JP2004345317A - Molding machine - Google Patents

Molding machine Download PDF

Info

Publication number
JP2004345317A
JP2004345317A JP2003147652A JP2003147652A JP2004345317A JP 2004345317 A JP2004345317 A JP 2004345317A JP 2003147652 A JP2003147652 A JP 2003147652A JP 2003147652 A JP2003147652 A JP 2003147652A JP 2004345317 A JP2004345317 A JP 2004345317A
Authority
JP
Japan
Prior art keywords
screw mechanism
ball screw
servomotor
ball
nut body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003147652A
Other languages
Japanese (ja)
Inventor
Hiroyuki Nakaya
浩之 中家
Takayuki Fujimoto
隆之 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Machinery and Metal Co Ltd
Original Assignee
Toyo Machinery and Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Machinery and Metal Co Ltd filed Critical Toyo Machinery and Metal Co Ltd
Priority to JP2003147652A priority Critical patent/JP2004345317A/en
Publication of JP2004345317A publication Critical patent/JP2004345317A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To restrain to the utmost the occurrence of hydrogen embrittlement separation on the ball abutting face (transfer face) of a ball screw mechanism. <P>SOLUTION: In a molding machine provided with a servomotor as the drive source of a molding operation and a ball screw mechanism for converting the rotation of the servomotor into a linear motion, an oxide film comprising, for example, tri-iron tetroxide film is formed on at least either one of the ball abutting face of the nut body of the ball screw mechanism or that of a screw shaft. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、射出成形機やダイカストマシンなどの成形機に係り、特に、成形運転の駆動源としてサーボモータを採用し、該サーボモータの回転を直線運動に変換するボールネジ機構を備えた成形機に関するものである。
【0002】
【従来の技術】
サーボモータ駆動式の射出成形機などの成形機においては、型開閉動作や射出動作などを行わせるために、サーボモータの回転をボールネジ機構によって直線運動に変換し、この直線運動を被駆動部材に伝えて、被駆動部材を直線移動させるようになっている。
【0003】
上記のボールネジ機構は、その耐久寿命として、1往復動を1回の稼動として(すなわち、1ショットの動作を1回の稼動として)、通常、数百万回程度の稼動回数は最低保証されるのが、一般的である。
【0004】
ところが、負荷容量(駆動トルク)の大きい型開閉用サーボモータの回転を直線運動に変換するボールネジ機構において、上記の耐久寿命に至る前に(例えば、場合によっては40万回程度の稼動回数で)ボールネジ機構が破損するという不具合が発生することが報告された。
【0005】
【発明が解決しようとする課題】
上記のボールネジ機構の破損の要因は、ボールネジ機構に破損が生じてしまった後では正確に把握しづらく、ボールネジ機構に用いられるグリースが要因なのか、あるいは他の要素が要因なのかが定かではなく、その要因解析と、それに対する対策を講じることが求められた。
【0006】
そこで、本願発明者らは種々検討の結果、グリースを種々のものに変えてもボールネジ機構に急激な摩耗が生じることから、また、型開閉系のボールネジ機構において急激な摩耗が生じることから、破損の生じる前に型開閉系のボールネジ機構の観察、測定を行った。この結果、型開閉系のボールネジ機構における急激な摩耗の発生は、水素脆性剥離が要因であることを解明した。
【0007】
水素脆性剥離とは、過大荷重、振動、急加減速などの過酷な使用条件下では、どうしてもころがりだけでなく、ナット体やネジ軸のボール当接面(転送面)とボール間にすべりが多くなり、活性な新生面の生成によりトライボケミカルな反応が促進され、グリース中の水分の分解による水素の発生、水素の鋼中への侵入によるミクロ組織の変化、亀裂の発生から脆性剥離に至ると考えられるものである。この水素脆性剥離は、鋼の転送面(転送部)に水素脆性剥離の前兆としての白色組織変化とクラックが発生することや、鋼の転送面(転送部)の水素含有量の増大などによって、確認することができる。
【0008】
実際、本願発明者らの検討では、型開閉系のボールネジ機構を数10万回程度稼動させた後に、ボールネジ機構のナット体における負荷側転送部(ボールが押し付けられる側の転送部)を断面観察した結果、未剥離部の0.15〜0.20深さに白色組織変化とクラックとが見出され、また、クラックは枝状となり深さmm方向に進展していることが観察された。さらに、型開閉系のボールネジ機構のナット体の転送部における残留水素量を測定した結果、非負荷側転送部では、残留水素量は0.63ppmであったが、負荷側転送部では、残留水素量は1.55ppmで、これは水素脆性剥離を引き起こすのに充分な値であることが確認された。なお、ナット体の負荷側転送面の残留応力を測定した結果、ナット体の負荷側転送面に加わった応力は、約2300MPaであると推測され、この程度の応力であると、通常であれば、早期の剥離や組織変化を引き起こす可能性は極めて低い。
【0009】
上記したように、型開閉系のボールネジ機構のナット体側に水素脆性剥離が集中する所以は、型開閉用サーボモータの負荷容量(駆動トルク)が大きく、この負荷容量の大きい型開閉用サーボモータの回転をボールネジ機構に伝達するために使用している高強度のタイミングベルトに、5万V程度の大きな静電気が発生しており、このため、高強度のタイミングベルトからの回転が伝達されるナット体側にマイナスの直流電圧が発生して、プラスに電荷した水素イオン(H)が引き寄せられるためであると、推測される。また、ナット体の負荷側転送部に水素が起因する白色組織が生成される所以は、非負荷側転送部の残留水素量よりも、負荷側転送部の残留水素量が多いためと考えられる(すなわち、最大剪断応力がかかる負荷側転送部に水素の発生量が多く、かつ、最大剪断応力がかかるので水素が内部に拡散しやすいためと考えられる)。
【0010】
本発明は上記の点に鑑みなされたもので、その目的とするところは、成形運転の駆動源としてのサーボモータと、該サーボモータの回転を直線運動に変換するボールネジ機構を備えた成形機において、ボールネジ機構のボール当接面(転送面)に水素脆性剥離が発生することを可及的に抑止し、以って、ボールネジ機構の耐久信頼性を保証することにある。
【0011】
【課題を解決するための手段】
本発明は上記した目的を達成するために、成形運転の駆動源としてのサーボモータと、該サーボモータの回転を直線運動に変換するボールネジ機構を備えた成形機において、ボールネジ機構のナット体のボール当接面またはネジ軸のボール当接面の少なくとも一方に、例えば四三酸化鉄皮膜よりなる酸化膜を形成した、構成をとる。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態を、図面を用いて説明する。
【0013】
図1は、本発明の一実施形態(以下、本実施形態と記す)に係る射出成形機における、型開閉用サーボモータとそれによって駆動されるボールネジ機構を示す図である。
【0014】
図1において、1はボールネジ機構で、ナット体2と、ネジ軸3と、ボール4とが備えられており、ナット体2は、図示せぬ軸受を介して図示せぬ保持盤に回転可能に支持されており、このナット体2には、プーリ部2aが一体に形成されている。ネジ軸3は、前後進運動のみが可能なように保持されており、ナット体2の回転によりネジ軸3が前進または後退し、これによって型開閉動作を行うようになっている。5は型開閉用サーボモータで、その出力軸5aに固着した小プーリ6と、ナット体2のプーリ部2aとには、タイミングベルト7が掛け渡されており、これによって、型開閉用サーボモータ5の回転がナット体2に伝達されるようになっている。
