満に下がるまで大傾転が維持される。
【0049】
このように、タンク油温に応じた冷却能力の制御を行うことにより、走行回路をより効率良く冷却し、より適温に保つことが可能となる。
【0050】
なお、上記の例では作業ポンプ3の傾転を大小二通りのみに切換えるようにしたが、タンク油温の変化に応じて同ポンプ傾転を三段階以上または無段連続的に変化させるようにしてもよい。
【0051】
また、ポンプ傾転を大小二通りのみに切換える場合、油温センサ13に代えて、設定温度でオン(またはオフ)となる油温スイッチを用い、かつ、電磁比例弁11に代えて電磁切換弁を用いてもよい。この場合、コントローラ10を介さずに、油温スイッチのオン/オフによって直接電磁切換弁を切換える構成をとってもよい。
【0052】
第2実施形態(図3参照)
第1実施形態との相違点のみを説明する。
【0053】
第2実施形態においては、第1実施形態の構成を前提として、
(イ)走行回路から油タンクTに戻るドレン油を独自のオイルクーラーで冷却し、
(ロ)走行減速機31も同時に冷却する
構成が付加されている。
【0054】
すなわち、合流ドレン管路34にドレン用の補助オイルクーラー35が設けられるとともに、モータ回路Bのドレン管路33から分岐して走行減速機31を通る減速機冷却管路36が設けられている。
【0055】
37は補助オイルクーラー35と並列に設けられたチェック弁、38は減速機冷却管路36から走行モータ22側への油の逆流を阻止するためのチェック弁である。
【0056】
この構成によると、走行回路からのドレン油が補助オイルクーラー35によって冷却された後、油タンクTに戻り、その上で作業ポンプ3とオイルクーラー8による主冷却作用を受けるため、冷却効果が高められ、とくに作業ポンプ3の最大吐出量が少なくて主冷却作用が十分でない可能性のある車両において効果を発揮する。
【0057】
また、減速機冷却管路36によって走行減速機31にドレン油が供給され、このドレン油によって走行減速機31が冷却されるため、この走行減速機31のオーバーヒートをも防止することができる。
【0058】
なお、補助オイルクーラー35は、オイルクーラー8とともに、エンジンルーム内においてラジエータ前に配置し、共通のファンによって空冷するように構成すればよい。この場合、両オイルクーラー8,35はラジエータ前に左右に並べて配置してもよいし、前後に配置してもよい。
【0059】
【発明の効果】
上記のように本発明によると、走行回路のドレン管路を直接油タンクに接続してドレン管路の全長を短くし、その背圧による走行回路の機器各部の損傷を防止しながら、走行中、作業用油圧ポンプを駆動して作業回路の油をオイルクーラー経由で循環させ、これによって冷却されたタンク油を補給ポンプによって走行回路に補給する構成としたから、走行系の機器(油圧モータ、油圧ポンプ)を効率良く冷却することができる。
【0060】
また、作業用油圧ポンプを利用して補給油を冷却するため、別ポンプを追加する場合と比較してコスト及びエネルギー効率の点で有利となる。
【0061】
この場合、請求項3,4の発明によると、油温上昇時に作業用油圧ポンプの吐出量を増加させるため、オイルクーラーによる冷却効率を高めて油温を適温に保ち、走行回路の冷却性能を一定に維持することができる。
【0062】
また、請求項5の発明によると、ドレン管路にもオイルクーラーを設けているため、走行回路のドレン油をこのドレン用オイルクーラーによって冷却し、作業回路のオイルクーラーによる冷却作用と合わせて高い冷却性能を得ることができる。
【0063】
請求項6の発明によると、ドレン油の一部を走行減速機に通して同減速機をも冷却し、そのオーバーヒートを防止することができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態を示す回路構成図である。
【図2】同実施形態におけるポンプ制御作用を説明するためのフローチャートである。
【図3】本発明の第2実施形態を示す回路構成図である。
【符号の説明】
1 原動機
3 作業用油圧ポンプ
4 走行用油圧ポンプ
5 ポンプ制御手段を構成する作業用油圧ポンプのレギュレータ
10 同コントローラ
11 同電磁比例弁
13 同油温センサ
16 補助ポンプ(油補給ポンプ)
22 走行用油圧モータ
A 走行回路を構成するポンプ回路
B 同モータ回路
6 作業回路
8 作業回路用のオイルクーラー
30 スイベルジョイント
31 走行減速機
32,33,34 ドレン管路
35 ドレン用の補助オイルクーラー
36 減速機冷却管路
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a hydraulic traveling vehicle such as a wheel crane having an upper turning type and equipped with an HST (Hydrostatic Transmission), and a method of cooling a traveling system thereof.
[0002]
[Prior art]
In an HST vehicle, the hydraulic pump for traveling and the hydraulic motor are connected by a main pipeline to form a closed circuit. Therefore, the replacement of oil in the traveling circuit requires a small amount of water that is insufficient to be replenished by drainage. It becomes.
[0003]
Accordingly, the temperature of the oil in the traveling circuit increases, and the equipment is likely to be overheated. Therefore, it is necessary to cool the traveling circuit.
[0004]
Conventionally, as a technology for cooling equipment in an HST vehicle, a technology is known in which drain oil from a traveling circuit is temporarily stored in a motor case and a pump case to cool a hydraulic motor and a hydraulic pump, and the drain oil having absorbed heat is returned to a tank. (For example, see Patent Document 1).
[0005]
[Patent Document 1]
Published Japanese Utility Model Application No. 5-27421
[Problems to be solved by the invention]
However, when the known technique of cooling the equipment using the drain oil as a cooling medium is diverted to an upper-turn HST vehicle, the following problem occurs.
[0007]
For example, in a rough terrain crane that is a type of a wheel crane, when a lower traveling body is driven by a hydraulic motor with an HST, a hydraulic motor is provided in the lower traveling body, whereas a prime mover, a hydraulic pump, and a tank are Since the main pipeline and the drain pipeline on the hydraulic pump side and the main pipeline and the drain pipeline on the hydraulic motor side are connected to each other by a long pipeline via a swivel joint.
[0008]
Therefore, if the above-described known technology is used as it is, the overall length of the drain line of the traveling system becomes longer and the back pressure increases, so that the back pressure load on the components of the traveling circuit (for example, the seal of the hydraulic motor) increases. May be damaged.
[0009]
On the other hand, if the drain line of the traveling circuit is the shortest, instead of relaying the same line with a motor case and a pump case as in the prior art, instead of connecting the same line directly to an oil tank, the traveling circuit using the drain oil of the liver and kidneys The cooling action of the equipment (motor and pump) is lost.
[0010]
Therefore, the present invention provides an upper turning hydraulic traveling vehicle capable of efficiently cooling the equipment of the traveling circuit while taking a configuration in which the drain pipe of the traveling system is directly connected to the oil tank, and a method of cooling the traveling system. To provide.
