JP2013040641A - Hydraulic circuit - Google Patents

Hydraulic circuit Download PDF

Info

Publication number
JP2013040641A
JP2013040641A JP2011177020A JP2011177020A JP2013040641A JP 2013040641 A JP2013040641 A JP 2013040641A JP 2011177020 A JP2011177020 A JP 2011177020A JP 2011177020 A JP2011177020 A JP 2011177020A JP 2013040641 A JP2013040641 A JP 2013040641A
Authority
JP
Japan
Prior art keywords
oil passage
switching valve
head
variable throttle
regeneration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011177020A
Other languages
Japanese (ja)
Inventor
Yoshio Hoshino
宜夫 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP2011177020A priority Critical patent/JP2013040641A/en
Publication of JP2013040641A publication Critical patent/JP2013040641A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve regeneration efficiency even when controlling supply of oil to a hydraulic cylinder of requiring quick operation.SOLUTION: A regeneration directional control valve 60 for switching a communicating state between a head side oil passage 42 and a bottom side oil passage 41, is constituted so as to cut off a regeneration oil passage 45 in an ordinary state and to also communicate the regeneration oil passage 45 only when pressure between a head chamber 10b and a variable throttle valve 50 becomes higher by exceeding a set value than pressure between the variable throttle valve 50 and directional control valve 30. The variable throttle valve 50 arranged up to the directional control valve 30 from a connecting point with the regeneration oil passage 45 in the head side oil passage 42, is constituted so as to maintain the opening area of an orifice in a minimum value in the ordinary state and to also increase the opening area of the orifice in response to the size of differential pressure when the pressure between the head chamber 10b and the variable throttle valve 50 becomes higher by exceeding the set value than the pressure between the variable throttle value 50 and the directional control valve 30.

Description

本発明は、油圧回路に関するもので、詳細には、油圧シリンダのヘッド室に対して油を流通させるヘッド側油通路と油圧シリンダのボトム室に対して油を流通させるボトム側油通路との間を接続する再生油通路を備えるとともに、再生油通路にヘッド側油通路及びボトム側油通路の間を連通した状態と遮断した状態とに切り換える再生用切換弁を備えた油圧回路に関するものである。   The present invention relates to a hydraulic circuit, and more specifically, between a head-side oil passage that circulates oil to a head chamber of a hydraulic cylinder and a bottom-side oil passage that circulates oil to a bottom chamber of the hydraulic cylinder. And a regeneration switching valve that switches between a state where the head side oil passage and the bottom side oil passage are communicated with the regeneration oil passage and a state where it is shut off.

油圧シリンダによって作業機を動作させるようにした建設機械には、再生油通路及び再生用切換弁を備えた油圧回路を適用するものが提供されている。この油圧回路では、油圧シリンダのヘッド室に対して油を流通させるヘッド側油通路と油圧シリンダのボトム室に対して油を流通させるボトム側油通路との間が再生油通路によって接続されているとともに、再生油通路に再生用切換弁が配設されている。再生用切換弁は、通常状態にある場合、再生油通路を遮断した状態に維持されている。一方、油圧シリンダが伸長動作される場合には、操作弁から方向切換弁に出力されるパイロット圧の一部が再生用切換弁に加えられ、再生用切換弁が開くことで再生油通路が開放される。   A construction machine in which a work machine is operated by a hydraulic cylinder is provided with a hydraulic circuit including a regenerative oil passage and a regenerative switching valve. In this hydraulic circuit, a regenerative oil passage connects between a head-side oil passage that circulates oil to the head chamber of the hydraulic cylinder and a bottom-side oil passage that circulates oil to the bottom chamber of the hydraulic cylinder. In addition, a regeneration switching valve is disposed in the regeneration oil passage. When in the normal state, the regeneration switching valve is maintained in a state where the regeneration oil passage is shut off. On the other hand, when the hydraulic cylinder is extended, a part of the pilot pressure output from the operation valve to the direction switching valve is applied to the regeneration switching valve, and the regeneration switching valve opens to open the regeneration oil passage. Is done.

従って、この油圧回路によれば、油圧シリンダのヘッド室から排出された油の一部を、油タンクに戻すことなくボトム室に供給し、油圧シリンダの伸長動作を早く行うことが可能となる。しかも、操作弁から出力されるパイロット圧によって再生用切換弁を切り換え動作させるようにしているため、操作弁の操作量に関わらず、油圧シリンダを伸長動作させる場合に常に再生油通路を介して油が再生されることになり、油の再生効率の点で有利となる(例えば、特許文献1参照)。   Therefore, according to this hydraulic circuit, a part of the oil discharged from the head chamber of the hydraulic cylinder can be supplied to the bottom chamber without returning to the oil tank, and the hydraulic cylinder can be quickly extended. Moreover, since the switching valve for regeneration is switched by the pilot pressure output from the operation valve, the oil always passes through the regeneration oil passage when the hydraulic cylinder is extended regardless of the operation amount of the operation valve. Is regenerated, which is advantageous in terms of oil regeneration efficiency (see, for example, Patent Document 1).

上記特許文献1に開示された技術は、油圧ショベルのアーム用油圧シリンダに主眼を置いたものである。特許文献1には、再生用切換弁を設置する位置について開示されていないが、再生用切換弁にパイロット圧を作用させる配管が長くなることを避けるため、再生用切換弁を方向切換弁の近傍に設置することが好ましい。但し、方向切換弁の近傍に配置した場合には、油圧シリンダから再生用切換弁までの距離が長くなるため、圧力損失も大きくなる。   The technique disclosed in Patent Document 1 focuses on a hydraulic cylinder for an arm of a hydraulic excavator. Patent Document 1 does not disclose the position where the regeneration switching valve is installed, but the regeneration switching valve is located near the direction switching valve in order to avoid lengthening the pipe for applying the pilot pressure to the regeneration switching valve. It is preferable to install in. However, when it is arranged in the vicinity of the direction switching valve, the distance from the hydraulic cylinder to the regeneration switching valve becomes long, and the pressure loss also increases.

特許文献1が適用対象とする油圧ショベルのアーム用油圧シリンダは、アームの動きを制御しながら駆動されるため、自然落下させるような素早い動作が要求されない。このため、メータアウト開口面積を小さく設定することができ、上流側の圧力を上昇させることができるため、ボトム室とヘッド室との間の有効差圧が比較的大きく設定され、上述の圧力損失が油の再生効率に大きな影響を与えることはない。   The hydraulic cylinder for an arm of a hydraulic excavator to which Patent Document 1 is applied is driven while controlling the movement of the arm, and thus does not require a quick operation such as a natural fall. For this reason, since the meter-out opening area can be set small and the upstream pressure can be increased, the effective differential pressure between the bottom chamber and the head chamber is set relatively large, and the pressure loss described above However, it does not significantly affect the oil regeneration efficiency.

