JP2004346688A - Tunnel excavator for pipe line formation - Google Patents

Tunnel excavator for pipe line formation Download PDF

Info

Publication number
JP2004346688A
JP2004346688A JP2003147513A JP2003147513A JP2004346688A JP 2004346688 A JP2004346688 A JP 2004346688A JP 2003147513 A JP2003147513 A JP 2003147513A JP 2003147513 A JP2003147513 A JP 2003147513A JP 2004346688 A JP2004346688 A JP 2004346688A
Authority
JP
Japan
Prior art keywords
excavator
outer cylinder
tunnel
pipe
reaction force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003147513A
Other languages
Japanese (ja)
Other versions
JP3830917B2 (en
Inventor
Masaaki Obayashi
正明 大林
Keiji Katahira
啓氏 片平
Junji Ono
潤治 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okumura Corp
Original Assignee
Okumura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okumura Corp filed Critical Okumura Corp
Priority to JP2003147513A priority Critical patent/JP3830917B2/en
Publication of JP2004346688A publication Critical patent/JP2004346688A/en
Application granted granted Critical
Publication of JP3830917B2 publication Critical patent/JP3830917B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tunnel excavator for pipe line formation capable of surely receiving propulsive reaction force in the case of boring and preventing the occurrence of rolling and, at the same time, facilitating the withdrawal and removal of an excavator body after the formation of a pipe line having the predetermined length in the tunnel excavator forming the pipe line by burying the following pipe body while excavating a tunnel. <P>SOLUTION: The tunnel excavator A is constituted of an outer cylinder 1 having the same outside diameter as that of a pipe body P and the excavator body 10 placed in the outer cylinder 1, the excavator body 10 is equipped with an inner cylinder 11 and a cutter head 13 having an expandable outer diameter supported on a partition in a rotatable manner, at the same time, the inner cylinder 11 is separably fixed to the inner circumferential surface of the outer cylinder 1 through a propulsive reaction force transfer member 3 to make propulsive reaction force firmly receive with the pipe body P following the outer cylinder 1 by the propulsive reaction force transfer member 3, at the same time, the excavator body 10 can be smoothly withdrawn and removed by separating the propulsive reaction force transfer member 3 from the outer cylinder 1, and a rolling prevention means 6 is provided between the front end side of the pipe body P and the inner cylinder 11 of the excavator body 10. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、地中に所定長までトンネルを掘削しながら管体を埋設することによって管路を形成したのち、該管路内を通じて後方に撤去、回収可能にした管路形成用トンネル掘削機に関するものである。
【0002】
【従来の技術】
地中に管路を形成するためのシールド工事においては、発進立坑側からトンネル掘削機を到達立坑に向かって掘進させ、一定長のトンネルが掘削される毎に該トンネル掘削機に後続させて一定長の埋設管を順次、継ぎ足すことにより管路を形成しており、到達立坑に達したトンネル掘削機は、通常、該到達立坑内から地上に回収しているが、到達立坑が既設のマンホール等の狭隘な立坑である場合、或いは、到達立坑が設けられない場合や、2基のトンネル掘削機を地中でドッキングさせる場合のように到達立坑を設けない場合には、到達側からトンネル掘削機を取り出すことができない。
【0003】
従って、掘削終了後にトンネル掘削機を解体して管路内を通じて発進立坑側に撤去、回収しなけれならず、その撤去、回収作業に著しい手間と労力を要するという問題点があった。特に、径が3000mm以下の小径の管路を形成するトンネル掘削機の場合には、狭い作業空間での撤去作業が極めて困難である。
【0004】
このため、先頭の施設管内にトンネル掘削機を挿入、固定しておき、先頭の施設管の開口端から前方に突設している該トンネル掘削機のカッタヘッドを回転させながら発進立坑側で施設管を押し進めることにより、トンネル掘削機を掘進させてトンネルを掘削すると共に、一定長のトンネルが掘削される毎に施設管を順次継ぎ足すことにより管路を形成し、次いで、掘削終了後には、カッタヘッドを施設管の内径よりも小径となるように縮小させると共に先頭の施設管に対するシールド掘削機の固定を解いたのち、シールド掘削機を解体することなく管路内を通じて発進立坑まで後退させ、発進立坑から地上側に回収することが行われている(例えば、特許文献1参照)。
【0005】
【特許文献1】
特公平7−68871号公報(第2〜5頁、第1図)
【0006】
【発明が解決しようとする課題】
しかしながら、上記のように管路の形成工法によれば、施設管内に対する掘削機本体の固定手段として、スキンプレートに押圧ボルトを内外面間に亘って貫通させてスキンプレート外に突出した該押圧ボルト先端に取り付けている押止板を施設管の内面に圧着させてなり、この固定手段によって掘削機本体に作用する推進反力を支持させるようにしているため、推進反力が上記押圧ボルトの長さ方向に対して直角方向に作用して充分な支持力を得ることができず、掘削機本体が後退したり施設管に破損が生じたりする虞れがある。
【0007】
さらに、トンネル掘削時におけるカッタヘッドの回転反力を、上記押圧ボルトの先端に取り付けている押止板と施設管の内面との圧接力(摩擦力)によって支持しているため、この押圧ボルトによる圧接力ではカッタヘッドの回転反力を確実に支持することができず、スリップが発生して掘削機本体がローリングを起こすといった問題点がある。
【0008】
また、トンネル掘削機と施設管との間のシール機構は、スキンプレートに外嵌している金属製のホルダの溝内にシールリングを嵌入し、この金属製ホルダを先頭の施設管の先端面に当接させると共に上記シールリングを該施設管の外周面から突設している前補助プレートに密接させた構造としているため、トンネル掘削機を管路内を通じて後退させる際に、この金属製ホルダを取り外さなければならないが、スキンプレート内から該スキンプレート外の金属製ホルダを除去する作業は極めて困難であり、撤去作業に著しい手間を要するという問題点がある。
【0009】
本発明は上記のような問題点に鑑みてなされたもので、その目的とするところは、トンネル掘進時における推進反力を強固に受止し得ると共にローリングの発生をもなくすることができ、さらに、トンネル掘削後において管路を通じてのトンネル掘削機の回収、撤去作業が円滑且つ能率よく行うことができる管路形成用トンネル掘削機を提供するにある。
【0010】
【課題を解決するための手段】
上記目的を達成するために本発明の管路形成用トンネル掘削機は、請求項1に記載したように、地中にトンネルを掘削しながら該トンネル内に管体を順次、埋設することにより管路を形成していくトンネル掘削機であって、先頭の管体の前方に設けられ外径が該管体の外径と略同一径の外筒と、この外筒の前端部内に一体に設けられ、内径が上記管体の内径よりも小径のリング体と、このリング体の内周端面にシール材を介して摺接した内筒と、この内筒の前部に設けられた隔壁と、この隔壁に回転自在に支持されて上記外筒の開口端から前方の地盤を掘削するカッタヘッドとを備え、上記内筒と隔壁とカッタヘッドとからなるこの掘削機本体を上記外筒の内周面に切り離し可能な推進反力伝達部材を介して連結してなる構造としている。
【0011】
このように構成した管路形成用トンネル掘削機において、請求項2に係る発明は上記推進反力伝達部材の構造であって、互いに直交する2つの接続面を有し、一方の接続面を掘削機本体の隔壁より後方の内筒に、他方の接続面を外筒の内周面にそれぞれ切り離し可能に固着していることを特徴とするものであり、請求項3は上記直交する2つの接続面における一方の接続面を掘削機本体の隔壁背面に、他方の接続面を外筒の内周面にそれぞれ切り離し可能に固着していることを特徴とする。
【0012】
また、請求項4に係る発明は、上記管体の前端に環状部材の後端を一体に固着して、この環状部材の前端部に外筒の後端を接合させて外筒をこの環状部材を介して管体に連結してあり、さらに、該環状部材の内周面と掘削機本体の内筒後端部外周面とのいずれか一方に周方向に小間隔を存して突出片を突設し、他方にこれらの突出片間に介挿した介入片を突設してこれらの突出片と介入片とによりトンネル掘削機のローリング防止手段を構成していることを特徴とする。
【0013】
【作用】
発進立坑内において、先頭の管体の先端面に外筒の後端を連結し、且つこの外筒内に掘削機本体を設置した状態にして、この掘削機本体の開口端に配設しているカッタヘッドを外管と略同一径にまで拡径させて回転させながら発進立坑内から先頭の管体を押し進めることにより地中にトンネルを掘削しながら該管体を推進、埋設する。この先頭の管体が地中内に押し進められると次の管体を後続させ、以下、このトンネル掘削機によって一定長、掘削される毎に管体を継ぎ足して順次トンネル掘削機に後続させながら管路を形成していく。
【0014】
この管路形成時には、管体の推進力は先頭の管体から該管体と連結している外筒に伝達され、さらに、この外筒の内周面とトンネル掘削機の内筒とを一体に連結している推進反力伝達部材を介してトンネル掘削機に伝達されると共に、トンネル掘削機に作用する推進反力はこの推進反力伝達部材を介して管体と一体の外筒に支持される。
【0015】
この場合、上記推進反力伝達部材として、互いに直交する2つの接続面を有していて、一方の接続面を掘削機本体の内筒の後端又は隔壁の背面に一体に固着し、他方の接続面を外筒の内周面に切り離し可能に固着しておくことによって、上記推進反力をこの推進反力伝達部材を介して外筒から管体に確実且つ強固に支持させることができ、トンネル掘削機によるトンネルの掘進を円滑に行いながら管路を形成することができる。
【0016】
さらに、所定長の管路を形成後に掘削機本体を回収する場合、掘削機本体内から上記推進反力伝達部材の切り離し作業が簡単に行え、カッタヘッドを管路の内径よりも縮径させたのち、管路を通じての掘削機本体の回収、撤去作業が能率よく行えるものである。なお、管体の埋設は、上述したような推進工法だけではなく、シールド工法を採用して行うこともできる。
【0017】
また、トンネル掘削時においては、カッタヘッドの回転反力によって外筒に対して掘削機本体の内筒がローリングしようとするが、上記管体の前端に環状部材の後端を一体に固着して、この環状部材の前端部に外筒の後端を接合させて外筒をこの環状部材を介して管体に連結した構造としておき、この環状部材の内周面と掘削機本体の内筒後端部外周面とのいずれか一方に周方向に小間隔を存して突出片を突設し、他方にこれらの突出片間に介挿した介入片を突設しておくことにより、トンネル掘削機がローリングしようとする回動力をこれらの突出片と介入片とを介して管体に強固に受止させることができ、ローリングの発生を確実に阻止することができる。
【0018】
【発明の実施の形態】
次に本発明の具体的な実施の形態を図面について説明すると、トンネル掘削機は、外径が埋設すべき管体Pの外径に等しい鋼管製の外筒1と、この外筒1内に配設された掘削機本体10とからなり、掘削機本体10は外径が管体Pの内径よりも小径の内筒11と、この内筒11の前部に設けられてその外周端面を内筒11の内周面に一体に固着している隔壁12と、この隔壁12に回転自在に支持されて上記外筒の開口端に面した地盤を掘削するカッタヘッド13とを備えている。
【0019】
上記外筒1は内外二重の筒状周壁部1a、1bからなり、これらの筒状周壁部1a、1bはその前後端部を円環状連結部材1c、1dによって一体に連結していると共に、外側周壁部1aの前後端部を内側周壁部1bの前後端からそれぞれ一定長さだけ突出1a1 、1a2 させてあり、また、内側周壁部1bの内径は上記管体Pの内径に略等しい径に形成している。この外筒1の内側周壁部1b内に上記掘削機本体10がその内筒11を内側周壁部1bの内周面から小間隔を存した状態で配設されてあり、内筒11の前端部における少なくとも下周部の複数個所にガイドローラ2を回転自在に軸支して外筒1の内周面、即ち、上記内側周壁部1bの内周面前端部上に支持させている。
【0020】
さらに、掘削機本体10の内筒11の後端部を上記外筒1の内側周壁部1bの後端内周面に対して切り離し可能な推進反力伝達部材3を介して外筒1に連結し、トンネル掘削機の掘進時に発生する推進反力を掘削機本体10の内筒11からこの推進反力伝達部材3、外筒1、後述する環状部材5を介して管体に支持させるように構成している。
【0021】
この推進反力伝達部材3は、垂直矩形状板片3aと水平矩形状板片3bとを互いに直角に組み合わせて補強リブ3cにより一体に連結、固着してなり、垂直矩形状板片3aの前面と水平矩形状板片3bの外面とによって互いに直交する2つの接続面を形成している。一方、上記掘削機本体10の内筒11の後端部における周方向の複数個所(図においては四方)に、上記推進反力伝達部材3の垂直矩形状板片3aと面接合する垂直連結板片3dを補強部材3eと共に一体に固着してあり、これらの各垂直連結板片3dに推進反力伝達部材3の垂直矩形状板片3aを接合して複数個のボルト3fにより連結、固定している。
【0022】
さらに、内筒11の各垂直矩形状板片3aに一体に連結した推進反力伝達部材3における水平矩形状板片3bを上記外筒1の後端内周面、即ち、該外筒1の内側周壁部1bの後端内周面に切り離し可能に固着している水平連結板片3gに面接合させて複数個のボルト3fにより一体に連結、固定している。この内筒11に対して推進反力伝達部材3の水平矩形状板片3bを切り離し可能にするには、上記水平連結板片3gを内筒11の内周面に溶接によって固着しておき、この水平連結板片3gに水平矩形状板片3bをボルト3fによって切り離し可能に固着しておいてもよく、上記水平連結板片3gを内筒11の内周面に溶接によって固着することなく水平矩形状板片3bと共にボルト3fによって内筒11に切り離し可能に固着しておいてもよい。
【0023】
また、上記外筒1の前端部においては、上記内側周壁部1bの先端内周面に、前側の円環状連結部材1cの内周端から内方に延長する方向にリング体1eを一体に突設してあり、このリング体1eの内周端面に上記掘削機本体10の内筒11の前端外周面をシール材4を介して摺接させている。
【0024】
上記外筒1の後端は、管体1の前端に直接、連結することなく、管体1に対してトンネル掘削機を屈折可能にして方向修正が可能となるようにするために、管体1の前端に一体に固着した環状部材5を介して連結している。
【0025】
詳しくは、環状部材5は内径が管体P及び外筒1の内径と同一径であって外径が管体P及び外筒1の外径よりも僅かに小径の断面中空の横長矩形状に形成されてあり、その後端面5aと該後端外周面から後方に突出している突片5bとを管体Pの前端面と前端外周面とにそれぞれ密接させた状態で一体に固着している一方、該環状部材5の前端面5cに外筒1の後端面を固定することなく接合、受止させていると共に、外筒1の外側周壁部1aの後端突出部1a2 をシール材4aを介して環状部材5の外周面前端部に屈折可能に被嵌させている。
【0026】
この環状部材5の内周面における上部の2個所に、図3に示すように、周方向に小宜間隔を存して前後方向に長い横長長方形状の突出片6a、6aを掘削機本体10の内筒11の後端部外周面に向かって突設している一方、該内筒11の後端部外周面の上部2個所に、上記突出片6a、6a間に介挿した横長長方形状の介入片6bを突設してこれらの突出片6a、6aと介入片6bとによってトンネル掘削機のローリング防止手段6を形成している。即ち、内筒11と一体のこの介入片6bの両側面を環状部材5と一体の突出片6a、6aの対向内側面に受止させることによって、外筒1と掘削機本体10とからなるトンネル掘削機全体が管体Pに対してローリングするのを防止するように構成している。なお、内筒11側に突出片6a、6aを、環状部材5側に介入片6bを設けておいてもよい。
【0027】
また、外筒1と環状部材5との上下左右の4個所間を方向修正ジャッキ7によって連結している。具体的には、外筒1の内側周壁部1bにおける後半部の上下左右部分を切除してその切除部における外側周壁部1aの内周面の上下左右に沿って方向修正ジャッキ7を配設し、この方向修正ジャッキ7の前端部を外筒1の外側周壁部1aの内周面から突設している軸受片8にピン8aによって回動自在に連結する一方、後端部を上記環状部材5の前端部に固着している軸受片9にピン9aによって回動自在に連結している。
【0028】
掘削機本体10の上記カッタヘッド13は、その回転中心軸14を隔壁12の中央部に回転自在に支持されていると共に、この回転中心軸14の前端から該回転中心軸14に対して直交する方向(外径方向)に向かって図2に示すように、長さが外筒1や管体Pの内周面の半径よりも小径で内筒11の半径に略等しい長さを有する複数本(図においては、6本)のスポーク部13a を放射状に突設し、隣接するスポーク部13a の外端対向面間を円弧状の連結部材13b によって一体に連結している。
【0029】
さらに、これらのスポーク部13a に長さ方向に適宜間隔毎にカッタビット15aを前方に向かって突設していると共に、これらの複数本のスポーク部13a において、一本おきに配設されているスポーク部13a’はその長さを上記のように外筒1や管体Pの内周面の半径よりも短い長さから外筒1の外周面に達する長い長さまで伸長可能で且つこの長い形状から短い形状となるまで縮小可能に形成してカッタヘッドの外径を、外筒1の外径に略等しい径から管体Pの内径よりも小径に縮径可能に構成されている。
【0030】
この拡縮可能な上記スポーク部13a’の具体的な構造としては、該スポーク部13a’をその先端面が開口した筒状の中空スポーク部13a’に形成し、この中空スポーク部13a’内に、前面両側部に前方に向かって複数個のカッタビット15b を突設しているスポーク片13a’’ を収納し、図1に示すように中空スポーク部13a’内の奥底部に装着しているジャッキ16の作動により、このスポーク片13a’’ を中空スポーク部13a’の開口端から出没させるように構成している。なお、上記カッタヘッド13の回転中心軸14の前面にセンタビット15c を突設している。
【0031】
