JP2005155698A - Hydraulic circuit of hydraulic work machine - Google Patents

Hydraulic circuit of hydraulic work machine Download PDF

Info

Publication number
JP2005155698A
JP2005155698A JP2003392177A JP2003392177A JP2005155698A JP 2005155698 A JP2005155698 A JP 2005155698A JP 2003392177 A JP2003392177 A JP 2003392177A JP 2003392177 A JP2003392177 A JP 2003392177A JP 2005155698 A JP2005155698 A JP 2005155698A
Authority
JP
Japan
Prior art keywords
oil
switching valve
pilot
valve
hydraulic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003392177A
Other languages
Japanese (ja)
Inventor
Naohiro Yamakawa
尚宏 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo SHI Construction Machinery Co Ltd
Original Assignee
Sumitomo SHI Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo SHI Construction Machinery Co Ltd filed Critical Sumitomo SHI Construction Machinery Co Ltd
Priority to JP2003392177A priority Critical patent/JP2005155698A/en
Publication of JP2005155698A publication Critical patent/JP2005155698A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To simply and securely ensure heat balance during warming-up operation when an engine starts and during work. <P>SOLUTION: The downstream side of a pilot control type direction change-over valve 14 or a solenoid control type direction change-over valve 21 is composed of a cooling oil passage 16 having an oil cooler 15 and a non-cooling oil passage 18 having no oil cooler. A shuttle valve 20 is provided in a communicating passage linking between a pair of pilot oil passages connecting a remote control valve 12 with a main direction change-over valve 7. The shuttle valve 20 is directly connected with a pilot control part of the pilot control type direction change-over valve 14 interposed in a return oil passage or is connected with a solenoid control part of the solenoid control type direction change-over valve 21 through a pressure switch 23 or the like. When operating the remote control valve 12, return oil is returned into a tank 17 through the cooling oil passage 16. When operating not the remote control valve 12, return oil is returned into the tank 17 through the non-cooling oil passage 18. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はオイルクーラを装着した油圧作業機械の油圧回路に関するものである。   The present invention relates to a hydraulic circuit of a hydraulic working machine equipped with an oil cooler.

従来、油圧ショベル、クレーン等の油圧作業機械においては、バルブ、アクチュエータ等の油圧機器の作動を滑らかにすると共に、バルブ及びアクチュエータ等の油圧機器のトラブル発生を防止するために始動時、特に寒冷時に作動油の温度を上昇させる暖機運転を行っている(例えば、特許文献1参照)。一方、作業中はバルブやアクチュエータの発熱により、作動油の油温が上昇し、粘度の低下により油洩れが生じたり、作動油が劣化しやすくなるため、オイルクーラで作動油を適正な油温まで冷却している(例えば、特許文献2参照)。そして、暖機運転時に作動油の温度を迅速に上昇させて、暖機運転時間の短縮を図る一方、作動油のヒートバランスを常に良好に保つために、戻り流路に冷却流路と非冷却流路を設け、冷却流路にはオイルクーラを、非冷却流路には電磁比例弁を夫々配設したものも出現してきた(例えば、特許文献3参照)。
特開平8−284907号公報(第2〜4頁、図1) 特開2001−65527号公報(第2〜4頁、図1) 特開2002−130216号公報(第2〜5頁、図1)
Conventionally, in hydraulic work machines such as hydraulic excavators and cranes, the operation of hydraulic equipment such as valves and actuators is made smooth, and troubles of hydraulic equipment such as valves and actuators are prevented from occurring, especially during cold weather. A warm-up operation for increasing the temperature of the hydraulic oil is performed (for example, see Patent Document 1). On the other hand, during operation, the oil temperature of the hydraulic oil rises due to heat generated by the valves and actuators, and oil leakage occurs due to a decrease in viscosity, and the hydraulic oil tends to deteriorate. (For example, refer to Patent Document 2). In order to shorten the warm-up operation time by quickly raising the temperature of the hydraulic oil during the warm-up operation, while maintaining a good heat balance of the hydraulic oil, a cooling channel and a non-cooling are provided in the return channel. There has also appeared a structure in which a flow path is provided, an oil cooler is disposed in the cooling flow path, and an electromagnetic proportional valve is disposed in the non-cooling flow path (see, for example, Patent Document 3).
JP-A-8-284907 (pages 2 to 4, FIG. 1) JP 2001-65527 A (pages 2 to 4, FIG. 1) JP 2002-130216 A (pages 2 to 5, FIG. 1)

特許文献1記載の発明は、作動油タンクと油圧ポンプとを接続する吸込管路に発熱ヒータ等の加熱装置を設け、作動油を暖めることによりエンジン始動時の油圧ポンプの負荷を軽減することができ、また、エンジン始動後の作動油の暖機時間の短縮及び燃費の節約を可能としたものであり、エンジン始動時、特に寒冷時における作動油の暖機を短時間で行うことができるものである。この特許文献1に記載されている発明は、加熱装置を設けて積極的に作動油を暖める点で極寒地においては最も効果的な手段であるが、ヒータ及び油温センサ等の特別な装置を必要とし、また、我が国においては北海道を除き、加熱装置を設けてまで作動油を加熱する必要はなく、エンジンを始動して作動油を循環させる程度の暖機運転で十分である。   The invention described in Patent Document 1 can reduce the load on the hydraulic pump when starting the engine by providing a heating device such as a heating heater in the suction pipe line connecting the hydraulic oil tank and the hydraulic pump to warm the hydraulic oil. In addition, it is possible to shorten the warm-up time of hydraulic oil after engine startup and save fuel consumption, and to warm up hydraulic oil in a short time when the engine starts, especially in cold weather It is. The invention described in Patent Document 1 is the most effective means in extremely cold regions in that a heating device is provided to actively warm the working oil, but a special device such as a heater and an oil temperature sensor is provided. In Japan, except for Hokkaido, it is not necessary to heat the hydraulic oil until a heating device is provided. A warm-up operation that circulates the hydraulic oil by starting the engine is sufficient.

一方、特許文献2記載の発明は、特許文献1と逆に作業中におけるバルブやアクチュエータの発熱により上昇した作動油の油温を冷却するために作動油冷却器を設けたものであり、この作動油冷却器にかかるピーク圧力を緩和して寿命を延ばすためにバイパス回路を設け、このバイパス回路にリリーフ弁を介挿したものであるが、リリーフ弁のセット圧力以下ではバイパス回路が遮断されるため、作動油冷却器を介して作動油がタンクに戻されることになり、エンジン始動時又は寒冷時には粘度が高い作動油が作動油冷却器を通過し、作動油冷却器に悪影響を及ぼすことになる。   On the other hand, the invention described in Patent Document 2 is provided with a hydraulic oil cooler in order to cool the oil temperature of the hydraulic oil that has risen due to the heat generated by the valves and actuators during operation, contrary to Patent Document 1. A bypass circuit is provided to relieve the peak pressure applied to the oil cooler and extend the life, and a relief valve is inserted into this bypass circuit, but the bypass circuit is shut off below the set pressure of the relief valve. The hydraulic oil is returned to the tank via the hydraulic oil cooler, and the hydraulic oil having a high viscosity passes through the hydraulic oil cooler when the engine is started or cold, and adversely affects the hydraulic oil cooler. .