しかしながら、例えばブルドーザのブレードを昇降させる油圧シリンダでは、ブレードを自然落下させる等、駆動対象に素早い動作が要求されるものもある。こうした油圧シリンダを備えた油圧回路では、メータアウト開口面積を小さく設定することができないため、ボトム室とヘッド室との間の有効差圧を大きくとることが困難である。このため、再生用切換弁を設ける位置が油圧シリンダから離れている場合には、圧力損失の影響によって油の再生効率が著しく低下する恐れがある。圧力損失を小さくして再生効率を高めるには、再生用切換弁を油圧シリンダの近傍に配置し、再生用切換弁と油圧シリンダとの間の配管長さを短くすることが有効である。しかしながら、この場合には、上述したように、再生用切換弁にパイロット圧を作用させる配管が長くなるという問題を招来する。   However, for example, in a hydraulic cylinder that lifts and lowers a bulldozer blade, there are some that require a quick operation for a driven object such as a natural drop of the blade. In a hydraulic circuit including such a hydraulic cylinder, the meter-out opening area cannot be set small, and it is difficult to increase the effective differential pressure between the bottom chamber and the head chamber. For this reason, when the position where the switching valve for regeneration is provided is away from the hydraulic cylinder, the oil regeneration efficiency may be significantly lowered due to the effect of pressure loss. In order to reduce the pressure loss and increase the regeneration efficiency, it is effective to arrange the regeneration switching valve in the vicinity of the hydraulic cylinder and shorten the pipe length between the regeneration switching valve and the hydraulic cylinder. However, in this case, as described above, there is a problem that the piping for applying the pilot pressure to the regeneration switching valve becomes long.

一方、再生油通路及び再生用切換弁を備えた油圧回路には、操作弁からのパイロット圧に寄らずに再生用切換弁を切り換えるようにしたものも提供されている。例えば、図5及び図6に示す油圧回路は、油圧シリンダ1のヘッド室1aに接続されたヘッド側油通路2において再生油通路3の接続点から方向切換弁4までの間に絞り5を配設し、かつこの絞り5の前後差圧によって再生用切換弁6を切り換えるように構成したものである。   On the other hand, a hydraulic circuit provided with a regeneration oil passage and a regeneration switching valve is provided in which the regeneration switching valve is switched without depending on the pilot pressure from the operation valve. For example, in the hydraulic circuit shown in FIGS. 5 and 6, the throttle 5 is arranged between the connection point of the regenerative oil passage 3 and the direction switching valve 4 in the head side oil passage 2 connected to the head chamber 1 a of the hydraulic cylinder 1. The regeneration switching valve 6 is switched by the differential pressure across the throttle 5.

この油圧回路では、絞り5の上流側の圧力が下流側の圧力よりも設定した値だけ大きくなると、図5に示す状態から図6に示す状態に切り換わり、再生油通路3が開放される。従って、ヘッド側油通路2とボトム側油通路7とが連通され、油圧シリンダ1のヘッド室1aから排出された油の一部を、方向切換弁4を経ることなくボトム室1bに供給することができ、油圧シリンダ1の伸長動作を早く行うことが可能となる。しかも、再生用切換弁6に対してパイロット圧を作用させるための配管が不要であるため、再生用切換弁6を油圧シリンダ1の近傍に配置することができ、ブレードを自然落下させるような素早い動作が要求される油圧シリンダ1に適用した場合にも油の再生効率を損なう恐れがない。   In this hydraulic circuit, when the pressure on the upstream side of the throttle 5 becomes larger than the pressure set on the downstream side, the state shown in FIG. 5 is switched to the state shown in FIG. 6, and the regenerated oil passage 3 is opened. Therefore, the head side oil passage 2 and the bottom side oil passage 7 are communicated with each other, and a part of the oil discharged from the head chamber 1a of the hydraulic cylinder 1 is supplied to the bottom chamber 1b without passing through the direction switching valve 4. Therefore, the extension operation of the hydraulic cylinder 1 can be performed quickly. In addition, since the piping for applying the pilot pressure to the regeneration switching valve 6 is not required, the regeneration switching valve 6 can be disposed in the vicinity of the hydraulic cylinder 1, and the blade can be quickly dropped. Even when applied to a hydraulic cylinder 1 that requires operation, there is no risk of impairing the oil regeneration efficiency.

特開平11−230107号公報JP-A-11-230107

ところで、建設機械に適用される油圧回路においては、負荷変動が発生した場合の油圧シリンダ1への影響を抑制するため、方向切換弁4にメータアウト開口面積4aが設定されている。図5及び図6に示した従来の油圧回路にあっては、上述した絞り5の開口面積をメータアウト開口面積4aよりも小さく設定することができない。このため、操作弁(図示せず)の操作量が小さく、ヘッド側油通路2に小量の油が通過しただけでは再生用切換弁6を切り換えることが困難であり、比較的大量の油が通過した場合にしか油の再生を行うことができない等、再生効率の点で必ずしも好ましいとはいえない。   Incidentally, in a hydraulic circuit applied to a construction machine, a meter-out opening area 4a is set in the direction switching valve 4 in order to suppress the influence on the hydraulic cylinder 1 when a load change occurs. In the conventional hydraulic circuit shown in FIGS. 5 and 6, the opening area of the above-described throttle 5 cannot be set smaller than the meter-out opening area 4a. For this reason, the operation amount of the operation valve (not shown) is small, and it is difficult to switch the regeneration switching valve 6 only by passing a small amount of oil through the head side oil passage 2, and a relatively large amount of oil is generated. It is not necessarily preferable in terms of regeneration efficiency, for example, oil regeneration can be performed only when it passes.

本発明は、上記実情に鑑みて、素早い動作が要求される油圧シリンダに対して油の供給制御を行う場合にも再生効率を向上することのできる油圧回路を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide a hydraulic circuit that can improve regeneration efficiency even when oil supply control is performed on a hydraulic cylinder that requires quick operation.

上記目的を達成するため、本発明に係る油圧回路は、油圧シリンダのヘッド室に対して油を流通させるヘッド側油通路と、前記油圧シリンダのボトム室に対して油を流通させるボトム側油通路と、油圧ポンプから吐出された油を供給する給油通路と、前記ヘッド側油通路及び前記ボトム側油通路に対して前記給油通路の接続態様を切り換えることにより前記油圧シリンダの駆動を制御する方向切換弁と、前記ヘッド側油通路及び前記ボトム側油通路の間を接続する再生油通路と、前記再生油通路に配設し、前記ヘッド側油通路及び前記ボトム側油通路の間を連通した状態と遮断した状態とに切り換える再生用切換弁と、前記ヘッド側油通路において前記再生油通路との接続点から前記方向切換弁までの間に配設した可変絞り弁とを備え、前記再生用切換弁は、通常状態においては前記再生油通路を遮断する一方、前記ヘッド室と前記可変絞り弁との間の圧力が、前記可変絞り弁と前記方向切換弁との間の圧力よりも設定した値を超えて高くなった場合にのみ前記再生油通路を連通させるように構成し、前記可変絞り弁は、通常状態においては絞りの開口面積を最小値に維持する一方、前記ヘッド室と前記可変絞り弁との間の圧力が、前記可変絞り弁と前記方向切換弁との間の圧力よりも設定した値を超えて高くなった場合には差圧の大きさに従って前記絞りの開口面積が大きくなるように構成したことを特徴とする。   In order to achieve the above object, a hydraulic circuit according to the present invention includes a head-side oil passage that circulates oil to a head chamber of a hydraulic cylinder, and a bottom-side oil passage that circulates oil to a bottom chamber of the hydraulic cylinder. Directional switching for controlling the drive of the hydraulic cylinder by switching the connection mode of the oil supply passage with respect to the head side oil passage and the bottom side oil passage, and an oil supply passage for supplying oil discharged from the hydraulic pump A valve, a reclaimed oil passage connecting between the head side oil passage and the bottom side oil passage, and a state in which the head side oil passage and the bottom side oil passage are communicated with each other. A regenerative switching valve that switches to a shut-off state, and a variable throttle valve that is disposed in the head side oil passage between a connection point with the regenerative oil passage and the direction switching valve, The normal switching valve shuts off the regenerated oil passage in a normal state, while the pressure between the head chamber and the variable throttle valve is higher than the pressure between the variable throttle valve and the direction switching valve. The regenerative oil passage is configured to communicate only when the value exceeds a set value, and the variable throttle valve maintains a throttle opening area at a minimum value in a normal state, while the head chamber and When the pressure between the variable throttle valve and the pressure between the variable throttle valve and the direction switching valve is higher than a set value, the opening area of the throttle according to the magnitude of the differential pressure It is characterized by having become large.

