JP2004346586A - Excavating apparatus with expansion blade - Google Patents

Excavating apparatus with expansion blade Download PDF

Info

Publication number
JP2004346586A
JP2004346586A JP2003144273A JP2003144273A JP2004346586A JP 2004346586 A JP2004346586 A JP 2004346586A JP 2003144273 A JP2003144273 A JP 2003144273A JP 2003144273 A JP2003144273 A JP 2003144273A JP 2004346586 A JP2004346586 A JP 2004346586A
Authority
JP
Japan
Prior art keywords
wing
enlarged
rod
closing mechanism
excavator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003144273A
Other languages
Japanese (ja)
Inventor
Yusuke Honma
裕介 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Geotop Corp
Original Assignee
Geotop Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Geotop Corp filed Critical Geotop Corp
Priority to JP2003144273A priority Critical patent/JP2004346586A/en
Publication of JP2004346586A publication Critical patent/JP2004346586A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Earth Drilling (AREA)
  • Piles And Underground Anchors (AREA)
  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To positively open and close blades without using a complicated opening/closing mechanism such as a hydraulic cylinder in an excavating apparatus with expansion blades used for providing an enlarged diameter part at a part of an excavated hole in building and civil engineering soil improvement and anchor and pile foundation work of a slope or the like. <P>SOLUTION: This excavating apparatus with the expansion blades is mounted with an expansion blade apparatus in a prescribed position of an excavating rod 41, wherein the expansion blade apparatus is provided with a rotating direction opening/closing mechanism for opening and closing the expansion blades 46 in the rotating direction using resistance generated between the expansion blades 46 and a hole wall or excavated soil by the reverse and normal rotation of the excavating rod 41, and an axial closing mechanism for closing the expansion blades 46 in the axial direction of the excavating rod using force applied to the expansion blades 46 by moving the excavating rod in a pull-out direction. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、建築・土木の地盤改良、法面等のアンカーや杭基礎工事等に使用する拡大翼を有する掘削装置に関する。
【0002】
【従来の技術】
杭の支持力及び引き抜き抵抗を増加させるための手段として、予め杭孔の底部に杭径よりも大径な拡底部を形成し、この拡底部にセメントミルク等を打設して根固め球根を形成することが行われている。
【0003】
従来、前記した杭孔の底部に拡底部を形成する拡底装置として、例えば特許文献1、特許文献2に記載されたものがある。
【0004】
また、例えば軟弱地盤や盛土埋め立て地などの地盤条件の悪い敷地に建築物等の構造物を構築する際、杭軸方向、即ち深度方向に複数の拡径部を所要間隔毎に設けて節付き杭状に形成し、周面摩擦を増大させる工法もある。
【0005】
さらに、建築物等の構造物を地盤に定着させる工法の一つに、アンカー部材を用いたアンカー工法がある。このアンカー部材は、地盤(法面等)に孔を穿設し、その孔に鋼棒等の引張り部材を挿入し、その引張り部材の先端のアンカー定着部を前記孔に圧入したモルタル等で地盤に固定し、頭部をジャッキで緊張してねじや楔で構造物に固定するものであって、このアンカー部材を介して構造物を地盤に定着させているものである。このようなアンカー工法においても、強固なアンカー部材を形成するために、アンカー定着部となる孔の底部に拡底部を設ける。
【0006】
【特許文献1】
特開平9−25779号公報
【特許文献2】
特開平11−6382号公報
【0007】
【発明が解決しようとする課題】
前記した従来の拡底装置では、次のような問題点があった。
【0008】
特許文献1に記載の拡底装置は、逆転により地盤の抵抗を利用して開翼し、正転によって閉翼する機構である。しかし、正転で閉翼するためには、ある程度の孔壁又は掘削土との摩擦力が必要であり、ゆるい地盤では閉翼できない場合がある。また、拡翼機構の付け根に粘土等が詰まり、あるいは共回りして、完全には閉翼できない場合もある。
【0009】
特許文献2に記載の拡底装置は、拡大ビットの昇降により拡大させる構造である。この装置では、昇降のタイミングはクラッチの移動で行うが、実際は共回りを起こし、クラッチが移動しない場合がある。
【0010】
上記の拡底装置は掘削終了後に回収し繰り返し使用されるものであるが、拡大羽根(拡大ビット)が閉翼できなくなると回収できず、最悪の場合は拡底装置と掘削ヘッドをロッドより切り離して土中に放置せざるを得ない場合が生じる等の問題があった。
【0011】
例えば拡大羽根(拡大ビット)の開閉操作に油圧シリンダ等を用いれば、拡大羽根を強制的に開閉できるため、確実に拡大羽根を閉じた状態と開いた状態を維持させることができるものの、開閉機構が複雑になり、高価なものとなる等の問題がある。
【0012】
そこで本発明は、建築・土木の地盤改良、法面等のアンカーや杭基礎工事等において掘削孔の一部に拡径部を設けるために使用される新規な掘削装置を提供するものであり、特に、油圧シリンダ等の複雑な開閉機構を用いることなく、開翼・閉翼を確実に行うことができる拡大翼付き掘削装置を提供するものである。
【0013】
【課題を解決するための手段】
上記の課題を解決する本発明の拡大翼付き掘削装置は、掘削ロッドの逆転・正転により、拡大翼と孔壁又は掘削土との間に生じる抵抗を利用して、該拡大翼を回転方向に開翼・閉翼させるための回転方向開閉機構と、掘削ロッドを引き抜く方向に移動することにより拡大翼に作用する力を利用して、該拡大翼を掘削ロッドの軸方向に閉翼させるための軸方向閉機構と、を具備する拡大翼装置を、掘削ロッドの所定の位置に取り付けたことを特徴とするものである。
【0014】
本発明の拡大翼付き掘削装置によれば、拡大翼を掘削ロッドの回転方向に開翼・閉翼する回転方向開閉機構のみならず、掘削ロッドを引き抜く際に拡大翼に作用する力を利用して拡大翼を掘削ロッドの軸方向に閉翼する軸方向閉機構を設けたことにより、地盤がゆるく、孔壁又は掘削土との摩擦力が十分でない場合にも、確実に拡大翼を閉翼することができる。
【0015】
本発明の拡大翼付き掘削装置は、更なる特徴として、
「前記軸方向閉機構は、前記回転方向開閉機構による前記拡大翼の閉翼が不十分な場合において機能せしめるものであること」、
「前記軸方向閉機構は、掘削ロッドの逆転時に拡大翼が回転方向に開翼している状態では機能しない構造を有すること」、
「前記掘削ロッドの先端には掘削ヘッドが取り付けられ、該掘削ヘッドの上部近傍の位置に前記拡大翼装置、更に該拡大翼装置の上方には掘削土を地上に排土するスクリューオーガが取り付けられており、既製杭の中掘工法に使用されること」、
「前記拡大翼装置が、前記掘削ロッドの長さ方向に所定の間隔をおいて複数取り付けられていること」、
を含むものである。
【0016】
【発明の実施の形態】
本発明の拡大翼付き掘削装置の最大の特徴は、拡大翼を掘削ロッドの回転方向に開翼・閉翼する回転方向開閉機構と、拡大翼を掘削ロッドの軸方向に閉翼する軸方向閉機構とを具備する拡大翼装置を、掘削ロッドの所定の位置に取り付けた点にあり、先ず、本発明の拡大翼装置におけるこれらの機構の基本的な構造を図1〜図3の概念図に基づいて説明する。
【0017】
図1は拡大翼が回転方向に閉翼している状態、図2は拡大翼が回転方向に開翼している状態、図3は拡大翼が掘削ロッドの軸方向(即ち、深度方向)に閉翼している状態を示しており、それぞれ(a)は上面図、(b)は側面図である。これらの図において、11は掘削ロッド(回転軸)、12は支持ブロック、13は深度方向支持軸、14は機構ブロック、15は回転方向支持軸、16は拡大翼である。
【0018】
この拡大翼装置は、掘削ロッド11の所定の位置に支持ブロック12が固着されている。そして、支持ブロック12には、深度方向支持軸13によって深度方向(例えば鉛直方向)に回動自在に機構ブロック14が連結されている。さらに、機構ブロック14には、回転方向支持軸15によって回転方向(例えば水平面内方向)に回動自在に拡大翼16が連結されている。
【0019】
本発明の拡大翼装置は、図1に示すように回転方向に閉翼している状態で、例えば掘削ロッド11の上端に設けられている不図示の装着軸部を介してスクリューオーガ等に接続されるものである。
【0020】
図1の状態で掘削ロッド11を逆転(図1(a)中の矢印A)させると、拡大翼16の先端部分には矢印B方向の孔壁又は掘削土の抵抗力が作用し、図2に示すように拡大翼16は開翼する。この状態で孔径を拡大して掘削した後は、掘削ロッドを引き上げて拡大翼装置を回収するために拡大翼16を閉翼する必要がある。
【0021】
拡大翼16の閉翼は、掘削ロッド11を正転(図2(a)中の矢印C)させ拡大翼16の先端部分に矢印D方向の孔壁又は掘削土の抵抗力を作用させて行うことができる。しかしながら、ゆるい地盤では前記抵抗力だけではどうしても閉翼できない場合がある。また、拡大翼16の付け根に粘土等が詰まり完全には閉翼できない場合もある。
【0022】
そこで本発明では、非常手段として、掘削ロッド11を引き抜く方向に移動することにより図2に示す開翼状態にある拡大翼16に作用する力(図2(b)中の矢印Eで示す掘削ロッドの軸方向の力)を利用することで、図3に示すように拡大翼16を深度方向に閉翼できるようにしている。すなわち、拡大翼16が連結されている機構ブロック14が深度方向支持軸13の回りで回動することにより、拡大翼16を深度方向に閉翼させることができる。
【0023】
掘削ロッド11を引き抜く方向に移動することにより拡大翼16に作用する力は、例えば中掘り拡大根固め工法の場合には鋼管杭等の中空既成杭の下面から受ける力であり、プレボーリング拡大根固め工法、及び前述した節付き杭状の孔を掘削する工法やアンカー部材を施工する場合には拡径部の上面から受ける力である。
【0024】
このように本発明の拡大翼付き掘削装置では、油圧シリンダ等の複雑な開閉機構を用いることなく、孔掘削時の各工程で拡大翼16に作用する力を利用するのみで、地盤がゆるく、孔壁又は掘削土との摩擦力が十分でない場合にも、開翼・閉翼を確実に行うことができるものである。
【0025】
次に、中掘り拡大根固め工法に使用する場合を例に挙げて、本発明の拡大翼付き掘削装置の具体的な実施形態例を説明するが、本発明はこれらの形態例に限定されるものではなく、本発明の要旨の範囲内での各部材等の入れ替えを許容するものである。
【0026】
(第1の実施形態例)
本例の拡大翼付き掘削装置の基本的な構造は図1〜図3に示したものと同様である。図4は、本例の拡大翼装置をスクリューオーガの先端に装着し、拡大翼を水平方向(掘削ロッドの回転方向)に開翼した状態を示す斜視図である。
【0027】
掘削ロッド41は、下端に根固め材吐出孔(不図示)が開孔している中空体であり、掘削ロッド41の上端部分に設けられている装着軸部41a(図5参照)がスクリューオーガ50の下端に挿入されて固着される。なお、前記根固め材吐出孔は、根固め材を始めとして、圧縮空気や高圧水も吐出することができる。
【0028】
掘削ロッド41には支持ブロック42が固着されていて、その両側面には鉛直(深度)方向支持軸43によって鉛直方向に回動自在に機構ブロック44が連結されている。さらに、機構ブロック44には、水平方向支持軸45によって水平方向に回動自在に拡大翼46が連結されている。
【0029】
拡大翼46は略く字形のものであり、先端は掘削端となるために鋭角に形成されている。なお、必要に応じて硬い掘削爪が先端から下方に向けて突設される。
【0030】
掘削ロッド41の先端には掘削ヘッド60が取り付けられている。この掘削ヘッド60の外周には二条のスクリュー61が螺旋状に形成されており、スクリュー61の下端には掘削爪62が取り付けられている。
【0031】
本例のように、掘削ロッド41の先端に掘削ヘッド60を取り付け、この掘削ヘッド60の上部近傍の位置に拡大翼装置、更に該拡大翼装置の上方に掘削土を地上に排土するスクリューオーガ50を取り付けることによって、既製杭の中掘り拡大根固め工法に使用することができる。
【0032】
本例の拡大翼付き掘削装置による中掘り拡大根固め工法の施工例を、各施工段階の拡大翼の状態を示す図5〜図7の断面図を用いて説明する。
【0033】
まず、中空の既製杭51の中空部に拡大翼付き掘削装置が挿通され、地面から所定の深度に到達するまでの掘削は、図5に示すように、拡大翼46を閉状態にし、掘削ロッド41を正転させて掘削爪62にて掘削して行く。そして既製杭51は、掘削の進行に追随して埋設される。
【0034】
所定の深度まで掘削が進むと、図6に示すように掘削ロッド41を逆転させ孔壁又は掘削土との摩擦を利用して拡大翼46を開き、その掘削径を拡大して杭孔の底部に杭径よりも大径な拡底部70を掘削する。
【0035】
拡底部70が形成されると前記根固め材吐出孔から根固め材を注入し、掘削ロッド41を拡底部70と既製杭51との間を上下反復運動させ、根固め材と周囲の土砂や砂礫などとの撹拌混合を行い、根固め球根を形成する。
【0036】
次に、掘削ロッド41を正転させ拡大翼46を閉じ、そのまま地上に引き上げる。この時、仮に拡大翼46基部に粘土等が詰まって閉翼できなくても、掘削ロッド41の引き上げに伴って、拡大翼46の上面が既製杭51の先端(下面)に当たり、図7に示すように拡大翼46を強制的に閉翼させることができる。最後に、掘削ロッド41の回転を停止させ、既製杭51の先端を拡底部70の中に圧入して施工が完了する。