[0011]
[Means for Solving the Problems]
The invention (cooling method) according to claim 1 is characterized in that an upper revolving unit is rotatably mounted on a lower traveling unit, and a motor is mounted on the upper revolving unit and both a working hydraulic pump and a traveling hydraulic pump driven by the prime mover during traveling. A working circuit that drives a working hydraulic actuator using the working hydraulic pump as a hydraulic pressure source; an oil tank; and an oil cooler that cools oil returning from the working circuit to the oil tank. A traveling hydraulic motor is provided as a traveling drive source, and the traveling hydraulic motor and the traveling hydraulic pump are connected via a swivel joint to form a traveling circuit of a closed circuit. While the drain oil is directly returned to the oil tank by the drain pipe, the working hydraulic pump is driven to transfer the oil between the working circuit and the oil tank via the oil cooler. In is circulated, is intended to cool the running system and supplied to the travel circuit by an oil supply pump oil in the oil tank.
[0012]
According to a second aspect of the invention (a hydraulic traveling vehicle), an upper revolving structure is rotatably mounted on a lower traveling structure, and a prime mover is mounted on the upper revolving structure, and a traveling hydraulic pump driven by the prime mover during traveling is provided. A working hydraulic pump driven by the prime mover during operation and traveling, a working circuit for driving a working hydraulic actuator using the working hydraulic pump as a hydraulic pressure source, an oil tank, and returning from the working circuit to the oil tank. While an oil cooler for cooling oil is provided, a traveling hydraulic motor as a traveling drive source is provided on the lower traveling body, and the traveling hydraulic motor and the traveling hydraulic pump are connected via a swivel joint. And a drain circuit for returning the drain oil of the traveling circuit directly to the oil tank, and a traveling circuit from the oil tank. Oil supply pumps for replenishing oil are provided, and the oil is circulated between the work circuit and the oil tank via the oil cooler by the work hydraulic pump during traveling, and the oil in the oil tank is supplied to the oil tank. The replenishing pump is configured to replenish the traveling circuit.
[0013]
According to a third aspect of the present invention, in the configuration of the second aspect, a variable displacement type hydraulic pump is used as the working hydraulic pump, and pump control means for controlling the discharge amount of the hydraulic pump to increase when the oil temperature rises. Is provided.
[0014]
According to a fourth aspect of the present invention, in the configuration of the third aspect, the pump control means includes a pump regulator for controlling the tilting of the working hydraulic pump, an electromagnetic proportional valve for sending the operating pressure to the pump regulator, and detecting the oil temperature. And a controller that controls the operation of the electromagnetic proportional valve according to the oil temperature detected by the oil temperature detecting means.
[0015]
According to a fifth aspect of the present invention, in the configuration of any of the second to fourth aspects, a drain oil cooler is provided in the drain line.
[0016]
According to a sixth aspect of the present invention, in the configuration of any one of the second to fifth aspects, the reduction gear cooling pipe for passing a part of the drain oil of the travel circuit through a travel reduction gear that reduces the rotational force of the travel hydraulic motor is provided. It is provided.
[0017]
According to the hydraulic traveling vehicle and the cooling method, since the drain oil in the traveling circuit is directly returned to the oil tank, the total length of the drain pipe can be reduced to a minimum as compared with a known technique in which the drain oil is temporarily stored in a motor case or a pump case. it can. For this reason, the back pressure of the drain pipe can be suppressed, and damage to each part of the device can be prevented.
[0018]
In addition, during traveling, the working hydraulic pump is driven to circulate the oil in the working circuit through the oil cooler, and the cooled oil is replenished to the traveling circuit by the supply pump, thereby lowering the oil temperature in the traveling circuit. Thus, the traveling circuit can be efficiently cooled.
[0019]
Further, since the replenishing oil is cooled using the working hydraulic pump, it is advantageous in terms of cost and energy efficiency as compared with the case where another pump is added.