また、本発明は、上述した油圧回路において、前記可変絞り弁に対してバイパス油通路を設けるとともに、前記バイパス油通路に前記ヘッド室から前記方向切換弁に向いた油の通過を阻止するチェック弁を配設したことを特徴とする。   In the hydraulic circuit described above, the present invention provides a check valve for providing a bypass oil passage to the variable throttle valve and preventing passage of oil from the head chamber toward the direction switching valve in the bypass oil passage. Is provided.

また、本発明に係る油圧回路は、油圧シリンダのヘッド室に対して油を流通させるヘッド側油通路と、前記油圧シリンダのボトム室に対して油を流通させるボトム側油通路と、油圧ポンプから吐出された油を供給する給油通路と、前記ヘッド側油通路及び前記ボトム側油通路に対して前記給油通路の接続態様を切り換えることにより前記油圧シリンダの駆動を制御する方向切換弁と、前記ヘッド側油通路及び前記ボトム側油通路の間を接続する再生油通路と、前記再生油通路に配設し、前記ヘッド側油通路及び前記ボトム側油通路の間を連通した状態と遮断した状態とに切り換える再生用切換弁と、前記ヘッド側油通路において前記再生油通路との接続点から前記方向切換弁までの間に配設した可変絞り弁と、前記ヘッド側油通路において前記再生油通路との接続点から前記可変絞り弁を迂回して前記方向切換弁までの間を接続するバイパス油通路と、前記バイパス油通路に配設し、前記ヘッド室から前記方向切換弁に向いた油の通過を阻止するチェック弁とを備え、前記再生用切換弁は、通常状態においては前記再生油通路を遮断する一方、前記ヘッド室と前記可変絞り弁との間の圧力が、前記可変絞り弁と前記方向切換弁との間の圧力よりも設定した値を超えて高くなった場合にのみ前記再生油通路を連通させるように構成し、前記可変絞り弁は、通常状態においては絞りの開口面積を最小値に維持する一方、前記ヘッド室と前記可変絞り弁との間の圧力が、前記可変絞り弁と前記方向切換弁との間の圧力よりも設定した値を超えて高くなった場合には差圧の大きさに従って前記絞りの開口面積が大きくなるように構成したことを特徴とする。   The hydraulic circuit according to the present invention includes a head-side oil passage that circulates oil to the head chamber of the hydraulic cylinder, a bottom-side oil passage that circulates oil to the bottom chamber of the hydraulic cylinder, and a hydraulic pump. An oil supply passage for supplying discharged oil, a direction switching valve for controlling driving of the hydraulic cylinder by switching a connection mode of the oil supply passage with respect to the head side oil passage and the bottom side oil passage, and the head A reclaimed oil passage connecting the side oil passage and the bottom oil passage, and a state of being disposed in the reclaimed oil passage and communicating between the head side oil passage and the bottom side oil passage A regenerative switching valve that switches between the connection point of the head side oil passage and the regenerative oil passage to the direction switching valve, and a front side of the head side oil passage. A bypass oil passage that bypasses the variable throttle valve from the connection point with the regenerative oil passage and connects to the direction switching valve, and is disposed in the bypass oil passage, and is directed from the head chamber to the direction switching valve. A check valve for blocking the passage of oil, and the regeneration switching valve shuts off the regeneration oil passage in a normal state, while the pressure between the head chamber and the variable throttle valve is variable. The regenerative oil passage is configured to communicate only when the pressure between the throttle valve and the direction switching valve exceeds a set value, and the variable throttle valve is configured to restrict the throttle in a normal state. While maintaining the opening area at a minimum value, the pressure between the head chamber and the variable throttle valve is higher than the set value than the pressure between the variable throttle valve and the direction switching valve. In case before the differential pressure according to the magnitude Characterized by being configured so that the opening area of the throttle is large.

本発明によれば、ヘッド側油通路において再生油通路との接続点から方向切換弁までの間に可変絞り弁を配置し、かつこの可変絞り弁は、通常状態においては絞りの開口面積を最小値に維持する一方、ヘッド室と可変絞り弁との間の圧力が、可変絞り弁と方向切換弁との間の圧力よりも設定した値を超えて高くなった場合に差圧の大きさに従って絞りの開口面積が大きくなるように構成しているため、操作量が小さく、比較的小量の油を通過させた場合にも油の再生を行うことができ、再生効率を向上することが可能となる。しかも、大量の油を通過させる場合には、絞りの開口面積も大きくなるため、操作弁の操作によって油圧シリンダの動作を制御することができる。   According to the present invention, the variable throttle valve is disposed in the head side oil passage between the connection point with the regenerative oil passage and the direction switching valve, and the variable throttle valve minimizes the opening area of the throttle in the normal state. If the pressure between the head chamber and the variable throttle valve becomes higher than the value set between the variable throttle valve and the direction switching valve, the pressure difference is maintained. Since the aperture area of the diaphragm is large, the amount of operation is small, and even when a relatively small amount of oil is passed through, the oil can be regenerated and the regeneration efficiency can be improved. It becomes. In addition, when a large amount of oil is allowed to pass, the opening area of the throttle also increases, so that the operation of the hydraulic cylinder can be controlled by operating the operation valve.

図1は、本発明の実施の形態である油圧回路を示す図である。FIG. 1 is a diagram showing a hydraulic circuit according to an embodiment of the present invention. 図2は、図1に示した油圧回路において再生用切換弁が動作した状態を示す図である。FIG. 2 is a diagram showing a state in which the regeneration switching valve is operated in the hydraulic circuit shown in FIG. 図3は、図2に示した油圧回路において可変絞り弁が動作した状態を示す図である。FIG. 3 is a diagram showing a state where the variable throttle valve is operated in the hydraulic circuit shown in FIG. 図4は、図1に示した油圧回路を適用した建設機械を概念的に示す斜視図である。FIG. 4 is a perspective view conceptually showing a construction machine to which the hydraulic circuit shown in FIG. 1 is applied. 図5は、従来の油圧回路を示す図である。FIG. 5 is a diagram showing a conventional hydraulic circuit. 図6は、図5に示した油圧回路において再生用切換弁が動作した状態を示す図である。6 is a diagram showing a state in which the regeneration switching valve is operated in the hydraulic circuit shown in FIG.