そして、特許文献3記載の発明は、冷却流路に設けたオイルクーラの上流の圧力を検出する圧力計を設け、その圧力計の圧力が高い場合は作動油の粘度が高いと判断してコントローラから比例制御信号を電磁比例弁に導出し電磁比例弁を通る油量を調整するもので、作動油の油温に応じて変化する作動油の粘度に基づいてオイルクーラを介してタンクに戻る油量、或いはオイルクーラを介さずにタンクに戻る油量を変化させるものである。しかし、フィルタ付きのオイルクーラの場合は、フィルタの目詰まりによりオイルクーラ上流の圧力が上昇し、圧力計の検出圧力と作動油の粘度との間の関係を導き出すことが困難と思われるが、この点に関しては特許文献3の明細書第5頁第7欄17行目〜第8欄4行目に「オイルクーラに付設したフィルタの目詰まり」に関する記載があり、対処可能と思われる。一方、作動油の粘度が高いと油圧ポンプの吸入抵抗及び動力損失が増えると共に、流動に伴う圧力損失が増大し、一般にオイルクーラは最も下流に設けられる場合が多いので、作動油の粘度が高くてもオイルクーラ手前の作動油の圧力が高いとは言えない場合もあり、オイルクーラ手前の作動油の圧力を測定して電磁比例弁を適正に制御することは難しいという問題がある。   The invention described in Patent Document 3 is provided with a pressure gauge for detecting the pressure upstream of the oil cooler provided in the cooling flow path. When the pressure of the pressure gauge is high, it is determined that the viscosity of the hydraulic oil is high. The oil that returns to the tank through the oil cooler based on the viscosity of the hydraulic oil that changes according to the temperature of the hydraulic oil. The amount of oil that returns to the tank without changing the amount or the oil cooler is changed. However, in the case of an oil cooler with a filter, the pressure upstream of the oil cooler increases due to clogging of the filter, and it seems difficult to derive the relationship between the pressure detected by the pressure gauge and the viscosity of the hydraulic oil. Regarding this point, there is a description regarding “clogging of the filter attached to the oil cooler” on page 5, column 7, line 17 to column 8, line 4 of the specification of Patent Document 3, which seems to be addressable. On the other hand, when the viscosity of the hydraulic oil is high, the suction resistance and power loss of the hydraulic pump increase and the pressure loss accompanying the flow increases. Generally, the oil cooler is often provided at the most downstream, so the viscosity of the hydraulic oil is high. However, it may not be said that the pressure of the hydraulic oil before the oil cooler is high, and there is a problem that it is difficult to properly control the electromagnetic proportional valve by measuring the pressure of the hydraulic oil before the oil cooler.

そこで、バルブやアクチュエータを作動して作動油の油温が高くなってきたときには、戻り油の全てをオイルクーラを介してタンクに導く一方、エンジン始動時、特に寒冷時の作動油の油温が低い場合においては、戻り油の全てをオイルクーラを通さずに直接タンクに戻すことによりオイルクーラに及ぼす悪影響を取り除き、エンジン始動時の暖機運転及び作業中のヒートバランスを簡単かつ確実に確保するために解決すべき技術的課題が生じてくるのであり、本発明はこの課題を解決することを目的とする。   Therefore, when the oil temperature of the hydraulic oil becomes high due to the operation of the valve or actuator, all of the return oil is guided to the tank via the oil cooler, while the oil temperature of the hydraulic oil when the engine is started, especially during cold weather. When the engine is low, all of the return oil is returned directly to the tank without passing through the oil cooler to eliminate the adverse effects on the oil cooler, ensuring easy and reliable warm-up when starting the engine and heat balance during work. Therefore, a technical problem to be solved arises, and the present invention aims to solve this problem.

本発明は上記目的を達成するために提案されたものであり、請求項1記載の発明は、主油圧ポンプと、該主油圧ポンプからの圧油により駆動されるアクチュエータと、該アクチュエータに供給される圧油の方向を制御する主方向切換弁と、該主方向切換弁のパイロット制御部にパイロットポンプのパイロット圧を導出するリモコン弁を含む油圧回路において、前記主方向切換弁の下流の戻り油路にパイロット制御式方向切換弁を介設し、該パイロット制御式方向切換弁の下流をオイルクーラを有する冷却油路とオイルクーラを有しない非冷却油路で構成すると共に、前記リモコン弁と主方向切換弁のパイロット制御部を接続する一対のパイロット油路間を繋ぐ連通油路にシャトル弁を設け、該シャトル弁を前記戻り油路に介設したパイロット制御式方向切換弁のパイロット制御部に接続し、前記リモコン弁操作時は前記冷却油路を介して戻り油をタンクに戻す一方、前記リモコン弁非操作時は前記非冷却油路を介して戻り油をタンクに戻すようにした油圧作業機械の油圧回路である。   The present invention has been proposed in order to achieve the above object, and the invention according to claim 1 provides a main hydraulic pump, an actuator driven by pressure oil from the main hydraulic pump, and the actuator. In a hydraulic circuit including a main direction switching valve for controlling the direction of pressure oil and a remote control valve for deriving a pilot pressure of a pilot pump to a pilot control unit of the main direction switching valve, return oil downstream of the main direction switching valve A pilot-controlled directional switching valve is provided in the road, and a downstream of the pilot-controlled directional switching valve is constituted by a cooling oil passage having an oil cooler and a non-cooling oil passage not having an oil cooler. A pilot valve in which a shuttle valve is provided in a communication oil passage that connects between a pair of pilot oil passages that connect a pilot control unit of a direction switching valve, and the shuttle valve is provided in the return oil passage Connected to the pilot control unit of the control direction switching valve, the return oil is returned to the tank via the cooling oil passage when the remote control valve is operated, and the return oil is returned via the non-cooling oil passage when the remote control valve is not operated. It is a hydraulic circuit of a hydraulic working machine in which oil is returned to a tank.