[0020]
In this case, according to the configuration of claims 3 and 4, in order to increase the discharge amount of the working hydraulic pump when the oil temperature rises, the cooling efficiency by the oil cooler is increased to keep the oil temperature at an appropriate temperature, and the cooling performance of the traveling circuit is improved. It can be kept constant.
[0021]
According to the fifth aspect of the present invention, since the oil cooler is also provided in the drain pipe, the drain oil in the traveling circuit is cooled by the oil cooler for the drain, and the cooling effect by the oil cooler in the working circuit is high. Cooling performance can be obtained.
[0022]
According to the configuration of claim 6, since a part of the drain oil passes through the traveling speed reducer, the traveling speed reducer can be cooled together with the traveling circuit, and overheating thereof can be prevented.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to the drawings.
[0024]
First embodiment (see FIGS. 1 and 2)
In FIG. 1, reference numeral 1 denotes a prime mover, and both prime working and traveling hydraulic pumps (hereinafter referred to as working pumps and traveling pumps) 3 and 4 are driven by the prime mover 1 via a power distributor 2.
[0025]
The work pump 3 is configured as a variable displacement pump whose tilt is controlled by a work pump regulator 5, and a plurality of work hydraulic actuators (not shown) provided in a work circuit 6 by hydraulic oil from the pump 3. In the case of the rough terrain crane, a boom hoist cylinder, a winch motor, a swing motor, and the like are driven.
[0026]
An oil cooler 8 is provided in a tank line 7 of the working circuit 6, and return oil from an actuator of the working circuit 6 is cooled by the oil cooler 8 and returns to the oil tank T. 9 is a check valve provided in parallel with the oil cooler 8.
[0027]
The work pump regulator 5 is connected to a pilot pressure source 12 via an electromagnetic proportional valve 11 controlled by the controller 10, and based on a signal from the controller 10 according to a tank oil temperature detected by an oil temperature sensor 13. As a result, the secondary pressure of the electromagnetic proportional valve 11 changes, whereby the operation stroke of the work pump regulator 5 changes, and the pump tilt is controlled to be large or small (this point will be described in detail later).
[0028]
On the other hand, the traveling pump 4 is configured as a variable displacement pump of which the displacement is controlled by a bidirectional pump regulator 14 for traveling.
[0029]
A traveling circuit using the traveling pump 4 as a hydraulic power source is constituted by a pump circuit A and a motor circuit B. Each is installed on the lower traveling structure.
[0030]
The pump circuit A includes a traveling pump 4, an electromagnetic switching valve 15 that controls the operation of a traveling pump regulator 14 based on a signal from a controller 10, and a fixed displacement auxiliary pump (oil replenishing) that sucks oil from an oil tank T. Pump 16, a throttle 17 for generating a pressure corresponding to the discharge amount of the auxiliary pump 16, a pressure reducing valve 18 for reducing the pressure generated by the throttle 17 and sending the reduced pressure to the traveling pump regulator 14 via the electromagnetic switching valve 15. A low pressure relief valve 19, overload relief valves 20, 20 for regulating the maximum value of the circuit pressure, and check valves 21, 21 for replenishing a part of the oil from the auxiliary pump 16 to the circuit. ing.
[0031]
The motor circuit B includes a traveling hydraulic motor (hereinafter, referred to as a traveling motor) 22, a flushing valve 23 for discharging surplus oil out of the circuit, a throttle 24 and a flow control valve 25 provided downstream of the flushing valve 23. The two-side motor lines 26 and 27 of the motor circuit B and the two-side main lines 28 and 29 of the pump circuit A are connected via a swivel joint 30 to form a closed circuit.
[0032]
Reference numeral 31 denotes a travel speed reducer that reduces the rotational force of the travel motor 22 and transmits the reduced torque to travel drive wheels (not shown).
[0033]
The pump circuit A has a pump-side drain line 32 into which leak oil from the traveling pump 4 and the relief oil from the low-pressure relief valve 19 flow, and the motor circuit B has an oil leak from the traveling motor 22 and a flushing valve. Motor-side drain pipes 33 into which the discharged oil from 23 flows into are provided, respectively, and these two drain pipes 32, 33 are connected to the tank T via a swivel joint 30 and a combined drain pipe 34.
[0034]