【0037】
本例の拡大翼46を鉛直方向に閉翼する軸方向閉機構は、主に鉛直(深度)方向支持軸43と機構ブロック44によって構成されており、極めて簡易な構成となっている。この場合、掘削ロッド41を逆転させて拡底部70を掘削している最中に拡大翼46が鉛直方向に閉翼することがないように、鉛直(深度)方向支持軸43と機構ブロック44との間には適度な摩擦抵抗を有する。この摩擦抵抗は、例えばコイルバネ等を用いて所望の大きさに設定することができる。
【0038】
(第2の実施形態例)
本例の拡大翼付き掘削装置の基本的な構造は第1の実施形態例と同様であるが、本例では掘削ロッドの逆転時に拡大翼が水平方向(回転方向)に開翼している状態では軸方向閉機構が機能しない構造を有する点に特徴がある。
【0039】
本例の拡大翼装置の特徴的な構造部分を図8及び図9に示す。図8は、拡大翼46が水平方向に閉翼した状態を示しており、図8(a)は平面図、図8(b)は図8(a)中のX−X’縦断面図である。図9は、掘削ロッドの逆転による孔壁又は掘削土の抵抗によって拡大翼46が水平方向に開翼している状態を示しており、図9(a)は平面図、図9(b)は図9(a)中のY−Y’縦断面図である。
【0040】
本例の拡大翼装置では、図示のように鉛直(深度)方向支持軸43の先端部にバネ機構81が挿着されている。また、鉛直方向支持軸43の中間部には突起82が設けられ、機構ブロック44の内部には回転用溝83と拘束用溝84が形成されている。
【0041】
図8に示すように、掘削ロッドの停止時もしくは正転時には、バネ機構81によって機構ブロック44は支持ブロック42側に押圧されている。この状態では、突起82は回転用溝83の中に位置しており、拡大翼46が連結されている機構ブロック44が鉛直方向支持軸43の回りで鉛直下向きに回動することができる。つまり、掘削ロッドの回転を停止させ、掘削ロッドを引き上げる時には、開翼状態にある拡大翼46に下向きの力が作用すると拡大翼46を鉛直方向に閉翼させることができる。
【0042】
一方、図9に示すように、掘削ロッドの逆転時にはバネ機構81が圧縮され、機構ブロック44は支持ブロック42から離間される。この状態では、突起82は回転用溝83から外れて拘束用溝84の中に位置しており、拡大翼46が連結されている機構ブロック44は鉛直方向支持軸43の回りで回動することができない。つまり、掘削ロッドを逆転させて拡底部を掘削している最中には、拡大翼46が鉛直方向に閉翼することがない。
【0043】
尚、本実施形態では、掘削ロッドの逆転時に機構ブロック44が支持ブロック42から離間されるため、この隙間に粘土等が侵入しないように、拡大翼46の後端部に開翼状態においてこの隙間を塞ぐ突起部47を設けている。
【0044】
また、前記のバネ機構81、突起82、回転用溝83および拘束用溝84をいずれも機構ブロック44の内側に形成しているため、これらの部分に粘土等が進入してこれらの機能が損なわれる心配がなく、所望の機能を確実に発揮することができる。
【0045】
以上のように、掘削ロッドの逆転による孔壁又は掘削土の抵抗によって拡大翼が水平方向に開翼している状態では軸方向閉機構が機能しない構造を付加したことにより、拡底部を掘削中に仮に拡大翼に下向きの力が作用しても閉翼してしまうことがなく、確実に所望の大きさの拡底部を形成することができる。
【0046】
(第3の実施形態例)
本例の拡大翼付き掘削装置の基本的な構造は第1の実施形態例と同様であるが、第2の実施形態例と同様、掘削ロッドの逆転時に拡大翼が水平方向(回転方向)に開翼している状態では軸方向閉機構が機能しない構造を有する点に特徴がある。
【0047】
本例の拡大翼装置の特徴的な構造部分である鉛直(深度)方向支持軸43の先端部廻りの断面図を図10及び図11に示す。図10は掘削ロッドの停止時もしくは正転時において拡大翼が水平方向に閉翼している時の状態を示しており、(b)は(a)中のZ−Z’断面図である。図11は掘削ロッドの逆転時において拡大翼が水平方向に開翼している時の状態を示している。
【0048】
本例の拡大翼装置では、第2の実施形態例と同様に鉛直(深度)方向支持軸43の先端部にバネ機構91が挿着されている。また、鉛直方向支持軸43の先端部に機構ブロック44側に突出する8つの嵌合凸部92が形成され、この嵌合凸部92に対向する機構ブロック44側の面には8つの嵌合凹部93が形成されている。
【0049】
図10に示すように、掘削ロッドの停止時もしくは正転時には、バネ機構91によって機構ブロック44は支持ブロック側に押圧されている。この状態では、嵌合凸部92が嵌合凹部93から外れており、拡大翼が連結されている機構ブロック44が鉛直方向支持軸43の回りで鉛直下向きに回動することができる。つまり、掘削ロッドの回転を停止させ、掘削ロッドを引き上げる時には、開翼状態にある拡大翼に下向きの力が作用すると拡大翼を鉛直方向に閉翼させることができる。
【0050】
一方、図11に示すように、掘削ロッドの逆転時には、バネ機構91が圧縮され、嵌合凸部92と嵌合凹部93が嵌め合う。この状態では、拡大翼が連結されている機構ブロック44は鉛直方向支持軸43の回りで回動することができない。つまり、掘削ロッドを逆転させて拡底部を掘削している最中には、拡大翼が鉛直方向に閉翼することがない。
【0051】
また、前記のバネ機構91、嵌合凸部92および嵌合凹部93をいずれも機構ブロック44の内側に形成しているため、これらの部分に粘土等が進入してこれらの機能が損なわれる心配がなく、所望の機能を確実に発揮することができる。
【0052】
本例の場合にも、掘削ロッドの逆転による孔壁又は掘削土の抵抗によって拡大翼が水平方向に開翼している状態では軸方向閉機構が機能しない構造を付加したことにより、拡底部を掘削中に仮に拡大翼に下向きの力が作用しても閉翼してしまうことがなく、確実に所望の拡底部を形成することができる。
【0053】
(第4の実施形態例)
本例の拡大翼付き掘削装置の基本的な構造は図1〜図3に示したものと同様であるが、本例の軸方向閉機構は拡大翼を水平方向(回転方向)に保持するための支持プレートを備え、拡大翼に作用する下向きの力によって支持プレートが剪断されることによって軸方向(鉛直方向)に閉翼する構造を有する点に特徴がある。
【0054】
本例の拡大翼付き掘削装置の特徴的な構造部分を図12に示す。図12は拡大翼が回転方向に開翼している状態を示しており、(a)は上面図、(b)は側面図である。
【0055】
図12に示すように、支持ブロック12の下面に支持プレート94がボルト(不図示)止めされている。この支持プレート94の機構ブロック14の下面に当接する部分は櫛歯状に加工されており、所定の剪断力を加えることにより剪断されるように設計されている。
【0056】
本例の拡大翼付き掘削装置では、拡大翼16が水平方向に開翼して掘削撹拌をする時には、機構ブロック14は支持プレート94の櫛歯状部分により固定されて、鉛直(深度)方向支持軸13の回りで回動することができない。一方、掘削撹拌終了後は、掘削ロッド11を引き上げる力を利用して櫛歯状部分を剪断することにより、拡大翼16を鉛直方向に閉翼させることができる。
【0057】
本例の場合にも、拡底部の掘削撹拌中に拡大翼に下向きの地盤の抵抗力が作用しても閉翼してしまうことがなく、確実に所望の拡底部を形成することができると共に、掘削ロッドを引き上げる力を利用して支持プレートを剪断することによって開翼状態にある拡大翼16を鉛直方向に確実に閉翼させることができる。
【0058】
以上、本発明の拡大翼付き掘削装置を中掘り拡大根固め工法に使用する場合の実施形態例を説明したが、例えば掘削ロッドの長さ方向に所定の間隔をおいて前述した拡大翼装置を複数取り付けた場合には、前述した節付き杭状の孔を掘削する工法に好適に用いることができる。即ち、全ての拡大翼が回転方向に閉翼した状態で所定の深度に到達するまで掘削した後、掘削ロッドを逆転させ孔壁又は掘削土の抵抗力を利用して全ての拡大翼を開き掘削することにより、一度に複数の拡径部の掘削を行うことができる。また、このように拡大翼装置を複数設けた場合であっても、全ての拡大翼を確実に閉翼することができるため、所望の複数の拡径部を同時に形成することができる。
【0059】
【発明の効果】
以上説明したように、本発明の拡大翼付き掘削装置によれば、掘削ロッドの逆転・正転による孔壁又は掘削土の抵抗を利用して拡大翼を回転方向に開翼・閉翼する回転方向開閉機構のみならず、掘削ロッドを引き抜く際に拡大翼に作用する力を利用して拡大翼を掘削ロッドの軸方向に閉翼する軸方向閉機構を設けたことにより、地盤がゆるく、孔壁又は掘削土との摩擦力が十分でない場合にも、確実に拡大翼を閉翼することができる。これにより、比較的高価な拡翼ヘッドを掘削終了後に確実に回収し繰り返し使用することができる。
【0060】
特に、掘削ロッドの逆転時に拡大翼が回転方向に開翼している状態では軸方向閉機構が機能しない構造とした場合には、拡径部の掘削撹拌中に拡大翼が閉翼してしまうことがなく、確実に所望の拡径部を形成することができる。
【図面の簡単な説明】
【図1】本発明の拡大翼付き掘削装置における回転方向開閉機構と軸方向閉機構の基本的な構造を説明するための概念図であり、拡大翼が回転方向に閉翼している状態を示す。
【図2】本発明の拡大翼付き掘削装置における回転方向開閉機構と軸方向閉機構の基本的な構造を説明するための概念図であり、拡大翼が回転方向に開翼している状態を示す。
【図3】本発明の拡大翼付き掘削装置における回転方向開閉機構と軸方向閉機構の基本的な構造を説明するための概念図であり、拡大翼が軸方向(深度方向)に閉翼している状態を示す。
【図4】本発明の第1の実施形態例に係る拡大翼付き掘削装置をスクリューオーガの先端に装着した状態を示す図である。
【図5】本発明の第1の実施形態例に係る拡大翼付き掘削装置による中掘り拡大根固め工法の施工手順を説明するための断面図である。
【図6】本発明の第1の実施形態例に係る拡大翼付き掘削装置による中掘り拡大根固め工法の施工手順を説明するための断面図である。
【図7】本発明の第1の実施形態例に係る拡大翼付き掘削装置による中掘り拡大根固め工法の施工手順を説明するための断面図である。
【図8】本発明の第2の実施形態例に係る拡大翼装置の特徴的な構造部分を示す図である。
【図9】本発明の第2の実施形態例に係る拡大翼装置の特徴的な構造部分を示す図である。
【図10】本発明の第3の実施形態例に係る拡大翼装置の特徴的な構造部分を示す断面図である。
【図11】本発明の第3の実施形態例に係る拡大翼装置の特徴的な構造部分を示す断面図である。
【図12】本発明の第4の実施形態例に係る拡大翼装置を示す図である。
【符号の説明】
11 掘削ロッド(回転軸)
12 支持ブロック
13 深度方向支持軸
14 機構ブロック
15 回転方向支持軸
16 拡大翼
41 掘削ロッド(回転軸)
41a 装着軸部
42 支持ブロック
43 鉛直(深度)方向支持軸
44 機構ブロック
45 水平方向支持軸
46 拡大翼
47 突起部
50 スクリューオーガ
51 既製杭
60 掘削ヘッド
61 スクリュー
62 掘削爪
70 拡底部
81 バネ機構
82 突起
83 回転用溝
84 拘束用溝
91 バネ機構
92 嵌合凸部
93 嵌合凹部
94 支持プレート
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a drilling device having an enlarged wing used for anchoring a building or civil engineering, improving a ground of a civil engineering work, a slope or the like, or performing pile foundation work.
[0002]
[Prior art]
As a means for increasing the supporting force and pull-out resistance of the pile, an expanded part having a diameter larger than the diameter of the pile is previously formed at the bottom of the pile hole, and cement milk or the like is poured into the expanded part to fix the roots. Forming is being done.
[0003]
2. Description of the Related Art Conventionally, for example, Patent Literature 1 and Patent Literature 2 disclose a bottom expanding device for forming a bottom expansion portion at the bottom of the above-described pile hole.
[0004]
Also, for example, when constructing a structure such as a building on a site with poor ground conditions such as soft ground or embankment landfill, a plurality of enlarged portions are provided at required intervals in the pile axis direction, that is, in the depth direction, and joints are provided. There is also a construction method that increases the peripheral friction by forming a pile shape.
[0005]
Further, as one of the construction methods for fixing a structure such as a building to the ground, there is an anchor construction method using an anchor member. This anchor member is formed by drilling a hole in the ground (slope, etc.), inserting a tension member such as a steel rod into the hole, and fixing the anchor fixing portion at the tip of the tension member with a mortar or the like pressed into the hole. And the head is tightened with a jack and fixed to the structure with screws or wedges, and the structure is fixed to the ground via this anchor member. Even in such an anchoring method, an expanded bottom portion is provided at the bottom of a hole serving as an anchor fixing portion in order to form a strong anchor member.
[0006]
[Patent Document 1]
JP-A-9-25779 [Patent Document 2]
JP-A-11-6382
[Problems to be solved by the invention]
