JP2009097579A - Hydraulic circuit of construction machine - Google Patents

Hydraulic circuit of construction machine Download PDF

Info

Publication number
JP2009097579A
JP2009097579A JP2007268257A JP2007268257A JP2009097579A JP 2009097579 A JP2009097579 A JP 2009097579A JP 2007268257 A JP2007268257 A JP 2007268257A JP 2007268257 A JP2007268257 A JP 2007268257A JP 2009097579 A JP2009097579 A JP 2009097579A
Authority
JP
Japan
Prior art keywords
pressure
negative control
hydraulic
external command
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007268257A
Other languages
Japanese (ja)
Inventor
Hiroshi Ishiyama
寛 石山
Takashi Kubo
隆 久保
Kiminori Sano
公則 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo SHI Construction Machinery Co Ltd
Original Assignee
Sumitomo SHI Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo SHI Construction Machinery Co Ltd filed Critical Sumitomo SHI Construction Machinery Co Ltd
Priority to JP2007268257A priority Critical patent/JP2009097579A/en
Publication of JP2009097579A publication Critical patent/JP2009097579A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To save energy by reducing a delivery quantity of a hydraulic pump when an actuator is not continuously operated for a specific time by an inexpensive constitution. <P>SOLUTION: This hydraulic circuit controls the delivery quantity of the hydraulic pump by selecting either of negative control pressure and external command pressure as high pressure, and is provided with a pressure sensor S detecting the operation state of an operation lever 41 for controlling the actuator and a controller 50 generating the external command pressure higher than the negative control pressure generated by a negative control orifice 37 by a solenoid proportional pressure reducing valve 52 when the non-operated state of the operation lever 41 is continued for a specific time. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は建設機械の油圧回路に関するものであり、特に、ネガコン回路を備えた建設機械においてネガコン圧と外部指令圧の何れかを高圧選択して油圧ポンプの吐出量を制御する油圧回路に関するものである。   The present invention relates to a hydraulic circuit for a construction machine, and more particularly to a hydraulic circuit for controlling a discharge amount of a hydraulic pump by selecting either a negative control pressure or an external command pressure in a construction machine having a negative control circuit. is there.

図6はネガコン回路を備えた従来の此種建設機械の一般的な油圧回路図であり、エンジン30の動力で可変容量型のメインポンプ31を駆動し、該メインポンプ31の吐出回路32には、メインポンプ31から吐出される作動油を一定圧に制御するリリーフ弁33が設けられてタンク34に接続されている。前記吐出回路32の途中にはコントロール弁35が設けられ、該コントロール弁35を介して作動油が油圧シリンダや油圧モータなどのアクチュエータ36へ給排される。   FIG. 6 is a general hydraulic circuit diagram of a conventional construction machine having a negative control circuit. A variable displacement main pump 31 is driven by the power of the engine 30, and a discharge circuit 32 of the main pump 31 includes A relief valve 33 for controlling the hydraulic oil discharged from the main pump 31 to a constant pressure is provided and connected to the tank 34. A control valve 35 is provided in the middle of the discharge circuit 32, and hydraulic oil is supplied and discharged through the control valve 35 to an actuator 36 such as a hydraulic cylinder or a hydraulic motor.

前記吐出回路32は、コントロール弁35のセンターバイパスを通り、ネガコン絞り37を介してタンク34に連通している。該ネガコン絞り37はネガコンリリーフ弁38と並列にタンク34に接続されており、該ネガコン絞り37の手前からネガコン回路39が分岐して設けられ、該ネガコン回路39はメインポンプ31の傾転角を調整するレギュレータ40に接続されている。   The discharge circuit 32 passes through the center bypass of the control valve 35 and communicates with the tank 34 via a negative control throttle 37. The negative control throttle 37 is connected to the tank 34 in parallel with the negative control relief valve 38, and a negative control circuit 39 is branched from the front of the negative control throttle 37. The negative control circuit 39 controls the tilt angle of the main pump 31. It is connected to the regulator 40 to be adjusted.

また、前記コントロール弁35を切り換えてアクチュエータ36を制御する手段として、操作レバー41を備えたリモコン弁42を設け、該リモコン弁42の1次側ポートを油圧源43とタンク34に接続する。該リモコン弁42の2次側ポートは、一方のパイロット回路44を介して前記コントロール弁35の一方のパイロットポート45に接続されるとともに、他方のパイロット回路46を介して前記コントロール弁35の他方のパイロットポート47に接続されている。   Further, as a means for switching the control valve 35 to control the actuator 36, a remote control valve 42 having an operation lever 41 is provided, and a primary port of the remote control valve 42 is connected to the hydraulic power source 43 and the tank 34. The secondary port of the remote control valve 42 is connected to one pilot port 45 of the control valve 35 via one pilot circuit 44 and the other port of the control valve 35 via the other pilot circuit 46. The pilot port 47 is connected.