As described above, since the drain pipes 32, 33, and 34 are connected to the tank T by the shortest path, the pipe length can be minimized. Therefore, even in an upper turning type vehicle in which the length of the drain pipe is long, the back pressure generated in the traveling circuit can be suppressed low by the drain pipes 32, 33, and 34. ) Is reduced, and these damages are prevented.
[0035]
In the above configuration, when a shift lever (not shown) is operated, the electromagnetic switching valve 15 is switched and operated by a signal from the controller 10 based on the operation signal, and oil from the auxiliary pump 16 travels via the electromagnetic switching valve 15. It is sent to the pump regulator 14 and the tilt of the traveling pump 4 increases.
[0036]
As a result, the oil discharged from the pump 4 is sent to the motor circuit B, the traveling motor 22 rotates, and the vehicle travels.
[0037]
During this traveling, the oil leaked from the traveling pump 4 and the traveling motor 22, and the oil discharged through the low-pressure relief valve 19 and the flushing valve 23 are drained through the drain lines 32 and 33 and the combined drain line 34. Returned to tank T.
[0038]
On the other hand, at this time, the work circuit 6 is stopped, but the work pump 3 is driven, and the oil discharged from the work pump 3 passes through the work circuit 6 and is cooled by the oil cooler 8 so that the oil tank T and the pump 3 Circulates to
[0039]
The drainage oil from the traveling circuit is cooled by the oil circulation action of the working system, and is then replenished to the traveling circuit by the auxiliary pump 16, so that the traveling is a closed circuit including the traveling pump 4 and the traveling motor 2. The circuits (pump circuit A and motor circuit B) are cooled.
[0040]
That is, while taking a configuration in which the drain pipes 32, 33, and 34 are directly connected to the oil tank T without passing through the pump case or the motor case as in the known technique, the traveling circuit is connected to the low-temperature passage through the oil cooler 8. It can be cooled by oil and kept at an appropriate temperature.
[0041]
In this case, a large amount of oil discharged from the work pump 3 is cooled by the oil cooler 8, so that the tank oil temperature can be efficiently cooled, and thereby the cooling function of the traveling circuit can be efficiently performed.
[0042]
In this embodiment, the cooling operation is controlled according to the tank oil temperature. This will be described with reference to the flowchart of FIG.
[0043]
In the controller 10, a reference value as a temperature at which the cooling capacity should be increased and a set value lower than the reference value for the oil temperature are determined in advance for the oil temperature, and in step S1, the tank oil detected by the oil temperature sensor 13 is detected. The temperature and the reference value are compared.
[0044]
If YES here, that is, if the tank oil temperature is higher than the reference value, a large tilt command is issued to the work pump regulator 5 through the electromagnetic proportional valve 11 in step S2.
[0045]
As a result, the discharge amount of the work pump 3 increases, and the large flow rate is cooled by the oil cooler 8, so that the oil temperature rapidly decreases and the cooling capacity of the traveling circuit is increased.
[0046]
On the other hand, if NO (less than the reference value) in step S1, it is further determined in step S3 whether or not the tank oil temperature is equal to or higher than the set value. If NO (less than the set value), there is no need to increase the cooling capacity. In step S4, the work pump 3 is controlled to the small tilt side (for example, the minimum tilt).
[0047]
On the other hand, if it is determined in step S3 that the tank oil temperature is equal to or higher than the set value, it is determined in step S5 whether or not the pump was previously controlled to the large tilt side. The pump 3 is controlled to the small tilt side, and if YES, the work pump 3 is controlled to the large tilt side in step S2.
[0048]
By the control of step S3 → step S5 → step S2, when the work pump 3 is once controlled to the large tilt side, the large tilt is maintained until the tank oil temperature falls below the set value.
[0049]
In this way, by controlling the cooling capacity according to the tank oil temperature, it becomes possible to cool the traveling circuit more efficiently and maintain the traveling circuit at a more appropriate temperature.
[0050]
In the above example, the tilt of the work pump 3 is switched only to two types, large and small. However, the tilt of the pump is changed in three or more stages or continuously in a stepless manner in accordance with a change in the tank oil temperature. You may.
[0051]