また、カッタヘッド13の背面外周部数カ所に、後方に向かってアーム部材17を突設していると共に、これらのアーム部材17、17の後端を円環枠材18によって一体に連結して該円環状枠材18を内筒11の内周面に回転自在に支持させてあり、さらに、この円環状枠材18の後端面に内歯車19を固着している一方、掘削機本体10の上記隔壁12の外周部後面に駆動モータ20を装着してこの駆動モータ20の回転軸に固着している小歯車21を上記内歯車19に噛合させ、駆動モータ20によってカッタヘッド13を回転させるように構成している。
【0032】
さらに、カッタヘッド13の後面と上記隔壁12の前面間の空間部を、カッタヘッド12によって掘削された土砂を取り込んで一旦滞留させておく土砂室22に形成してあり、この土砂室22から排土手段23を通じて掘削土砂を後方に排出するように構成している。
【0033】
この排土手段23は図1に示すようにスクリューコンベアからなり、その前端開口部を隔壁12の下部を貫通して上記土砂室22の下端部内に臨ませていると共に隔壁12から後方に向かって斜め上方に傾斜させた状態で配設されている。
【0034】
次に、以上のように構成した管路形成用トンネル掘削機Aによって地中に管路を形成する方法について説明する。まず、このトンネル掘削機Aを発進立坑B内に設置し、そのカッタヘッド13を拡径させた状態にすると共に、このトンネル掘削機Aの後端に環状部材5を介してヒューム管からなる管体Pの前端を一体に連結する。この状態にしてカッタヘッド12を回転させると共に管体Pの後端面を発進立坑Bの後部内に配設している推進ジャッキ等の推進手段Cによって押し進めてトンネルを掘進する。
【0035】
そして、トンネル掘削機Aが発進立坑Bから地中内に一定長推進すると、管体Pの後端に次の管体Pの前端を接続させ、この管体Pの後端を上記推進手段Cによって押し進めて、先頭の管体Pに該管体Pを後続させた状態でトンネル掘削機Aをさらにトンネル計画線に沿って掘進させ、以下、トンネル掘削機Aによって一定長のトンネルが掘削される毎に発進立坑B側において管体Pを順次、継ぎ足しながら押し進めて図4に示すように、管路を形成しておく。なお、カッタヘッド13によって掘削された土砂は、土砂室22から排土手段23を通じて発進立坑B側に排出する。
【0036】
推進手段Cによる推進力は、最後尾の管体Pから先頭の管体Pの前端に一体に固着している環状部材5を介してこの環状部材5の前端に当接、受止されているトンネル掘削機Aの外筒1に伝達され、さらに、該外筒1から推進反力伝達部材3を介して掘削機本体10に伝達されてカッタヘッド13を切羽に押し付けながら掘進する。なお、方向修正ジャッキ7のシリンダ部における長さ方向の中央部の内側外周面に突片7aを突設しておき、該突片7aを図1に示すように、掘削機本体10の内筒11の外周面に突設している突片11a にボルトによって連結しておけば、上記推進力を環状部材5から方向修正ジャッキ7、突片7a、11a を介して掘削機本体10の内筒11に伝達することができる。
【0037】
一方、上記推進力の反力は、カッタヘッド13を支持している掘削機本体10から内筒11と外筒1とを一体に連結している上記推進反力伝達部材3を介して外筒1に支持され、さらに、この外筒1の後端を受止している環状部材5を介して管体Pに支持される。この際、推進反力伝達部材3は垂直矩形状板片3aと水平矩形状板片3bとを互いに直角に組み合わせて補強リブ3cにより一体に連結、固着してなり、この推進反力伝達部材3における垂直矩形状板片3aの前面に掘削機本体10の内筒11の後端部に固着した垂直連結板片3dを面接合させてボルト3fにより連結、固着していると共に、水平矩形状板片3bを上記外筒1の後端内周面に切り離し可能に固着している水平連結板片3gに面接合させて複数個のボルト3eにより一体に連結、固定しているので、カッタヘッド13に作用する推進反力をこの推進反力伝達部材3を介して管体P側に強固に受止させることができる。
【0038】
また、トンネルの掘進中において、カッタヘッド13の回転反力により掘削機本体10の内筒11がローリングしようとするが、この内筒11の後端部外周面に突設している横長長方形状の介入片6bを、先頭の管体Pの前端に一体に固着している上記環状部材5の内周面に並列状態に突設した突出片6a、6a間に介挿させているので、介入片6bが突出片6a、6aの対向内面のいずれか一方に受止されて、管体Pに対しローリングするのを確実に防止することができ、さらに、内筒11がローリングしようとする回動力が外筒1に伝達することもなく、トンネル掘削機A全体のローリング防止を行うことができる。
【0039】
さらに、トンネル掘削機Aによるトンネル掘進中において、管路を形成するための計画トンネルが湾曲している場合、又は、方向を修正する必要が生じた場合、トンネル掘削機Aの外筒1と先頭の管体Pの先端に固着した上記環状部材5間を連結している四方の方向修正ジャッキ7のうち、所定の方向修正ジャッキ7を作動させてトンネル掘削機A全体の向きを環状部材5に対して計画曲線トンネル方向に、又は、修正したい方向に向ける。
【0040】
例えば、トンネル掘削機Aの向きを右側に変えたい場合には、右側の方向修正ジャッキ7を不作動状態又は収縮させると共に左側の方向修正ジャッキ7を伸長させると、環状部材5の前部外周面に対してトンネル掘削機Aの外筒1の後端突出部1a1 がシール材4aを介して右方向に屈折する。この屈折角度は左側の方向修正ジャッキ7の伸長量によって大小に調整することができ、掘削中における方向修正や曲線トンネル施工が容易に且つ正確に行うことができる。
【0041】
次に、上記トンネル掘削機Aによって所定長のトンネルを掘削して管路を形成したのち、掘削機本体10を撤去、回収するには、カッタヘッド13における中空スポーク部13a’の開口端から突出してカッタヘッド13を拡径しているスポーク片13a’’ をジャッキ16の収縮によって図5に示すようにスポーク部13a’内に収納し、カッタヘッド13の全体の外径を外筒1及び管体Pの内径よりも小径にする。
【0042】
さらに、内筒11の後端部と外筒1とを連結している推進反力伝達部材3における外筒1の内側周壁部1bの後端内周面に固着した水平連結板片3gを外筒1から切り離して除去すると共に推進反力伝達部材3の垂直矩形状板片3aと水平矩形状板片3bとを一体に連結している補強リブ3cの一部を切除して図6に示すように、該補強リブ3cに後側ガイドローラ2’を回転自在に軸支させて外筒1の内周面に支持させた状態にする。この際、推進反力伝達部材3の水平連結板片3gの除去や後側ガイドローラ2’の取り付け作業等は、推進反力伝達部材3がトンネル掘削機A内に配設されているので、容易に行うことができる。
【0043】
また、ローリング防止手段6を構成している上記突出片6a、6aと介入片6bも切除等により除去すると共に、図7に示すように、掘削機本体10の隔壁12に装着しているスクリューコンベアからなる排土手段23を取り外して管路内を通じて発進立坑B側に回収、撤去する。なお、ローリング防止手段6における外筒1の内周面に固着している突出片6a、6aがカッタヘッド13の後退の支障にならない場合には、必ずしも除去する必要はない。
【0044】
このように、カッタヘッド13を縮径させると共にトンネル掘削機Aにおける外筒1に対する掘削機本体10の内筒11の連結、固定を解除し、且つ排土手段23を撤去したのち、掘削機本体10を後方側から適宜な引っ張り手段(図示せず)によって引っ張ると、内筒11の前端外周面が外筒1の前端内周面に内方に向かって突出しているリング体1eのシール材4に摺接しながら後退して該シール材4から離脱し、図8に示すように、前後のガイドローラ2、2’を管体Pの内周面上を転動させながら掘削機本体10を発進立坑B側に回収し、この発進立坑B内から地上に撤去する。しかるのち、図9に示すように方向修正ジャッキを取り外して撤去、回収する。なお、トンネル掘削機Aの回収時には、カッタヘッド前方の地盤を薬液注入などにより固化処理しておけばよい。
【0045】
以上の実施の形態においては、掘削機本体10における内筒11の後端部を推進反力伝達部材3によって外筒1の内側周壁部1bの後端内周面に切り離し可能に連結しているが、図10、図11に示すように、隔壁12の背面側における内筒11の前端部に、推進反力伝達部材3が装着し得る大きさの切欠部24を周方向に所定間隔毎に設けて該切欠部24における隔壁背面に垂直連結板片3d’ を固着し、この垂直連結板片3d’ に推進反力伝達部材3の垂直矩形状板片3aをボルト3fによって一体に固着する共に、該推進反力伝達部材3の水平矩形状板片3bを外筒1の内側周壁部1bの後端内周面に切り離し可能に固着している水平連結板片3gに面接合させて複数個のボルト3fにより一体に連結、固定しておいてもよい。その他の構造については上記実施の形態と同様であるので、同一部分には同一符号を付して詳細な説明を省略する。
【0046】
また、管路を形成する管体Pとしてヒューム管を採用しているが、鋼管であってもよく、さらに、トンネル掘削機における上記外筒1としては、鋼製であることが望ましいがコンクリート製であっても適用できないことはない。
【0047】
さらに、カッタヘッド13のスポーク部13a’は、このスポーク部13a’を中空に形成してこの中空スポーク部13a’内に、前面両側部に前方に向かって複数個のカッタビット15b を突設しているスポーク片13a’’を収納し、中空スポーク部13a’内の奥底部に装着しているジャッキ16の作動により、スポーク片13a’’を中空スポーク部13a’の開口端から出没させてカッタヘッド13の外径を拡縮させるように構成しているが、スポーク部13a’の外端に一定長のスポーク片を切り離し自在に連結して、該スポーク片を連結した状態においてはカッタヘッド13を外筒1の外径に略等しい外径とし、スポーク片を取り外した状態においては、カッタヘッド13の外径を管路内を通じて撤去可能な径となるように構成しておいてもよい。
【0048】
さらにまた、管路は管体Pを推進工法によって順次、推進、埋設することにより形成しているが、トンネル掘削機によって一定長のトンネルを掘削する毎に、セグメントを組立て、トンネル掘削機に装着している複数本の推進ジャッキをこのセグメントの前端面に押しつけて伸長させることによりトンネルを掘進するシールド工法にも適用してもよい。
【0049】
【発明の効果】
以上のように本発明の管路形成用トンネル掘削機によれば、請求項1に記載したように、地中にトンネルを掘削しながら該トンネル内に管体を順次、埋設することにより管路を形成していくトンネル掘削機であって、先頭の管体の前方に設けられ外径が該管体の外径と略同一径の外筒と、この外筒の前端部内に一体に設けられ、内径が上記管体の内径よりも小径のリング体と、このリング体の内周端面にシール材を介して摺接した内筒と、この内筒の前部に設けられた隔壁と、この隔壁に回転自在に支持されて上記外筒の開口端から前方の地盤を掘削するカッタヘッドとを備え、上記内筒と隔壁とカッタヘッドとからなるこの掘削機本体を上記外筒の内周面に切り離し可能な推進反力伝達部材を介して連結してなるものであるから、管路形成時には、トンネル掘削機の後方側からの推進力を外筒及び推進反力伝達部材を介して掘削機本体の内筒に確実に伝達することができ、内筒の前部に設けている隔壁に回転自在に支持されたカッタヘッドによってトンネルを円滑に掘削することができる。
【0050】
さらに、掘削機本体に作用する推進反力を上記推進反力伝達部材を介して外管から管体に強固に支持させることができると共に、推進反力伝達部材はトンネル掘削機内に露呈した状態に設けられているから、所定長の管路の形成後、外筒の内周面からの該推進反力伝達部材の切り離し作業が機内から容易に行うことができ、カッタヘッドの外径を管体の内径よりも小径に形成したのち、外管を地中に残した状態でリング体の内周端面に装着しているシール材から内筒を後方に離脱させ、該外管と管体の内周面をガイド面として掘削機本体全体の回収、撤去作業が能率よく行うことができる。
【0051】
また、請求項2及び請求項3に係る発明によれば、上記推進反力伝達部材は互いに直交する2つの接続面を有していて、一方の接続面を掘削機本体の内筒の後端又は掘削機本体の隔壁背面に一体に固着し、他方の接続面を外筒の内周面に切り離し可能に固着しているので、上記掘削機本体を作用する推進反力をこの推進反力伝達部材の直角な2つの接続面を介して外筒の内周面から管体に確実且つ強固に支持させることができ、トンネル掘削機によるトンネルの掘進を円滑に行いながら管路を形成することができる。
【0052】
さらに、請求項4に係る発明によれば、管体の前端に環状部材の後端を一体に固着して、この環状部材の前端部に外筒の後端を接合させて外筒をこの環状部材を介して管体に連結してあり、さらに、該環状部材の内周面と掘削機本体の内筒後端部外周面とのいずれか一方に周方向に小間隔を存して突出片を突設し、他方にこれらの突出片間に介挿した介入片を突設してこれらの突出片と介入片とによりトンネル掘削機のローリング防止手段を構成しているので、カッタヘッドの回転反力によって掘削機本体の内筒がカッタヘッドの回転方向に回動しようとし、その回動力が推進反力伝達部材を介して外筒に伝達してトンネル掘削機全体がローリングしようとするが、掘削機本体の内筒と管体の前端に一体に固着している環状部材とを連結している上記突出片と介入片とからなるローリング防止手段によって上記回動力が強固に受止され、トンネル掘削機のローリングを確実に防止することができる。
【図面の簡単な説明】
【図1】管体の先端に接続したトンネル掘削機全体の簡略縦断側面図、
【図2】カッタヘッドの正面図、
【図3】推進反力伝達部材とローリング防止手段部分の簡略縦断背面図、
【図4】管路を形成している状態の簡略縦断側面図、
【図5】管路形成後にカッタヘッドを縮径させた状態の簡略横断平面図、
【図6】掘削機本体を回収可能な状態にした簡略縦断側面図、
【図7】排土手段を撤去する状態の簡略縦断側面図、
【図8】掘削機本体を回収している状態の簡略縦断側面図、
【図9】方向修正ジャッキを回収している状態の簡略縦断側面図、
【図10】本発明の別な実施の形態を示す簡略縦断側面図、
【図11】推進反力伝達部材を取り外した状態の簡略縦断側面図。
【符号の説明】
A シールド掘削機
B 発進立坑
1 外筒
3 推進反力伝達部材
3a 垂直矩形状板片
3b 水平矩形状板片
5 環状部材
6 ローリング防止手段
7 方向修正ジャッキ
10 掘削機本体
11 内筒
12 隔壁
13 カッタヘッド
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a pipe line forming tunnel excavator in which a pipe is formed by burying a pipe body while digging a tunnel to a predetermined length in the ground, and thereafter, the pipe is formed to be removed rearward through the pipe and can be recovered. Things.
[0002]
[Prior art]
In the shield work for forming a pipeline in the ground, a tunnel excavator is excavated from a start shaft toward a reaching shaft, and every time a tunnel of a certain length is excavated, the tunnel excavator is followed by the tunnel excavator. Long buried pipes are sequentially added to form a pipeline, and tunnel excavators that reach the reaching shaft are usually recovered from the inside of the reaching shaft to the ground, but the reaching shaft is located in the existing manhole. In the case of a narrow shaft such as the above, or when there is no reaching shaft, or when there is no reaching shaft such as when docking two tunnel excavators underground, tunnel excavation from the reaching side The machine cannot be removed.
[0003]
Therefore, after excavation, the tunnel excavator must be dismantled and removed to the starting shaft side through the pipeline and collected, and there is a problem that the removal and collection work requires remarkable labor and labor. In particular, in the case of a tunnel excavator that forms a small-diameter pipe having a diameter of 3000 mm or less, it is extremely difficult to remove the work in a narrow work space.
[0004]
For this reason, the tunnel excavator is inserted and fixed in the first facility pipe, and the cutter head of the tunnel excavator protruding forward from the opening end of the first facility pipe is rotated while the facility is located on the starting shaft side. By pushing the pipe, the tunnel excavator is excavated to excavate the tunnel, and each time a fixed length tunnel is excavated, the facility pipe is sequentially added to form a pipeline, and then, after the excavation is completed, After reducing the cutter head to be smaller than the inner diameter of the facility pipe and releasing the fixation of the shield excavator to the first facility pipe, retreat to the starting shaft through the pipeline without dismantling the shield excavator, 2. Description of the Related Art Recovery from a starting shaft to the ground side is performed (for example, see Patent Document 1).
[0005]
[Patent Document 1]
Japanese Patent Publication No. 7-68871 (pages 2 to 5, FIG. 1)
[0006]
[Problems to be solved by the invention]
However, according to the pipe line forming method as described above, as a means for fixing the excavator body to the facility pipe, the pressing bolt protrudes out of the skin plate by passing a pressing bolt through the skin plate between the inner and outer surfaces. The pressing plate attached to the tip is pressed against the inner surface of the facility pipe, and the fixing means supports the propulsion reaction force acting on the excavator body. Acting in a direction perpendicular to the vertical direction, it is not possible to obtain a sufficient supporting force, and there is a possibility that the excavator body may retreat or the facility pipe may be damaged.