【0015】
本実施形態では、ナット体2およびネジ軸3にはSCM系合金鋼が用いられ、ボール4にはベアリング鋼(SUJ系合金鋼)が用いられている。タイミングベルト7としては、炭素含有率が小さく帯電防止効果は期待できないものの、強度に対する信頼性の高い、高強度のタイミングベルトを採用している。
【0016】
本実施形態では、前記した水素脆性剥離を防止するために、ナット体2の表面全体に四三酸化鉄皮膜よりなる酸化膜を形成してある。四三酸化鉄皮膜よりなる酸化膜は、ナット体2をアルカリ水溶液(水溶液の主成分は水酸化ナトリウムで、これに酸化剤として硝酸ナトリウムなどを添加したもの)中に浸漬することで形成され、その膜厚は数μm程度である。なお、四三酸化鉄皮膜よりなる酸化膜は、ナット体2のボール当接面(転送面)のみに形成すれば十分であるが、このようにナット体2のネジ軸形成面(内周面)のみに皮膜を形成することはかえって面倒であるので、製造上の理由からナット体2の表面全体に四三酸化鉄皮膜よりなる酸化膜を形成してある。
【0017】
図2は、本実施形態のボールネジ機構1における稼動回数と、グリース中の鉄粉濃度との関係を示す図である。図2に示すように、本実施形態では、53.5万回の稼動回数において、鉄粉濃度は0.02%wtであり、殆ど摩耗が生じていないと見なされる値である。この53.5万回の稼動回数において、ボールネジ機構1を分解して、ナット体2の負荷側転送部の状態を確認したところ、何ら異常は認められなかった(白色組織やクラックは全く認められなかった)。また、図2において、稼動回数が60.3万回で鉄粉濃度は0.8%wtとなっているが、これはボールネジ機構1における通常の初期摩耗であると考えられ、この程度の数値は、実用上全く問題となる鉄粉濃度ではない。図2の試験結果では、100万回の手前までしか示されていないが、60.3万回から90.8万回までの鉄粉濃度は0.10%wt未満で安定して推移していることから、1000万回程度の稼動回数は保証できるであろうと予想される。
【0018】
図3は、ナット体2に酸化膜を形成していないことを除き、他の条件は本実施形態と同様のボールネジ機構1における稼動回数と、グリース中の鉄粉濃度との関係を示す図である。図3に示すように、20.5万回の稼動回数において、鉄粉濃度は0.74%wtであり、この稼動回数20.5万回の時点でボールネジ機構1を分解して、ナット体2の負荷側転送部の状態を確認したところ、白色組織およびクラックの発生が認められ、ナット体2の負荷側転送部に水素脆性剥離の兆候があることが確認された。なお、稼動回数20.5万回以降の実験は、ボールネジ機構1が破損してしまうと、ナット体2の断面解析などができなくなるので、中止している。
【0019】
以上の図2、図3の実験結果の対比から明らかなように、本実施形態においては、水素脆性剥離の発生を可及的に抑止することが可能となり、過大荷重、振動、急加減速などの過酷な使用条件下で用いられるボールネジ機構であっても、その耐久性能を十分に保証することが可能となる。
【0020】
なお、上述した実施形態では、四三酸化鉄皮膜よりなる酸化膜をナット体2側に形成してあるが、ネジ軸3にサーボモータの回転がタイミングベルトを介して伝達される構成においては、四三酸化鉄皮膜よりなる酸化膜をネジ軸3側に形成するようになせばよい。また、場合によっては、ナット体2とネジ軸3の双方に四三酸化鉄皮膜よりなる酸化膜を形成してもよい。
【0021】
また、上述した実施形態では、酸化膜として四三酸化鉄皮膜を例にとったが、四三酸化鉄皮膜以外にも緻密で耐摩耗性があって、水素の鋼中への侵入を阻止する酸化膜であれば、四三酸化鉄皮膜に代替することも可能である。
【0022】
また、上述した実施形態では、炭素含有率が小さな高強度のタイミングベルトを用いているが、炭素含有率の大きい帯電防止用ベルトを採用すると、水素イオン(H)の発生そのものが抑止できることが大いに期待でき、ボールネジ機構のボール当接面(転送面)に酸化膜を形成することと併せれば、より一層、ボールネジ機構における水素脆性剥離の発生をなくすことができる。
【0023】
また、上述した実施形態では、射出成形機の型開閉系のボールネジ機構を例にとったが、射出成形機の射出系のボールネジ機構や、ダイカストマシンの型開閉系のボールネジ機構などにも、本発明が適用可能であることは言うまでもない。
【0024】
【発明の効果】
以上のように本発明によれば、成形運転の駆動源としてのサーボモータと、該サーボモータの回転を直線運動に変換するボールネジ機構を備えた成形機において、ボールネジ機構のボール当接面(転送面)に水素脆性剥離が発生することを可及的に抑止可能となり、以って、ボールネジ機構の耐久信頼性を保証するが可能となる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る射出成形機における、型開閉用サーボモータとそれによって駆動されるボールネジ機構を示す説明図である。
【図2】図1のボールネジ機構における、稼動回数とグリース中の鉄粉濃度との関係を示す説明図である。
【図3】従来のボールネジ機構における、稼動回数とグリース中の鉄粉濃度との関係を示す説明図である。
【符号の説明】
1 ボールネジ機構
2 ナット体
2a プーリ部
3 ネジ軸
4 ボール
5 型開閉用サーボモータ
5a 出力軸
6 小プーリ
7 タイミングベルト
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a molding machine such as an injection molding machine or a die casting machine, and more particularly to a molding machine that employs a servomotor as a driving source of a molding operation and includes a ball screw mechanism that converts rotation of the servomotor into linear motion. Things.
[0002]
[Prior art]
In a molding machine such as an injection molding machine driven by a servomotor, the rotation of the servomotor is converted into a linear motion by a ball screw mechanism in order to perform a mold opening / closing operation or an injection operation, and this linear motion is applied to a driven member. Thus, the driven member is moved linearly.
[0003]
In the above-mentioned ball screw mechanism, the number of operation times of about several million is usually guaranteed at least for one durable movement as one operation (that is, one shot operation as one operation) as its durability life. It is common.
[0004]
However, in a ball screw mechanism that converts the rotation of a mold opening / closing servomotor having a large load capacity (driving torque) into linear motion, before the endurance life described above is reached (for example, in some cases, about 400,000 operation times). It was reported that the ball screw mechanism was damaged.
[0005]
[Problems to be solved by the invention]
The cause of the damage of the ball screw mechanism described above is difficult to grasp accurately after the ball screw mechanism has been damaged, and it is not clear whether grease used in the ball screw mechanism is the cause or other factors are the cause. It was required to analyze the factors and take measures against them.
[0006]