図7はネガコン特性を示すグラフであり、同図(a)はネガコン絞り37およびネガコンリリーフ弁38の流量とネガコン圧の関係を示し、同図(b)はネガコン圧とメインポンプの吐出量の関係を示している。   FIG. 7 is a graph showing the negative control characteristics. FIG. 7A shows the relationship between the flow rate of the negative control throttle 37 and the negative control relief valve 38 and the negative control pressure, and FIG. 7B shows the negative control pressure and the discharge amount of the main pump. Showing the relationship.

図示は省略するが、操作レバー41が操作されてコントロール弁35が何れかの位置に切り換わっているときは、メインポンプ31から吐出される作動油はアクチュエータ36へ供給され、ネガコン回路39に作動油が導出されないため、図7(a)に示すように、ネガコン圧は最低圧Pn0となる。図7(b)に示すように、ネガコン圧が最低圧Pn0のときは、メインポンプ31の傾転角が大きくなって吐出量が最大流量Qhとなり、アクチュエータ36へ大量の作動油が供給される。   Although illustration is omitted, when the operation lever 41 is operated and the control valve 35 is switched to any position, the hydraulic oil discharged from the main pump 31 is supplied to the actuator 36 to operate the negative control circuit 39. Since the oil is not derived, the negative control pressure becomes the lowest pressure Pn0 as shown in FIG. As shown in FIG. 7B, when the negative control pressure is the lowest pressure Pn0, the tilt angle of the main pump 31 becomes large, the discharge amount becomes the maximum flow rate Qh, and a large amount of hydraulic oil is supplied to the actuator 36. .

操作レバー41が戻されてコントロール弁35が中立位置になると、メインポンプ31から吐出された作動油が、コントロール弁35のセンターバイパスを通ってネガコン回路39へ流れ、図7(a)に示すように、ネガコン絞り流量の増大に伴って、ネガコン圧が徐々に高くなる。そして、ネガコンリリーフ弁38が開くQ1付近でネガコン圧が最大Pn1となる。Q1点以降はネガコンリリーフ弁38が開いてタンク34に連通するので、ネガコン圧はPn1より大きくはならない。   When the operation lever 41 is returned and the control valve 35 is in the neutral position, the hydraulic oil discharged from the main pump 31 flows to the negative control circuit 39 through the center bypass of the control valve 35, as shown in FIG. In addition, the negative control pressure gradually increases as the negative control throttle flow rate increases. Then, the negative control pressure reaches the maximum Pn1 in the vicinity of Q1 where the negative control relief valve 38 opens. Since the negative control valve 38 opens and communicates with the tank 34 after the Q1 point, the negative control pressure cannot be greater than Pn1.

図7(b)に示すように、ネガコン圧の上昇に伴って、メインポンプ31の傾転角が小さくなって吐出量が減少し、ネガコン圧が最大Pn1になると、メインポンプ31の吐出量はコントロール弁35が応答性を有する最低流量であるスタンバイ流量Qsまで低下する。このように、操作レバー41が非操作状態のときは、メインポンプ31の吐出量をスタンバイ流量Qsまで低下させることにより省エネを図っている。   As shown in FIG. 7B, as the negative control pressure increases, the tilt angle of the main pump 31 decreases and the discharge amount decreases. When the negative control pressure reaches the maximum Pn1, the discharge amount of the main pump 31 becomes The control valve 35 decreases to the standby flow rate Qs, which is the lowest flow rate with responsiveness. As described above, when the operation lever 41 is in a non-operation state, energy is saved by reducing the discharge amount of the main pump 31 to the standby flow rate Qs.

このほか、外部からの指令にてネガコン最大圧Pn1よりも高圧の油圧を発生させ、ネガコン圧と外部指令圧の何れかを高圧選択してレギュレータに作用させることにより、メインポンプの吐出量を小流量に変更可能にした油圧回路も知られている(例えば、特許文献1、特許文献2)。
特開2002−021808号公報 特開2005−060970号公報
In addition, by generating an oil pressure that is higher than the negative control maximum pressure Pn1 by an external command, and selecting either the negative control pressure or the external command pressure to act on the regulator, the discharge amount of the main pump is reduced. A hydraulic circuit that can be changed to a flow rate is also known (for example, Patent Document 1 and Patent Document 2).
JP 2002-021808 A JP-A-2005-060970

図6の構成では、コントロール弁35が中立位置になると、ネガコン圧が上昇してメインポンプ31の吐出量がスタンバイ流量まで低下するが、スタンバイ流量Qsはコントロール弁35の始動操作時の応答性を確保するために20cc/rev程度であり、エネルギーロスが大きい。   In the configuration of FIG. 6, when the control valve 35 reaches the neutral position, the negative control pressure increases and the discharge amount of the main pump 31 decreases to the standby flow rate. However, the standby flow rate Qs has a response at the time of starting the control valve 35. It is about 20cc / rev to secure, and energy loss is large.