Further, when the pump displacement is switched only between two sizes, an oil temperature switch that is turned on (or off) at a set temperature is used instead of the oil temperature sensor 13, and an electromagnetic switching valve is used instead of the electromagnetic proportional valve 11. May be used. In this case, the electromagnetic switching valve may be directly switched by turning on / off the oil temperature switch without using the controller 10.
[0052]
Second embodiment (see FIG. 3)
Only differences from the first embodiment will be described.
[0053]
In the second embodiment, assuming the configuration of the first embodiment,
(B) Drain oil returning from the traveling circuit to the oil tank T is cooled by a unique oil cooler,
(B) A configuration is provided in which the traveling speed reducer 31 is also cooled at the same time.
[0054]
That is, an auxiliary oil cooler 35 for drain is provided in the merged drain pipe 34, and a reduction gear cooling pipe 36 branched from the drain pipe 33 of the motor circuit B and passing through the traveling reduction gear 31 is provided.
[0055]
Reference numeral 37 denotes a check valve provided in parallel with the auxiliary oil cooler 35, and reference numeral 38 denotes a check valve for preventing reverse flow of oil from the reduction gear cooling pipe 36 to the traveling motor 22 side.
[0056]
According to this configuration, after the drain oil from the traveling circuit is cooled by the auxiliary oil cooler 35, it returns to the oil tank T, and receives the main cooling action of the work pump 3 and the oil cooler 8 thereon. This is particularly effective in vehicles in which the maximum discharge amount of the work pump 3 is small and the main cooling function may not be sufficient.
[0057]
In addition, since drain oil is supplied to the traveling speed reducer 31 by the speed reducer cooling pipe 36 and the traveling oil is cooled by the drain oil, overheating of the traveling speed reducer 31 can also be prevented.
[0058]
The auxiliary oil cooler 35 may be arranged in the engine room in front of the radiator together with the oil cooler 8 so as to be cooled by a common fan. In this case, the two oil coolers 8, 35 may be arranged side by side in front of the radiator, or may be arranged in front and back.
[0059]
【The invention's effect】
As described above, according to the present invention, the drain line of the traveling circuit is directly connected to the oil tank to shorten the entire length of the drain line, and while the components of the traveling circuit are prevented from being damaged by the back pressure during traveling, Since the working hydraulic pump is driven to circulate the oil in the working circuit through the oil cooler and the tank oil cooled by this is supplied to the running circuit by the replenishing pump, the running system equipment (hydraulic motor, Hydraulic pump) can be efficiently cooled.
[0060]
Further, since the replenishing oil is cooled using the working hydraulic pump, it is advantageous in terms of cost and energy efficiency as compared with the case where another pump is added.
[0061]
In this case, according to the invention of claims 3 and 4, in order to increase the discharge amount of the working hydraulic pump when the oil temperature rises, the cooling efficiency by the oil cooler is increased to keep the oil temperature at an appropriate temperature, and the cooling performance of the traveling circuit is improved. It can be kept constant.
[0062]
According to the invention of claim 5, since the oil cooler is also provided in the drain pipe line, the drain oil in the traveling circuit is cooled by the oil cooler for the drain, and the oil cooler in the working circuit is high. Cooling performance can be obtained.
[0063]
According to the sixth aspect of the present invention, a part of the drain oil is passed through the traveling speed reducer to cool the same speed reducer and prevent overheating thereof.
[Brief description of the drawings]
FIG. 1 is a circuit configuration diagram showing a first embodiment of the present invention.
FIG. 2 is a flowchart for explaining a pump control operation in the embodiment.
FIG. 3 is a circuit diagram showing a second embodiment of the present invention.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 motor 3 working hydraulic pump 4 traveling hydraulic pump 5 regulator of working hydraulic pump constituting pump control means 10 controller 11 electromagnetic proportional valve 13 oil temperature sensor 16 auxiliary pump (oil supply pump)
22 Hydraulic motor A for traveling A Pump circuit B constituting a traveling circuit B Motor circuit 6 Working circuit 8 Oil cooler 30 for working circuit Swivel joint 31 Travel reducers 32, 33, 34 Drain line 35 Auxiliary oil cooler 36 for drain Reduction gear cooling line