The inventors of the present application have made various investigations and found that even if the grease was changed to various types, the ball screw mechanism would suddenly wear, and that the ball screw mechanism of the mold opening / closing system would cause rapid wear. Before the occurrence of the phenomenon, the ball screw mechanism of the mold opening / closing system was observed and measured. As a result, it was clarified that rapid wear of the ball screw mechanism of the mold opening / closing system was caused by hydrogen embrittlement separation.
[0007]
Hydrogen embrittlement peeling means that under severe operating conditions such as excessive load, vibration, rapid acceleration and deceleration, not only rolling, but also slippage between the ball contact surface (transfer surface) of the nut body and screw shaft and the ball. It is thought that tribochemical reaction is promoted by the generation of active new surface, hydrogen is generated by decomposition of water in grease, microstructure changes due to penetration of hydrogen into steel, cracks are generated and brittle peeling is considered. It is something that can be done. This hydrogen embrittlement is caused by a change in white structure and cracks as a precursor of hydrogen embrittlement on the transfer surface (transfer portion) of the steel, and an increase in the hydrogen content of the transfer surface (transfer portion) of the steel. You can check.
[0008]
In fact, in the study of the present inventors, after operating the ball screw mechanism of the mold opening / closing system about several hundred thousand times, the load side transfer portion (the transfer portion on the side where the ball is pressed) of the nut body of the ball screw mechanism is observed in cross section. As a result, white structure changes and cracks were found at a depth of 0.15 to 0.20 of the unpeeled portion, and it was observed that the cracks became branch-like and extended in the depth mm direction. Furthermore, as a result of measuring the residual hydrogen amount in the transfer portion of the nut body of the ball screw mechanism of the mold opening / closing system, the residual hydrogen amount was 0.63 ppm in the non-load side transfer portion, but the residual hydrogen amount was in the load side transfer portion. The amount was 1.55 ppm, which was determined to be sufficient to cause hydrogen embrittlement delamination. In addition, as a result of measuring the residual stress on the load side transfer surface of the nut body, the stress applied to the load side transfer surface of the nut body is estimated to be about 2300 MPa. It is extremely unlikely to cause premature detachment or tissue change.
[0009]
As described above, the reason why hydrogen embrittlement is concentrated on the nut body side of the ball screw mechanism of the mold opening / closing system is that the load capacity (drive torque) of the mold opening / closing servomotor is large, and the mold opening / closing servomotor having a large load capacity is used. A large static electricity of about 50,000 V is generated in the high-strength timing belt used to transmit rotation to the ball screw mechanism. Therefore, the nut body side to which rotation from the high-strength timing belt is transmitted. It is presumed that this is because a negative DC voltage is generated at this point, and positively charged hydrogen ions (H + ) are attracted. Further, it is considered that the reason why the white structure caused by hydrogen is generated in the load-side transfer portion of the nut body is that the residual hydrogen amount of the load-side transfer portion is larger than the residual hydrogen amount of the non-load-side transfer portion ( That is, it is considered that a large amount of hydrogen is generated in the load-side transfer portion to which the maximum shear stress is applied, and that the maximum shear stress is applied, so that hydrogen easily diffuses inside.
[0010]