特許文献1記載の発明は、コントロール弁の切換え時にネガコン圧が急変した場合、リモコン弁の操作量に応じた減圧弁圧力を選択して優先的にレギュレータに供給することにより、操作レバーのハンチングを防止するものであり、非操作時のポンプ吐出量を低減するものではない。   In the invention described in Patent Document 1, when the negative control pressure changes suddenly when the control valve is switched, the pressure reducing valve pressure corresponding to the operation amount of the remote control valve is selected and preferentially supplied to the regulator, thereby hunting the operating lever. This is to prevent the pump discharge amount during non-operation.

特許文献2記載の発明は、ショベル仕様からクレーン仕様に切換えた状態では、旋回操作時のみポンプ吐出量を小流量として、安全な旋回速度を確保するものであり、非操作時のポンプ吐出量を低減するものではない。   In the invention described in Patent Document 2, in the state where the excavator specification is switched to the crane specification, the pump discharge amount is set to a small flow rate only during the turning operation, and a safe turning speed is ensured. It does not reduce.

そこで、安価な構成で、アクチュエータを一定時間継続して操作していないときは、油圧ポンプの吐出量を低下させて省エネを図るために解決すべき技術的課題が生じてくるのであり、本発明はこの課題を解決することを目的とする。   Therefore, when the actuator is not operated continuously for a certain time with an inexpensive configuration, a technical problem to be solved in order to save energy by reducing the discharge amount of the hydraulic pump arises. Aims to solve this problem.

本発明は上記目的を達成するために提案されたものであり、請求項1記載の発明は、ネガコン圧と外部指令圧の何れかを高圧選択して油圧ポンプの吐出量を制御する油圧回路において、アクチュエータ制御用の操作レバーの操作状態を検出する手段と、操作レバーの非操作状態が一定時間継続したときに、前記ネガコン圧よりも高圧の外部指令圧を発生させる外部指令圧発生手段を設けたことを特徴とする建設機械の油圧回路を提供する。   The present invention has been proposed in order to achieve the above object, and the invention according to claim 1 is a hydraulic circuit for controlling a discharge amount of a hydraulic pump by selecting either a negative control pressure or an external command pressure. A means for detecting an operating state of the operating lever for controlling the actuator, and an external command pressure generating means for generating an external command pressure higher than the negative control pressure when the operating lever is not operated for a predetermined time. A hydraulic circuit for a construction machine is provided.

この構成によれば、アクチュエータ制御用の操作レバーの操作状態を検出する手段により、アクチュエータを操作している状態か非操作状態かを検出し、操作レバーの非操作状態が一定時間継続したときに、ネガコン圧よりも高圧の外部指令圧を発生させる。したがって、外部指令圧が高圧選択されて、油圧ポンプの吐出量がネガコン圧で設定した吐出量よりもさらに小流量となる。   According to this configuration, when the operating state of the operating lever for the actuator control is detected by means for detecting the operating state of the operating lever for controlling the actuator, the non-operating state of the operating lever is continued for a certain period of time. An external command pressure higher than the negative control pressure is generated. Therefore, the external command pressure is selected to be high, and the discharge amount of the hydraulic pump becomes a smaller flow rate than the discharge amount set by the negative control pressure.

請求項2記載の発明は、上記外部指令圧発生手段は、ネガコン圧よりも高い圧油を油圧源から導出する電磁弁と、操作レバーの非操作状態が一定時間継続したときに前記電磁弁を開いて油圧源の圧油をネガコン回路へ導出させるコントローラとからなることを特徴とする請求項1記載の建設機械の油圧回路を提供する。   According to a second aspect of the present invention, the external command pressure generating means includes: an electromagnetic valve for deriving pressure oil higher than the negative control pressure from the hydraulic power source; and the electromagnetic valve when the non-operating state of the operation lever continues for a predetermined time. 2. A hydraulic circuit for a construction machine according to claim 1, further comprising a controller that opens and extracts pressure oil from a hydraulic source to a negative control circuit.

この構成によれば、操作レバーが非操作状態である検出信号をコントローラが受けて、非操作状態が一定時間継続したときは、コントローラから電磁弁に指令信号を出力し、ネガコン最大圧よりも高い圧油をネガコン回路へ導出させる。したがって、この外部指令圧が高圧選択されて、油圧ポンプの吐出量がネガコン圧で設定した吐出量よりも小流量となる。   According to this configuration, when the controller receives a detection signal indicating that the operation lever is in a non-operation state and the non-operation state continues for a certain period of time, the controller outputs a command signal to the solenoid valve, which is higher than the negative control maximum pressure. The pressure oil is led to the negative control circuit. Therefore, when the external command pressure is selected as a high pressure, the discharge amount of the hydraulic pump becomes smaller than the discharge amount set by the negative control pressure.