Claims (6)

下部走行体上に上部旋回体が旋回自在に搭載され、この上部旋回体に原動機と、走行時にこの原動機によって駆動される作業用及び走行用両油圧ポンプと、上記作業用油圧ポンプを油圧源として作業用油圧アクチュエータを駆動する作業回路と、油タンクと、上記作業回路からこの油タンクに戻る油を冷却するオイルクーラーとを設ける一方、上記下部走行体に走行駆動源としての走行用油圧モータを設け、この走行用油圧モータと上記走行用油圧ポンプとをスイベルジョイントを介して接続して閉回路の走行回路を構成し、走行時に、上記走行回路のドレン油をドレン管路によって直接上記油タンクに戻す一方、上記作業用油圧ポンプを駆動して油を上記オイルクーラー経由で上記作業回路と油タンクとの間で循環させ、油タンク内の油を油補給ポンプにより上記走行回路に補給して走行系を冷却することを特徴とする上部旋回式油圧走行車両の走行系の冷却方法。An upper revolving structure is rotatably mounted on the lower traveling structure, and a prime mover is mounted on the upper revolving structure, and both working and traveling hydraulic pumps driven by the prime mover during traveling are provided. A working circuit for driving the working hydraulic actuator, an oil tank, and an oil cooler for cooling oil returning from the working circuit to the oil tank are provided, and a traveling hydraulic motor as a traveling drive source is provided on the lower traveling body. The traveling hydraulic motor and the traveling hydraulic pump are connected via a swivel joint to form a closed circuit traveling circuit. During traveling, the drain oil of the traveling circuit is directly supplied to the oil tank by a drain line. On the other hand, the work hydraulic pump is driven to circulate oil between the work circuit and the oil tank via the oil cooler, and the oil in the oil tank is discharged. Upper revolving type hydraulic driving method of the traveling system cooling a vehicle, characterized in that cooling the traveling system and supplied to the travel circuit by supply pump. 下部走行体上に上部旋回体が旋回自在に搭載され、この上部旋回体に原動機と、走行時にこの原動機により駆動される走行用油圧ポンプと、作業時及び走行時を通じて上記原動機により駆動される作業用油圧ポンプと、上記作業用油圧ポンプを油圧源として作業用油圧アクチュエータを駆動する作業回路と、油タンクと、上記作業回路からこの油タンクに戻る油を冷却するオイルクーラーとが設けられる一方、上記下部走行体に走行駆動源としての走行用油圧モータが設けられ、この走行用油圧モータと上記走行用油圧ポンプとがスイベルジョイントを介して接続されて閉回路の走行回路が構成され、かつ、この走行回路のドレン油を直接上記油タンクに戻すドレン管路と、上記油タンクから上記走行回路に油を補給する油補給ポンプとがそれぞれ設けられ、走行時に上記作業用油圧ポンプにより油を上記オイルクーラー経由で上記作業回路と油タンクとの間で循環させ、油タンク内の油を上記油補給ポンプにより上記走行回路に補給するように構成されたことを特徴とする上部旋回式油圧走行車両。An upper revolving structure is rotatably mounted on the lower traveling structure. A motor is mounted on the upper revolving structure, a traveling hydraulic pump driven by the prime mover during traveling, and a work driven by the prime mover during operation and traveling. A hydraulic circuit for driving, a working circuit for driving a working hydraulic actuator using the working hydraulic pump as a hydraulic source, an oil tank, and an oil cooler for cooling oil returning from the working circuit to the oil tank. A traveling hydraulic motor as a traveling drive source is provided on the lower traveling body, and the traveling hydraulic motor and the traveling hydraulic pump are connected via a swivel joint to constitute a closed circuit traveling circuit, and A drain pipe for directly returning the drain oil of the traveling circuit to the oil tank and an oil supply pump for supplying oil from the oil tank to the traveling circuit are provided. The oil is circulated between the work circuit and the oil tank via the oil cooler by the work hydraulic pump during traveling, and the oil in the oil tank is supplied to the travel circuit by the oil supply pump during traveling. An upper turning hydraulic traveling vehicle characterized by being configured as described above. 作業用油圧ポンプとして可変容量型の油圧ポンプが用いられるとともに、この油圧ポンプの吐出量を油温上昇時に増加させる方向に制御するポンプ制御手段が設けられたことを特徴とする請求項2記載の上部旋回式油圧走行車両。3. The hydraulic pump according to claim 2, wherein a variable displacement hydraulic pump is used as the working hydraulic pump, and pump control means for controlling a discharge amount of the hydraulic pump to increase when the oil temperature rises is provided. Top-turn hydraulic traveling vehicle. ポンプ制御手段は、作業用油圧ポンプの傾転を制御するポンプレギュレータと、このポンプレギュレータに作動圧を送る電磁比例弁と、油温を検出する油温検出手段と、この油温検出手段によって検出される油温に応じて電磁比例弁の作動を制御するコントローラとによって構成されたことを特徴とする請求項3記載の上部旋回式油圧走行車両。The pump control means includes a pump regulator for controlling the tilting of the working hydraulic pump, an electromagnetic proportional valve for sending an operating pressure to the pump regulator, an oil temperature detecting means for detecting the oil temperature, and detection by the oil temperature detecting means. 4. The upper turning hydraulic traveling vehicle according to claim 3, further comprising a controller that controls the operation of the electromagnetic proportional valve according to the oil temperature to be applied. ドレン管路にドレン用オイルクーラーが設けられたことを特徴とする請求項2乃至4のいずれか1項に記載の上部旋回式油圧走行車両。The upper turning hydraulic traveling vehicle according to any one of claims 2 to 4, wherein a drain oil cooler is provided in the drain pipeline. 走行回路のドレン油の一部を、走行用油圧モータの回転力を減速する走行減速機に通す減速機冷却管路が設けられたことを特徴とする請求項2乃至5のいずれか1項に記載の上部旋回式油圧走行車両。6. A reduction gear cooling pipe line for passing a part of the drain oil of the travel circuit through a travel reducer for reducing the rotational force of the travel hydraulic motor is provided. An upper turning hydraulic traveling vehicle as described in the above.
JP2003147679A 2003-03-18 2003-05-26 Top-slewing hydraulic vehicle Expired - Fee Related JP4069803B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003147679A JP4069803B2 (en) 2003-05-26 2003-05-26 Top-slewing hydraulic vehicle
PCT/JP2004/003572 WO2004083689A1 (en) 2003-03-18 2004-03-17 Hydraulic travel drive device and motor vehicle with hydraulic travel drive
EP04721287.3A EP1610040B1 (en) 2003-03-18 2004-03-17 Hydraulic travel drive device and motor vehicle with hydraulic travel drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003147679A JP4069803B2 (en) 2003-05-26 2003-05-26 Top-slewing hydraulic vehicle