また、請求項2記載の発明は、主油圧ポンプと、該主油圧ポンプからの圧油により駆動されるアクチュエータと、該アクチュエータに供給される圧油の方向を制御する主方向切換弁と、該主方向切換弁のパイロット制御部にパイロットポンプのパイロット圧を導出するリモコン弁を含む油圧回路において、前記主方向切換弁の下流の戻り油路にソレノイド制御式方向切換弁を介設し、該ソレノイド制御式方向切換弁の下流をオイルクーラを有する冷却油路とオイルクーラを有しない非冷却油路で構成すると共に、前記リモコン弁の作動を検出するセンサを設け、該センサを前記戻り油路に介設したソレノイド制御式方向切換弁のソレノイド制御部に接続し、前記リモコン弁操作時は前記冷却油路を介して戻り油をタンクに戻す一方、前記リモコン弁非操作時は前記非冷却油路を介して戻り油をタンクに戻すようにした油圧作業機械の油圧回路である。   The invention described in claim 2 is a main hydraulic pump, an actuator driven by pressure oil from the main hydraulic pump, a main direction switching valve for controlling the direction of pressure oil supplied to the actuator, In a hydraulic circuit including a remote control valve for deriving a pilot pressure of a pilot pump in a pilot control unit of the main direction switching valve, a solenoid-controlled direction switching valve is interposed in a return oil path downstream of the main direction switching valve, and the solenoid A downstream of the control type directional control valve is constituted by a cooling oil passage having an oil cooler and a non-cooling oil passage not having an oil cooler, and a sensor for detecting the operation of the remote control valve is provided, and the sensor is connected to the return oil passage. Connected to the solenoid control unit of the solenoid-controlled directional switching valve provided, and when the remote control valve is operated, the return oil is returned to the tank via the cooling oil passage, Down valve non-operating-time is a hydraulic circuit of a hydraulic working machine which is returned to the tank return oil through the non-cooling oil passage.

そして、請求項3記載の発明は、主油圧ポンプと、該主油圧ポンプからの圧油により駆動されるアクチュエータと、該アクチュエータに供給される圧油の方向を制御する主方向切換弁と、該主方向切換弁のパイロット制御部にパイロットポンプのパイロット圧を導出するリモコン弁を含む油圧回路において、前記主方向切換弁の下流の戻り油路にソレノイド制御式方向切換弁を介設し、該ソレノイド制御式方向切換弁の下流をオイルクーラを有する冷却油路とオイルクーラを有しない非冷却油路で構成すると共に、前記リモコン弁と主方向切換弁のパイロット制御部を接続する一対のパイロット油路間を繋ぐ連通油路にシャトル弁を設け、該シャトル弁を前記戻り油路に介設したソレノイド制御式方向切換弁のソレノイド制御部に圧力スイッチを介して接続し、前記リモコン弁操作時は前記冷却油路を介して戻り油をタンクに戻す一方、前記リモコン弁非操作時は前記非冷却油路を介して戻り油をタンクに戻すようにした油圧作業機械の油圧回路である。   According to a third aspect of the present invention, there is provided a main hydraulic pump, an actuator driven by pressure oil from the main hydraulic pump, a main direction switching valve for controlling the direction of pressure oil supplied to the actuator, In a hydraulic circuit including a remote control valve for deriving a pilot pressure of a pilot pump in a pilot control unit of the main direction switching valve, a solenoid control type direction switching valve is interposed in a return oil path downstream of the main direction switching valve, and the solenoid A pair of pilot oil passages that comprise a cooling oil passage having an oil cooler and a non-cooling oil passage not having an oil cooler downstream of the control type directional control valve and connecting the remote control valve and the pilot control portion of the main directional control valve A shuttle valve is provided in the communication oil passage that connects the two, and a pressure switch is connected to the solenoid control portion of the solenoid-controlled directional valve that is provided in the return oil passage. The return oil is returned to the tank via the cooling oil passage when the remote control valve is operated, and the return oil is returned to the tank via the non-cooling oil passage when the remote control valve is not operated. It is the hydraulic circuit of the hydraulic working machine.

請求項1乃至請求項3記載の発明は、作動油の油温が低く、粘度が比較的高いエンジン始動時においては、リモコン弁の操作レバーを中立位置に保持することにより、主油圧ポンプから吐出される作動油は非冷却油路を介して循環されるため、オイルクーラに悪影響を及ぼすことがなく、暖機も早く行うことができる。一方、作業中において作動油の油温が高くなった場合は、リモコン弁の操作により戻り油路に介設した方向切換弁が切り換えられ、作動油は冷却油路を介して循環されオイルクーラにより冷却されるため、過熱を防止でき、ヒートバランスを保つことができる。また、作業中においても操作レバーを中立に戻すと作動油は非冷却油路を介してタンクに戻ることになり、オイルクーラで冷却されないが、作業中は操作レバーを非中立(ON)にしている場合が多いので、作動油は冷却油路を通過する方が多く、ヒートバランス上問題になることはない。   According to the first to third aspects of the present invention, when starting the engine where the temperature of the hydraulic oil is low and the viscosity is relatively high, the operation lever of the remote control valve is held in the neutral position to discharge from the main hydraulic pump. Since the hydraulic oil to be circulated is circulated through the non-cooling oil passage, the oil cooler is not adversely affected and warm-up can be performed quickly. On the other hand, when the temperature of the hydraulic oil becomes high during the operation, the direction switching valve provided in the return oil passage is switched by operating the remote control valve, and the hydraulic oil is circulated through the cooling oil passage and is circulated by the oil cooler. Since it is cooled, overheating can be prevented and heat balance can be maintained. In addition, when the operation lever is returned to neutral even during work, the hydraulic oil returns to the tank via the non-cooling oil passage and is not cooled by the oil cooler, but the work lever is set to non-neutral (ON) during work. Since there are many cases where the hydraulic oil passes through the cooling oil passage, there is no problem in heat balance.

以下、本発明の一実施の形態を図面に従って詳述する。図1は本発明に係る油圧回路を採用した油圧ショベルの全体側面図を示し、図2は本発明の第1実施形態に係る油圧回路図、図3は本発明の第2実施形態に係る電気油圧回路図、そして図4は本発明の第3実施形態に係る電気油圧回路図を示す。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. 1 is an overall side view of a hydraulic excavator that employs a hydraulic circuit according to the present invention, FIG. 2 is a hydraulic circuit diagram according to a first embodiment of the present invention, and FIG. 3 is an electric circuit according to a second embodiment of the present invention. FIG. 4 shows a hydraulic circuit diagram according to a third embodiment of the present invention.

図1において、1は下部走行体で、該下部走行体1に上部旋回体2が旋回可能に装架され、該上部旋回体2前部中央にフロントアタッチメント3が俯仰動可能に枢着され、上部旋回体2の前部一側に運転室4が載置され、上部旋回体2の後端にはカウンタウエイト5が取り付けられている。   In FIG. 1, reference numeral 1 denotes a lower traveling body, and an upper swing body 2 is pivotably mounted on the lower traveling body 1, and a front attachment 3 is pivotally attached to the front center of the upper swing body 2 so as to be able to move up and down. A cab 4 is placed on the front side of the upper swing body 2, and a counterweight 5 is attached to the rear end of the upper swing body 2.