[0007]
Further, since the rotational reaction force of the cutter head during tunnel excavation is supported by the press-contact force (frictional force) between the pressing plate attached to the tip of the pressing bolt and the inner surface of the facility pipe, the pressing bolt uses this pressing bolt. The press contact force cannot reliably support the rotational reaction force of the cutter head, and there is a problem that slip occurs and the excavator body rolls.
[0008]
The sealing mechanism between the tunnel excavator and the facility pipe is such that a seal ring is inserted into a groove of a metal holder externally fitted to the skin plate, and this metal holder is attached to the front end face of the first facility pipe. And the seal ring is in close contact with the front auxiliary plate protruding from the outer peripheral surface of the facility pipe, so that when the tunnel excavator is retracted through the pipeline, the metal holder is used. Must be removed, however, it is extremely difficult to remove the metal holder outside the skin plate from the inside of the skin plate, and there is a problem that the removal operation requires a considerable amount of time.
[0009]
The present invention has been made in view of the above-described problems, and an object thereof is to be able to firmly receive a propulsion reaction force during tunnel excavation and to eliminate the occurrence of rolling, It is still another object of the present invention to provide a tunnel excavator for forming a pipeline in which collection and removal operations of the tunnel excavator through the pipeline after the tunnel excavation can be performed smoothly and efficiently.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, a pipe excavation tunnel excavator according to the present invention is characterized in that a pipe is sequentially buried in the tunnel while excavating the tunnel in the ground, as described in claim 1. A tunnel excavator for forming a path, comprising: an outer cylinder provided in front of a first tubular body and having an outer diameter substantially equal to the outer diameter of the tubular body, and integrally provided in a front end portion of the outer barrel. A ring body having an inner diameter smaller than the inner diameter of the tube body, an inner cylinder slidably contacting an inner peripheral end surface of the ring body via a sealing material, and a partition provided at a front portion of the inner cylinder, A cutter head rotatably supported by the partition and excavating a ground in front of the outer cylinder from the open end of the outer cylinder; and the excavator body including the inner cylinder, the partition, and the cutter head is provided on an inner periphery of the outer cylinder. The surface is connected via a propulsion reaction force transmitting member that can be separated.
[0011]
In the pipe line forming tunnel excavator configured as described above, the invention according to claim 2 is the structure of the propulsion reaction force transmission member, which has two connection surfaces orthogonal to each other, and excavates one of the connection surfaces. The other connection surface is fixed to the inner cylinder behind the partition wall of the machine body so as to be detachable from the inner peripheral surface of the outer cylinder, respectively. One connection surface of the surface is detachably fixed to the back surface of the partition wall of the excavator body, and the other connection surface is detachably fixed to the inner peripheral surface of the outer cylinder.
[0012]
The invention according to claim 4 is that the rear end of the annular member is integrally fixed to the front end of the tubular body, and the rear end of the outer cylinder is joined to the front end of the annular member to connect the outer cylinder to the annular member. Are further connected to the pipe via an inner peripheral surface of the annular member and an outer peripheral surface of an inner cylinder rear end portion of the excavator main body. It is characterized in that it protrudes, and on the other side, an intervening piece inserted between these protruding pieces protrudes, and the protruding piece and the intervening piece constitute rolling prevention means of the tunnel excavator.
[0013]
[Action]
In the starting shaft, the rear end of the outer tube is connected to the front end surface of the first tube, and the excavator body is installed in the outer tube. While expanding the cutter head to approximately the same diameter as the outer pipe and rotating the cutter head, the leading pipe is pushed from the inside of the starting shaft to excavate and tunnel the tunnel while excavating a tunnel underground. When the first pipe is pushed into the ground, the next pipe is made to follow, and thereafter, the pipe is added by a constant length by the tunnel excavator every time the pipe is excavated, and the pipe is successively made to follow the tunnel excavator. Form a road.
[0014]
At the time of forming this conduit, the propulsive force of the tubular body is transmitted from the leading tubular body to the outer cylinder connected to the tubular body, and furthermore, the inner peripheral surface of this outer cylinder and the inner cylinder of the tunnel excavator are integrated. The propulsion reaction force acting on the tunnel excavator is transmitted to the tunnel excavator via the propulsion reaction force transmission member connected to the pipe, and is supported by the outer cylinder integral with the pipe via the propulsion reaction force transmission member. Is done.
[0015]
In this case, the propulsion reaction force transmission member has two connection surfaces orthogonal to each other, and one connection surface is integrally fixed to the rear end of the inner cylinder of the excavator body or the back surface of the partition wall, and The connection surface is detachably fixed to the inner peripheral surface of the outer cylinder, whereby the propulsion reaction force can be reliably and firmly supported from the outer cylinder to the tube via the propulsion reaction force transmission member, The pipe can be formed while the tunnel excavator smoothly excavates the tunnel.
[0016]
Further, when the excavator body is recovered after forming a pipe of a predetermined length, the work for separating the propulsion reaction force transmitting member can be easily performed from the inside of the excavator body, and the diameter of the cutter head is made smaller than the inner diameter of the pipe. Thereafter, the excavator body can be efficiently collected and removed through the pipeline. The burying of the pipe body can be performed not only by the propulsion method described above but also by employing a shield method.
[0017]
Also, during tunnel excavation, the inner cylinder of the excavator body tries to roll with respect to the outer cylinder due to the rotational reaction force of the cutter head, but the rear end of the annular member is integrally fixed to the front end of the pipe body. The rear end of the outer cylinder is joined to the front end of the annular member to form a structure in which the outer cylinder is connected to the pipe via the annular member. Tunnel excavation is achieved by projecting a protruding piece at a small interval in the circumferential direction on one of the end outer peripheral surfaces and projecting an intervening piece inserted between these protruding pieces on the other. The turning force of the machine to be rolled can be firmly received by the pipe via these projecting pieces and the intervention piece, and the occurrence of rolling can be reliably prevented.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, a specific embodiment of the present invention will be described with reference to the drawings. A tunnel excavator includes an outer cylinder 1 made of a steel pipe having an outer diameter equal to the outer diameter of a pipe P to be buried, The excavator main body 10 is disposed, and the excavator main body 10 has an outer diameter smaller than the inner diameter of the pipe P, and is provided at a front portion of the inner cylinder 11 so that an outer peripheral end face thereof is inward. A partition 12 is integrally fixed to the inner peripheral surface of the cylinder 11, and a cutter head 13 rotatably supported by the partition 12 and excavating the ground facing the open end of the outer cylinder.
[0019]
The outer cylinder 1 includes inner and outer double cylindrical peripheral wall portions 1a and 1b, and these cylindrical peripheral wall portions 1a and 1b have their front and rear ends integrally connected by annular connecting members 1c and 1d. The front and rear ends of the outer peripheral wall portion 1a are made to protrude from the front and rear ends of the inner peripheral wall portion 1b by a certain length, respectively, 1a1 and 1a2, and the inner diameter of the inner peripheral wall portion 1b is substantially equal to the inner diameter of the pipe P. Has formed. The excavator body 10 is disposed in the inner peripheral wall 1b of the outer cylinder 1 with the inner cylinder 11 disposed at a small distance from the inner peripheral surface of the inner peripheral wall 1b. The guide roller 2 is rotatably supported at least at a plurality of locations on the lower peripheral portion of the inner peripheral wall 1b and is supported on the inner peripheral surface of the outer cylinder 1, that is, on the front end of the inner peripheral surface of the inner peripheral wall 1b.