以下、添付図面を参照しながら本発明に係る油圧回路の好適な実施の形態について詳細に説明する。   Hereinafter, preferred embodiments of a hydraulic circuit according to the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明の実施の形態である油圧回路を示す図である。ここで例示する油圧回路は、油圧シリンダ10と、油圧シリンダ10に対して油圧ポンプ20からの油の供給方向を切り換える方向切換弁30とを備え、図示せぬ操作弁を介して方向切換弁30を動作させることにより油圧シリンダ10の駆動を制御するものである。本実施の形態では、特に、図4に示すブルドーザにおいてブレード(駆動対象)Bを昇降させる油圧シリンダ10を駆動するための油圧回路を例示している。油圧シリンダ10は、シリンダチューブ11に対してピストンロッド12が伸長/縮退動作するもので、シリンダチューブ11が車体Vに取り付けられ、ピストンロッド12の先端部がブレードBに取り付けられている。   FIG. 1 is a diagram showing a hydraulic circuit according to an embodiment of the present invention. The hydraulic circuit exemplified here includes a hydraulic cylinder 10 and a direction switching valve 30 that switches a supply direction of oil from the hydraulic pump 20 to the hydraulic cylinder 10, and the direction switching valve 30 via an operation valve (not shown). The drive of the hydraulic cylinder 10 is controlled by operating. In the present embodiment, in particular, a hydraulic circuit for driving the hydraulic cylinder 10 that raises and lowers the blade (drive target) B in the bulldozer shown in FIG. 4 is illustrated. In the hydraulic cylinder 10, the piston rod 12 extends / retracts with respect to the cylinder tube 11, the cylinder tube 11 is attached to the vehicle body V, and the tip of the piston rod 12 is attached to the blade B.

図1に示すように、油圧回路の方向切換弁30は、操作弁(図示せず)から出力されるパイロット圧により動作し、2つの入出力ポートap,bpに対する給油ポートcpとドレンポートdpとの接続態様を選択的に切り換えるものである。具体的には、操作弁(図示せず)からパイロット圧が供給されていない場合、両端の中立バネ31によって方向切換弁30が図1に示す中立位置にあり、2つの入出力ポートap,bpと、給油ポートcp及びドレンポートdpとの間を遮断した状態に維持する。この状態から、図1中において左方に位置する圧力室32aにパイロット圧が供給されると、図2に示すように、方向切換弁30が伸長位置に切り換わり、第1入出力ポートapと給油ポートcpとの間が接続されるとともに、第2入出力ポートbpとドレンポートdpとの間が接続される。これに対して図1に示す中立位置から図1中において右方に位置する圧力室32bにパイロット圧が供給されると、方向切換弁30が縮退位置に切り換わり(図示せず)、第1入出力ポートapとドレンポートdpとの間が接続されるとともに、第2入出力ポートbpと給油ポートcpとの間が接続された状態となる。図2に示すように、方向切換弁30の伸長位置において第2入出力ポートbpからドレンポートdpに至る弁通路33のメータアウト開口面積33aは、圧力室32aに供給されるパイロット圧の大きさに応じて変化する。   As shown in FIG. 1, the direction switching valve 30 of the hydraulic circuit is operated by a pilot pressure output from an operation valve (not shown), and an oil supply port cp and a drain port dp for the two input / output ports ap and bp The connection mode is selectively switched. Specifically, when pilot pressure is not supplied from an operation valve (not shown), the directional control valve 30 is in the neutral position shown in FIG. 1 by the neutral springs 31 at both ends, and the two input / output ports ap and bp And the oil supply port cp and the drain port dp are maintained in a disconnected state. From this state, when the pilot pressure is supplied to the pressure chamber 32a located on the left side in FIG. 1, as shown in FIG. 2, the direction switching valve 30 is switched to the extended position, and the first input / output port ap and The oil supply port cp is connected, and the second input / output port bp and the drain port dp are connected. On the other hand, when the pilot pressure is supplied from the neutral position shown in FIG. 1 to the pressure chamber 32b located on the right side in FIG. 1, the direction switching valve 30 is switched to the retracted position (not shown), and the first The input / output port ap and the drain port dp are connected, and the second input / output port bp and the oil supply port cp are connected. As shown in FIG. 2, the meter-out opening area 33a of the valve passage 33 from the second input / output port bp to the drain port dp at the extended position of the direction switching valve 30 is the magnitude of the pilot pressure supplied to the pressure chamber 32a. It changes according to.

方向切換弁30の第1入出力ポートapは、ボトム側油通路41を通じて油圧シリンダ10のボトム室10aに接続してあり、第2入出力ポートbpは、ヘッド側油通路42を通じて油圧シリンダ10のヘッド室10bに接続してある。方向切換弁30の給油ポートcpには、油圧ポンプ20の吐出口21との間を接続する供給油通路43が接続してあり、方向切換弁30のドレンポートdpには、油タンクTとの間を接続するドレン油通路44が接続してある。   The first input / output port ap of the direction switching valve 30 is connected to the bottom chamber 10a of the hydraulic cylinder 10 through the bottom side oil passage 41, and the second input / output port bp is connected to the hydraulic cylinder 10 through the head side oil passage 42. It is connected to the head chamber 10b. The oil supply port cp of the direction switching valve 30 is connected to a supply oil passage 43 that connects the discharge port 21 of the hydraulic pump 20, and the drain port dp of the direction switching valve 30 is connected to the oil tank T. A drain oil passage 44 is connected between the two.

従って、方向切換弁30が伸長位置に切り換わると、図2に示すように、油圧シリンダ10のボトム室10aに接続されたボトム側油通路41が、方向切換弁30の第1入出力ポートap及び給油ポートcpを介して供給油通路43に接続されるとともに、油圧シリンダ10のヘッド室10bに接続されたヘッド側油通路42が方向切換弁30の第2入出力ポートbp及びドレンポートdpを介してドレン油通路44に接続される。これとは逆に、方向切換弁30が縮退位置に切り換わると(図示せず)、油圧シリンダ10のボトム室10aに接続されたボトム側油通路41が方向切換弁30の第1入出力ポートap及びドレンポートdpを介してドレン油通路44に接続されるとともに、ヘッド室10bに接続されたヘッド側油通路42が方向切換弁30の第2入出力ポートbp及び給油ポートcpを介して供給油通路43に接続されることになる。   Accordingly, when the direction switching valve 30 is switched to the extended position, the bottom side oil passage 41 connected to the bottom chamber 10a of the hydraulic cylinder 10 is connected to the first input / output port ap of the direction switching valve 30 as shown in FIG. And the head side oil passage 42 connected to the head chamber 10b of the hydraulic cylinder 10 connects the second input / output port bp and the drain port dp of the direction switching valve 30 to the supply oil passage 43 through the oil supply port cp. To the drain oil passage 44. On the contrary, when the direction switching valve 30 is switched to the retracted position (not shown), the bottom side oil passage 41 connected to the bottom chamber 10a of the hydraulic cylinder 10 becomes the first input / output port of the direction switching valve 30. The head-side oil passage 42 connected to the drain oil passage 44 via the ap and the drain port dp and supplied to the head chamber 10b is supplied via the second input / output port bp and the oil supply port cp of the direction switching valve 30. The oil passage 43 is connected.