The above-mentioned conventional bottom expanding device has the following problems.
[0008]
The bottom expanding device described in Patent Literature 1 is a mechanism that opens the blade by utilizing the resistance of the ground by reverse rotation and closes the blade by forward rotation. However, in order to close the blade in forward rotation, a certain amount of frictional force with the hole wall or excavated soil is required, and the blade cannot be closed on loose ground. In addition, there are cases where clay or the like is clogged at the base of the wing expansion mechanism or rotates together with the wing expansion mechanism so that the wing cannot be completely closed.
[0009]
The bottom expanding device described in Patent Literature 2 has a structure in which the expansion is performed by raising and lowering an expansion bit. In this device, the timing of ascending and descending is performed by the movement of the clutch. However, in actuality, the clutch may rotate and may not move.
[0010]
The above-mentioned bottom-expanding device is to be collected and used repeatedly after excavation is completed. However, if the enlarged blade (extended bit) cannot be closed, it cannot be collected. In the worst case, the bottom-expanding device and the excavating head are separated from the rod and soil is removed. There was a problem that a case where it had to be left inside occurred.
[0011]
For example, if a hydraulic cylinder or the like is used to open and close the enlarged blade (enlarged bit), the enlarged blade can be forcibly opened and closed, so that the expanded blade can be reliably maintained in a closed state and an open state. Are complicated and expensive.
[0012]
Therefore, the present invention is to provide a novel drilling device used to provide a large diameter portion in a part of a drilling hole in the ground improvement of construction and civil engineering, anchors such as slopes and pile foundation work, In particular, an object of the present invention is to provide an excavator with enlarged wings that can reliably open and close wings without using a complicated opening / closing mechanism such as a hydraulic cylinder.
[0013]
[Means for Solving the Problems]
The excavator with an enlarged wing according to the present invention that solves the above-mentioned problem uses the resistance generated between the enlarged wing and the hole wall or excavated soil by the reverse / forward rotation of the excavation rod to move the enlarged wing in the rotation direction. In order to close the enlarged wing in the axial direction of the drilling rod by using a rotating direction opening / closing mechanism for opening and closing the blade and a force acting on the enlarged wing by moving the drilling rod in the pulling direction. And an enlarged wing device having the axial closing mechanism described above is attached to a predetermined position of a drilling rod.
[0014]
ADVANTAGE OF THE INVENTION According to the drilling apparatus with an enlarged wing of this invention, not only the rotation direction opening / closing mechanism which opens and closes an enlarged wing in the rotation direction of a drilling rod, but also utilizes the force which acts on the enlarged wing when pulling out a drilled rod. By providing an axial closing mechanism that closes the enlarged wing in the axial direction of the excavation rod, even if the ground is loose and the frictional force with the hole wall or excavated soil is not sufficient, the enlarged wing can be reliably closed. can do.
[0015]
The excavator with an enlarged wing of the present invention has, as a further feature,
"The axial closing mechanism is to function when the closing of the expanding wing by the rotating direction opening / closing mechanism is insufficient."
"The axial closing mechanism has a structure that does not function in a state where the enlarged wing is opened in the rotational direction when the drilling rod is rotated in reverse."
"A drilling head is attached to the tip of the drilling rod, the magnifying wing device is mounted at a position near the upper portion of the drilling head, and a screw auger for discharging excavated soil to the ground is mounted above the magnifying wing device. That will be used for the pre-drilling method of pre-casting. ",
"A plurality of the expanding wing devices are attached at predetermined intervals in the length direction of the drilling rod",
Is included.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
The most significant features of the excavator with an enlarged wing of the present invention are a rotating direction opening / closing mechanism that opens and closes the enlarged wing in the direction of rotation of the drilling rod, and an axial closing mechanism that closes the enlarged wing in the axial direction of the drilled rod. An enlarged wing device having a mechanism is attached to a predetermined position of a drilling rod. First, the basic structures of these mechanisms in the enlarged wing device of the present invention are shown in conceptual diagrams of FIGS. It will be described based on the following.
[0017]
1 shows a state in which the enlarged wing is closed in the rotational direction, FIG. 2 shows a state in which the enlarged wing is opened in the rotational direction, and FIG. 3 shows a state in which the enlarged wing is in the axial direction of the drilling rod (that is, in the depth direction). FIGS. 4A and 4B show a state in which the blades are closed, wherein FIG. 4A is a top view and FIG. In these figures, 11 is a drilling rod (rotation axis), 12 is a support block, 13 is a depth direction support axis, 14 is a mechanism block, 15 is a rotation direction support axis, and 16 is an enlarged wing.
[0018]
In this enlarged wing device, a support block 12 is fixed to a predetermined position of a drill rod 11. A mechanism block 14 is connected to the support block 12 by a depth direction support shaft 13 so as to be rotatable in a depth direction (for example, a vertical direction). Further, an expansion wing 16 is connected to the mechanism block 14 by a rotation direction support shaft 15 so as to be rotatable in a rotation direction (for example, in a horizontal plane direction).
[0019]
The enlarged wing device of the present invention is connected to a screw auger or the like via a mounting shaft (not shown) provided at the upper end of the drilling rod 11, for example, in a state where the blade is closed in the rotational direction as shown in FIG. Is what is done.
[0020]
When the excavating rod 11 is reversed in the state of FIG. 1 (arrow A in FIG. 1A), the tip wall of the enlarged wing 16 is acted on by the hole wall in the direction of arrow B or the resistance of excavated soil. As shown in FIG. 7, the expanding wing 16 is opened. After excavation with the hole diameter enlarged in this state, it is necessary to close the enlarged wing 16 in order to pull up the excavation rod and collect the enlarged wing device.
[0021]