The present invention has been made in view of the above points, and an object thereof is to provide a molding machine having a servomotor as a driving source of a molding operation and a ball screw mechanism that converts the rotation of the servomotor into a linear motion. Another object of the present invention is to minimize the occurrence of hydrogen embrittlement peeling on the ball contact surface (transfer surface) of the ball screw mechanism, thereby guaranteeing the durability and reliability of the ball screw mechanism.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a molding machine having a servomotor as a driving source of a molding operation and a ball screw mechanism for converting the rotation of the servomotor into a linear motion. At least one of the contact surface and the ball contact surface of the screw shaft is formed with an oxide film made of, for example, triiron tetroxide film.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0013]
FIG. 1 is a diagram showing a servomotor for opening and closing a mold and a ball screw mechanism driven by the servomotor in an injection molding machine according to an embodiment of the present invention (hereinafter, referred to as the present embodiment).
[0014]
In FIG. 1, reference numeral 1 denotes a ball screw mechanism, which includes a nut body 2, a screw shaft 3, and a ball 4. The nut body 2 is rotatably mounted on a holding plate (not shown) via a bearing (not shown). The nut body 2 is integrally formed with a pulley portion 2a. The screw shaft 3 is held so that it can only move forward and backward, and the rotation of the nut body 2 causes the screw shaft 3 to move forward or backward, thereby performing a mold opening / closing operation. Reference numeral 5 denotes a mold opening / closing servomotor, and a timing belt 7 is stretched between a small pulley 6 fixed to an output shaft 5a thereof and a pulley portion 2a of the nut body 2, whereby a mold opening / closing servomotor is provided. 5 is transmitted to the nut body 2.
[0015]
In the present embodiment, an SCM alloy steel is used for the nut body 2 and the screw shaft 3, and a bearing steel (SUJ alloy steel) is used for the ball 4. As the timing belt 7, a high-strength timing belt having high strength and high reliability is used although the carbon content is small and an antistatic effect cannot be expected.
[0016]
In the present embodiment, in order to prevent the above-mentioned hydrogen embrittlement peeling, an oxide film made of a triiron tetroxide film is formed on the entire surface of the nut body 2. An oxide film composed of triiron tetroxide film is formed by immersing the nut body 2 in an alkaline aqueous solution (a main component of the aqueous solution is sodium hydroxide to which sodium nitrate or the like is added as an oxidizing agent). Its film thickness is about several μm. It is sufficient that the oxide film made of the triiron tetroxide film is formed only on the ball contact surface (transfer surface) of the nut body 2. ) Is rather troublesome to form a film on the entire surface of the nut body 2 for manufacturing reasons.
[0017]
FIG. 2 is a diagram illustrating a relationship between the number of operations in the ball screw mechanism 1 of the present embodiment and the iron powder concentration in grease. As shown in FIG. 2, in the present embodiment, the iron powder concentration is 0.02% wt when the number of operations is 53.5 million times, which is a value considered to cause almost no wear. When the ball screw mechanism 1 was disassembled and the state of the load-side transfer portion of the nut body 2 was checked at the number of operation of 53.5 million times, no abnormality was recognized (white texture and cracks were not recognized at all). Did not.) Further, in FIG. 2, the number of operations is 603,000 times, and the iron powder concentration is 0.8% wt. This is considered to be normal initial wear in the ball screw mechanism 1, and a numerical value of this degree is considered. Is not an iron powder concentration that is a problem in practice. Although the test result of FIG. 2 shows only up to 1,000,000 times, the iron powder concentration from 603,000 to 908,000 times is stable at less than 0.10% wt. Therefore, it is expected that about 10 million operations can be guaranteed.
[0018]