また、この油圧回路には、図1からも明らかなように、再生油通路45、可変絞り弁50、再生用切換弁60及びバイパス油通路70から構成される再生弁ユニット100が設けてある。   Further, as is apparent from FIG. 1, the hydraulic circuit is provided with a regeneration valve unit 100 including a regeneration oil passage 45, a variable throttle valve 50, a regeneration switching valve 60 and a bypass oil passage 70.

再生油通路45は、ボトム側油通路41とヘッド側油通路42との間を接続する油通路であり、その途中に後述する再生用切換弁60を備えている。   The regeneration oil passage 45 is an oil passage that connects between the bottom side oil passage 41 and the head side oil passage 42, and includes a regeneration switching valve 60 that will be described later.

可変絞り弁50は、ヘッド側油通路42において再生油通路45との接続点から方向切換弁30までの間に配設したもので、通常状態においては絞りの開口面積を最小値に維持し、かつヘッド室10bと可変絞り弁50との間の圧力と、可変絞り弁50と方向切換弁30との間の圧力との差圧に応じて絞りの開口面積を変更するものである。具体的に説明すると、可変絞り弁50の一方の端部には、絞りの開口面積が最小となる方向に向けて押圧する減少側圧力室51及び絞り用バネ52が設けてあり、他方の端部には、絞りの開口面積が増大する方向に向けて押圧する増大側圧力室53が設けてある。減少側圧力室51には、可変絞り弁50と方向切換弁30との間の圧力を作用させる第1圧力油路54が接続してあり、増大側圧力室53には、ヘッド側油通路42と再生油通路45との接続点の圧力を作用させる第2圧力油路55が接続してある。絞りの最大開口面積は、方向切換弁30のメータアウト開口面積33aの最大値以上に設定してある。   The variable throttle valve 50 is disposed in the head side oil passage 42 between the connection point with the regenerative oil passage 45 and the direction switching valve 30, and maintains the aperture area of the throttle at a minimum value in a normal state. In addition, the opening area of the throttle is changed according to the pressure difference between the pressure between the head chamber 10 b and the variable throttle valve 50 and the pressure between the variable throttle valve 50 and the direction switching valve 30. More specifically, one end of the variable throttle valve 50 is provided with a decreasing-side pressure chamber 51 and a throttle spring 52 that press in a direction that minimizes the aperture area of the throttle, and the other end. The part is provided with an increasing-side pressure chamber 53 that presses in the direction in which the aperture area of the diaphragm increases. A first pressure oil passage 54 for applying a pressure between the variable throttle valve 50 and the direction switching valve 30 is connected to the decrease side pressure chamber 51, and a head side oil passage 42 is connected to the increase side pressure chamber 53. And a second pressure oil passage 55 for applying a pressure at a connection point between the regeneration oil passage 45 and the regenerated oil passage 45 is connected. The maximum opening area of the diaphragm is set to be equal to or larger than the maximum value of the meter-out opening area 33a of the direction switching valve 30.

再生用切換弁60は、ヘッド室10bと可変絞り弁50との間の圧力と、可変絞り弁50と方向切換弁30との間の圧力との差圧に応じて再生油通路45を開閉し、ヘッド側油通路42とボトム側油通路41との間を連通した状態と遮断した状態とに切り換えるものである。具体的に説明すると、再生用切換弁60の一方の端部には、再生油通路45を遮断する方向に向けて押圧する遮断側圧力室61及び遮断用バネ62が設けてあり、他方の端部には、再生油通路45を連通させる方向に向けて押圧する連通側圧力室63が設けてある。遮断側圧力室61には、可変絞り弁50と方向切換弁30との間の圧力を作用させる第3圧力油路64が接続してあり、連通側圧力室63には、ヘッド側油通路42と再生油通路45との接続点の圧力を作用させる第4圧力油路65が接続してある。   The regeneration switching valve 60 opens and closes the regeneration oil passage 45 in accordance with the differential pressure between the pressure between the head chamber 10 b and the variable throttle valve 50 and the pressure between the variable throttle valve 50 and the direction switching valve 30. The head-side oil passage 42 and the bottom-side oil passage 41 are switched between a state where the head-side oil passage 42 and the bottom-side oil passage 41 are communicated with each other. More specifically, at one end of the regeneration switching valve 60, there is provided a shut-off pressure chamber 61 and a shut-off spring 62 that press in the direction of shutting off the regeneration oil passage 45, and the other end. The part is provided with a communication side pressure chamber 63 that presses in the direction in which the regenerated oil passage 45 is communicated. A third pressure oil passage 64 for applying a pressure between the variable throttle valve 50 and the direction switching valve 30 is connected to the cutoff side pressure chamber 61, and the head side oil passage 42 is connected to the communication side pressure chamber 63. And a fourth pressure oil passage 65 for applying the pressure at the connection point between the regenerated oil passage 45 and the regenerated oil passage 45 is connected.

バイパス油通路70は、ヘッド側油通路42において再生油通路45との接続点から可変絞り弁50を経ることなく可変絞り弁50と方向切換弁30との間に位置する部位に至る迂回通路である。バイパス油通路70には、ヘッド室10bから方向切換弁30に向いた油の通過を阻止するチェック弁71が設けてある。   The bypass oil passage 70 is a bypass passage from the connection point with the regenerative oil passage 45 in the head side oil passage 42 to a portion located between the variable throttle valve 50 and the direction switching valve 30 without passing through the variable throttle valve 50. is there. The bypass oil passage 70 is provided with a check valve 71 that prevents passage of oil from the head chamber 10 b toward the direction switching valve 30.

上記のように構成した油圧回路では、方向切換弁30を図1に示す中立位置から縮退位置に切り換えると、ボトム側油通路41が方向切換弁30の第1入出力ポートap及びドレンポートdpを介してドレン油通路44に接続されるとともに、ヘッド側油通路42が方向切換弁30の第2入出力ポートbp及び給油ポートcpを介して供給油通路43に接続される。従って、油圧ポンプ20の駆動により、油圧シリンダ10のヘッド室10bに油が供給されるとともに、ボトム室10aの油が油タンクTに排出されることになり、油圧シリンダ10が縮退してブルドーザのブレードBが上昇する。この場合、ヘッド側油通路42には、可変絞り弁50を設けるようにしているが、可変絞り弁50に対してバイパス油通路70を設けるようにしている。このため、方向切換弁30からヘッド側油通路42に吐出された油は、バイパス油通路70を経由してヘッド室10bに供給されることとなり、可変絞り弁50が最小値に維持された状態にあっても、油圧シリンダ10の縮退動作が遅延したり、無駄な圧力損失を招来する恐れはない。   In the hydraulic circuit configured as described above, when the direction switching valve 30 is switched from the neutral position shown in FIG. 1 to the retracted position, the bottom side oil passage 41 connects the first input / output port ap and the drain port dp of the direction switching valve 30. The head side oil passage 42 is connected to the supply oil passage 43 through the second input / output port bp and the oil supply port cp of the direction switching valve 30. Accordingly, when the hydraulic pump 20 is driven, oil is supplied to the head chamber 10b of the hydraulic cylinder 10, and the oil in the bottom chamber 10a is discharged to the oil tank T. The hydraulic cylinder 10 is degenerated and the bulldozer Blade B rises. In this case, the variable throttle valve 50 is provided in the head side oil passage 42, but the bypass oil passage 70 is provided for the variable throttle valve 50. Therefore, the oil discharged from the direction switching valve 30 to the head side oil passage 42 is supplied to the head chamber 10b via the bypass oil passage 70, and the variable throttle valve 50 is maintained at the minimum value. Even in this case, there is no possibility that the degeneration operation of the hydraulic cylinder 10 is delayed or that unnecessary pressure loss is caused.