Closing of the enlarged wing 16 is performed by rotating the excavating rod 11 in the normal direction (arrow C in FIG. 2A) and applying a resistance force of a hole wall or excavated soil in the direction of arrow D to the tip of the enlarged wing 16. be able to. However, there is a case where the blade cannot be closed on loose ground by the above-mentioned resistance alone. Further, there are cases where clay or the like is clogged at the base of the enlarged wing 16 and the wing cannot be completely closed.
[0022]
Therefore, in the present invention, as an emergency means, a force acting on the expanding wing 16 in the open wing state shown in FIG. 2 by moving the digging rod 11 in the pulling direction (the digging rod indicated by an arrow E in FIG. By using the force in the axial direction), the enlarged wing 16 can be closed in the depth direction as shown in FIG. That is, the mechanism block 14 to which the enlarged wing 16 is connected rotates around the depth direction support shaft 13, so that the enlarged wing 16 can be closed in the depth direction.
[0023]
The force acting on the enlarged wing 16 by moving the excavating rod 11 in the pulling-out direction is, for example, a force received from the lower surface of a hollow preformed pile such as a steel pipe pile in the case of the middle digging expanded root consolidation method, and It is the force received from the upper surface of the enlarged diameter portion in the case of performing the compacting method, the method of excavating the above-described knotted pile-shaped hole or the anchor member.
[0024]
As described above, in the excavator with an enlarged wing of the present invention, the ground is loosened only by using the force acting on the enlarged wing 16 in each step of excavating a hole without using a complicated opening and closing mechanism such as a hydraulic cylinder. Even when the frictional force with the hole wall or excavated soil is not sufficient, the blade can be opened and closed without fail.
[0025]
Next, a specific embodiment of the excavating device with enlarged wings of the present invention will be described by taking a case where the present invention is used for the medium digging and expanding method for solidifying a rock, as an example, but the present invention is limited to these embodiments. Instead, the replacement of each member or the like within the scope of the present invention is permitted.
[0026]
(First Embodiment)
The basic structure of the excavator with enlarged wings of this example is the same as that shown in FIGS. FIG. 4 is a perspective view showing a state in which the enlarged wing device of the present example is mounted on the tip of a screw auger, and the enlarged wing is opened in the horizontal direction (the rotation direction of the drilling rod).
[0027]
The excavation rod 41 is a hollow body having a rooting material discharge hole (not shown) opened at the lower end, and a mounting shaft 41 a (see FIG. 5) provided at an upper end portion of the excavation rod 41 has a screw auger. It is inserted into the lower end of 50 and fixed. In addition, the said consolidation material discharge hole can discharge compressed air or high-pressure water in addition to the consolidation material.
[0028]
A support block 42 is fixed to the excavation rod 41, and a mechanism block 44 is connected to both sides of the excavation rod 41 by a vertical (depth) direction support shaft 43 so as to be rotatable in the vertical direction. Further, an enlarged wing 46 is connected to the mechanism block 44 by a horizontal support shaft 45 so as to be rotatable in the horizontal direction.
[0029]
The enlarged wing 46 has a substantially rectangular shape, and the tip is formed at an acute angle to be a digging end. In addition, a hard excavation nail is protruded downward from the tip as needed.
[0030]
The excavation head 60 is attached to the tip of the excavation rod 41. Two screws 61 are spirally formed on the outer periphery of the excavating head 60, and excavating claws 62 are attached to lower ends of the screws 61.
[0031]
As in the present example, a drilling head 60 is attached to the tip of the drilling rod 41, an enlarged wing device is provided at a position near the top of the drilled head 60, and a screw auger for discharging the excavated soil to the ground above the enlarged wing device. By attaching 50, it is possible to use it for the mid-digging and expansion of the prefabricated pile.
[0032]
An example of execution of the middle digging method for expanding the foundation by the excavator with enlarged wings of the present embodiment will be described with reference to cross-sectional views of FIGS.
[0033]
First, an excavator with an enlarged wing is inserted into a hollow portion of a hollow prefabricated pile 51, and excavation until reaching a predetermined depth from the ground is performed by closing the enlarged wing 46 as shown in FIG. 41 is rotated forward and the excavation is performed by the excavation claw 62. Then, the ready-made pile 51 is buried following the progress of the excavation.
[0034]
When the excavation proceeds to a predetermined depth, as shown in FIG. 6, the excavation rod 41 is reversed and the enlarged wing 46 is opened by utilizing the friction with the hole wall or excavated soil, and the excavation diameter is enlarged to increase the bottom of the pile hole. The excavation 70 with a diameter larger than the pile diameter is excavated.
[0035]
When the enlarging portion 70 is formed, the embedding material is injected from the embedding material discharge hole, and the excavating rod 41 is repeatedly moved up and down between the expanding portion 70 and the ready-made stake 51 so that the embedding material and the surrounding earth and sand, Stir and mix with sand and gravel, etc. to form solidified bulbs.
[0036]
Next, the excavating rod 41 is rotated forward to close the expanding wing 46, and is lifted to the ground as it is. At this time, even if clay or the like cannot be closed because the base of the enlarged wing 46 is clogged with clay or the like, the upper surface of the enlarged wing 46 hits the tip (lower surface) of the ready-made pile 51 as the drilling rod 41 is pulled up, as shown in FIG. Thus, the expansion wing 46 can be forcibly closed. Finally, the rotation of the excavating rod 41 is stopped, and the tip of the ready-made pile 51 is pressed into the expanded bottom 70 to complete the construction.
[0037]
The axial closing mechanism for closing the enlarged wings 46 in the vertical direction in this example is mainly configured by the vertical (depth) direction support shaft 43 and the mechanism block 44, and has an extremely simple configuration. In this case, the vertical (depth) direction support shaft 43 and the mechanism block 44 are connected to each other so that the expanding wing 46 does not close in the vertical direction while the excavating rod 41 is rotated in the reverse direction to excavate the expanded bottom portion 70. Has moderate frictional resistance between them. This frictional resistance can be set to a desired size using, for example, a coil spring.
[0038]
(Second Embodiment)