請求項1記載の発明は、操作レバーの非操作状態が一定時間継続したときは、ネガコン圧よりも高圧の外部指令圧が高圧選択されて、油圧ポンプの吐出量がネガコン圧で設定した吐出量よりも小流量となるので、アクチュエータが非操作時における油圧ポンプの吐出量を、スタンバイ流量よりもさらに低下させて、より一層省エネを図ることができる。   According to the first aspect of the present invention, when the non-operating state of the operation lever continues for a certain time, the external command pressure higher than the negative control pressure is selected, and the discharge amount of the hydraulic pump is set at the negative control pressure. Therefore, the discharge amount of the hydraulic pump when the actuator is not operated can be further reduced from the standby flow rate, thereby further saving energy.

請求項2記載の発明は、操作レバーの非操作状態が一定時間継続したときは、コントローラから電磁弁に指令信号を出力して、ネガコン圧よりも高い圧油をネガコン回路へ導出させるので、請求項1記載の発明の効果に加えて、簡単かつ安価な構成にて、より一層省エネを図ることができる。   According to the second aspect of the present invention, when the non-operating state of the operation lever continues for a certain period of time, a command signal is output from the controller to the solenoid valve, and pressure oil higher than the negative control pressure is led to the negative control circuit. In addition to the effect of the invention described in Item 1, further energy saving can be achieved with a simple and inexpensive configuration.

以下、本発明に係る建設機械の油圧回路について、好適な実施例をあげて説明する。安価な構成で、アクチュエータを操作していないときは、油圧ポンプの吐出量を低下させて省エネを図るという目的を達成するために、本発明は、ネガコン圧と外部指令圧の何れかを高圧選択して油圧ポンプの吐出量を制御する油圧回路において、アクチュエータ制御用の操作レバーの操作状態を検出する手段と、操作レバーの非操作状態が一定時間継続したときに、前記ネガコン圧よりも高圧の外部指令圧を発生させる外部指令圧発生手段を設けたことにより実現した。   Hereinafter, the hydraulic circuit of the construction machine according to the present invention will be described with reference to preferred embodiments. In order to achieve the purpose of saving energy by reducing the discharge amount of the hydraulic pump when the actuator is not operated with an inexpensive configuration, the present invention selects either a negative control pressure or an external command pressure as a high pressure Then, in the hydraulic circuit for controlling the discharge amount of the hydraulic pump, the means for detecting the operating state of the operating lever for controlling the actuator and the non-operating state of the operating lever continue for a certain period of time, the pressure is higher than the negative control pressure. Realized by providing external command pressure generating means to generate external command pressure.

図1は建設機械の一例として油圧ショベル10を示し、下部走行体11の上に旋回機構12を介して上部旋回体13が旋回自在に載置されている。上部旋回体13にはその前方一側部にキャブ14が設けられ、且つ、前方中央部にブーム15が俯仰可能に取り付けられている。更に、ブーム15の先端にアーム16が上下回動自在に取り付けられ、該アーム16の先端にバケット17が取り付けられている。   FIG. 1 shows a hydraulic excavator 10 as an example of a construction machine, and an upper swing body 13 is mounted on a lower traveling body 11 via a swing mechanism 12 so as to be rotatable. The upper swing body 13 is provided with a cab 14 on one front side thereof, and a boom 15 is attached to the front center portion so as to be able to be raised and lowered. Further, an arm 16 is attached to the tip of the boom 15 so as to be rotatable up and down, and a bucket 17 is attached to the tip of the arm 16.

前記ブーム15、アーム16、バケット17等のアタッチメントを駆動する油圧アクチュエータとして、ブームシリンダ18、アームシリンダ19、バケットシリンダ20が夫々設けられており、上部旋回体に設けられているエンジン30によりメインポンプ31を駆動して、各油圧シリンダや油圧モータへ作動油を給排する。   A boom cylinder 18, an arm cylinder 19, and a bucket cylinder 20 are provided as hydraulic actuators for driving attachments such as the boom 15, the arm 16, and the bucket 17, and the main pump is provided by the engine 30 provided on the upper swing body. 31 is driven, and hydraulic oil is supplied to and discharged from each hydraulic cylinder and hydraulic motor.

図2は油圧回路図であり、説明の都合上、図6に示した従来の油圧回路と同一構成部分には同一符号を付して重複説明を省略する。図6と異なる構成部分は、先ず、ネガコン回路39の途中にシャトル弁51を介装し、該シャトル弁51の一方の入口ポートにネガコン絞り37側の回路を接続するとともに、他方の入口ポートに電磁比例減圧弁52を接続し、該シャトル弁51の出口ポートをメインポンプ31のレギュレータ40に接続する。   2 is a hydraulic circuit diagram. For convenience of explanation, the same components as those of the conventional hydraulic circuit shown in FIG. 6 first includes a shuttle valve 51 in the middle of the negative control circuit 39, connects the circuit on the negative control throttle 37 side to one inlet port of the shuttle valve 51, and connects the other inlet port to the other inlet port. An electromagnetic proportional pressure reducing valve 52 is connected, and the outlet port of the shuttle valve 51 is connected to the regulator 40 of the main pump 31.