FIG. 3 is a diagram showing the relationship between the number of operations in the ball screw mechanism 1 and the iron powder concentration in the grease under the same conditions as in the present embodiment except that no oxide film is formed on the nut body 2. is there. As shown in FIG. 3, the iron powder concentration was 0.74% wt at the operation number of 205,000 times, and at the time point of the operation number of 205,000 times, the ball screw mechanism 1 was disassembled and the nut body was disassembled. When the state of the load-side transfer portion of No. 2 was confirmed, generation of a white structure and cracks was recognized, and it was confirmed that the load-side transfer portion of the nut body 2 showed signs of hydrogen embrittlement peeling. Note that the experiments after the number of operations of 205,000 times are stopped because if the ball screw mechanism 1 is broken, the cross-sectional analysis of the nut body 2 cannot be performed.
[0019]
As is clear from the comparison of the experimental results in FIGS. 2 and 3 described above, in the present embodiment, it is possible to suppress the occurrence of hydrogen embrittlement as much as possible, and it is possible to prevent excessive load, vibration, rapid acceleration / deceleration, etc. It is possible to sufficiently guarantee the durability performance of a ball screw mechanism used under severe operating conditions.
[0020]
In the above-described embodiment, the oxide film made of triiron tetroxide film is formed on the nut body 2 side. However, in the configuration in which the rotation of the servomotor is transmitted to the screw shaft 3 via the timing belt, An oxide film made of a triiron tetroxide film may be formed on the screw shaft 3 side. In some cases, an oxide film made of a triiron tetroxide film may be formed on both the nut body 2 and the screw shaft 3.
[0021]
Further, in the above-described embodiment, an oxide film is taken as an example of a triiron tetroxide film, but other than the triiron tetroxide film, it is dense and has abrasion resistance, and prevents hydrogen from entering the steel. If it is an oxide film, it can be replaced with a ferric oxide film.
[0022]
Further, in the above-described embodiment, a high-strength timing belt having a small carbon content is used. However, when an antistatic belt having a large carbon content is employed, generation of hydrogen ions (H + ) itself can be suppressed. This can be greatly expected, and when the oxide film is formed on the ball contact surface (transfer surface) of the ball screw mechanism, the occurrence of hydrogen embrittlement peeling in the ball screw mechanism can be further reduced.
[0023]
Further, in the above-described embodiment, the ball screw mechanism of the mold opening / closing system of the injection molding machine is taken as an example. However, the ball screw mechanism of the injection system of the injection molding machine or the ball screw mechanism of the mold opening / closing system of the die casting machine is also used. It goes without saying that the invention is applicable.
[0024]
【The invention's effect】
As described above, according to the present invention, in a molding machine including a servomotor as a driving source of a molding operation and a ball screw mechanism for converting the rotation of the servomotor into a linear motion, a ball contact surface (transfer The occurrence of hydrogen embrittlement peeling on the surface) can be suppressed as much as possible, whereby the durability reliability of the ball screw mechanism can be guaranteed.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing a mold opening / closing servomotor and a ball screw mechanism driven by the same in an injection molding machine according to an embodiment of the present invention.
FIG. 2 is an explanatory diagram showing the relationship between the number of operations and the concentration of iron powder in grease in the ball screw mechanism of FIG.
FIG. 3 is an explanatory diagram showing the relationship between the number of operations and the concentration of iron powder in grease in a conventional ball screw mechanism.
[Explanation of symbols]
Reference Signs List 1 ball screw mechanism 2 nut body 2a pulley section 3 screw shaft 4 ball 5 mold opening / closing servo motor 5a output shaft 6 small pulley 7 timing belt