The basic structure of the excavator with enlarged wings of this example is the same as that of the first embodiment, but in this example, the enlarged wings are opened in the horizontal direction (rotational direction) when the excavation rod reverses. Is characterized by having a structure in which the axial closing mechanism does not function.
[0039]
8 and 9 show a characteristic structure of the enlarged wing device of this example. 8 shows a state in which the enlarged wing 46 is closed in the horizontal direction. FIG. 8A is a plan view, and FIG. 8B is a vertical cross-sectional view taken along the line XX ′ in FIG. is there. FIG. 9 shows a state in which the enlarged wing 46 is opened in the horizontal direction due to the resistance of the hole wall or the excavated soil due to the reversal of the excavation rod. FIG. 9 (a) is a plan view, and FIG. FIG. 10 is a vertical sectional view taken along the line YY ′ in FIG.
[0040]
In the enlarged wing device of this example, a spring mechanism 81 is inserted at the tip of the vertical (depth) direction support shaft 43 as shown in the figure. A projection 82 is provided at an intermediate portion of the vertical support shaft 43, and a rotation groove 83 and a restriction groove 84 are formed inside the mechanism block 44.
[0041]
As shown in FIG. 8, when the excavation rod is stopped or normally rotated, the mechanism block 44 is pressed toward the support block 42 by the spring mechanism 81. In this state, the projection 82 is located in the rotation groove 83, and the mechanism block 44 to which the enlarged wing 46 is connected can rotate vertically downward around the vertical support shaft 43. That is, when stopping the rotation of the excavating rod and lifting the excavating rod, when the downward force acts on the expanding wing 46 in the open wing state, the expanding wing 46 can be closed in the vertical direction.
[0042]
On the other hand, as shown in FIG. 9, when the excavation rod rotates in the reverse direction, the spring mechanism 81 is compressed, and the mechanism block 44 is separated from the support block 42. In this state, the projection 82 is positioned outside the rotation groove 83 and in the restraining groove 84, and the mechanism block 44 to which the enlarged wing 46 is connected rotates around the vertical support shaft 43. Can not. That is, while the excavation rod is rotated in the reverse direction to excavate the enlarged bottom, the enlarged wing 46 does not close in the vertical direction.
[0043]
In the present embodiment, the mechanism block 44 is separated from the support block 42 when the excavating rod is rotated in the reverse direction. Is provided.
[0044]
In addition, since the spring mechanism 81, the projection 82, the rotation groove 83, and the restraining groove 84 are all formed inside the mechanism block 44, clay or the like enters these parts, and these functions are impaired. The desired function can be surely exerted without worrying about being performed.
[0045]
As described above, by adding a structure in which the axial closing mechanism does not function when the enlarged wing is opened in the horizontal direction due to the resistance of the hole wall or excavated soil due to the reversal of the excavating rod, the excavated bottom is excavated. Even if a downward force is applied to the expanding wing, the wing does not close, and it is possible to reliably form the expanded bottom portion having a desired size.
[0046]
(Third Embodiment)
The basic structure of the excavating device with enlarged wings of this example is the same as that of the first embodiment, but as in the second embodiment, the enlarged wings are horizontally (rotated) when the excavating rod is reversed. It is characterized in that it has a structure in which the axial closing mechanism does not function when the blade is open.
[0047]
FIGS. 10 and 11 are cross-sectional views of the vertical (depth) direction support shaft 43, which is a characteristic structure of the enlarged wing device of the present example, around the distal end. FIG. 10 shows a state where the enlarged wing is closed in the horizontal direction when the excavation rod stops or rotates forward, and (b) is a cross-sectional view taken along the line ZZ ′ in (a). FIG. 11 shows a state in which the enlarged wing is opened in the horizontal direction when the drilling rod is rotated in the reverse direction.
[0048]
In the enlarged wing device of this example, a spring mechanism 91 is inserted at the tip of the vertical (depth) direction support shaft 43 as in the second embodiment. Eight fitting projections 92 projecting toward the mechanism block 44 are formed at the tip of the vertical support shaft 43, and eight fitting projections are formed on the surface of the mechanism block 44 facing the fitting projection 92. A recess 93 is formed.
[0049]
As shown in FIG. 10, when the excavation rod stops or rotates forward, the mechanism block 44 is pressed toward the support block by the spring mechanism 91. In this state, the fitting projection 92 is disengaged from the fitting recess 93, and the mechanism block 44 to which the enlarged wing is connected can rotate vertically downward around the vertical support shaft 43. That is, when stopping the rotation of the excavating rod and pulling up the excavating rod, when a downward force acts on the expanding wing in the open wing state, the expanding wing can be closed in the vertical direction.
[0050]
On the other hand, as shown in FIG. 11, when the excavation rod is rotated in the reverse direction, the spring mechanism 91 is compressed, and the fitting projection 92 and the fitting recess 93 are fitted. In this state, the mechanism block 44 to which the enlarged wing is connected cannot rotate around the vertical support shaft 43. That is, while the excavation rod is reversed to excavate the expanded bottom, the expanded wing does not close in the vertical direction.
[0051]
In addition, since the spring mechanism 91, the fitting protrusion 92, and the fitting recess 93 are all formed inside the mechanism block 44, there is a concern that clay or the like may enter these parts to impair these functions. Therefore, a desired function can be surely exhibited.
[0052]
Also in the case of this example, by adding a structure in which the axial closing mechanism does not function in a state where the expanding wing is horizontally opened due to the resistance of the hole wall or excavated soil due to the reversal of the drilling rod, the expanded bottom portion is formed. Even if a downward force acts on the expanding wing during excavation, the blade does not close, and a desired expanded bottom portion can be reliably formed.
[0053]
(Fourth Embodiment)
The basic structure of the excavator with enlarged wings of this example is the same as that shown in FIGS. 1 to 3, but the axial closing mechanism of this example holds the enlarged wings in the horizontal direction (rotation direction). It is characterized in that it has a structure in which the support plate is sheared by a downward force acting on the expanding wing and the support plate is sheared in the axial direction (vertical direction).