図2の本発明の第1実施形態に係る油圧回路図において、主油圧ポンプ6の吐出口は主方向切換弁7のPポートに接続され、該主方向切換弁7のA、Bポートは夫々アクチュエータ8に接続され、主方向切換弁7のTポートは油路9を介して戻り油路10に接続されている。   In the hydraulic circuit diagram according to the first embodiment of the present invention shown in FIG. 2, the discharge port of the main hydraulic pump 6 is connected to the P port of the main direction switching valve 7, and the A and B ports of the main direction switching valve 7 are respectively connected. Connected to the actuator 8, the T port of the main direction switching valve 7 is connected to the return oil passage 10 via the oil passage 9.

また、パイロットポンプ11は操作レバー12aを有するリモコン弁12に接続され、該リモコン弁12は一対のパイロット油路13a、13bにより前記主方向切換弁7のパイロット制御部7a、7bに夫々接続されている。   The pilot pump 11 is connected to a remote control valve 12 having an operation lever 12a. The remote control valve 12 is connected to the pilot control sections 7a and 7b of the main direction switching valve 7 through a pair of pilot oil passages 13a and 13b, respectively. Yes.

前記主方向切換弁7の中立流路7cと接続される戻り油路10はパイロット制御式方向切換弁14のPポートに接続され、該パイロット制御式方向切換弁14のAポートはオイルクーラ15を介挿した冷却油路16を介してタンク17に接続され、方向切換弁14のBポートは非冷却油路18を介して直接タンク17に接続されている。   The return oil path 10 connected to the neutral flow path 7c of the main direction switching valve 7 is connected to the P port of the pilot-controlled direction switching valve 14, and the A port of the pilot-controlled direction switching valve 14 feeds the oil cooler 15. It is connected to the tank 17 via the inserted cooling oil passage 16, and the B port of the direction switching valve 14 is directly connected to the tank 17 via the non-cooling oil passage 18.

そして、前記一対のパイロット油路13a、13b間を繋ぐ連通油路19にはシャトル弁20が介挿され、該シャトル弁20は前記パイロット制御式方向切換弁14のパイロット制御部14aに接続されている。   A shuttle valve 20 is inserted in the communication oil passage 19 connecting the pair of pilot oil passages 13a and 13b, and the shuttle valve 20 is connected to the pilot control portion 14a of the pilot-controlled directional switching valve 14. Yes.

リモコン弁12の操作レバー12aを中立位置に保持したままエンジンを始動させた場合、パイロットポンプ11のパイロット圧は主方向切換弁7のパイロット制御部7a、7b及びパイロット制御式方向切換弁14のパイロット制御部14aのいずれにも導出されないので、主方向切換弁7は中立位置に保持され、一方、パイロット制御式方向切換弁14はバネの付勢力によりポジション14bに保持される。その結果、主油圧ポンプ6から吐出された作動油は主方向切換弁7の中立流路7c、戻り油路10、パイロット制御式方向切換弁14のポジション14b、非冷却油路18を通ってタンク17に戻り、再び主油圧ポンプ6から吐出され、循環することにより作動油の油温が上昇し、暖機される。   When the engine is started while the operation lever 12a of the remote control valve 12 is held in the neutral position, the pilot pressure of the pilot pump 11 is controlled by the pilot control units 7a and 7b of the main direction switching valve 7 and the pilot of the pilot control type direction switching valve 14. Since it is not derived to any of the control units 14a, the main direction switching valve 7 is held at the neutral position, while the pilot-controlled direction switching valve 14 is held at the position 14b by the biasing force of the spring. As a result, the hydraulic oil discharged from the main hydraulic pump 6 passes through the neutral flow path 7 c of the main direction switching valve 7, the return oil path 10, the position 14 b of the pilot-controlled directional switching valve 14, and the non-cooling oil path 18. Returning to 17, the oil is discharged again from the main hydraulic pump 6 and circulated, whereby the oil temperature of the hydraulic oil rises and is warmed up.

この暖機の初期の段階においては、作動油の油温が低く、粘度が比較的高いものの、作動油は非冷却油路18を通ってタンク17に戻り、オイルクーラ15がある冷却油路16を通らないため、オイルクーラ15に悪影響を与えることはない。   In this initial stage of warm-up, although the oil temperature of the hydraulic oil is low and the viscosity is relatively high, the hydraulic oil returns to the tank 17 through the non-cooling oil passage 18 and the cooling oil passage 16 with the oil cooler 15 is present. The oil cooler 15 is not adversely affected because it does not pass through.

一方、暖機により作動油の油温が上昇し作業が可能になった場合に、前記リモコン弁12の操作レバー12aを操作すると、パイロットポンプ11のパイロット圧が前記主方向切換弁7のパイロット制御部7a、7bのいずれかに導出されると共に、前記シャトル弁20を介して前記パイロット制御式方向切換弁14のパイロット制御部14aに導出され、主方向切換弁7及びパイロット制御式方向切換弁14を切り換え、主油圧ポンプ6から吐出された作動油は主方向切換弁7を介してアクチュエータ8に導かれ、アクチュエータ8からの戻り油は主方向切換弁7のTポートから油路9、戻り油路10、パイロット制御式方向切換弁14のポジション14c、オイルクーラ15が介挿されている冷却油路16を通ってタンク17に戻るため、作動油は冷却される。   On the other hand, when the operation temperature of the operating oil 12a of the remote control valve 12 is operated when the oil temperature of the working oil rises due to warming up, the pilot pressure of the pilot pump 11 is controlled by the pilot control of the main direction switching valve 7. Is led to one of the parts 7a and 7b, and is led to the pilot control part 14a of the pilot-controlled directional control valve 14 via the shuttle valve 20, and is connected to the main directional switching valve 7 and the pilot-controlled directional control valve 14 The hydraulic oil discharged from the main hydraulic pump 6 is guided to the actuator 8 via the main direction switching valve 7, and the return oil from the actuator 8 flows from the T port of the main direction switching valve 7 to the oil passage 9 and the return oil. To return to the tank 17 through the passage 10, the position 14c of the pilot-controlled directional switching valve 14, and the cooling oil passage 16 in which the oil cooler 15 is inserted. Hydraulic oil is cooled.

作業中において、リモコン弁12の操作レバー12aを中立位置に戻せば、前記パイロット制御式方向切換弁14のパイロット制御部14aにパイロット圧が導出されないため、主油圧ポンプ6から吐出された作動油はオイルクーラ15を介挿した冷却油路16を通らずに非冷却油路18を通るため冷却されないことになるが、作業中は操作レバーを非中立(ON)にしている場合が多いので、作動油は冷却油路を通過する方が多く、ヒートバランス上問題になることはない。   During operation, if the operating lever 12a of the remote control valve 12 is returned to the neutral position, pilot pressure is not derived to the pilot control unit 14a of the pilot-controlled directional switching valve 14, so that the hydraulic oil discharged from the main hydraulic pump 6 is Although it will not be cooled because it passes through the non-cooling oil passage 18 without passing through the cooling oil passage 16 inserted with the oil cooler 15, the operation lever is often set to non-neutral (ON) during operation. There are many cases where oil passes through the cooling oil passage, and there is no problem in heat balance.