一方、ブレードBが上昇した状態から方向切換弁30を図2に示す伸長位置に切り換えると、ボトム側油通路41が方向切換弁30の第1入出力ポートap及び給油ポートcpを介して供給油通路43に接続されるとともに、ヘッド側油通路42が方向切換弁30の第2入出力ポートbp及びドレンポートdpを介してドレン油通路44に接続される。従って、油圧ポンプ20の駆動により、油圧シリンダ10のボトム室10aに油が供給されるとともに、ヘッド室10bの油が油タンクTに排出されることになり、油圧シリンダ10が伸長してブルドーザのブレードBが下降する。   On the other hand, when the direction switching valve 30 is switched to the extended position shown in FIG. 2 from the state where the blade B is raised, the bottom side oil passage 41 is supplied oil via the first input / output port ap and the oil supply port cp of the direction switching valve 30. The head side oil passage 42 is connected to the drain oil passage 44 through the second input / output port bp and the drain port dp of the direction switching valve 30 while being connected to the passage 43. Accordingly, when the hydraulic pump 20 is driven, oil is supplied to the bottom chamber 10a of the hydraulic cylinder 10, and the oil in the head chamber 10b is discharged to the oil tank T. Blade B descends.

ここで、図1に示す中立位置から方向切換弁30を伸長位置に切り換えた直後においては、可変絞り弁50の絞りの開口面積が最小に維持された状態にある。このため、油圧シリンダ10のヘッド室10bから排出された油が小量だけ通過した場合にも、可変絞り弁50の前後に差圧が生じ、図2に示すように、前後差圧による荷重が遮断用バネ62の設定荷重以上となり、再生用切換弁60が再生油通路45を連通させるように切り換えられることになる。この結果、ヘッド側油通路42とボトム側油通路41とが連通され、油圧シリンダ10のヘッド室10bから排出された油の一部が油タンクTにドレンされることなくボトム室10aに供給されることになり、油圧シリンダ10の伸長動作を素早く、つまりブレードBを素早く下降させることが可能となる。しかも、再生用切換弁60に対して操作弁(図示せず)からのパイロット圧を作用させるための配管が必要ないため、油圧配管を簡素なものとしながら再生用切換弁60を油圧シリンダ10の近傍に配置することができ、圧力損失を最小限に抑えて油の再生効率を向上させることが可能となる。   Here, immediately after the directional control valve 30 is switched from the neutral position shown in FIG. 1 to the extended position, the aperture area of the throttle of the variable throttle valve 50 is kept to a minimum. For this reason, even when a small amount of oil discharged from the head chamber 10b of the hydraulic cylinder 10 passes, a differential pressure is generated before and after the variable throttle valve 50, and as shown in FIG. The load becomes equal to or greater than the set load of the cutoff spring 62, and the regeneration switching valve 60 is switched so that the regeneration oil passage 45 is communicated. As a result, the head side oil passage 42 and the bottom side oil passage 41 communicate with each other, and a part of the oil discharged from the head chamber 10b of the hydraulic cylinder 10 is supplied to the bottom chamber 10a without being drained to the oil tank T. Thus, the extension operation of the hydraulic cylinder 10 can be quickly performed, that is, the blade B can be quickly lowered. In addition, since piping for applying a pilot pressure from an operation valve (not shown) to the regeneration switching valve 60 is not required, the regeneration switching valve 60 is connected to the hydraulic cylinder 10 while simplifying the hydraulic piping. The oil can be disposed in the vicinity, and the oil regeneration efficiency can be improved while minimizing the pressure loss.

また、操作弁(図示せず)の操作量が少なくてヘッド側油通路42に少量の油が通過した場合であっても、操作弁(図示せず)の操作量が多くてヘッド側油通路42に多量の油が通過した場合であっても、可変絞り弁50の前後に生じる差圧の変化が小さくなる。従って、仮に操作弁(図示せず)を介して方向切換弁30をメータアウト開口面積33aが小さくなる方向に急激に動作させた場合にも、再生用切換弁60を通過する油の流量が急激に変化して油圧シリンダ10の動作に影響を与えることはなく、継続してブレードBを滑らかに降下させることが可能となる。   Further, even if the operation amount of the operation valve (not shown) is small and a small amount of oil passes through the head side oil passage 42, the operation amount of the operation valve (not shown) is large and the head side oil passage. Even when a large amount of oil passes through 42, the change in the differential pressure generated before and after the variable throttle valve 50 is reduced. Therefore, even if the direction switching valve 30 is suddenly operated in a direction in which the meter-out opening area 33a is reduced through an operation valve (not shown), the flow rate of oil passing through the regeneration switching valve 60 is suddenly increased. It does not affect the operation of the hydraulic cylinder 10 and the blade B can be lowered smoothly continuously.

これに対して、操作弁(図示せず)の操作によって方向切換弁30を瞬時に伸長位置に切り換えた場合には、油圧シリンダ10のヘッド室10bから排出される油の流量が大量となるため、可変絞り弁50の前後に生じる差圧も大きくなる。この可変絞り弁50の前後差圧が絞り用バネ52の設定荷重を上回ると、図3に示すように、差圧に応じて可変絞り弁50の絞りの開口面積が増大することになる。可変絞り弁50の絞りの開口面積の最大値は、方向切換弁30のメータアウト開口面積33aの最大値より大きく設定されている。従って、上述の油圧回路によれば、操作弁(図示せず)が大きく操作された場合にも、油圧シリンダ10の伸長動作速度、つまりブレードBの下降速度を、方向切換弁30のメータアウト開口面積33aによって制御することが可能となり、ブレードBの作業性に影響を及ぼすことはない。   On the other hand, when the direction switching valve 30 is instantaneously switched to the extended position by operating an operation valve (not shown), the flow rate of oil discharged from the head chamber 10b of the hydraulic cylinder 10 becomes large. The differential pressure generated before and after the variable throttle valve 50 also increases. When the differential pressure across the variable throttle valve 50 exceeds the set load of the throttle spring 52, as shown in FIG. 3, the opening area of the throttle of the variable throttle valve 50 increases according to the differential pressure. The maximum value of the opening area of the throttle of the variable throttle valve 50 is set to be larger than the maximum value of the meter-out opening area 33 a of the direction switching valve 30. Therefore, according to the above-described hydraulic circuit, even when the operation valve (not shown) is largely operated, the extension operation speed of the hydraulic cylinder 10, that is, the lowering speed of the blade B is set to the meter-out opening of the direction switching valve 30. The area 33a can be controlled, and the workability of the blade B is not affected.

尚、上述した実施の形態では、ブルドーザにおいてブレードBを昇降させるための油圧回路を例示しているが、必ずしもこれに限定されず、例えば油圧ショベルのアーム用油圧シリンダを駆動するための油圧回路にも適用することが可能である。   In the above-described embodiment, the hydraulic circuit for raising and lowering the blade B in the bulldozer is illustrated. However, the invention is not necessarily limited to this, and for example, the hydraulic circuit for driving the hydraulic cylinder for the arm of the hydraulic excavator is used. Can also be applied.