[0054]
FIG. 12 shows a characteristic structure of the excavator with enlarged wings of this example. FIGS. 12A and 12B show a state in which the enlarged wing is opened in the rotation direction, where FIG. 12A is a top view and FIG. 12B is a side view.
[0055]
As shown in FIG. 12, a support plate 94 is fixed to the lower surface of the support block 12 by bolts (not shown). The portion of the support plate 94 that contacts the lower surface of the mechanism block 14 is formed in a comb shape and is designed to be sheared by applying a predetermined shearing force.
[0056]
In the excavator with enlarged wings of this example, when the enlarged wings 16 open horizontally to perform excavation and agitation, the mechanism block 14 is fixed by the comb-like portions of the support plate 94 to support the vertical (depth) direction. It cannot rotate around the shaft 13. On the other hand, after the end of the excavation and stirring, the expanding wing 16 can be closed in the vertical direction by shearing the comb-tooth-like portion using the force for lifting the excavating rod 11.
[0057]
Also in the case of this example, even if the downward ground resistance acts on the enlarged wing during excavation and stirring of the enlarged bottom, the blade does not close, so that the desired enlarged bottom can be reliably formed. By shearing the support plate using the force for lifting the excavating rod, the expanded wing 16 in the open wing state can be reliably closed in the vertical direction.
[0058]
As described above, the embodiment in which the excavator with an enlarged wing according to the present invention is used for the medium digging and expansion method for solidifying a rock is described. For example, the enlarged wing device described above is provided at a predetermined interval in the length direction of the excavation rod. When a plurality of holes are attached, the method can be suitably used in the above-described method of excavating the knotted pile-shaped hole. That is, after digging until reaching a predetermined depth in a state where all the enlarged wings are closed in the rotation direction, the excavating rod is reversed, and all the enlarged wings are opened by using the resistance force of the hole wall or excavated soil to excavate. By doing so, it is possible to excavate a plurality of enlarged diameter portions at a time. Further, even when a plurality of enlarged wing devices are provided, all of the enlarged wings can be reliably closed, so that a plurality of desired enlarged diameter portions can be formed at the same time.
[0059]
【The invention's effect】
As described above, according to the excavator with an enlarged wing of the present invention, the rotation that opens and closes the enlarged wing in the rotational direction using the resistance of the hole wall or excavated soil due to the reverse rotation / forward rotation of the drill rod. Not only the directional opening / closing mechanism but also the axial closing mechanism that closes the expanding wing in the axial direction of the drilling rod by using the force acting on the expanding wing when pulling out the drilling rod makes the ground loose and Even when the frictional force with the wall or the excavated soil is not sufficient, the expansion wing can be reliably closed. This makes it possible to reliably collect and reuse the relatively expensive wing-spread head after the excavation is completed.
[0060]
In particular, if the structure in which the axial closing mechanism does not function when the expanding wing is opened in the rotation direction when the drilling rod reverses is used, the expanding wing closes during excavation and stirring of the enlarged diameter portion. Thus, the desired enlarged diameter portion can be formed without fail.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram for explaining a basic structure of a rotation direction opening / closing mechanism and an axial direction closing mechanism in an excavator with an enlarged wing according to the present invention, showing a state where the enlarged wing is closed in a rotational direction. Show.
FIG. 2 is a conceptual diagram for explaining a basic structure of a rotation direction opening / closing mechanism and an axial direction closing mechanism in the excavator with an enlarged wing according to the present invention, showing a state where the enlarged wing is opened in the rotational direction. Show.
FIG. 3 is a conceptual diagram for explaining a basic structure of a rotating direction opening / closing mechanism and an axial closing mechanism in the excavator with an enlarged wing according to the present invention, wherein the enlarged wing is closed in an axial direction (depth direction). Indicates a state in which
FIG. 4 is a diagram showing a state in which the excavator with enlarged wings according to the first embodiment of the present invention is mounted on the tip of a screw auger.
FIG. 5 is a cross-sectional view for explaining a construction procedure of a middle digging expanded root consolidation method by a digging device with enlarged wings according to the first embodiment of the present invention.
FIG. 6 is a cross-sectional view for explaining a construction procedure of a middle digging expanded root consolidation method by a digging device with enlarged wings according to the first embodiment of the present invention.
FIG. 7 is a cross-sectional view for explaining a construction procedure of a middle digging enlarged root consolidation method by the digging device with enlarged wings according to the first embodiment of the present invention.
FIG. 8 is a diagram showing a characteristic structure of an enlarged wing device according to a second embodiment of the present invention.
FIG. 9 is a view showing a characteristic structure of an enlarged wing device according to a second embodiment of the present invention.
FIG. 10 is a cross-sectional view showing a characteristic structure of an enlarged wing device according to a third embodiment of the present invention.
FIG. 11 is a cross-sectional view showing a characteristic structure of an enlarged wing device according to a third embodiment of the present invention.
FIG. 12 is a diagram showing an enlarged wing device according to a fourth embodiment of the present invention.
[Explanation of symbols]
11 Drilling rod (rotary axis)
12 Support block 13 Depth direction support shaft 14 Mechanism block 15 Rotation direction support shaft 16 Magnified wing 41 Drilling rod (rotary shaft)
41a Mounting shaft part 42 Support block 43 Vertical (depth) direction support shaft 44 Mechanism block 45 Horizontal support shaft 46 Enlarged wing 47 Projection part 50 Screw auger 51 Ready-made pile 60 Excavation head 61 Screw 62 Excavation claw 70 Enlarged bottom part 81 Spring mechanism 82 Projection 83 Rotation groove 84 Restriction groove 91 Spring mechanism 92 Fitting convex portion 93 Fitting concave portion 94 Support plate