[0020]
Further, the rear end of the inner cylinder 11 of the excavator body 10 is connected to the outer cylinder 1 via a propulsion reaction force transmitting member 3 that can be separated from the inner peripheral surface of the inner peripheral wall 1b of the outer cylinder 1. Then, the propulsion reaction force generated when the tunnel excavator excavates is supported by the pipe from the inner cylinder 11 of the excavator body 10 via the propulsion reaction force transmission member 3, the outer cylinder 1, and the annular member 5 described later. Make up.
[0021]
The propulsion reaction force transmitting member 3 is formed by combining a vertical rectangular plate 3a and a horizontal rectangular plate 3b at right angles to each other and integrally connecting and fixing them with a reinforcing rib 3c. And the outer surface of the horizontal rectangular plate 3b form two connection surfaces orthogonal to each other. On the other hand, at a plurality of positions (four in the figure) in the circumferential direction at the rear end of the inner cylinder 11 of the excavator body 10, vertical connecting plates which are surface-connected to the vertical rectangular plate 3a of the propulsion reaction force transmitting member 3 The piece 3d is integrally fixed together with the reinforcing member 3e, and the vertical rectangular plate 3a of the propulsion reaction force transmitting member 3 is joined to each of the vertical connecting plate 3d and connected and fixed by a plurality of bolts 3f. ing.
[0022]
Further, the horizontal rectangular plate 3b of the propulsion reaction force transmitting member 3 integrally connected to each of the vertical rectangular plates 3a of the inner cylinder 11 is attached to the inner peripheral surface of the rear end of the outer cylinder 1, that is, of the outer cylinder 1. It is surface-joined to a horizontal connecting plate piece 3g detachably fixed to the inner peripheral surface of the rear end of the inner peripheral wall portion 1b, and integrally connected and fixed by a plurality of bolts 3f. To make the horizontal rectangular plate 3b of the propulsion reaction force transmitting member 3 detachable from the inner cylinder 11, the horizontal connecting plate 3g is fixed to the inner peripheral surface of the inner cylinder 11 by welding. The horizontal rectangular plate 3b may be detachably fixed to the horizontal connecting plate 3g with bolts 3f. The horizontal connecting plate 3g may be horizontally fixed to the inner peripheral surface of the inner cylinder 11 without being fixed by welding. Along with the rectangular plate 3b, it may be detachably fixed to the inner cylinder 11 by bolts 3f.
[0023]
At the front end of the outer cylinder 1, a ring 1e is integrally formed on the inner peripheral surface of the inner peripheral wall 1b in a direction extending inward from the inner peripheral end of the front annular connecting member 1c. The outer peripheral surface of the front end of the inner cylinder 11 of the excavator body 10 is slidably contacted with the inner peripheral end surface of the ring body 1 e via the seal material 4.
[0024]
The rear end of the outer tube 1 is not connected directly to the front end of the tube 1, but the tube excavator can be bent with respect to the tube 1 so that the direction can be corrected. 1 is connected via an annular member 5 integrally fixed to the front end.
[0025]
Specifically, the annular member 5 has a hollow rectangular cross section having an inner diameter that is the same as the inner diameter of the tube P and the outer tube 1 and an outer diameter slightly smaller than the outer diameter of the tube P and the outer tube 1. The rear end surface 5a and the protruding piece 5b projecting rearward from the rear end outer peripheral surface are integrally fixed to the front end surface and the front end outer peripheral surface of the tubular body P in a state where they are in close contact with each other. The rear end face of the outer cylinder 1 is joined to and received by the front end face 5c of the annular member 5 without fixing, and the rear end protruding portion 1a2 of the outer peripheral wall 1a of the outer cylinder 1 is interposed via the sealing material 4a. The outer peripheral surface of the annular member 5 is bent and fitted to the front end.
[0026]
As shown in FIG. 3, horizontally long rectangular projecting pieces 6a, 6a long in the front-rear direction at small intervals in the circumferential direction are attached to the excavator body 10 at two upper positions on the inner peripheral surface of the annular member 5. Of the inner cylinder 11 projecting toward the outer peripheral surface of the rear end of the inner cylinder 11, and at the upper two locations on the outer peripheral surface of the rear end of the inner cylinder 11, a horizontally elongated rectangular shape inserted between the projecting pieces 6 a, 6 a is provided. Of the tunnel excavator are formed by projecting the intervening piece 6b and the projecting pieces 6a, 6a and the intervening piece 6b. That is, a tunnel consisting of the outer cylinder 1 and the excavator body 10 is received by receiving both side surfaces of the intervention piece 6b integral with the inner cylinder 11 on opposing inner surfaces of the protruding pieces 6a, 6a integral with the annular member 5. It is configured to prevent the entire excavator from rolling with respect to the pipe P. Note that the protruding pieces 6a, 6a may be provided on the inner cylinder 11 side, and the intervention piece 6b may be provided on the annular member 5 side.
[0027]
In addition, the upper, lower, left, and right portions of the outer cylinder 1 and the annular member 5 are connected by a direction correcting jack 7. Specifically, the upper, lower, left and right portions of the rear half of the inner peripheral wall portion 1b of the outer cylinder 1 are cut off, and the direction correcting jacks 7 are disposed along the upper, lower, left and right inner peripheral surfaces of the outer peripheral wall portion 1a at the cut portion. The front end of the direction correcting jack 7 is rotatably connected to a bearing piece 8 projecting from the inner peripheral surface of the outer peripheral wall 1a of the outer cylinder 1 by a pin 8a, while the rear end is connected to the annular member. 5 is rotatably connected to a bearing piece 9 fixed to the front end of the housing 5 by a pin 9a.
[0028]
The cutter head 13 of the excavator body 10 has its rotation center axis 14 rotatably supported at the center of the partition wall 12, and is orthogonal to the rotation center axis 14 from the front end of the rotation center axis 14. As shown in FIG. 2 toward the direction (outer diameter direction), a plurality of pieces having a length smaller than the radius of the inner peripheral surface of the outer cylinder 1 or the pipe P and having a length substantially equal to the radius of the inner cylinder 11. (Six in the figure) spoke portions 13a are radially protruded, and the outer-facing surfaces of the adjacent spoke portions 13a are integrally connected by an arc-shaped connecting member 13b.
[0029]
Further, cutter bits 15a are protruded forward from the spoke portions 13a at appropriate intervals in the length direction, and are arranged alternately in the plurality of spoke portions 13a. The spoke portion 13a 'is capable of extending its length from a length shorter than the radius of the inner peripheral surface of the outer cylinder 1 or the pipe P to a longer length reaching the outer peripheral surface of the outer cylinder 1 as described above. And the outer diameter of the cutter head can be reduced from a diameter substantially equal to the outer diameter of the outer cylinder 1 to a diameter smaller than the inner diameter of the pipe P.
[0030]
As a specific structure of the expandable and contractible spoke portion 13a ', the spoke portion 13a' is formed in a cylindrical hollow spoke portion 13a 'having an open distal end surface, and inside the hollow spoke portion 13a', A jack 13 accommodates a spoke piece 13a '' having a plurality of cutter bits 15b protruding forward on both sides of the front surface, and is attached to a deep bottom portion in a hollow spoke portion 13a 'as shown in FIG. By the operation of 16, the spoke piece 13a '' is made to protrude and retract from the open end of the hollow spoke portion 13a '. A center bit 15c protrudes from the front surface of the rotation center shaft 14 of the cutter head 13.
[0031]
Further, arm members 17 are protruded rearward at several places on the outer peripheral portion of the rear surface of the cutter head 13, and the rear ends of these arm members 17, 17 are integrally connected by an annular frame member 18. An annular frame member 18 is rotatably supported on the inner peripheral surface of the inner cylinder 11, and an internal gear 19 is fixed to the rear end surface of the annular frame member 18. A drive motor 20 is mounted on a rear surface of an outer peripheral portion of the partition wall 12, and a small gear 21 fixed to a rotation shaft of the drive motor 20 is meshed with the internal gear 19 so that the cutter head 13 is rotated by the drive motor 20. Make up.