図3の本発明の第2実施形態に係る電気油圧回路図は、図2の本発明の第1実施形態に係る油圧回路図におけるパイロット制御式方向切換弁14の代わりにソレノイド制御式方向切換弁21を戻り油路10に介設し、前記一対のパイロット油路13a、13b間を繋ぐ連通油路19及び該連通油路19に介挿したシャトル弁20の代わりに前記操作レバー12aの近傍にリモコン弁12の作動を検出するセンサ22を設け、該センサ22を前記ソレノイド制御式方向切換弁21のソレノイド制御部21aに接続したもので、基本的には第1実施形態とほぼ同じ構成であり、同様の作用、効果を奏する。   The electrohydraulic circuit diagram according to the second embodiment of the present invention shown in FIG. 3 is a solenoid controlled directional control valve instead of the pilot controlled directional control valve 14 in the hydraulic circuit diagram according to the first embodiment of the present invention shown in FIG. 21 is provided in the return oil passage 10, in the vicinity of the operation lever 12 a instead of the communication oil passage 19 connecting the pair of pilot oil passages 13 a and 13 b and the shuttle valve 20 inserted in the communication oil passage 19. A sensor 22 for detecting the operation of the remote control valve 12 is provided, and the sensor 22 is connected to the solenoid control unit 21a of the solenoid control type directional switching valve 21. The configuration is basically the same as that of the first embodiment. Has the same action and effect.

すなわち、前記主方向切換弁7の中立流路7cと接続される戻り油路10はソレノイド制御式方向切換弁21のPポートに接続され、該ソレノイド制御式方向切換弁21のAポートはオイルクーラ15を介挿した冷却油路16を介してタンク17に接続され、ソレノイド制御式方向切換弁21のBポートは非冷却油路18を介して直接タンク17に接続されている。   That is, the return oil path 10 connected to the neutral flow path 7c of the main direction switching valve 7 is connected to the P port of the solenoid control type direction switching valve 21, and the A port of the solenoid control type direction switching valve 21 is an oil cooler. The B port of the solenoid-controlled directional switching valve 21 is directly connected to the tank 17 via the non-cooling oil passage 18.

そして、リモコン弁12の操作レバー12aを中立位置に保持したままエンジンを始動させた場合、パイロットポンプ11のパイロット圧は主方向切換弁7のパイロット制御部7a、7bに導出されず、センサ22からソレノイド制御式方向切換弁21のソレノイド制御部21aに信号が導出されないので、主方向切換弁7は中立位置に保持され、また、ソレノイド制御式方向切換弁21はバネの付勢力によりポジション21bに保持される。その結果、主油圧ポンプ6から吐出された作動油は主方向切換弁7の中立流路7c、戻り油路10、ソレノイド制御式方向切換弁21のポジション21b、非冷却油路18を通ってタンク17に戻り、再び主油圧ポンプ6から吐出され、循環することにより作動油の油温が上昇し、暖機される。   When the engine is started while the operation lever 12a of the remote control valve 12 is held at the neutral position, the pilot pressure of the pilot pump 11 is not led to the pilot control units 7a and 7b of the main direction switching valve 7, but from the sensor 22. Since the signal is not derived to the solenoid control unit 21a of the solenoid control type direction switching valve 21, the main direction switching valve 7 is held at the neutral position, and the solenoid control type direction switching valve 21 is held at the position 21b by the biasing force of the spring. Is done. As a result, the hydraulic oil discharged from the main hydraulic pump 6 passes through the neutral flow path 7 c of the main direction switching valve 7, the return oil path 10, the position 21 b of the solenoid control type direction switching valve 21, and the tank through the non-cooling oil path 18. Returning to 17, the oil is discharged again from the main hydraulic pump 6 and circulated, whereby the oil temperature of the hydraulic oil rises and is warmed up.

一方、暖機により作動油の油温が上昇し作業が可能になった場合に、前記リモコン弁12の操作レバー12aを操作すると、パイロットポンプ11のパイロット圧が前記主方向切換弁7のパイロット制御部7a、7bのいずれかに導出されると共に、前記センサ22の検出信号が前記ソレノイド制御式方向切換弁21のソレノイド制御部21aに導出され、主方向切換弁7及びソレノイド制御式方向切換弁21を切り換え、主油圧ポンプ6から吐出された作動油は主方向切換弁7を介してアクチュエータ8に導かれ、アクチュエータ8からの戻り油は主方向切換弁7のTポートから油路9、戻り油路10、ソレノイド制御式方向切換弁21のポジション21c、オイルクーラ15が介挿されている冷却油路16を通ってタンク17に戻るため、作動油は冷却される。   On the other hand, when the operation temperature of the operating oil 12a of the remote control valve 12 is operated when the oil temperature of the working oil rises due to warming up, the pilot pressure of the pilot pump 11 is controlled by the pilot control of the main direction switching valve 7. The detection signal of the sensor 22 is led to the solenoid control unit 21a of the solenoid control type directional switching valve 21, and the main direction switching valve 7 and the solenoid control type directional switching valve 21 are derived to one of the parts 7a and 7b. The hydraulic oil discharged from the main hydraulic pump 6 is guided to the actuator 8 via the main direction switching valve 7, and the return oil from the actuator 8 flows from the T port of the main direction switching valve 7 to the oil passage 9 and the return oil. To return to the tank 17 through the passage 10, the position 21c of the solenoid-controlled directional switching valve 21, and the cooling oil passage 16 in which the oil cooler 15 is inserted. Hydraulic oil is cooled.

その結果、操作レバー非操作時、特にエンジン始動時においては、戻り油の全てがオイルクーラを通ることなく、循環させられるので、早く暖機することができ、一方、操作レバー操作時は戻り油の全てがオイルクーラを通るため、冷却効率を高めることができ、操作レバーの操作・非操作に連動して暖機・冷却を選択でき、特別な装置を必要とせず、通常の操作で適正なヒートバランスを得ることができる。   As a result, when the operating lever is not operated, particularly when the engine is started, all of the return oil is circulated without passing through the oil cooler, so that warm-up can be performed quickly. Since all the oil passes through the oil cooler, the cooling efficiency can be improved, and warm-up / cooling can be selected in conjunction with the operation / non-operation of the operation lever. A heat balance can be obtained.