Claims (5)

掘削ロッドの逆転・正転により、拡大翼と孔壁又は掘削土との間に生じる抵抗を利用して、該拡大翼を回転方向に開翼・閉翼させるための回転方向開閉機構と、掘削ロッドを引き抜く方向に移動することにより拡大翼に作用する力を利用して、該拡大翼を掘削ロッドの軸方向に閉翼させるための軸方向閉機構と、を具備する拡大翼装置を、掘削ロッドの所定の位置に取り付けたことを特徴とする拡大翼付き掘削装置。A rotation direction opening / closing mechanism for opening / closing the enlarged wing in the rotational direction by utilizing resistance generated between the enlarged wing and a hole wall or excavated soil due to reverse / forward rotation of the excavation rod; An axial wing mechanism including an axial closing mechanism for closing the expanding wing in the axial direction of the excavation rod by utilizing a force acting on the expanding wing by moving the rod in the pulling direction. An excavator with enlarged wings attached to a predetermined position of a rod. 前記軸方向閉機構は、前記回転方向開閉機構による前記拡大翼の閉翼が不十分な場合において機能せしめるものであることを特徴とする請求項1に記載の拡大翼付き掘削装置。2. The excavator with an enlarged wing according to claim 1, wherein the axial closing mechanism functions when the closing of the enlarged wing by the rotation opening and closing mechanism is insufficient. 3. 前記軸方向閉機構は、掘削ロッドの逆転時に拡大翼が回転方向に開翼している状態では機能しない構造を有することを特徴とする請求項1又は2に記載の拡大翼付き掘削装置。3. The excavator with an enlarged wing according to claim 1, wherein the axial direction closing mechanism has a structure that does not function when the enlarged wing is opened in a rotational direction when the excavation rod rotates in the reverse direction. 4. 前記掘削ロッドの先端には掘削ヘッドが取り付けられ、該掘削ヘッドの上部近傍の位置に前記拡大翼装置、更に該拡大翼装置の上方には掘削土を地上に排土するスクリューオーガが取り付けられており、既製杭の中掘工法に使用されることを特徴とする請求項1乃至3のいずれか一項に記載の拡大翼付き掘削装置。A drilling head is attached to the tip of the drilling rod, the expanding wing device is mounted at a position near the upper portion of the drilling head, and a screw auger for discharging the excavated soil to the ground is mounted above the expanding wing device. The excavator with enlarged wings according to any one of claims 1 to 3, wherein the excavator is used in a pre-drilling method for excavating a ready-made pile. 前記拡大翼装置が、前記掘削ロッドの長さ方向に所定の間隔をおいて複数取り付けられていることを特徴とする請求項1乃至3のいずれか一項に記載の拡大翼付き掘削装置。The excavator with an enlarged wing according to any one of claims 1 to 3, wherein a plurality of the enlarged wing devices are attached at predetermined intervals in a length direction of the excavation rod.
JP2003144273A 2003-05-22 2003-05-22 Excavating apparatus with expansion blade Pending JP2004346586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003144273A JP2004346586A (en) 2003-05-22 2003-05-22 Excavating apparatus with expansion blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003144273A JP2004346586A (en) 2003-05-22 2003-05-22 Excavating apparatus with expansion blade