[0032]
Further, a space between the rear surface of the cutter head 13 and the front surface of the partition wall 12 is formed in a sediment chamber 22 in which sediment excavated by the cutter head 12 is taken and temporarily retained. The excavated soil is discharged backward through the soil means 23.
[0033]
As shown in FIG. 1, the discharging means 23 comprises a screw conveyor. The opening at the front end of the discharging means 23 penetrates the lower part of the partition 12 and faces the lower end of the earth and sand chamber 22. It is arranged in a state of being inclined obliquely upward.
[0034]
Next, a method of forming a pipeline in the ground by the tunnel excavator A for pipeline formation configured as described above will be described. First, the tunnel excavator A is installed in the starting shaft B, the cutter head 13 is in an expanded state, and a pipe formed of a fume tube is provided at the rear end of the tunnel excavator A via the annular member 5. The front ends of the body P are integrally connected. In this state, the cutter head 12 is rotated, and the rear end face of the pipe P is pushed forward by a propulsion means C such as a propulsion jack provided in the rear portion of the starting shaft B to excavate the tunnel.
[0035]
When the tunnel excavator A propells a certain length from the starting shaft B into the ground, the front end of the next pipe P is connected to the rear end of the pipe P, and the rear end of this pipe P is connected to the propulsion means C. The tunnel excavator A is further excavated along the tunnel planning line in a state where the first pipe P is followed by the pipe P. Hereinafter, a tunnel of a certain length is excavated by the tunnel excavator A. At each start shaft B side, the pipes P are sequentially pushed forward while being added to each other to form a pipe as shown in FIG. The earth and sand excavated by the cutter head 13 is discharged from the earth and sand chamber 22 to the starting shaft B through the earth discharging means 23.
[0036]
The propulsion force of the propulsion means C comes into contact with and is received by the front end of the annular member 5 from the rearmost tube P via the annular member 5 integrally fixed to the front end of the first tube P. It is transmitted to the outer cylinder 1 of the tunnel excavator A, and further transmitted from the outer cylinder 1 to the excavator body 10 via the propulsion reaction force transmitting member 3 to excavate while pressing the cutter head 13 against the face. A protruding piece 7a is provided on the inner peripheral surface of the cylinder portion of the direction correcting jack 7 in the central portion in the longitudinal direction, and the protruding piece 7a is connected to the inner cylinder of the excavator body 10 as shown in FIG. If the propulsion force is connected to the projecting piece 11a protruding from the outer peripheral surface of the excavator body 10 via the direction correcting jack 7 and the projecting pieces 7a, 11a by the bolt, 11 can be transmitted.
[0037]
On the other hand, the reaction force of the propulsion force is transmitted from the excavator main body 10 supporting the cutter head 13 to the external cylinder via the propulsion reaction force transmission member 3 which integrally connects the inner cylinder 11 and the outer cylinder 1. 1 and further supported by a tube P via an annular member 5 receiving the rear end of the outer cylinder 1. At this time, the propulsion reaction force transmitting member 3 is formed by combining the vertical rectangular plate 3a and the horizontal rectangular plate 3b at right angles to each other and integrally connecting and fixing them by the reinforcing rib 3c. The vertical connecting plate 3d fixed to the rear end of the inner cylinder 11 of the excavator body 10 is surface-joined to the front surface of the vertical rectangular plate 3a in FIG. Since the piece 3b is surface-joined to a horizontal connecting plate piece 3g detachably fixed to the rear end inner peripheral surface of the outer cylinder 1 and integrally connected and fixed by a plurality of bolts 3e, the cutter head 13 is provided. Can be firmly received by the pipe body P via the propulsion reaction force transmitting member 3.
[0038]
Also, while the tunnel is being excavated, the inner cylinder 11 of the excavator body 10 tends to roll due to the rotational reaction force of the cutter head 13, but the horizontally long rectangular shape protruding from the outer peripheral surface of the rear end of the inner cylinder 11. Is inserted between the projecting pieces 6a, 6a projecting in parallel from the inner peripheral surface of the annular member 5 integrally fixed to the front end of the leading pipe P. The piece 6b is received by one of the opposing inner surfaces of the protruding pieces 6a, 6a, so that the piece 6b can be reliably prevented from rolling with respect to the pipe P, and furthermore, the rotating force by which the inner cylinder 11 attempts to roll. Is prevented from being transmitted to the outer cylinder 1 and the rolling of the entire tunnel excavator A can be prevented.
[0039]
Further, when the planned tunnel for forming the pipeline is curved or the direction needs to be corrected while the tunnel excavator A is excavating the tunnel, the outer cylinder 1 of the tunnel excavator A and the head of the tunnel are excavated. Of the four direction correcting jacks 7 connecting the annular members 5 fixed to the tip of the tubular body P, a predetermined direction correcting jack 7 is operated to change the direction of the entire tunnel excavator A to the annular member 5. Orient to the planned curve tunnel or to the direction you want to correct.
[0040]
For example, when it is desired to change the direction of the tunnel excavator A to the right side, when the right-side direction correcting jack 7 is deactivated or contracted and the left-side direction correcting jack 7 is extended, the front outer peripheral surface of the annular member 5 is obtained. In contrast, the rear end protruding portion 1a1 of the outer cylinder 1 of the tunnel excavator A is bent rightward via the sealing material 4a. The angle of refraction can be adjusted to be large or small by the amount of extension of the left-side direction correction jack 7, so that the direction correction and the construction of a curved tunnel during excavation can be performed easily and accurately.
[0041]
Next, after a tunnel of a predetermined length is excavated by the tunnel excavator A to form a conduit, the excavator body 10 is removed and recovered by projecting from the open end of the hollow spoke portion 13a 'in the cutter head 13. The spoke piece 13a '' which expands the cutter head 13 is stored in the spoke portion 13a 'by contraction of the jack 16 as shown in FIG. 5, and the entire outer diameter of the cutter head 13 is reduced to the outer cylinder 1 and the pipe. The diameter is smaller than the inner diameter of the body P.
[0042]
Further, in the propulsion reaction force transmitting member 3 connecting the rear end of the inner cylinder 11 and the outer cylinder 1, the horizontal connecting plate piece 3g fixed to the inner peripheral surface of the rear end of the inner peripheral wall 1b of the outer cylinder 1 is removed. A part of the reinforcing rib 3c that is connected to the vertical rectangular plate 3a and the horizontal rectangular plate 3b of the propulsion reaction force transmitting member 3 is cut off and removed, as shown in FIG. In this way, the rear guide roller 2 ′ is rotatably supported by the reinforcing rib 3 c so as to be supported on the inner peripheral surface of the outer cylinder 1. At this time, the removal of the horizontal connecting plate 3g of the propulsion reaction force transmitting member 3 and the mounting work of the rear guide roller 2 'are performed because the propulsion reaction force transmitting member 3 is disposed in the tunnel excavator A. It can be done easily.
[0043]
Further, the projecting pieces 6a, 6a and the intervention piece 6b constituting the anti-rolling means 6 are removed by cutting or the like, and as shown in FIG. , And is collected and removed to the starting shaft B through the pipeline. If the protruding pieces 6a, 6a of the anti-rolling means 6 fixed to the inner peripheral surface of the outer cylinder 1 do not hinder the retreat of the cutter head 13, it is not always necessary to remove them.
[0044]
Thus, after the cutter head 13 is reduced in diameter, the connection and fixation of the inner cylinder 11 of the excavator body 10 to the outer cylinder 1 of the tunnel excavator A are released, and the earth discharging means 23 is removed. When the pulling member 10 is pulled from the rear side by a suitable pulling means (not shown), the sealing member 4 of the ring body 1 e in which the outer peripheral surface of the front end of the inner cylinder 11 projects inward from the inner peripheral surface of the front end of the outer cylinder 1. As shown in FIG. 8, the excavator main body 10 is started while rolling the front and rear guide rollers 2, 2 'on the inner peripheral surface of the pipe P as shown in FIG. The pit B is collected and removed from the starting pit B to the ground. Thereafter, as shown in FIG. 9, the direction correcting jack is removed, removed, and recovered. When the tunnel excavator A is collected, the ground in front of the cutter head may be solidified by injecting a chemical solution or the like.