図4の本発明の第3実施形態に係る電気油圧回路図は、図2の本発明の第1実施形態に係る油圧回路図におけるパイロット制御式方向切換弁14の代わりにソレノイド制御式方向切換弁21を戻り油路10に介設すると共に、該ソレノイド式方向切換弁21のソレノイド制御部21aと前記シャトル弁20とを圧力スイッチ23を介して接続したもので、基本的には第1実施形態及び第2実施形態とほぼ同じ構成であり、同様の作用、効果を奏する。   The electrohydraulic circuit diagram according to the third embodiment of the present invention shown in FIG. 4 is a solenoid controlled directional control valve instead of the pilot controlled directional control valve 14 in the hydraulic circuit diagram according to the first embodiment of the present invention shown in FIG. 21 is provided in the return oil passage 10, and the solenoid control portion 21a of the solenoid type directional switching valve 21 and the shuttle valve 20 are connected via a pressure switch 23. Basically, the first embodiment. And it is the structure substantially the same as 2nd Embodiment, and there exists the same effect | action and effect.

すなわち、前記主方向切換弁7の中立流路7cと接続される戻り油路10はソレノイド制御式方向切換弁21のPポートに接続され、該ソレノイド制御式方向切換弁21のAポートはオイルクーラ15を介挿した冷却油路16を介してタンク17に接続され、ソレノイド制御式方向切換弁21のBポートは非冷却油路18を介して直接タンク17に接続されている。   That is, the return oil path 10 connected to the neutral flow path 7c of the main direction switching valve 7 is connected to the P port of the solenoid control type direction switching valve 21, and the A port of the solenoid control type direction switching valve 21 is an oil cooler. The B port of the solenoid-controlled directional switching valve 21 is directly connected to the tank 17 via the non-cooling oil passage 18.

そして、リモコン弁12の操作レバー12aを中立位置に保持したままエンジンを始動させた場合、パイロットポンプ11のパイロット圧は主方向切換弁7のパイロット制御部7a、7b及び圧力スイッチ23に導出されず、主方向切換弁7は中立位置に保持され、一方、ソレノイド制御式方向切換弁21はバネの付勢力によりポジション21bに保持される。その結果、主油圧ポンプ6から吐出された作動油は主方向切換弁7の中立流路7c、戻り油路10、ソレノイド制御式方向切換弁21のポジション21b、非冷却油路18を通ってタンク17に戻り、再び主油圧ポンプ6から吐出され、循環することにより作動油の油温が上昇し、暖機される。   When the engine is started while the operation lever 12a of the remote control valve 12 is held at the neutral position, the pilot pressure of the pilot pump 11 is not led to the pilot control units 7a and 7b and the pressure switch 23 of the main direction switching valve 7. The main direction switching valve 7 is held at the neutral position, while the solenoid control type direction switching valve 21 is held at the position 21b by the biasing force of the spring. As a result, the hydraulic oil discharged from the main hydraulic pump 6 passes through the neutral flow path 7 c of the main direction switching valve 7, the return oil path 10, the position 21 b of the solenoid control type direction switching valve 21, and the tank through the non-cooling oil path 18. Returning to 17, the oil is discharged again from the main hydraulic pump 6 and circulated, whereby the oil temperature of the hydraulic oil rises and is warmed up.

一方、暖機により作動油の油温が上昇し作業が可能になった場合に、前記リモコン弁12の操作レバー12aを操作すると、パイロットポンプ11のパイロット圧が前記主方向切換弁7のパイロット制御部7a、7bのいずれかに導出されると共に、前記シャトル弁20を介して圧力スイッチ23に導出され、該圧力スイッチ23の出力信号が前記ソレノイド制御式方向切換弁21のソレノイド制御部21aに導かれ、主方向切換弁7及びソレノイド制御式方向切換弁21を切り換え、主油圧ポンプ6から吐出された作動油は主方向切換弁7を介してアクチュエータ8に導かれ、アクチュエータ8からの戻り油は主方向切換弁7のTポートから油路9、戻り油路10、ソレノイド制御式方向切換弁21のポジション21c、オイルクーラ15が介挿されている冷却油路16を通ってタンク17に戻るため、作動油は冷却される。   On the other hand, when the operation temperature of the operating oil 12a of the remote control valve 12 is operated when the oil temperature of the working oil rises due to warming up, the pilot pressure of the pilot pump 11 is controlled by the pilot control of the main direction switching valve 7. And is output to the pressure switch 23 via the shuttle valve 20, and the output signal of the pressure switch 23 is guided to the solenoid control unit 21 a of the solenoid-controlled directional switching valve 21. Then, the main direction switching valve 7 and the solenoid control type direction switching valve 21 are switched, and the hydraulic oil discharged from the main hydraulic pump 6 is guided to the actuator 8 through the main direction switching valve 7, and the return oil from the actuator 8 is From the T port of the main direction switching valve 7 to the oil passage 9, the return oil passage 10, the position 21c of the solenoid control type direction switching valve 21, the oil cooler 15 To return to the tank 17 through the cooling oil path 16 being interposed, the hydraulic oil is cooled.

その結果、操作レバー非操作時、特にエンジン始動時においては、戻り油の全てがオイルクーラを通ることなく、循環させられるので、早く暖機することができ、一方、操作レバー操作時は戻り油の全てがオイルクーラを通るため、冷却効率を高めることができ、操作レバーの操作・非操作に連動して暖機・冷却を選択でき、特別な装置を必要とせず、通常の操作で適正なヒートバランスを得ることができる。   As a result, when the operating lever is not operated, particularly when the engine is started, all of the return oil is circulated without passing through the oil cooler, so that warm-up can be performed quickly. Since all the oil passes through the oil cooler, the cooling efficiency can be improved, and warm-up / cooling can be selected in conjunction with the operation / non-operation of the operation lever. A heat balance can be obtained.

尚、本発明は、本発明の精神を逸脱しない限り種々の改変を為すことができ、そして、本発明が該改変されたものに及ぶことは当然である。   It should be noted that the present invention can be variously modified without departing from the spirit of the present invention, and the present invention naturally extends to the modified ones.