Claims (3)

成形運転の駆動源としてのサーボモータと、該サーボモータの回転を直線運動に変換するボールネジ機構を備えた成形機において、
前記ボールネジ機構のナット体のボール当接面またはネジ軸のボール当接面の少なくとも一方に、酸化膜を形成したことを特徴とする成形機。
In a molding machine having a servomotor as a driving source of the molding operation and a ball screw mechanism that converts the rotation of the servomotor into a linear motion,
An oxide film is formed on at least one of the ball contact surface of the nut body of the ball screw mechanism and the ball contact surface of the screw shaft.
請求項1に記載において、
前記酸化膜は、四三酸化鉄皮膜であることを特徴とする成形機。
In claim 1,
The molding machine, wherein the oxide film is a triiron tetroxide film.
請求項1または2に記載において、
前記サーボモータの回転を前記ボールネジ機構の回転部に伝達するタイミングベルトを帯電防止用ベルトとしたことを特徴とする成形機。
In claim 1 or 2,
A molding machine, wherein a timing belt for transmitting rotation of the servomotor to a rotating portion of the ball screw mechanism is an antistatic belt.
JP2003147652A 2003-05-26 2003-05-26 Molding machine Pending JP2004345317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003147652A JP2004345317A (en) 2003-05-26 2003-05-26 Molding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003147652A JP2004345317A (en) 2003-05-26 2003-05-26 Molding machine