前記電磁比例減圧弁52の1次側ポートにはタンク34と油圧源43が接続されており、コントローラ50からの指令信号が該電磁比例減圧弁52に入力されると、指令信号の大きさに応じて、油圧源43の圧油がネガコン回路39へ導出される。前記ネガコン絞り37によって発生するネガコン圧と、電磁比例減圧弁52によって発生する外部指令圧とがシャトル弁51で高圧選択され、何れか高圧の圧油がメインポンプ31のレギュレータ40に作用する。なお、本発明では、ネガコン圧よりも外部指令圧が高圧となるように設定されている。   The primary port of the electromagnetic proportional pressure reducing valve 52 is connected to the tank 34 and a hydraulic pressure source 43. When a command signal from the controller 50 is input to the electromagnetic proportional pressure reducing valve 52, the magnitude of the command signal is increased. In response, the pressure oil from the hydraulic source 43 is led to the negative control circuit 39. The negative control pressure generated by the negative control throttle 37 and the external command pressure generated by the electromagnetic proportional pressure reducing valve 52 are selected by the shuttle valve 51 as high pressure, and either high pressure oil acts on the regulator 40 of the main pump 31. In the present invention, the external command pressure is set to be higher than the negative control pressure.

また、操作レバー41の操作状態を検出する手段として、リモコン弁42のパイロット回路44と46との間にシャトル弁48を介装し、該シャトル弁48の2次側ポートに圧力センサSを設けてコントローラ50に接続する。したがって、操作レバー41を何れかの方向へ操作すると、パイロット回路44または46のパイロット圧が、シャトル弁48により高圧選択されて圧力センサSで検出され、この検出信号によりコントローラ50は、操作レバー41が操作状態であるか、あるいは非操作状態であるかを検出することができる。   Further, as means for detecting the operating state of the operating lever 41, a shuttle valve 48 is interposed between the pilot circuits 44 and 46 of the remote control valve 42, and a pressure sensor S is provided at the secondary port of the shuttle valve 48. To the controller 50. Therefore, when the operation lever 41 is operated in any direction, the pilot pressure of the pilot circuit 44 or 46 is selected by the shuttle valve 48 and detected by the pressure sensor S. The controller 50 causes the controller 50 to detect the operation lever 41. It is possible to detect whether is in an operating state or a non-operating state.

なお、図示は省略するが、操作レバー41の操作状態を検出する手段としては、前記圧力センサSのほかに、シャトル弁48の2次側ポートに圧力スイッチを設けてコントローラ50でスイッチオンを検出してもよい。あるいは、操作レバー41の近傍位置にリミットスイッチを設置しておき、操作レバー41の傾倒動作をリミットスイッチにより検出することもできる。   Although not shown, as a means for detecting the operation state of the operation lever 41, in addition to the pressure sensor S, a pressure switch is provided at the secondary port of the shuttle valve 48, and the controller 50 detects the switch-on. May be. Alternatively, a limit switch can be installed in the vicinity of the operation lever 41, and the tilting operation of the operation lever 41 can be detected by the limit switch.

次に、本発明の油圧回路の動作について説明する。図2に示すように、操作レバー41が非操作状態すなわちコントロール弁36の切換操作を行わないときは、メインポンプ31から吐出された作動油が、コントロール弁35のセンターバイパスを通ってタンク34へ戻り、ネガコン絞り37の流量が増大してネガコン圧が徐々に高くなる。   Next, the operation of the hydraulic circuit of the present invention will be described. As shown in FIG. 2, when the operation lever 41 is not operated, that is, when the control valve 36 is not switched, the hydraulic oil discharged from the main pump 31 passes through the center bypass of the control valve 35 to the tank 34. Returning, the flow rate of the negative control throttle 37 increases and the negative control pressure gradually increases.

したがって、図7にて説明したように、レギュレータ40に作用するネガコン圧が上昇するのに伴いメインポンプ31の吐出量が減少し、ネガコン圧が最大Pn1になると、メインポンプ31の吐出量はコントロール弁35が応答性を有する最低流量であるスタンバイ流量Qsまで低下する。   Therefore, as described in FIG. 7, as the negative control pressure acting on the regulator 40 increases, the discharge amount of the main pump 31 decreases, and when the negative control pressure reaches the maximum Pn1, the discharge amount of the main pump 31 is controlled. The valve 35 drops to the standby flow rate Qs, which is the lowest flow rate with responsiveness.