Publications (2)

Publication Number Publication Date
JP2004347083A true JP2004347083A (en) 2004-12-09
JP4069803B2 JP4069803B2 (en) 2008-04-02

Family

ID=33534144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003147679A Expired - Fee Related JP4069803B2 (en) 2003-03-18 2003-05-26 Top-slewing hydraulic vehicle

Country Status (1)

Country Link
JP (1) JP4069803B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092954A (en) * 2005-09-30 2007-04-12 Kubota Corp Shift operation structure of working vehicle
JP2007177798A (en) * 2005-12-26 2007-07-12 Kobelco Cranes Co Ltd Hydraulic traveling device of working vehicle
JP2008101636A (en) * 2006-10-17 2008-05-01 Kayaba Ind Co Ltd Hydraulic drive device with flushing circuit
JP2010210018A (en) * 2009-03-10 2010-09-24 Yanmar Co Ltd Working vehicle
JP2011121779A (en) * 2009-12-14 2011-06-23 Kobelco Cranes Co Ltd Working vehicle
JP5728621B1 (en) * 2014-05-29 2015-06-03 株式会社小松製作所 Hydraulic drive
JP2019116946A (en) * 2017-12-27 2019-07-18 三菱重工機械システム株式会社 Hydraulic driving device
RU2723052C1 (en) * 2017-03-29 2020-06-08 Грэйт Уолл Мотор Компани Лимитед Hydraulic control system for cooling and lubrication of automatic transmission with dual clutch
JP2020125848A (en) * 2020-04-07 2020-08-20 株式会社クボタ Hydraulic system of working machine
CN115773291A (en) * 2022-11-14 2023-03-10 中国船舶集团有限公司第七〇四研究所 Fin stabilizer closed hydraulic system with wash return circuit