本発明に係る油圧回路を採用した油圧ショベルの全体側面図Overall side view of a hydraulic excavator employing a hydraulic circuit according to the present invention 本発明の第1実施形態に係る油圧回路図Hydraulic circuit diagram according to the first embodiment of the present invention 本発明の第2実施形態に係る電気油圧回路図Electrohydraulic circuit diagram according to the second embodiment of the present invention 本発明の第3実施形態に係る電気油圧回路図Electrohydraulic circuit diagram according to the third embodiment of the present invention

符号の説明Explanation of symbols

6 主油圧ポンプ
7 主方向切換弁
8 アクチュエータ
9 油路
10 戻り油路
11 パイロットポンプ
12 リモコン弁
12a 操作レバー
14 パイロット制御式方向切換弁
15 オイルクーラ
16 冷却油路
17 タンク
18 非冷却油路
19 連通油路
20 シャトル弁
21 ソレノイド制御式方向切換弁
22 センサ
23 圧力スイッチ
6 Main hydraulic pump 7 Main direction switching valve 8 Actuator 9 Oil path 10 Return oil path 11 Pilot pump 12 Remote control valve 12a Operation lever 14 Pilot control type direction switching valve 15 Oil cooler 16 Cooling oil path 17 Tank 18 Non-cooling oil path 19 Communication Oil path 20 Shuttle valve 21 Solenoid-controlled directional valve 22 Sensor 23 Pressure switch

Claims (3)

主油圧ポンプと、該主油圧ポンプからの圧油により駆動されるアクチュエータと、該アクチュエータに供給される圧油の方向を制御する主方向切換弁と、該主方向切換弁のパイロット制御部にパイロットポンプのパイロット圧を導出するリモコン弁を含む油圧回路において、前記主方向切換弁の下流の戻り油路にパイロット制御式方向切換弁を介設し、該パイロット制御式方向切換弁の下流をオイルクーラを有する冷却油路とオイルクーラを有しない非冷却油路で構成すると共に、前記リモコン弁と主方向切換弁のパイロット制御部を接続する一対のパイロット油路間を繋ぐ連通油路にシャトル弁を設け、該シャトル弁を前記戻り油路に介設したパイロット制御式方向切換弁のパイロット制御部に接続し、前記リモコン弁操作時は前記冷却油路を介して戻り油をタンクに戻す一方、前記リモコン弁非操作時は前記非冷却油路を介して戻り油をタンクに戻すようにしたことを特徴とする油圧作業機械の油圧回路。   A main hydraulic pump, an actuator driven by pressure oil from the main hydraulic pump, a main direction switching valve for controlling the direction of the pressure oil supplied to the actuator, and a pilot controller for the main direction switching valve In a hydraulic circuit including a remote control valve for deriving a pilot pressure of the pump, a pilot-controlled directional switching valve is interposed in a return oil passage downstream of the main directional switching valve, and an oil cooler is provided downstream of the pilot-controlled directional switching valve. And a non-cooling oil passage not having an oil cooler, and a shuttle valve in a communication oil passage connecting a pair of pilot oil passages connecting the remote control valve and the pilot control unit of the main direction switching valve. The shuttle valve is connected to a pilot control unit of a pilot-controlled directional switching valve interposed in the return oil passage, and the cooling oil is operated when the remote control valve is operated. While returning to the tank return oil through the remote control valve inoperative when the hydraulic circuit of a hydraulic working machine, characterized in that it has returned to the tank return oil through the non-cooling oil passage. 主油圧ポンプと、該主油圧ポンプからの圧油により駆動されるアクチュエータと、該アクチュエータに供給される圧油の方向を制御する主方向切換弁と、該主方向切換弁のパイロット制御部にパイロットポンプのパイロット圧を導出するリモコン弁を含む油圧回路において、前記主方向切換弁の下流の戻り油路にソレノイド制御式方向切換弁を介設し、該ソレノイド制御式方向切換弁の下流をオイルクーラを有する冷却油路とオイルクーラを有しない非冷却油路で構成すると共に、前記リモコン弁の作動を検出するセンサを設け、該センサを前記戻り油路に介設したソレノイド制御式方向切換弁のソレノイド制御部に接続し、前記リモコン弁操作時は前記冷却油路を介して戻り油をタンクに戻す一方、前記リモコン弁非操作時は前記非冷却油路を介して戻り油をタンクに戻すようにしたことを特徴とする油圧作業機械の油圧回路。   A main hydraulic pump, an actuator driven by pressure oil from the main hydraulic pump, a main direction switching valve for controlling the direction of the pressure oil supplied to the actuator, and a pilot controller for the main direction switching valve In a hydraulic circuit including a remote control valve for deriving a pilot pressure of the pump, a solenoid-controlled directional switching valve is provided in a return oil path downstream of the main directional switching valve, and an oil cooler is disposed downstream of the solenoid-controlled directional switching valve. And a non-cooling oil passage having no oil cooler, a sensor for detecting the operation of the remote control valve is provided, and a solenoid-controlled directional switching valve provided with the sensor in the return oil passage. Connected to the solenoid control unit, when the remote control valve is operated, the return oil is returned to the tank through the cooling oil passage, while when the remote control valve is not operated, the non-cooling oil is returned. Hydraulic working machine of a hydraulic circuit, characterized in that it has returned to the tank return oil through the. 主油圧ポンプと、該主油圧ポンプからの圧油により駆動されるアクチュエータと、該アクチュエータに供給される圧油の方向を制御する主方向切換弁と、該主方向切換弁のパイロット制御部にパイロットポンプのパイロット圧を導出するリモコン弁を含む油圧回路において、前記主方向切換弁の下流の戻り油路にソレノイド制御式方向切換弁を介設し、該ソレノイド制御式方向切換弁の下流をオイルクーラを有する冷却油路とオイルクーラを有しない非冷却油路で構成すると共に、前記リモコン弁と主方向切換弁のパイロット制御部を接続する一対のパイロット油路間を繋ぐ連通油路にシャトル弁を設け、該シャトル弁を前記戻り油路に介設したソレノイド制御式方向切換弁のソレノイド制御部に圧力スイッチを介して接続し、前記リモコン弁操作時は前記冷却油路を介して戻り油をタンクに戻す一方、前記リモコン弁非操作時は前記非冷却油路を介して戻り油をタンクに戻すようにしたことを特徴とする油圧作業機械の油圧回路。   A main hydraulic pump, an actuator driven by pressure oil from the main hydraulic pump, a main direction switching valve for controlling the direction of the pressure oil supplied to the actuator, and a pilot controller for the main direction switching valve In a hydraulic circuit including a remote control valve for deriving a pilot pressure of the pump, a solenoid-controlled directional switching valve is provided in a return oil path downstream of the main directional switching valve, and an oil cooler is disposed downstream of the solenoid-controlled directional switching valve. And a non-cooling oil passage not having an oil cooler, and a shuttle valve in a communication oil passage connecting a pair of pilot oil passages connecting the remote control valve and the pilot control unit of the main direction switching valve. And connecting the shuttle valve via a pressure switch to a solenoid control unit of a solenoid-controlled directional switching valve provided in the return oil passage. The hydraulic working machine is characterized in that the return oil is returned to the tank through the cooling oil passage during operation, and the return oil is returned to the tank through the non-cooling oil passage when the remote control valve is not operated. Hydraulic circuit.
JP2003392177A 2003-11-21 2003-11-21 Hydraulic circuit of hydraulic work machine Pending JP2005155698A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003392177A JP2005155698A (en) 2003-11-21 2003-11-21 Hydraulic circuit of hydraulic work machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003392177A JP2005155698A (en) 2003-11-21 2003-11-21 Hydraulic circuit of hydraulic work machine