また、可変絞り弁50に対してバイパス油通路70を設けるとともに、このバイパス油通路70に、ヘッド室10bから方向切換弁30に向いた油の通過を阻止するチェック弁を設けるようにしているため、油圧シリンダ10を縮退動作させる際に遅延が発生したり、無駄な圧力損失を招来する恐れがないが、再生効率を向上させるだけであれば、必ずしも可変絞り弁50に対してバイパス油通路70等を設ける必要はない。   In addition, a bypass oil passage 70 is provided for the variable throttle valve 50, and a check valve for preventing passage of oil from the head chamber 10b toward the direction switching valve 30 is provided in the bypass oil passage 70. When the hydraulic cylinder 10 is retracted, there is no risk of delay or unnecessary pressure loss, but if only the regeneration efficiency is improved, the bypass oil passage 70 with respect to the variable throttle valve 50 is not necessarily required. Etc. need not be provided.

10 油圧シリンダ
10b ヘッド室
20 油圧ポンプ
30 方向切換弁
33a メータアウト開口面積
41 ボトム側油通路
42 ヘッド側油通路
43 供給油通路
44 ドレン油通路
45 再生油通路
50 可変絞り弁
54 第1圧力油路
55 第2圧力油路
60 再生用切換弁
61 遮断側圧力室
62 遮断用バネ
63 連通側圧力室
64 第3圧力油路
65 第4圧力油路
70 バイパス油通路
71 チェック弁
100 再生弁ユニット
B ブレード
DESCRIPTION OF SYMBOLS 10 Hydraulic cylinder 10b Head chamber 20 Hydraulic pump 30 Direction switching valve 33a Meter-out opening area 41 Bottom side oil passage 42 Head side oil passage 43 Supply oil passage 44 Drain oil passage 45 Regeneration oil passage 50 Variable throttle valve 54 First pressure oil passage 55 Second pressure oil passage 60 Regenerative switching valve 61 Blocking side pressure chamber 62 Blocking spring 63 Communication side pressure chamber 64 Third pressure oil passage 65 Fourth pressure oil passage 70 Bypass oil passage 71 Check valve 100 Regeneration valve unit B Blade

Claims (3)

油圧シリンダのヘッド室に対して油を流通させるヘッド側油通路と、
前記油圧シリンダのボトム室に対して油を流通させるボトム側油通路と、
油圧ポンプから吐出された油を供給する給油通路と、
前記ヘッド側油通路及び前記ボトム側油通路に対して前記給油通路の接続態様を切り換えることにより前記油圧シリンダの駆動を制御する方向切換弁と、
前記ヘッド側油通路及び前記ボトム側油通路の間を接続する再生油通路と、
前記再生油通路に配設し、前記ヘッド側油通路及び前記ボトム側油通路の間を連通した状態と遮断した状態とに切り換える再生用切換弁と、
前記ヘッド側油通路において前記再生油通路との接続点から前記方向切換弁までの間に配設した可変絞り弁と
を備え、前記再生用切換弁は、通常状態においては前記再生油通路を遮断する一方、前記ヘッド室と前記可変絞り弁との間の圧力が、前記可変絞り弁と前記方向切換弁との間の圧力よりも設定した値を超えて高くなった場合にのみ前記再生油通路を連通させるように構成し、
前記可変絞り弁は、通常状態においては絞りの開口面積を最小値に維持する一方、前記ヘッド室と前記可変絞り弁との間の圧力が、前記可変絞り弁と前記方向切換弁との間の圧力よりも設定した値を超えて高くなった場合には差圧の大きさに従って前記絞りの開口面積が大きくなるように構成した
ことを特徴とする油圧回路。
A head-side oil passage for distributing oil to the head chamber of the hydraulic cylinder;
A bottom-side oil passage for circulating oil to the bottom chamber of the hydraulic cylinder;
An oil supply passage for supplying oil discharged from the hydraulic pump;
A direction switching valve that controls the drive of the hydraulic cylinder by switching the connection mode of the oil supply passage with respect to the head side oil passage and the bottom side oil passage;
A regenerated oil passage connecting between the head side oil passage and the bottom side oil passage;
A regeneration switching valve that is disposed in the regeneration oil passage and switches between a state in which the head-side oil passage and the bottom-side oil passage are communicated with each other, and a state in which the state is shut off;
A variable throttle valve disposed in the head-side oil passage between a connection point with the regeneration oil passage and the direction switching valve, and the regeneration switching valve shuts off the regeneration oil passage in a normal state. On the other hand, only when the pressure between the head chamber and the variable throttle valve becomes higher than the pressure set between the variable throttle valve and the direction switching valve, the regenerated oil passage Configured to communicate,
The variable throttle valve maintains the aperture area of the throttle at a minimum value in a normal state, while the pressure between the head chamber and the variable throttle valve is between the variable throttle valve and the direction switching valve. A hydraulic circuit characterized in that when the pressure exceeds a set value, the opening area of the throttle increases according to the magnitude of the differential pressure.
前記可変絞り弁に対してバイパス油通路を設けるとともに、前記バイパス油通路に前記ヘッド室から前記方向切換弁に向いた油の通過を阻止するチェック弁を配設したことを特徴とする請求項1に記載の油圧回路。   2. A bypass oil passage is provided for the variable throttle valve, and a check valve for preventing passage of oil from the head chamber toward the direction switching valve is provided in the bypass oil passage. Hydraulic circuit as described in. 油圧シリンダのヘッド室に対して油を流通させるヘッド側油通路と、
前記油圧シリンダのボトム室に対して油を流通させるボトム側油通路と、
油圧ポンプから吐出された油を供給する給油通路と、
前記ヘッド側油通路及び前記ボトム側油通路に対して前記給油通路の接続態様を切り換えることにより前記油圧シリンダの駆動を制御する方向切換弁と、
前記ヘッド側油通路及び前記ボトム側油通路の間を接続する再生油通路と、
前記再生油通路に配設し、前記ヘッド側油通路及び前記ボトム側油通路の間を連通した状態と遮断した状態とに切り換える再生用切換弁と、
前記ヘッド側油通路において前記再生油通路との接続点から前記方向切換弁までの間に配設した可変絞り弁と、
前記ヘッド側油通路において前記再生油通路との接続点から前記可変絞り弁を迂回して前記方向切換弁までの間を接続するバイパス油通路と、
前記バイパス油通路に配設し、前記ヘッド室から前記方向切換弁に向いた油の通過を阻止するチェック弁と
を備え、前記再生用切換弁は、通常状態においては前記再生油通路を遮断する一方、前記ヘッド室と前記可変絞り弁との間の圧力が、前記可変絞り弁と前記方向切換弁との間の圧力よりも設定した値を超えて高くなった場合にのみ前記再生油通路を連通させるように構成し、
前記可変絞り弁は、通常状態においては絞りの開口面積を最小値に維持する一方、前記ヘッド室と前記可変絞り弁との間の圧力が、前記可変絞り弁と前記方向切換弁との間の圧力よりも設定した値を超えて高くなった場合には差圧の大きさに従って前記絞りの開口面積が大きくなるように構成した
ことを特徴とする油圧回路。
A head-side oil passage for distributing oil to the head chamber of the hydraulic cylinder;
A bottom-side oil passage for circulating oil to the bottom chamber of the hydraulic cylinder;
An oil supply passage for supplying oil discharged from the hydraulic pump;
A direction switching valve that controls the drive of the hydraulic cylinder by switching the connection mode of the oil supply passage with respect to the head side oil passage and the bottom side oil passage;
A regenerated oil passage connecting between the head side oil passage and the bottom side oil passage;
A regeneration switching valve that is disposed in the regeneration oil passage and switches between a state in which the head-side oil passage and the bottom-side oil passage are communicated with each other, and a state in which the state is shut off;
A variable throttle valve disposed between a connection point with the regenerated oil passage and the direction switching valve in the head side oil passage;
A bypass oil passage that bypasses the variable throttle valve from the connection point with the regenerated oil passage in the head side oil passage and connects to the direction switching valve;
A check valve disposed in the bypass oil passage and blocking passage of oil from the head chamber toward the direction switching valve, and the regeneration switching valve shuts off the regeneration oil passage in a normal state. On the other hand, only when the pressure between the head chamber and the variable throttle valve becomes higher than the value set between the variable throttle valve and the direction switching valve, the regenerated oil passage is opened. Configured to communicate,
The variable throttle valve maintains the aperture area of the throttle at a minimum value in a normal state, while the pressure between the head chamber and the variable throttle valve is between the variable throttle valve and the direction switching valve. A hydraulic circuit characterized in that when the pressure exceeds a set value, the opening area of the throttle increases according to the magnitude of the differential pressure.
JP2011177020A 2011-08-12 2011-08-12 Hydraulic circuit Withdrawn JP2013040641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011177020A JP2013040641A (en) 2011-08-12 2011-08-12 Hydraulic circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011177020A JP2013040641A (en) 2011-08-12 2011-08-12 Hydraulic circuit