Publications (1)

Publication Number Publication Date
JP2004345317A true JP2004345317A (en) 2004-12-09

Family

ID=33534126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003147652A Pending JP2004345317A (en) 2003-05-26 2003-05-26 Molding machine

Country Status (1)

Country Link
JP (1) JP2004345317A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7875670B2 (en) 2002-08-12 2011-01-25 Exxonmobil Chemical Patents Inc. Articles from plasticized polyolefin compositions
JP2015001239A (en) * 2013-06-13 2015-01-05 日本精工株式会社 Ball screw

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5740751U (en) * 1980-08-21 1982-03-05
JPH02190615A (en) * 1989-01-14 1990-07-26 Ntn Corp Grease sealing bearing
JP2000346138A (en) * 1999-06-01 2000-12-12 Bando Chem Ind Ltd Toothed belt, timing belt pulley for toothed belt, toothed belt transmission, toothed belt manufacturing device, and manufacture of toothed belt
JP2000355035A (en) * 1999-06-16 2000-12-26 Meiki Co Ltd Ball screw lubricating method
JP2004257502A (en) * 2003-02-27 2004-09-16 Ntn Corp Ball screw

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5740751U (en) * 1980-08-21 1982-03-05
JPH02190615A (en) * 1989-01-14 1990-07-26 Ntn Corp Grease sealing bearing
JP2000346138A (en) * 1999-06-01 2000-12-12 Bando Chem Ind Ltd Toothed belt, timing belt pulley for toothed belt, toothed belt transmission, toothed belt manufacturing device, and manufacture of toothed belt
JP2000355035A (en) * 1999-06-16 2000-12-26 Meiki Co Ltd Ball screw lubricating method
JP2004257502A (en) * 2003-02-27 2004-09-16 Ntn Corp Ball screw

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7875670B2 (en) 2002-08-12 2011-01-25 Exxonmobil Chemical Patents Inc. Articles from plasticized polyolefin compositions
JP2015001239A (en) * 2013-06-13 2015-01-05 日本精工株式会社 Ball screw

Similar Documents

Publication Publication Date Title
JP2878749B2 (en) Grease-filled rolling bearings for alternators
WO1990008264A1 (en) Greased bearing
CN106762631B (en) A kind of scroll compressor thermomechanical components and its manufacturing method and scroll compressor
JP2004345317A (en) Molding machine
EP4411094A1 (en) Electronic lock transmission structure, electronic lock, and motor vehicle
JP2005253292A (en) High torque transmission non-contact gear
JP2010036804A (en) Shunt
EP1752686A1 (en) Ball screw
JP5264104B2 (en) Cold working method of magnesium alloy
JP2009125906A (en) Marking torque wrench
Lixia et al. Preparation and properties of electroless plating wear-resistant and antifriction composite coatings Ni-P-SiC-WS2
CN105695923A (en) Ionic nitriding machining method for steel air valve
JP4026514B2 (en) Rolling bearing member and method for manufacturing rolling bearing member
JP2004255522A (en) Method of surface treatment and sintered part
CN107068490A (en) A kind of starter electromagnetic switch and its starter
JP2013113423A (en) Ball screw and injection molding machine
JPS6110158A (en) Ball screw
TWM503292U (en) Maglev brake motor
CN201428745Y (en) Bearing floating mounting structure
JPH0643349U (en) Roller bearing
Takagi et al. Lubrication of bearing steels with electroplated gold under heavy loads
CN101886674A (en) Wet type mechanical pressing friction clutch with rolling bearing
CN204481628U (en) Magnetic floats brake motor
CN217262858U (en) Bearing roller lossless automatic feeding system
TW201631871A (en) Magnetic levitation brake motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060307