[0045]
In the above embodiment, the rear end of the inner cylinder 11 of the excavator body 10 is detachably connected to the inner peripheral surface of the inner peripheral wall 1 b of the outer cylinder 1 by the propulsion reaction force transmitting member 3. However, as shown in FIGS. 10 and 11, a notch 24 having a size to which the propulsion reaction force transmitting member 3 can be attached is provided at predetermined intervals in the circumferential direction at the front end of the inner cylinder 11 on the back side of the partition wall 12. A vertical connecting plate 3d 'is fixed to the rear surface of the partition wall in the cutout portion 24, and the vertical rectangular plate 3a of the propulsion reaction force transmitting member 3 is integrally fixed to the vertical connecting plate 3d' by bolts 3f. A plurality of horizontal rectangular plate pieces 3b of the propulsion reaction force transmitting member 3 are joined to a horizontal connecting plate piece 3g which is detachably fixed to the inner peripheral surface of the rear end of the inner peripheral wall portion 1b of the outer cylinder 1 by surface joining. May be integrally connected and fixed by the bolt 3f. Since other structures are the same as those of the above-described embodiment, the same portions are denoted by the same reference numerals and detailed description is omitted.
[0046]
Further, although a fume pipe is used as the pipe body P that forms the pipe, a steel pipe may be used, and the outer cylinder 1 in the tunnel excavator is preferably made of steel, but is preferably made of concrete. There is nothing that cannot be applied.
[0047]
Further, the spoke portion 13a 'of the cutter head 13 is formed such that the spoke portion 13a' is hollow, and a plurality of cutter bits 15b project forward from both sides of the front surface into the hollow spoke portion 13a '. The spokes 13a '' are stored in the hollow spokes 13a ', and the jacks 16 attached to the inner bottom portion of the hollow spokes 13a' cause the spokes 13a '' to protrude and retract from the open ends of the hollow spokes 13a '. Although the outer diameter of the head 13 is configured to be enlarged or reduced, a fixed length spoke piece is detachably connected to the outer end of the spoke part 13a ', and the cutter head 13 is connected in a state where the spoke piece is connected. The outer diameter is substantially equal to the outer diameter of the outer cylinder 1, and the outer diameter of the cutter head 13 is configured to be a diameter that can be removed through the inside of the conduit when the spoke pieces are removed. Good.
[0048]
Further, the pipeline is formed by sequentially propelling and burying the pipe body P by the propulsion method, but every time a tunnel of a certain length is excavated by the tunnel excavator, the segments are assembled and attached to the tunnel excavator. A plurality of propulsion jacks may be pressed against the front end surface of the segment to extend the segment, and the present invention may be applied to a shield method in which a tunnel is excavated.
[0049]
【The invention's effect】
As described above, according to the pipeline excavating machine of the present invention, as described in claim 1, by excavating the tunnel in the ground and sequentially burying the pipe in the tunnel, An outer cylinder provided in front of the first tubular body and having an outer diameter substantially equal to the outer diameter of the tubular body, and integrally provided in a front end portion of the outer tubular body. A ring having an inner diameter smaller than the inner diameter of the tubular body, an inner cylinder slidably contacting the inner peripheral end face of the ring via a sealant, a partition provided at a front portion of the inner cylinder, A cutter head rotatably supported by the partition wall and excavating the ground in front of the outer cylinder from the open end of the outer cylinder; and the excavator body including the inner cylinder, the partition wall, and the cutter head is provided with an inner peripheral surface of the outer cylinder. Because it is connected via a propulsion reaction force transmitting member that can be separated from the Can reliably transmit the propulsive force from the rear side of the tunnel excavator to the inner cylinder of the excavator body via the outer cylinder and the propulsion reaction force transmitting member, and the partition provided at the front of the inner cylinder The tunnel can be smoothly excavated by the cutter head rotatably supported on the tunnel.
[0050]
Further, the propulsion reaction force acting on the excavator body can be firmly supported from the outer tube to the pipe via the propulsion reaction force transmission member, and the propulsion reaction force transmission member is exposed in the tunnel excavator. Since the pipe is provided with a predetermined length, the work for separating the propulsion reaction force transmitting member from the inner peripheral surface of the outer cylinder can be easily performed from the inside of the machine, and the outer diameter of the cutter head can be reduced by the pipe body. After the inner tube is formed to have a diameter smaller than the inner diameter of the ring, the inner tube is detached rearward from the sealing material attached to the inner peripheral end surface of the ring while the outer tube is left in the ground, and the inner tube and the inner tube The collection and removal of the entire excavator body can be efficiently performed using the peripheral surface as a guide surface.
[0051]
According to the second and third aspects of the present invention, the propulsion reaction force transmitting member has two connection surfaces orthogonal to each other, and one of the connection surfaces is a rear end of the inner cylinder of the excavator body. Alternatively, the propulsion reaction force acting on the excavator body is transmitted to the propulsion reaction force because the excavator body is integrally fixed to the rear wall of the partition wall and the other connection surface is detachably fixed to the inner peripheral surface of the outer cylinder. The pipe can be reliably and firmly supported from the inner peripheral surface of the outer cylinder to the pipe through two perpendicular connection surfaces of the member, and the pipe can be formed while the tunnel excavator smoothly excavates the tunnel. it can.
[0052]
Further, according to the invention according to claim 4, the rear end of the annular member is integrally fixed to the front end of the tubular body, and the rear end of the outer cylinder is joined to the front end of the annular member so that the outer cylinder is formed in the annular shape. The projecting piece is connected to the pipe via a member, and further has a small circumferential interval on one of the inner peripheral surface of the annular member and the outer peripheral surface of the rear end of the inner cylinder of the excavator body. And an intervening piece interposed between these protruding pieces is protruded on the other side, and these protruding pieces and intervening pieces constitute rolling prevention means of the tunnel excavator. The inner cylinder of the excavator body tries to rotate in the rotation direction of the cutter head due to the reaction force, and the rotational power is transmitted to the outer cylinder via the propulsion reaction force transmission member, and the entire tunnel excavator tries to roll, By connecting the inner cylinder of the excavator body and the annular member integrally fixed to the front end of the pipe That the anti-rolling means consisting of the projection piece and intervention piece the turning force is firmly catch, it is possible to reliably prevent the rolling of the tunnel boring machine.
[Brief description of the drawings]
FIG. 1 is a simplified longitudinal side view of the entire tunnel excavator connected to the tip of a pipe,
FIG. 2 is a front view of the cutter head,
FIG. 3 is a simplified longitudinal rear view of a propulsion reaction force transmitting member and a rolling prevention unit;
FIG. 4 is a simplified longitudinal side view of a state in which a pipe is formed;
FIG. 5 is a simplified cross-sectional plan view showing a state in which the diameter of the cutter head has been reduced after forming a conduit;
FIG. 6 is a simplified vertical sectional side view in which the excavator body can be recovered;
FIG. 7 is a simplified vertical sectional side view showing a state in which the discharging means is removed.
FIG. 8 is a simplified vertical sectional side view of a state where the excavator body is being collected.
FIG. 9 is a simplified vertical side view of a state in which the direction correcting jack is being collected.
FIG. 10 is a simplified longitudinal side view showing another embodiment of the present invention,
FIG. 11 is a simplified vertical cross-sectional side view in a state where a propulsion reaction force transmitting member is removed.
[Explanation of symbols]
A shield excavator
B Start shaft
1 outer cylinder
3 Propulsion reaction force transmission member
3a Vertical rectangular plate
3b Horizontal rectangular plate
5 Ring member
6 Rolling prevention means
7 direction correction jack
10 Excavator body
11 inner cylinder
12 partition
13 cutter head