前述したように、圧力センサSの検出信号によりコントローラ50は操作レバー41の非操作状態を検出するが、操作レバー41の非操作状態がさらに一定時間継続したときは、コントローラ50から電磁比例減圧弁52へ指令信号を送る。   As described above, the controller 50 detects the non-operation state of the operation lever 41 based on the detection signal of the pressure sensor S. However, when the non-operation state of the operation lever 41 continues for a certain period of time, the controller 50 sends an electromagnetic proportional pressure reducing valve. A command signal is sent to 52.

図3に示すように、コントローラ50からの指令信号によって電磁比例減圧弁52が油圧源43に連通し、油圧源43の圧油がネガコン回路39へ導出される。前述したように、電磁比例減圧弁52によって発生する外部指令圧Pn2は、ネガコン絞り37によって発生するネガコン圧Pn1よりも高圧であるため、シャトル弁51により外部指令圧Pn2が高圧選択されてレギュレータ40に作用する。したがって、メインポンプ31の吐出量がネガコン圧Pn1で設定した吐出量Qsよりもさらに小流量の最小流量Qmとなる。   As shown in FIG. 3, the electromagnetic proportional pressure reducing valve 52 communicates with the hydraulic pressure source 43 by the command signal from the controller 50, and the pressure oil from the hydraulic pressure source 43 is led to the negative control circuit 39. As described above, since the external command pressure Pn2 generated by the electromagnetic proportional pressure reducing valve 52 is higher than the negative control pressure Pn1 generated by the negative control throttle 37, the external command pressure Pn2 is selected to be high by the shuttle valve 51, and the regulator 40 Act on. Therefore, the discharge amount of the main pump 31 becomes the minimum flow rate Qm with a smaller flow rate than the discharge amount Qs set by the negative control pressure Pn1.

図4はネガコン圧と外部指令圧の特性を示すグラフであり、同図(a)は、二点鎖線が従来のネガコン絞り37およびネガコンリリーフ弁38の流量とネガコン圧の関係を示し、実線が外部指令圧を示すグラフ、同図(b)は、ネガコン圧および外部指令圧とメインポンプの吐出量の関係を示すグラフである。従来と同様に、操作レバー41が操作状態のとき(ネガコン圧最低圧Pn0)は、メインポンプ31の吐出量が最大流量Qhとなり、操作レバーが非操作状態になると、ネガコン圧の上昇に伴ってメインポンプ31の吐出量が低下し、ネガコン圧最高圧Pn1で、メインポンプ31の吐出量がスタンバイ流量Qsまで低下する。   FIG. 4 is a graph showing the characteristics of the negative control pressure and the external command pressure. In FIG. 4 (a), the two-dot chain line indicates the relationship between the flow rate of the conventional negative control throttle 37 and negative control relief valve 38 and the negative control pressure, and the solid line indicates The graph which shows an external command pressure, the figure (b) is a graph which shows the negative control pressure and the external command pressure, and the relationship of the discharge amount of a main pump. As in the prior art, when the operating lever 41 is in the operating state (negative negative pressure minimum pressure Pn0), the discharge amount of the main pump 31 is the maximum flow rate Qh, and when the operating lever is in the non-operating state, the negative control pressure increases. The discharge amount of the main pump 31 decreases, and the discharge amount of the main pump 31 decreases to the standby flow rate Qs at the negative control pressure maximum pressure Pn1.

本発明では、操作レバー41の非操作状態がさらに一定時間継続したときは、コントローラ50の指令により、ネガコン圧Pn1よりも高圧の外部指令圧Pn2を発生させるので、この高圧の外部指令圧Pn2がレギュレータ40に作用し、メインポンプ31の傾転角がさらに小さくなって最小流量Qmとなる。   In the present invention, when the non-operating state of the operation lever 41 continues for a certain period of time, an external command pressure Pn2 higher than the negative control pressure Pn1 is generated by a command from the controller 50. Therefore, the high external command pressure Pn2 is Acting on the regulator 40, the tilt angle of the main pump 31 is further reduced to a minimum flow rate Qm.

従来、メインポンプ31のスタンバイ流量Qsは、コントロール弁35の始動操作時の応答性を確保するために20cc/rev程度であったが、本発明では、操作レバー41の非操作状態が一定時間継続すると、メインポンプ31の吐出量をさらに低下させて、5cc/rev程度の最小流量Qmとするので、エネルギーロスが小さくなる。この最小流量Qmは小さいほど省エネになるが、機器の冷却性能を考慮して決定する。   Conventionally, the standby flow rate Qs of the main pump 31 has been about 20 cc / rev in order to ensure the responsiveness when starting the control valve 35, but in the present invention, the non-operating state of the operating lever 41 continues for a certain period of time. Then, the discharge amount of the main pump 31 is further reduced to a minimum flow rate Qm of about 5 cc / rev, so that energy loss is reduced. The smaller the minimum flow rate Qm, the more energy is saved, but it is determined in consideration of the cooling performance of the equipment.