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092954A (en) * 2005-09-30 2007-04-12 Kubota Corp Shift operation structure of working vehicle
JP4644088B2 (en) * 2005-09-30 2011-03-02 株式会社クボタ Shifting operation structure of work vehicle
JP2007177798A (en) * 2005-12-26 2007-07-12 Kobelco Cranes Co Ltd Hydraulic traveling device of working vehicle
JP2008101636A (en) * 2006-10-17 2008-05-01 Kayaba Ind Co Ltd Hydraulic drive device with flushing circuit
JP2010210018A (en) * 2009-03-10 2010-09-24 Yanmar Co Ltd Working vehicle
JP2011121779A (en) * 2009-12-14 2011-06-23 Kobelco Cranes Co Ltd Working vehicle
US10119557B2 (en) 2014-05-29 2018-11-06 Komatsu Ltd. Hydraulic driving device
WO2015181934A1 (en) * 2014-05-29 2015-12-03 株式会社小松製作所 Hydraulic drive device
JP5728621B1 (en) * 2014-05-29 2015-06-03 株式会社小松製作所 Hydraulic drive
DE112014000101B4 (en) * 2014-05-29 2020-09-10 Komatsu Ltd. Hydraulic drive device
RU2723052C1 (en) * 2017-03-29 2020-06-08 Грэйт Уолл Мотор Компани Лимитед Hydraulic control system for cooling and lubrication of automatic transmission with dual clutch
JP2019116946A (en) * 2017-12-27 2019-07-18 三菱重工機械システム株式会社 Hydraulic driving device
JP7064872B2 (en) 2017-12-27 2022-05-11 三菱重工機械システム株式会社 Hydraulic drive
JP2020125848A (en) * 2020-04-07 2020-08-20 株式会社クボタ Hydraulic system of working machine
CN115773291A (en) * 2022-11-14 2023-03-10 中国船舶集团有限公司第七〇四研究所 Fin stabilizer closed hydraulic system with wash return circuit
CN115773291B (en) * 2022-11-14 2023-06-02 中国船舶集团有限公司第七〇四研究所 Stabilizer closed hydraulic system with flushing loop

Also Published As

Publication number Publication date
JP4069803B2 (en) 2008-04-02

Similar Documents

Publication Publication Date Title
CN101784773B (en) Working vehicle and method of controlling working vehicle
JP2007211843A (en) Hydraulically-driven industrial machine
BRPI1001713A2 (en) hydraulic system for a vehicle powered by an internal combustion engine
JP2013117253A (en) Warming-up system
US8839617B2 (en) System and method for controlling charging of an accumulator in an electro-hydraulic system
JP4069803B2 (en) Top-slewing hydraulic vehicle
JP2005042916A (en) Electric loop flushing device
JP2001016827A (en) Construction machine
JP2002227998A (en) Hydraulic driving system
JP2007177798A (en) Hydraulic traveling device of working vehicle
JP2005054964A (en) Hst driving circuit
JP6618495B2 (en) Hydraulic drive
US20070227135A1 (en) Integrated load-sensing hydraulic system
JP2013079626A (en) Hydraulic circuit of construction machine
JP5041959B2 (en) Hydraulic control device for work equipment
CN109340218B (en) Cooling control system of underground continuous wall cutting equipment and cutting equipment
WO2004083689A1 (en) Hydraulic travel drive device and motor vehicle with hydraulic travel drive
JP2005155698A (en) Hydraulic circuit of hydraulic work machine
JP2020172792A (en) Work machine, and control method
JP2007247821A (en) Hydraulic power transmission device
KR20090013581A (en) Hydraulic system for steering construction machinery
JP6999320B2 (en) Excavator
JP2007051454A (en) Hydraulic oil cooling system for construction equipment
JP2009133493A (en) Working fluid cooling control system for construction machine
JP2008267444A (en) Transmission device equipped with hydraulic pressure control mechanism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040921

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040918

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20041215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070501

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4069803

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees