JP5264104B2 - Cold working method of magnesium alloy - Google Patents

Cold working method of magnesium alloy Download PDF

Info

Publication number
JP5264104B2
JP5264104B2 JP2007131448A JP2007131448A JP5264104B2 JP 5264104 B2 JP5264104 B2 JP 5264104B2 JP 2007131448 A JP2007131448 A JP 2007131448A JP 2007131448 A JP2007131448 A JP 2007131448A JP 5264104 B2 JP5264104 B2 JP 5264104B2
Authority
JP
Japan
Prior art keywords
magnesium alloy
shot
cold working
magnesium
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007131448A
Other languages
Japanese (ja)
Other versions
JP2008284644A (en
Inventor
祐次 小林
諭 宇治橋
勉 村井
新平 岩上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sintokogio Ltd
Sankyo Tateyama Inc
Original Assignee
Sintokogio Ltd
Sankyo Tateyama Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sintokogio Ltd, Sankyo Tateyama Inc filed Critical Sintokogio Ltd
Priority to JP2007131448A priority Critical patent/JP5264104B2/en
Priority to PCT/JP2008/059484 priority patent/WO2008143328A1/en
Publication of JP2008284644A publication Critical patent/JP2008284644A/en
Application granted granted Critical
Publication of JP5264104B2 publication Critical patent/JP5264104B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C11/00Selection of abrasive materials or additives for abrasive blasts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/10Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for compacting surfaces, e.g. shot-peening
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

A method for a cold working of a magnesium alloy to improve its mechanical characteristics easily and economically by projecting shots (shot peening process) is presented. In the cold working, the surface of the magnesium alloy 2 is treated by the shot peening process with shots made of a ceramic-based material to form a layer 3 with a high mechanical strength in the surface. The shots 1, of an average particle diameter from 0.05 to 1.0 mm, are used. The material of the shots 1 includes any oxide selected from a group of magnesia, zirconia, and zircon, or a nitride, or a boride, or an inter-metallic compound. It is a stable material that reacts with magnesium with difficulty.

Description

本発明は、マグネシウム合金の機械的特性を、ショット材の噴射加工(ショットピーニング加工)を用いて簡単かつ安価に改善することができるマグネシウム合金の冷間加工法に関するものである。   The present invention relates to a cold working method of a magnesium alloy that can improve the mechanical properties of a magnesium alloy easily and inexpensively by using shot material injection processing (shot peening processing).

従来から、各種金属や合金表面の機械的性質を改善する方法として、金属の組成成分を調整する方法や、特定の熱処理を施す等の方法が知られている。更には、金属にショット材を噴射して表面を改質加工するショットピーニング加工も知られている。   Conventionally, as a method for improving the mechanical properties of various metal and alloy surfaces, a method for adjusting a composition component of the metal and a method for performing a specific heat treatment are known. Furthermore, a shot peening process is also known in which a shot material is sprayed onto a metal to modify the surface.

一方、鋳造用合金や軸受け、補強部材等の各種の金属部品の母材として、加工性に優れたマグネシウム合金が広く使用されているが、最近では、更に疲労特性を向上させ長寿命化を図ることが検討されつつある。
このようなマグネシウム合金の機械的性質を改善する方法として、T5処理やT6処理などの熱処理方法がある。また、特許文献1や特許文献2に示されるように、マグネシウム合金の表面をショットピーニング処理する方法も知られている。
ここで、前記T5処理とは、鋳物合金、展伸用合金の鋳造後、熱間加工後の冷却速度が速い場合に、溶体化処理を省き、人工時効処理だけを行うことによって強度の向上を図る熱処理方法である。また、T6処理とは、最高の強度を発揮する為に溶体化処理・焼入れと人工時効処理を組み合わせた処理で、鋳物合金、展伸用合金では390〜540℃程度の温度で数時間保持して水焼入れする溶体化処理と、140〜200℃に数時間保持する人工時効処理との組み合わせにより高強度を得る一般的な熱処理方法である。
On the other hand, magnesium alloys with excellent workability are widely used as base materials for various metal parts such as casting alloys, bearings, and reinforcing members. Recently, however, fatigue characteristics have been further improved to extend the life. Is being considered.
As a method for improving the mechanical properties of such a magnesium alloy, there is a heat treatment method such as T5 treatment or T6 treatment. Moreover, as shown in Patent Document 1 and Patent Document 2, a method of performing shot peening treatment on the surface of a magnesium alloy is also known.
Here, the T5 treatment refers to the improvement of strength by omitting the solution treatment and performing only the artificial aging treatment when the cooling rate after hot working is high after casting the casting alloy and the wrought alloy. This is a heat treatment method. The T6 treatment is a treatment that combines solution treatment / quenching and artificial aging treatment in order to exhibit the maximum strength. For casting alloys and wrought alloys, the temperature is maintained at a temperature of about 390-540 ° C. for several hours. It is a general heat treatment method that obtains high strength by a combination of solution treatment for water quenching and artificial aging treatment held at 140 to 200 ° C. for several hours.

しかしながら、前記熱処理方法においては、マグネシウム合金が高温で酸化しやすいため、これら熱処理方法の適用に際し、真空中あるいは不活性雰囲気中で行うなどの対策が必要になり、新たな加熱炉を増設する必要があるという問題点や、装置が大型化して既存のラインをそのまま利用することができないという問題点があった。
また、ショットピーニング処理方法においては、マグネシウムが活性で反応しやすいため通常の金属製ショット材を用いると、合金表面にショット材との合金層あるいはマグネシウム合金へショット材が突き刺さり、あるいは鉄系ショット材によって錆が付着したりして損傷を生じるという問題点があった。
However, in the heat treatment method, the magnesium alloy is easily oxidized at a high temperature. Therefore, when these heat treatment methods are applied, it is necessary to take measures such as in vacuum or in an inert atmosphere, and it is necessary to add a new heating furnace. There is a problem that there is a problem, and there is a problem that the existing line cannot be used as it is because the apparatus is enlarged.
Also, in the shot peening treatment method, magnesium is active and easy to react, so if a normal metal shot material is used, the shot material pierces the alloy layer with the shot material or the magnesium alloy on the alloy surface, or iron-based shot material As a result, there is a problem that rust adheres and damage occurs.

なお、特許文献3に示されるように、ショットピーニング処理方法におけるショット材として不活性なジルコニアショット材を使用することが開示されている。しかしながら、特許文献3に記載の発明は、耐食性に優れたステンレス鋼の製造方法に関するものであって、耐食性酸化皮膜で覆われたステンレス鋼をジルコニア系ショット材でショットピーニング処理することにより、その一部がステンレス鋼表面に残留し、これが塩分環境下での腐食の起点となる事を防ぐ対策として用いられるものであり、被加工物がマグネシウム合金である本発明とは母材を全く異にするものである。
特開2002−292307号公報 特開2003−325710号公報 特開2001−198828号公報
As disclosed in Patent Document 3, it is disclosed that an inert zirconia shot material is used as a shot material in a shot peening treatment method. However, the invention described in Patent Document 3 relates to a method for producing stainless steel having excellent corrosion resistance. One of the methods is by subjecting stainless steel covered with a corrosion-resistant oxide film to shot peening treatment with a zirconia-based shot material. The part remains on the stainless steel surface and is used as a measure to prevent this from becoming the starting point of corrosion in a salty environment, and the base material is completely different from the present invention in which the workpiece is a magnesium alloy. Is.
JP 2002-292307 A JP 2003-325710 A JP 2001-198828 A

本発明は上記のような問題点を解決して、ショットピーニング処理を用い、表面に機械的性質に優れた強化層を有するマグネシウム合金素材を安価かつ簡便に提供することができるマグネシウム合金の冷間加工法を提供することを目的として完成されたものである。 The present invention solves the above-mentioned problems, uses a shot peening treatment, and can provide a magnesium alloy material having a strengthened layer with excellent mechanical properties on the surface at a low cost and in a simple manner. It was completed for the purpose of providing a processing method.

上記課題を解決するためになされた本発明のマグネシウム合金の冷間加工法は、冷間において行うマグネシウム合金の冷間加工法であって、マグネシウム合金の表面にジルコニア又はジルコンを含むショット材でショットピーニング処理のみを行い、合金表面にショット材との接触により反応生成物を作ることなく、機械的強度の高い強化層を形成することを特徴とするものである。 The cold work method of the magnesium alloy of the present invention made to solve the above problems is a cold work method of the magnesium alloy performed in the cold, shot with a shot material containing zirconia or zircon on the surface of the magnesium alloy Only the peening treatment is performed , and a strengthening layer having high mechanical strength is formed on the alloy surface without forming a reaction product by contact with the shot material .

なお、ショット材として、平均粒径が0.05から1.0mmのものを用いることが好ましく、これを請求項2に係る発明とする。 In addition, it is preferable to use a shot material having an average particle diameter of 0.05 to 1.0 mm, and this is the invention according to claim 2 .

本発明では、全工程を冷間において行うとともに、マグネシウム合金の表面をジルコニア、ジルコンの1種又は2種を含み、マグネシウムと反応しにくい安定な材料からなるショット材でショットピーニング処理加工することで、ショット材とマグネシウム合金表面との接触により反応生成物を作ることなく、クリーンな表面状態を保ちつつ部材表面に安定して強化層を作ることができ、この結果、疲労特性を向上させマグネシウム合金構造材の長寿命化を実現することとなる。 In the present invention, the entire process is performed cold, and the surface of the magnesium alloy is shot peened with a shot material made of a stable material that includes one or two kinds of zirconia and zircon and hardly reacts with magnesium. , Without making a reaction product due to contact between the shot material and the surface of the magnesium alloy, it is possible to stably form a reinforcing layer on the surface of the member while maintaining a clean surface state. As a result, the magnesium alloy improves fatigue characteristics. This will increase the life of the structural material.

以下に、本発明を実施するための最良の形態につき、図面を参照して説明する。
図1は、ショットピーニング処理の様子を示した模式図であり、図1において、1はショット材、2は被加工物であるマグネシウム合金、3はショットピーニング処理によりマグネシウム合金の表面に形成される機械的強度の高い強化層である。
本発明では、前記強化層3を、冷間において、マグネシウム合金の表面をセラミック系材質からなるショット材でショットピーニング処理することにより形成する点に特徴を有する。
The best mode for carrying out the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic view showing a state of shot peening treatment. In FIG. 1, 1 is a shot material, 2 is a magnesium alloy as a workpiece, and 3 is formed on the surface of the magnesium alloy by shot peening treatment. It is a reinforced layer with high mechanical strength.
The present invention is characterized in that the reinforcing layer 3 is formed by subjecting the surface of the magnesium alloy to shot peening with a shot material made of a ceramic material in the cold.

前記の被加工物であるマグネシウム合金としては、その種類を問わないが、AZ10、AZ31、AZ61、AZ80等の展伸用マグネシウム合金や、AZ91D、AM20、AM50A、AM60B、AS21、AE42、AS41B等の鋳造用マグネシウム合金に適用される。   The magnesium alloy that is the workpiece is not limited to any kind, but magnesium alloys for expansion such as AZ10, AZ31, AZ61, AZ80, AZ91D, AM20, AM50A, AM60B, AS21, AE42, AS41B, etc. Applies to magnesium alloys for casting.

また、本発明でいうショット材は、ジルコニア、ジルコンの1種又は2種を含み、マグネシウムと反応しにくい安定な材料をいう。組成的には必ずしも一定のものである必要はなく、例えば、ジルコンの場合にはジルコニアとシリカの成分比を変えることで比重や機械的性質の異なるものが選択できる。また、表面処理を施してショット表面にこれらの安定な加工物が形成されているものも使用することができる。 Moreover, the shot material as used in the field of this invention means the stable material which is hard to react with magnesium including 1 type or 2 types of zirconia and zircon . For example, in the case of zircon, by changing the component ratio of zirconia and silica, those having different specific gravity and mechanical properties can be selected. In addition, it is also possible to use a material in which these stable processed products are formed on the shot surface by performing a surface treatment.

前記ショット材の粒径としては、0.05から1.0mmが望ましい。0.05mm未満ではショットの重量・負荷が小さくて、十分な厚みの強化層を形成することが難しくなり、一方、1.0mmを超えると、ビジュアルカバレージ(目視によるショット材打痕の占有面積率)の時間が長くなって処理効率が悪くなるので、0.05〜1.0mmの範囲が望ましい。   The particle size of the shot material is preferably 0.05 to 1.0 mm. If the thickness is less than 0.05 mm, the shot weight / load is small and it becomes difficult to form a sufficiently thick reinforcing layer. On the other hand, if the thickness exceeds 1.0 mm, the visual coverage (occupied area ratio of shot material dents visually) ) Becomes longer and the processing efficiency becomes worse, so a range of 0.05 to 1.0 mm is desirable.

また本発明において、ショットピーニング処理方法は、回転投射法、エア−吸引法、加圧ブラスト法など、いずれかは問わない。
この場合、エア−吸引法を用いると、装置の構造が簡単になる利点がある。何故なら、回転投射法では投射用の回転ユニットが必要となり、また加圧ブラスト法では加圧タンクなどが必要となるからである。また、加圧式の場合は、噴射速度を大きくすることでショット材の投射量を増加させることができるが、例えば、ジルコニア系ショットは比重が小さいのでその必要がなく、更に噴射速度が大きすぎると割れてしまうことがあるので、そのような調整は行わない。
In the present invention, the shot peening treatment method may be any of a rotational projection method, an air-suction method, a pressure blast method, and the like.
In this case, the use of the air-suction method has an advantage of simplifying the structure of the apparatus. This is because the rotational projection method requires a rotating unit for projection, and the pressurized blast method requires a pressurized tank. In addition, in the case of the pressurization type, it is possible to increase the amount of shot material projected by increasing the injection speed.For example, zirconia-based shots do not need this because the specific gravity is small, and if the injection speed is too high Do not make such adjustments as they may break.

噴射圧力と噴射時間については、使用するショット材の種類によって異なるが、ビジュアルカバレージが98%以上になる条件で処理する。
また、エア吸引式の場合は、エア−圧力は0.1〜0.4MPaが望ましい。0.1MPa未満ではショット材が噴出し難く、一方、0.4MPaを超えると、硬度であらわされる強度がサチュレートするので省エネルギーの観点では望ましくない。
The injection pressure and the injection time are different depending on the type of shot material to be used, but are processed under the condition that the visual coverage is 98% or more.
In the case of an air suction type, the air pressure is preferably 0.1 to 0.4 MPa. If the pressure is less than 0.1 MPa, it is difficult for the shot material to be ejected. On the other hand, if it exceeds 0.4 MPa, the strength expressed by the hardness is saturated, which is not desirable from the viewpoint of energy saving.

また、表面改質強化層の生成の判定としては、表面硬さ(HV)が初期値より増加することで判断できる。後述する実施例においては、加工面に垂直な方向の切断面での硬さが初期値から変化し始めた位置の長さをクロッシングポイント(CP:バックグランド値を超えた位置)深さとして測定した。   In addition, the determination of the generation of the surface modification enhanced layer can be made by determining that the surface hardness (HV) increases from the initial value. In the examples to be described later, the length of the position at which the hardness at the cut surface in the direction perpendicular to the machining surface starts to change from the initial value is measured as the crossing point (CP: position exceeding the background value) depth. did.

このように本発明では、冷間において、マグネシウム合金の表面をジルコニア、ジルコンの1種又は2種を含み、マグネシウムと反応しにくい安定な材料からなるショット材でショットピーニング処理することにより、合金表面を加工硬化し、結晶粒微細化し、内部欠陥の封孔処理などを行うことで、母材表面にある程度の厚みを持った機械的強度の高い強化層を形成することができる。 As described above, in the present invention, the surface of the magnesium alloy is subjected to shot peening treatment with a shot material made of a stable material that includes one or two kinds of zirconia and zircon and hardly reacts with magnesium. Is hardened, crystal grains are refined, and internal defects are sealed to form a reinforcing layer with a certain degree of mechanical strength on the surface of the base material.

また、本発明は、前記ショット材がジルコニア、ジルコンの1種又は2種を含み、マグネシウムと反応しにくい安定な材料からなるものであり、通常の金属材と異なり安定な化合物であるため、活性金属であるマグネシウム合金表面との接触によって反応生成物を作ることなく、クリーンな表面状態を保ちつつ、部材表面に簡単かつ安価に強化層を作ることができるという利点がある。 In the present invention, the shot material contains one or two kinds of zirconia and zircon and is made of a stable material that hardly reacts with magnesium, and is a stable compound unlike a normal metal material. There is an advantage that the reinforcing layer can be easily and inexpensively formed on the surface of the member while maintaining a clean surface state without forming a reaction product by contact with the surface of the magnesium alloy which is a metal.

この結果、本発明においては、表面硬度が向上して疲労特性が向上し、マグネシウム構造材の長寿命化を可能にするという効果を奏する。また、加工ラインに本発明を導入する場合、既設のラインにショットピーニング処理工程を加えるのみですみ、T5やT6熱処理に必要な炉の増設のような設備の新設、あるいは大規模なレイアウト変更なしに既存のラインをそのまま活用できるという利点もある。更に、加熱のための燃料費や加工時間が長い熱処理方法に比較すると、本発明は数十秒で処理が完了するので、CO排出量も少なく、環境に対する負荷削減効果も高いので、地球環境にも優しい技術である。 As a result, in the present invention, the surface hardness is improved, the fatigue characteristics are improved, and the magnesium structure material can be extended in life. In addition, when the present invention is introduced into a processing line, it is only necessary to add a shot peening process to the existing line, and there is no new installation such as an additional furnace required for T5 or T6 heat treatment, or a large-scale layout change. Another advantage is that existing lines can be used as they are. Furthermore, compared with a heat treatment method in which the fuel cost for heating and the processing time are long, the present invention completes the processing in several tens of seconds, so the CO 2 emission amount is small and the environmental load reduction effect is high. It is also a friendly technology.

[実施例1]
実施例1として、エア吸引法の装置を用い、セラミック系材質からなるショット材として、粒径0.85mmのサンゴバン社製ZirShot(ZrO2:60-70%、SiO2:28-33%、700HV)を噴射圧力0.35MPaで、径6mmのノズルから噴射距離100mmで、表1に示すマグネシウム合金の板材AZ10、AZ31、AZ61、AZ80に対し噴射時間20秒でショットピーニング処理した場合のビッカース硬さを測定した。
この結果、いずれも処理後の硬さはそれぞれ初期値に比較して大幅に増加していることが確認できた。
[Example 1]
As an example 1, ZirShot (ZrO2: 60-70%, SiO2: 28-33%, 700HV) manufactured by Saint-Gobain Co., Ltd. having a particle diameter of 0.85 mm was used as a shot material made of a ceramic material using an air suction method apparatus. Vickers hardness is measured when shot peening treatment is performed on magnesium alloy plate materials AZ10, AZ31, AZ61, and AZ80 shown in Table 1 with a jetting time of 20 seconds at a jetting pressure of 0.35 MPa and a jetting distance of 100 mm from a nozzle with a diameter of 6 mm. did.
As a result, it was confirmed that the hardness after treatment was significantly increased compared to the initial value.

Figure 0005264104
Figure 0005264104

[実施例2]
マグネシウム合金板材(AZ31)に対し、エア吸引法の装置を用いセラミック系材質からなるショット材として、粒径を0.12mm、0.21mm、0.425mm、0.81mmと変化させたサンゴバン社製ZirShot(ZrO2:60-70%、SiO2:28-33%、700HV)を、噴射圧力0.35MPaで、径6mmのノズルから噴射距離100mm、噴射時間20秒でショットピーニング処理した。図2は、ショット材噴射後のマグネシウム合金中のクロッシングポイント深さとショット粒径の関係を示すグラフであり、ショット粒径が大きくなるにつれてクロッシングポイント深さ、つまり硬さが初期値から増加した表面からの深さ方向の距離、で示されている表面硬化層が増加することが認められた。
[Example 2]
Made of Saint-Gobain Co., Ltd. with a particle size changed to 0.12 mm, 0.21 mm, 0.425 mm, and 0.81 mm as a shot material made of a ceramic material using an air suction method device against a magnesium alloy plate (AZ31) ZirShot (ZrO2: 60-70%, SiO2: 28-33%, 700HV) was shot peened at a jetting pressure of 0.35 MPa, a jetting distance of 100 mm, and a jetting time of 20 seconds from a 6 mm diameter nozzle. FIG. 2 is a graph showing the relationship between the crossing point depth in the magnesium alloy after shot material injection and the shot particle size, and the surface where the crossing point depth, that is, the hardness increases from the initial value as the shot particle size increases. It was observed that the surface hardened layer indicated by the distance in the depth direction from the surface increased.

ショットピーニング処理の様子を示した模式図である。It is the schematic diagram which showed the mode of the shot peening process. ショット材噴射後のマグネシウム合金中のクロッシングポイント深さとショット粒径の関係を示すグラフである。It is a graph which shows the relationship between the crossing point depth in the magnesium alloy after shot material injection, and a shot particle size.

符号の説明Explanation of symbols

1 セラミック系材質からなるショット
2 マグネシウム合金
3 表面強化層
1 Shot made of ceramic material 2 Magnesium alloy 3 Surface enhancement layer

Claims (2)

冷間において行うマグネシウム合金の冷間加工法であって、マグネシウム合金の表面にジルコニア又はジルコンを含むショット材でショットピーニング処理のみを行い、合金表面にショット材との接触により反応生成物を作ることなく、機械的強度の高い強化層を形成することを特徴とするマグネシウム合金の冷間加工法。 A cold working method of a magnesium alloy that is performed in a cold state, in which only a shot peening treatment is performed with a shot material containing zirconia or zircon on the surface of the magnesium alloy, and a reaction product is formed on the alloy surface by contact with the shot material. A method of cold working a magnesium alloy characterized by forming a reinforcing layer with high mechanical strength. ショット材として、平均粒径が0.05から1.0mmのものを用いる請求項1に記載のマグネシウム合金の冷間加工法。   2. The magnesium alloy cold working method according to claim 1, wherein the shot material has an average particle diameter of 0.05 to 1.0 mm.
JP2007131448A 2007-05-17 2007-05-17 Cold working method of magnesium alloy Active JP5264104B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007131448A JP5264104B2 (en) 2007-05-17 2007-05-17 Cold working method of magnesium alloy
PCT/JP2008/059484 WO2008143328A1 (en) 2007-05-17 2008-05-16 Method for a cold working of a magnesium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007131448A JP5264104B2 (en) 2007-05-17 2007-05-17 Cold working method of magnesium alloy

Publications (2)

Publication Number Publication Date
JP2008284644A JP2008284644A (en) 2008-11-27
JP5264104B2 true JP5264104B2 (en) 2013-08-14

Family

ID=39682716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007131448A Active JP5264104B2 (en) 2007-05-17 2007-05-17 Cold working method of magnesium alloy

Country Status (2)

Country Link
JP (1) JP5264104B2 (en)
WO (1) WO2008143328A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101237232B1 (en) * 2010-10-27 2013-02-26 한국기계연구원 The mg alloy sheet having increasing formability and methods of manufaturing the same
JP2012200838A (en) * 2011-03-28 2012-10-22 Toyota Industries Corp Magnesium alloy and manufacturing method therefor
CN102922430A (en) * 2012-11-18 2013-02-13 田欣利 Method for improving grinding rupture strength of engineering ceramic by shot peening of elastic coating
WO2014106211A1 (en) * 2012-12-31 2014-07-03 Saint-Gobain Ceramics & Plastics, Inc. Abrasive blasting media and methods of forming and using same
CN109852912B (en) * 2017-11-30 2023-04-07 有研工程技术研究院有限公司 Method for improving creep resistance of magnesium alloy

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3229000B2 (en) * 1992-04-13 2001-11-12 マツダ株式会社 Method for modifying surface of light alloy member
JPH08323626A (en) * 1995-06-06 1996-12-10 Toshiba Tungaloy Co Ltd Shot peening method and treated product
JPH10166271A (en) * 1996-12-09 1998-06-23 Sinto Brator Co Ltd Shot peening method for light alloy product
JP3730015B2 (en) * 1998-06-02 2005-12-21 株式会社不二機販 Surface treatment method for metal products
JP2001198828A (en) * 2000-01-20 2001-07-24 Nkk Corp Manufacturing method for stainless steel with excellent corrosion resistance
JP2002292307A (en) * 2001-03-30 2002-10-08 Hitachi Koki Co Ltd Rotor for centrifuge
JP2007009258A (en) * 2005-06-29 2007-01-18 Furukawa Co Ltd Method for producing superplastic magnesium alloy material
JP2007245248A (en) * 2006-03-13 2007-09-27 Honda Motor Co Ltd Method for manufacturing light metal panel component, and light metal panel component

Also Published As

Publication number Publication date
WO2008143328A1 (en) 2008-11-27
JP2008284644A (en) 2008-11-27

Similar Documents

Publication Publication Date Title
Kong et al. Effect of remelting and annealing on the wear resistance of AlCoCrFeNiTi0. 5 high entropy alloys
JP5264104B2 (en) Cold working method of magnesium alloy
Potzies et al. Fatigue of magnesium alloys
CN104195322A (en) Surface strengthening treatment method for metal material through coupling electroplastic effect and ultrasonic rolling
JP6246761B2 (en) Manufacturing method of steel member for machine structure
Tang et al. Laser surface alloying of a marine propeller bronze using aluminium powder: Part I: Microstructural analysis and cavitation erosion study
CN109852912B (en) Method for improving creep resistance of magnesium alloy
CN113151827B (en) Wear-resistant coating with multistage island-shaped structure and preparation method thereof
Baral et al. A review on developing high-performance ZE41 magnesium alloy by using bulk deformation and surface modification methods
Fouad et al. Effect of surface treatment on wear behavior of magnesium alloy AZ31
CN103614687A (en) Preparation technique of continuous casting crystallizer copper plate surface cermet coating
CN101648334A (en) Manufacturing technique of austenitic stainless steel cold-rolled plate with good surface performance
JP5867332B2 (en) Aluminum alloy wear-resistant member and method for producing the same
JP2008207279A (en) Surface refining method of metal mold and metal mold
JP6453427B1 (en) Die-casting sleeve and processing method of die-casting sleeve
CN111235482B (en) High-temperature aluminum liquid corrosion-abrasion resistant high-boron cast steel material and preparation method thereof
CN104451484A (en) Thermo-mechanical treatment strengthening technology of magnesium alloy sheet
CN114986399A (en) Shot peening method
Li et al. Effects of spraying parameters and heat treatment temperature on microstructure and properties of single-pass and single-layer cold-sprayed Cu coatings on Al alloy substrate
RU2753636C1 (en) Method for obtaining wear-resistant coating
JP5225596B2 (en) Method for strengthening alloy steel for hot mold and alloy steel for hot mold formed by suppressing generation of thermal fatigue crack by the method
CN103834896A (en) Continuous casting crystallizer long-side copper plate coating thermal spraying method
JP2000038653A (en) Die or mold having surface film
CN105695923A (en) Ionic nitriding machining method for steel air valve
JP2010144224A (en) Modification treatment method for metal film, and aluminum base alloy laminated body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130430

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5264104

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250