Publications (1)

Publication Number Publication Date
JP2004346586A true JP2004346586A (en) 2004-12-09

Family

ID=33531756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003144273A Pending JP2004346586A (en) 2003-05-22 2003-05-22 Excavating apparatus with expansion blade

Country Status (1)

Country Link
JP (1) JP2004346586A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008202375A (en) * 2007-02-19 2008-09-04 Sanwa Kizai Co Ltd Enlarging head of fluid pressure one flow passage switching type by striker system
KR101040042B1 (en) 2010-06-14 2011-06-09 진 영 이 Method for constructing pile using variable type excavating bit
CN102505691A (en) * 2011-10-28 2012-06-20 中冶交通工程技术有限公司 Prefabricating pipe pile construction method
JP2016156150A (en) * 2015-02-23 2016-09-01 公益財団法人鉄道総合技術研究所 Construction method of reinforcing body with freely widening diameter that uses partial cylindrical body, and aseismic reinforcement method for existing earth structure using reinforcing body
CN106368708A (en) * 2016-11-07 2017-02-01 赵宽学 Well digging method
CN106368610A (en) * 2016-11-07 2017-02-01 赵宽学 Pile drilling machine drill bit
JP2018145700A (en) * 2017-03-07 2018-09-20 株式会社オートセット Construction device and construction method of pile foundation
CN110043187A (en) * 2019-05-16 2019-07-23 北京中岩大地科技股份有限公司 The fluid pressure type reducing reaming bit and filling pile construction engineering method of long-spiral drilling machine
CN113107370A (en) * 2021-04-13 2021-07-13 山东建勘集团有限公司 Drilling tool for cement-soil mixing pile between rigid piles and using method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008202375A (en) * 2007-02-19 2008-09-04 Sanwa Kizai Co Ltd Enlarging head of fluid pressure one flow passage switching type by striker system
KR101040042B1 (en) 2010-06-14 2011-06-09 진 영 이 Method for constructing pile using variable type excavating bit
CN102505691A (en) * 2011-10-28 2012-06-20 中冶交通工程技术有限公司 Prefabricating pipe pile construction method
CN102505691B (en) * 2011-10-28 2015-04-15 中冶交通工程技术有限公司 Prefabricating pipe pile construction method
JP2016156150A (en) * 2015-02-23 2016-09-01 公益財団法人鉄道総合技術研究所 Construction method of reinforcing body with freely widening diameter that uses partial cylindrical body, and aseismic reinforcement method for existing earth structure using reinforcing body
CN106368708A (en) * 2016-11-07 2017-02-01 赵宽学 Well digging method
CN106368610A (en) * 2016-11-07 2017-02-01 赵宽学 Pile drilling machine drill bit
JP2018145700A (en) * 2017-03-07 2018-09-20 株式会社オートセット Construction device and construction method of pile foundation
CN110043187A (en) * 2019-05-16 2019-07-23 北京中岩大地科技股份有限公司 The fluid pressure type reducing reaming bit and filling pile construction engineering method of long-spiral drilling machine
CN110043187B (en) * 2019-05-16 2024-01-30 北京中岩大地科技股份有限公司 Hydraulic diameter-variable reaming bit of long spiral drilling machine and construction method of cast-in-place pile
CN113107370A (en) * 2021-04-13 2021-07-13 山东建勘集团有限公司 Drilling tool for cement-soil mixing pile between rigid piles and using method thereof

Similar Documents

Publication Publication Date Title
JP5265500B2 (en) Pile digging method, foundation pile structure
JP2002155530A (en) Embedding method and tip metal fitting of existing pile
JP2004346586A (en) Excavating apparatus with expansion blade
JP2001336149A (en) Taper pile for civil engineering and building work foundation construction, foundation construction equipment therefor, and embedding method therefor
JPH02289718A (en) Drilling method of expanded head pile hole, constructing method of expanded head pile and pile hole drill
JP3991311B2 (en) Method of burying excavation rod and ready-made pile
JP2003286720A (en) Settlement inhibiting structure, method for constructing it and settlement inhibiting pile
JP4517236B2 (en) Pile hole drilling method
JP4197074B2 (en) Embedded pile construction equipment
JP4029966B2 (en) Pile embedding method and excavation equipment used therefor
JP4360745B2 (en) Construction method of ready-made piles
JP2002105956A (en) Charging of mc type widening bottom pipe anchor into ground
JP3753857B2 (en) Pile embedding method
JPH06287943A (en) Foot protection method for tip of foundation pile and cylindrical foundation pile
JP2000144727A (en) Construction method of footing pile
JPH06316927A (en) Installation of open section pile in large diameter
KR102636650B1 (en) Construction method of earth retaining wall with adjustable anchor angle
JP2832481B2 (en) Drilling rig for hole for concrete pile installation
JP3007755U (en) Magnifying head
JPH0627405B2 (en) Ready-made pile burying method
JP2006063526A (en) Expansive foot protection method using friction pile
JP2711357B2 (en) Improvement method of construction ground and its drilling equipment.
JP2002054135A (en) Composite structure
JPS6351209B2 (en)
JP2004143722A (en) Ground reinforcing pile burying method, and buried excavating claw device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060118

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20070413

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070423

A131 Notification of reasons for refusal

Effective date: 20070424

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070828