図5に示すように、操作レバー41がふたたび操作されたときは、圧力センサSの検出信号でコントローラ50は操作レバー41が操作状態となったことを検出できる。しかるときは、コントローラ50から電磁比例減圧弁52への指令信号を停止し、電磁比例減圧弁52がタンク34に連通するため、油圧源43の圧油がネガコン回路39へ導出されなくなり、外部指令圧Pn2が解消される。   As shown in FIG. 5, when the operation lever 41 is operated again, the controller 50 can detect that the operation lever 41 is in the operation state by the detection signal of the pressure sensor S. At that time, the command signal from the controller 50 to the electromagnetic proportional pressure reducing valve 52 is stopped, and the electromagnetic proportional pressure reducing valve 52 communicates with the tank 34. Therefore, the pressure oil from the hydraulic source 43 is not led to the negative control circuit 39, and the external command Pressure Pn2 is eliminated.

また、操作レバー41の操作によりコントロール弁47が切り換わるので、ネガコン回路39へ作動油が流れなくなり、ネガコン圧は最低圧Pn0となる。したがって、メインポンプ31の傾転角が大きくなり、吐出量が増大して最大流量Qhとなり、コントロール弁35を介してメインポンプ31からアクチュエータ36へ大量の作動油が供給される。   Further, since the control valve 47 is switched by the operation of the operation lever 41, the hydraulic oil does not flow to the negative control circuit 39, and the negative control pressure becomes the lowest pressure Pn0. Accordingly, the tilt angle of the main pump 31 is increased, the discharge amount is increased to the maximum flow rate Qh, and a large amount of hydraulic oil is supplied from the main pump 31 to the actuator 36 via the control valve 35.

なお、本発明は、本発明の精神を逸脱しない限り種々の改変を為すことができ、そして、本発明が該改変されたものに及ぶことは当然である。   It should be noted that the present invention can be variously modified without departing from the spirit of the present invention, and the present invention naturally extends to the modified ones.

本発明が適用された油圧ショベルの側面図。1 is a side view of a hydraulic excavator to which the present invention is applied. 本発明に係る油圧回路で操作レバーが非操作状態の説明図。Explanatory drawing of an operation lever non-operation state in the hydraulic circuit which concerns on this invention. 図2の非操作状態が一定時間継続したときの説明図。Explanatory drawing when the non-operation state of FIG. 2 continues for a fixed time. 本発明におけるネガコン圧と外部指令圧の特性を示すグラフ。The graph which shows the characteristic of the negative control pressure and external command pressure in this invention. 図3の状態から操作レバーが操作状態になったときの説明図。Explanatory drawing when an operation lever will be in an operation state from the state of FIG. 従来の油圧回路で操作レバーが非操作状態の説明図。Explanatory drawing of the operation lever in the non-operation state in the conventional hydraulic circuit. 従来の油圧回路におけるネガコン特性を示すグラフGraph showing negative control characteristics in conventional hydraulic circuits

符号の説明Explanation of symbols

10 油圧ショベル
31 メインポンプ
35 コントロール弁
37 ネガコン絞り
39 ネガコン回路
40 レギュレータ
41 操作レバー
42 リモコン弁
43 油圧源
48 シャトル弁
50 コントローラ
51 シャトル弁
52 電磁比例弁
S 圧力センサ
Qh 最大流量
Qs スタンバイ流量
Qm 最低流量
Pn0 ネガコン最低圧
Pn1 ネガコン最大圧
Pn2 外部指令圧
DESCRIPTION OF SYMBOLS 10 Hydraulic excavator 31 Main pump 35 Control valve 37 Negative control throttling 39 Negative control circuit 40 Regulator 41 Operation lever 42 Remote control valve 43 Hydraulic source 48 Shuttle valve 50 Controller 51 Shuttle valve 52 Electromagnetic proportional valve S Pressure sensor
Qh Maximum flow rate
Qs Standby flow
Qm Minimum flow rate
Pn0 Negative control minimum pressure
Pn1 Maximum negative pressure
Pn2 External command pressure

Claims (2)