Claims (4)

地中にトンネルを掘削しながら該トンネル内に管体を順次、埋設することにより管路を形成していくトンネル掘削機であって、先頭の管体の前方に設けられ外径が該管体の外径と略同一径の外筒と、この外筒の前端部内に一体に設けられ、内径が上記管体の内径よりも小径のリング体と、このリング体の内周端面にシール材を介して摺接した内筒と、この内筒の前部に設けられた隔壁と、この隔壁に回転自在に支持されて上記外筒の開口端から前方の地盤を掘削するカッタヘッドとを備え、上記内筒と隔壁とカッタヘッドとからなるこの掘削機本体を上記外筒の内周面に切り離し可能な推進反力伝達部材を介して連結していることを特徴とする管路形成用トンネル掘削機。What is claimed is: 1. A tunnel excavator for forming a pipeline by sequentially burying a pipe in a tunnel while excavating the tunnel in the ground, wherein the pipe has an outer diameter provided in front of a first pipe. An outer cylinder having substantially the same diameter as the outer diameter of the outer cylinder, a ring body provided integrally with the front end of the outer cylinder and having an inner diameter smaller than the inner diameter of the tubular body, and a sealing material provided on an inner peripheral end surface of the ring body. An inner cylinder slidably contacted through the inner cylinder, a partition wall provided at a front portion of the inner cylinder, and a cutter head rotatably supported by the partition wall and excavating a ground in front from an open end of the outer cylinder, The excavator body including the inner cylinder, the partition wall, and the cutter head is connected to the inner peripheral surface of the outer cylinder via a separable propulsion reaction force transmitting member. Machine. 推進反力伝達部材は互いに直交する2つの接続面を有していて、一方の接続面を掘削機本体の隔壁より後方の内筒に、他方の接続面を外筒の内周面にそれぞれ切り離し可能に固着していることを特徴とする請求項1に記載の管路形成用トンネル掘削機。The propulsion reaction force transmitting member has two connection surfaces that are orthogonal to each other. One connection surface is separated from the inner cylinder behind the partition wall of the excavator body, and the other connection surface is separated from the inner peripheral surface of the outer cylinder. The tunnel excavator for forming a pipeline according to claim 1, wherein the tunnel excavator is fixed as possible. 推進反力伝達部材は互いに直交する2つの接続面を有していて、一方の接続面を掘削機本体の隔壁背面に、他方の接続面を外筒の内周面にそれぞれ切り離し可能に固着していることを特徴とする請求項1に記載の管路形成用トンネル掘削機。The propulsion reaction force transmission member has two connection surfaces orthogonal to each other, and one of the connection surfaces is detachably fixed to the back surface of the partition wall of the excavator body, and the other is to the inner peripheral surface of the outer cylinder. The tunnel excavator for forming a pipeline according to claim 1, wherein 管体の前端に環状部材の後端を一体に固着して、この環状部材の前端部に外筒の後端を接合させて外筒をこの環状部材を介して管体に連結してあり、さらに、該環状部材の内周面と掘削機本体の内筒後端部外周面とのいずれか一方に周方向に小間隔を存して突出片を突設し、他方にこれらの突出片間に介挿した介入片を突設してこれらの突出片と介入片とによりトンネル掘削機のローリング防止手段を構成していることを特徴とする請求項1に記載の管路形成用トンネル掘削機。The rear end of the annular member is integrally fixed to the front end of the tubular body, the rear end of the outer cylinder is joined to the front end of the annular member, and the outer cylinder is connected to the tubular body via the annular member, Further, a protruding piece is provided at one of the inner peripheral surface of the annular member and the outer peripheral surface of the rear end of the inner cylinder of the excavator body at a small interval in the circumferential direction, and the other protruding piece is provided between the protruding pieces. 2. The tunnel excavator according to claim 1, wherein an intervening piece interposed is projected to form a means for preventing rolling of the tunnel excavator by the projecting piece and the intervening piece. .
JP2003147513A 2003-05-26 2003-05-26 Tunnel excavator for pipe formation Expired - Lifetime JP3830917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003147513A JP3830917B2 (en) 2003-05-26 2003-05-26 Tunnel excavator for pipe formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003147513A JP3830917B2 (en) 2003-05-26 2003-05-26 Tunnel excavator for pipe formation