Publications (1)

Publication Number Publication Date
JP2013040641A true JP2013040641A (en) 2013-02-28

Family

ID=47889236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011177020A Withdrawn JP2013040641A (en) 2011-08-12 2011-08-12 Hydraulic circuit

Country Status (1)

Country Link
JP (1) JP2013040641A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015031275A1 (en) * 2013-08-29 2015-03-05 Caterpillar Global Mining Llc Hydraulic control circuit with regeneration valve
CN105443487A (en) * 2015-03-04 2016-03-30 徐州重型机械有限公司 Control system and method of hydraulic differential circuit, crane and machine tool
DE102015209659A1 (en) * 2015-05-27 2016-12-15 Robert Bosch Gmbh Hydraulic arrangement for the regeneration of pressure medium of a hydraulic consumer and hydraulic system with the hydraulic arrangement
WO2019029957A1 (en) * 2017-08-10 2019-02-14 Putzmeister Engineering Gmbh Large manipulator and hydraulic circuit arrangement for a large manipulator
JP2019027009A (en) * 2017-07-25 2019-02-21 住友重機械工業株式会社 Shovel
CN109973447A (en) * 2019-04-01 2019-07-05 山东临工工程机械有限公司 A kind of hydraulic control system and engineering machinery
CN112343874A (en) * 2019-08-08 2021-02-09 Smc德国股份有限公司 Fluid return apparatus for double acting cylinder and method for operating the same
CN114233703A (en) * 2022-01-29 2022-03-25 徐工集团工程机械股份有限公司 Hydraulic system of construction machine and construction machine

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015031275A1 (en) * 2013-08-29 2015-03-05 Caterpillar Global Mining Llc Hydraulic control circuit with regeneration valve
US9394922B2 (en) 2013-08-29 2016-07-19 Caterpillar Global Mining Llc Hydraulic control circuit with regeneration valve
CN105443487A (en) * 2015-03-04 2016-03-30 徐州重型机械有限公司 Control system and method of hydraulic differential circuit, crane and machine tool
CN105443487B (en) * 2015-03-04 2018-01-16 徐州重型机械有限公司 The control system and method in hydraulic differential loop, crane and lathe
DE102015209659A1 (en) * 2015-05-27 2016-12-15 Robert Bosch Gmbh Hydraulic arrangement for the regeneration of pressure medium of a hydraulic consumer and hydraulic system with the hydraulic arrangement
JP2019027009A (en) * 2017-07-25 2019-02-21 住友重機械工業株式会社 Shovel
WO2019029957A1 (en) * 2017-08-10 2019-02-14 Putzmeister Engineering Gmbh Large manipulator and hydraulic circuit arrangement for a large manipulator
CN111655953A (en) * 2017-08-10 2020-09-11 普茨迈斯特工程有限公司 Large manipulator and hydraulic circuit assembly for a large manipulator
US10788055B2 (en) 2017-08-10 2020-09-29 Putzmeister Engineering Gmbh Large manipulator and hydraulic circuit arrangement for a large manipulator
CN111655953B (en) * 2017-08-10 2022-04-19 普茨迈斯特工程有限公司 Large manipulator for concrete pumps and method for operating a large manipulator for concrete pumps
CN109973447A (en) * 2019-04-01 2019-07-05 山东临工工程机械有限公司 A kind of hydraulic control system and engineering machinery
CN112343874A (en) * 2019-08-08 2021-02-09 Smc德国股份有限公司 Fluid return apparatus for double acting cylinder and method for operating the same
CN114233703A (en) * 2022-01-29 2022-03-25 徐工集团工程机械股份有限公司 Hydraulic system of construction machine and construction machine
CN114233703B (en) * 2022-01-29 2024-01-02 徐工集团工程机械股份有限公司 Hydraulic system of engineering machine and engineering machine

Similar Documents

Publication Publication Date Title
JP2013040641A (en) Hydraulic circuit
JP6603560B2 (en) Pressure compensation unit
JP6867740B2 (en) Stick control system in construction machinery
KR20140074306A (en) Control system for operating work device for construction machine
JP2015086958A (en) Hydraulic shovel drive system
JP2016223590A (en) Operating machine pressure oil energy regeneration apparatus
WO2014073515A1 (en) Fluid pressure control device for power shovel
US7540231B2 (en) Control valve device for the control of a consumer
JP6434504B2 (en) Excavator and control method thereof
JP2004346485A (en) Hydraulic driving device
JP6196567B2 (en) Hydraulic drive system for construction machinery
EP3619156B1 (en) Vehicle with a boom comprising a hydraulic control circuit with a load control valve
WO2013089130A1 (en) Hydraulic device
JP2016166510A (en) Shovel
JP2019052664A (en) Hydraulic circuit
JP4969541B2 (en) Hydraulic control device for work machine
JP4768002B2 (en) Hydraulic circuit for construction machinery
JP2014148994A (en) Hydraulic control device of work machine
US20160017901A1 (en) Pressure loss reducing circuit for a works machine
JP2017015130A (en) Fluid circuit
KR101718604B1 (en) Hydraulic circuit for construction machine
JP4933299B2 (en) Hydraulic control equipment for construction machinery
JP5334509B2 (en) Hydraulic circuit for construction machinery
JP4703419B2 (en) Control circuit for hydraulic actuator
JP2019190226A (en) Fluid pressure control device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141104