ネガコン圧と外部指令圧の何れかを高圧選択して油圧ポンプの吐出量を制御する油圧回路において、
アクチュエータ制御用の操作レバーの操作状態を検出する手段と、操作レバーの非操作状態が一定時間継続したときに、前記ネガコン圧よりも高圧の外部指令圧を発生させる外部指令圧発生手段を設けたことを特徴とする建設機械の油圧回路。
In the hydraulic circuit that controls the discharge amount of the hydraulic pump by selecting either negative control pressure or external command pressure high pressure,
Means for detecting the operating state of the operating lever for controlling the actuator and external command pressure generating means for generating an external command pressure higher than the negative control pressure when the non-operating state of the operating lever continues for a certain period of time are provided. A hydraulic circuit of a construction machine characterized by the above.
上記外部指令圧発生手段は、ネガコン圧よりも高い圧油を油圧源から導出する電磁弁と、操作レバーの非操作状態が一定時間継続したときに前記電磁弁を開いて油圧源の圧油をネガコン回路へ導出させるコントローラとからなることを特徴とする請求項1記載の建設機械の油圧回路。   The external command pressure generating means includes an electromagnetic valve for deriving pressure oil higher than the negative control pressure from the hydraulic pressure source, and opens the electromagnetic valve when the non-operating state of the operation lever continues for a certain period of time to supply pressure oil from the hydraulic pressure source. 2. The hydraulic circuit for a construction machine according to claim 1, further comprising a controller that is led to a negative control circuit.
JP2007268257A 2007-10-15 2007-10-15 Hydraulic circuit of construction machine Pending JP2009097579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007268257A JP2009097579A (en) 2007-10-15 2007-10-15 Hydraulic circuit of construction machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007268257A JP2009097579A (en) 2007-10-15 2007-10-15 Hydraulic circuit of construction machine

Publications (1)

Publication Number Publication Date
JP2009097579A true JP2009097579A (en) 2009-05-07

Family

ID=40700771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007268257A Pending JP2009097579A (en) 2007-10-15 2007-10-15 Hydraulic circuit of construction machine

Country Status (1)

Country Link
JP (1) JP2009097579A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010127392A (en) * 2008-11-27 2010-06-10 Sumitomo (Shi) Construction Machinery Co Ltd Control device of working machine
JP2011017426A (en) * 2009-07-10 2011-01-27 Kyb Co Ltd Control device of hybrid construction machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07167104A (en) * 1993-12-13 1995-07-04 Hitachi Constr Mach Co Ltd Variable displacement hydraulic pump control device
JPH10169604A (en) * 1996-12-10 1998-06-23 Hitachi Constr Mach Co Ltd Hydraulic circuit device for hydraulic work machine
JPH1182406A (en) * 1997-09-05 1999-03-26 Yutani Heavy Ind Ltd Control device for hydraulic working machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07167104A (en) * 1993-12-13 1995-07-04 Hitachi Constr Mach Co Ltd Variable displacement hydraulic pump control device
JPH10169604A (en) * 1996-12-10 1998-06-23 Hitachi Constr Mach Co Ltd Hydraulic circuit device for hydraulic work machine
JPH1182406A (en) * 1997-09-05 1999-03-26 Yutani Heavy Ind Ltd Control device for hydraulic working machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010127392A (en) * 2008-11-27 2010-06-10 Sumitomo (Shi) Construction Machinery Co Ltd Control device of working machine
JP2011017426A (en) * 2009-07-10 2011-01-27 Kyb Co Ltd Control device of hybrid construction machine

Similar Documents

Publication Publication Date Title
JP5383537B2 (en) Hydraulic system pump controller
WO2000001896A1 (en) Hydraulic control device of working machine
JP6469646B2 (en) Excavator and control method of excavator
JP5851822B2 (en) Hydraulic drive device for work machine
JP2014522953A (en) Construction machine pressure control system
JP2011127727A (en) Hydraulic circuit of construction machine
JP2007100779A (en) Hydraulic pressure control device
JP2013545948A (en) Hydraulic pump control system for construction machinery
JP2009150413A (en) Hydraulic circuit of construction machinery
JP6450487B1 (en) Hydraulic excavator drive system
KR101076654B1 (en) Method for controlling pump of working machine
JP2007333017A (en) Energy saving device of construction machine
US10107310B2 (en) Hydraulic drive system
JP2010047984A (en) Hydraulic circuit of hydraulic excavator
JP2011226491A (en) Turning hydraulic circuit of hydraulic shovel
JP2009097579A (en) Hydraulic circuit of construction machine
JP2008002505A (en) Energy saving device for construction machine
JP2010169242A (en) Hydraulic drive mechanism for construction machine
JP2009115201A (en) Hydraulic circuit of construction machine
JP3878190B2 (en) Construction machine control equipment
JP2010065511A (en) Hydraulic control device for working machine
KR20130075663A (en) Hydraulic system of construction machinery
JP2009097536A (en) Hydraulic circuit of construction machine
JP6924161B2 (en) Hydraulic system for construction machinery
KR101301234B1 (en) pressure compensation hydraulic circuit of control engine revolution of excavator

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20090623

Free format text: JAPANESE INTERMEDIATE CODE: A712

A521 Written amendment

Effective date: 20090724

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090731

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091008

A977 Report on retrieval

Effective date: 20110228

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20110308

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110502

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110524