Publications (2)

Publication Number Publication Date
JP2004346688A true JP2004346688A (en) 2004-12-09
JP3830917B2 JP3830917B2 (en) 2006-10-11

Family

ID=33534013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003147513A Expired - Lifetime JP3830917B2 (en) 2003-05-26 2003-05-26 Tunnel excavator for pipe formation

Country Status (1)

Country Link
JP (1) JP3830917B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007146464A (en) * 2005-11-28 2007-06-14 Okumura Corp Method and device for recovering tunneling machine
JP2007146465A (en) * 2005-11-28 2007-06-14 Okumura Corp Method of recovering drilling machine body of tunnel excavator and device
JP2009079425A (en) * 2007-09-26 2009-04-16 Okumura Corp Underground joint method of shield excavators
KR101264572B1 (en) 2012-08-16 2013-05-14 대림산업 주식회사 Main pipe installing apparatus within a propulsion pipe in the tunnel construction using semi-shield machine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007146464A (en) * 2005-11-28 2007-06-14 Okumura Corp Method and device for recovering tunneling machine
JP2007146465A (en) * 2005-11-28 2007-06-14 Okumura Corp Method of recovering drilling machine body of tunnel excavator and device
JP4547326B2 (en) * 2005-11-28 2010-09-22 株式会社奥村組 Method and apparatus for collecting tunnel excavator
JP4698395B2 (en) * 2005-11-28 2011-06-08 株式会社奥村組 Excavator body recovery device in tunnel excavator
JP2009079425A (en) * 2007-09-26 2009-04-16 Okumura Corp Underground joint method of shield excavators
KR101264572B1 (en) 2012-08-16 2013-05-14 대림산업 주식회사 Main pipe installing apparatus within a propulsion pipe in the tunnel construction using semi-shield machine

Also Published As

Publication number Publication date
JP3830917B2 (en) 2006-10-11

Similar Documents

Publication Publication Date Title
JP3836467B2 (en) Tunnel excavator
JP4731308B2 (en) Cutter plate for tunnel excavator
JP2004346688A (en) Tunnel excavator for pipe line formation
JP3892412B2 (en) Shield excavator
JP3830918B2 (en) Tunnel excavator for pipe formation
JP5305692B2 (en) Shield excavator
JP4037436B2 (en) Tunnel excavator for pipe formation
JP5384223B2 (en) How to install pipes on natural ground
JP4718990B2 (en) Method of retaining soil near tunnel face
JP4423159B2 (en) Thrust transmission member in tunnel excavator
JP2006037595A (en) Excavator for jacking method and jacking method
JP4966551B2 (en) Recovery method for tunnel excavator
JP4731307B2 (en) Cutter head of tunnel excavator
JP3920878B2 (en) Ring girder in tunnel excavator
JP3853325B2 (en) How to collect and recover shield excavators
JP3884032B2 (en) Tunnel excavator
JP3884033B2 (en) Tunnel excavator
JP2007169944A (en) Cutter plate for tunnel boring machine, and its recovery method
JP7465832B2 (en) Excavator
JP7465831B2 (en) Excavator
JP4409491B2 (en) Tunnel excavation method by tunnel excavator
JP4499931B2 (en) Shield excavator and shield excavation method
JPH01121423A (en) Method of burying branch pipe
JP3875227B2 (en) How to collect and recover shield excavators
JP4879131B2 (en) Underground joining method of shield excavator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060712

R150 Certificate of patent or registration of utility model

Ref document number: 3830917

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150721

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term