Publications (1)

Publication Number Publication Date
JP2005155698A true JP2005155698A (en) 2005-06-16

Family

ID=34718962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003392177A Pending JP2005155698A (en) 2003-11-21 2003-11-21 Hydraulic circuit of hydraulic work machine

Country Status (1)

Country Link
JP (1) JP2005155698A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007091534A1 (en) * 2006-02-08 2007-08-16 Hitachi Construction Machinery Co., Ltd Hydraulically driven industrial machine
WO2010001479A1 (en) * 2008-07-04 2010-01-07 三菱重工業株式会社 Wind-power generation device
US8042333B2 (en) * 2007-03-14 2011-10-25 Hampton Hydraulics Oil cooling circuit for continuously reciprocating hydraulic cylinders
KR101087518B1 (en) 2008-10-17 2011-11-28 미츠비시 쥬고교 가부시키가이샤 Wind turbine generator
CN102995699A (en) * 2012-12-13 2013-03-27 三一重机有限公司 Excavator and hydraulic oil heat dissipation power adjusting device thereof
WO2014091683A1 (en) * 2012-12-13 2014-06-19 コベルコ建機株式会社 Hydraulic circuit for construction machine
EP2955286A2 (en) 2014-06-09 2015-12-16 Kobelco Construction Machinery Co., Ltd. Construction machine
WO2017149605A1 (en) * 2016-02-29 2017-09-08 三菱重工業株式会社 Wind turbine, control device for same, and control method for same
CN109826273A (en) * 2019-03-29 2019-05-31 三一重机有限公司 Hydraulic pilot control system and excavator
CN110513361A (en) * 2019-09-02 2019-11-29 柳州柳工挖掘机有限公司 Construction machinery hydraulic system and hydraulic oil method for controlling temperature rise

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007211843A (en) * 2006-02-08 2007-08-23 Hitachi Constr Mach Co Ltd Hydraulically-driven industrial machine
JP4725345B2 (en) * 2006-02-08 2011-07-13 日立建機株式会社 Hydraulic drive industrial machine
US8051649B2 (en) 2006-02-08 2011-11-08 Hitachi Construction Machinery Co., Ltd. Hydraulically driven industrial machine
WO2007091534A1 (en) * 2006-02-08 2007-08-16 Hitachi Construction Machinery Co., Ltd Hydraulically driven industrial machine
US8042333B2 (en) * 2007-03-14 2011-10-25 Hampton Hydraulics Oil cooling circuit for continuously reciprocating hydraulic cylinders
WO2010001479A1 (en) * 2008-07-04 2010-01-07 三菱重工業株式会社 Wind-power generation device
JP5260651B2 (en) * 2008-07-04 2013-08-14 三菱重工業株式会社 Wind power generator
US8672093B2 (en) 2008-10-17 2014-03-18 Mitsubishi Heavy Industries, Ltd. Wind turbine generator
KR101087518B1 (en) 2008-10-17 2011-11-28 미츠비시 쥬고교 가부시키가이샤 Wind turbine generator
CN104822950A (en) * 2012-12-13 2015-08-05 神钢建机株式会社 Hydraulic circuit for construction machine
EP2933501A4 (en) * 2012-12-13 2016-03-30 Kobelco Constr Mach Co Ltd Hydraulic circuit for construction machine
JP2014118984A (en) * 2012-12-13 2014-06-30 Kobelco Contstruction Machinery Ltd Hydraulic circuit for construction machine
CN102995699A (en) * 2012-12-13 2013-03-27 三一重机有限公司 Excavator and hydraulic oil heat dissipation power adjusting device thereof
KR20150093217A (en) * 2012-12-13 2015-08-17 코벨코 겐키 가부시키가이샤 Hydraulic circuit for construction machine
KR102101054B1 (en) 2012-12-13 2020-04-14 코벨코 겐키 가부시키가이샤 Hydraulic circuit for construction machine
US9863448B2 (en) 2012-12-13 2018-01-09 Kobelco Construction Machinery Co., Ltd. Hydraulic circuit for construction machine
WO2014091683A1 (en) * 2012-12-13 2014-06-19 コベルコ建機株式会社 Hydraulic circuit for construction machine
EP2955286A3 (en) * 2014-06-09 2016-01-13 Kobelco Construction Machinery Co., Ltd. Construction machine
US9828745B2 (en) 2014-06-09 2017-11-28 Kobelco Construction Machinery Co., Ltd. Construction machine
JP2015230094A (en) * 2014-06-09 2015-12-21 コベルコ建機株式会社 Construction equipment
EP2955286A2 (en) 2014-06-09 2015-12-16 Kobelco Construction Machinery Co., Ltd. Construction machine
WO2017149605A1 (en) * 2016-02-29 2017-09-08 三菱重工業株式会社 Wind turbine, control device for same, and control method for same
JPWO2017149605A1 (en) * 2016-02-29 2018-04-12 三菱重工業株式会社 Windmill, control device and control method thereof
CN109826273A (en) * 2019-03-29 2019-05-31 三一重机有限公司 Hydraulic pilot control system and excavator
CN110513361A (en) * 2019-09-02 2019-11-29 柳州柳工挖掘机有限公司 Construction machinery hydraulic system and hydraulic oil method for controlling temperature rise

Similar Documents

Publication Publication Date Title
JP3992612B2 (en) Backhoe hydraulic circuit structure
JP4655795B2 (en) Hydraulic control device of excavator
JP4331151B2 (en) Working fluid cooling control system for construction machinery
JP4588089B2 (en) Fan drive system
US9828745B2 (en) Construction machine
JP2005155698A (en) Hydraulic circuit of hydraulic work machine
WO2019220954A1 (en) Hydraulic shovel drive system
JP4446822B2 (en) Hydraulic drive device for work vehicle
JP2013040641A (en) Hydraulic circuit
KR101389603B1 (en) Hydraulic system for steering construction machinery
JP2002130216A (en) Hydraulic circuit for construction equipment
JP4107454B2 (en) Hydraulically driven cooling fan device
JP2006234082A (en) Load sensing hydraulic circuit of work machine
JP5334509B2 (en) Hydraulic circuit for construction machinery
JP2021156399A (en) Shovel
JP5479827B2 (en) Drain circuit of hydraulic pump for construction machinery
JP2010112493A (en) Control device for working machine
JP2009133493A (en) Working fluid cooling control system for construction machine
JP6455156B2 (en) Hydraulic circuit device of crane truck
JP7463161B2 (en) Excavator
JP2009097579A (en) Hydraulic circuit of construction machine
JP2013139852A (en) Hydraulic control device and construction machine equipped with the same
JPH06147205A (en) Oil pressure circuit for hydraulic working machine
KR20090013590A (en) Heating apparatus of electric excavator
JP2002039117A (en) Hydraulic circuit device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080310

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080617