JP2004344182A - Magnetic resonance imaging apparatus - Google Patents

Magnetic resonance imaging apparatus Download PDF

Info

Publication number
JP2004344182A
JP2004344182A JP2003117804A JP2003117804A JP2004344182A JP 2004344182 A JP2004344182 A JP 2004344182A JP 2003117804 A JP2003117804 A JP 2003117804A JP 2003117804 A JP2003117804 A JP 2003117804A JP 2004344182 A JP2004344182 A JP 2004344182A
Authority
JP
Japan
Prior art keywords
magnetic field
coil
field coil
wiring
gradient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003117804A
Other languages
Japanese (ja)
Other versions
JP2004344182A5 (en
JP4336138B2 (en
Inventor
Akira Kurome
明 黒目
Hiroyuki Watanabe
洋之 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Ltd
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Medical Corp filed Critical Hitachi Ltd
Priority to JP2003117804A priority Critical patent/JP4336138B2/en
Priority to US10/554,164 priority patent/US7307421B2/en
Priority to PCT/JP2004/005781 priority patent/WO2004093681A1/en
Publication of JP2004344182A publication Critical patent/JP2004344182A/en
Publication of JP2004344182A5 publication Critical patent/JP2004344182A5/ja
Application granted granted Critical
Publication of JP4336138B2 publication Critical patent/JP4336138B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily carry out the wiring and maintenance thereof for feeding an electric current to a gradient magnetic field coil, etc. without affecting the imaging or without deteriorating the openability in a vertical magnetic field type MRI apparatus. <P>SOLUTION: A through hole for inserting the wiring is formed on a side or at the center of a recess for setting the gradient magnetic field gradient coil on a static magnetic field generating system, and the wire for feeding electric currents and a pipe for cooling the gradient magnetic field coil are inserted and fixed into the through hole. After that, the wire and the pipe are connected with a connection terminal mounted on a side or at the center of the gradient magnetic field coil. In another case, the wire and the pipe may be inserted and fixed into the through hole with the wire and the pipe being connected to the gradient magnetic field coil. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、垂直磁場方式の磁気共鳴イメージング(以下「MRI」という。)装置に関し、特に、傾斜磁場コイルや高周波磁場コイルに電流を供給するための配線、および、傾斜磁場コイルを冷却する冷媒を供給するための配管の固定構造に関する。
【0002】
【従来の技術】
MRI装置には、静磁場発生の方式として水平磁場方式の円筒型と垂直磁場方式の対向型があり、垂直磁場方式の対向型が開放性に優れる。そして、静磁場を発生させる手段として、常伝導磁石、永久磁石、超電導磁石を用いたものがあるが、高い静磁場強度を発生させるには超電導磁石が用いられる。さらに、イメージングの際には、高周波磁場コイルを通して電磁波を被検体に照射することによって誘起される核磁気共鳴(以下「NMR」という)信号を受信する際に、傾斜磁場を印加することにより被検体の位置情報をNMR信号に付与する。
【0003】
上記の垂直磁場方式のMRI装置では、一般的に一対の静磁場発生源が上下方向に対向して配置され、静磁場方向が被検体の体軸方向と直交する。そのため、平板状の傾斜磁場コイルが両静磁場発生源の間に形成される均一静磁場領域を挟んで対向配置される。さらに、垂直磁場方式の静磁場発生源として超電導磁石を用いたMRI装置では、開放性を高めるために上記傾斜磁場コイルは超電導コイルの凹みに配置される。
【0004】
さらに、傾斜磁場コイルと高周波磁場コイルの他に静磁場均一度を調節するシムコイルおよび高周波磁場コイルへの電流の供給や傾斜磁場コイル内部を冷却する冷媒の供給のために、静磁場発生系を通して電源装置や冷媒循環装置からの配線や配管を接続する必要がある。具体的には、外径φ10〜30mmのケーブルや配管を6〜10本程度接続する必要があるが、開放側に配線や配管を固定するとMRI装置の開放性が失われてしまう。
【0005】
上記問題を解決する公知例として、[特許文献1]と[特許文献2]がある。[特許文献1]では、ポールピースに設けた切り欠きを通して、配線を固定している。また[特許文献2]では、配線が静磁場発生装置の中央穴を経由して配線されている。
【0006】
【特許文献1】
特願2001−240937号公報
【特許文献2】
特願2000−243058号公報
【0007】
【発明が解決しようとする課題】
[特許文献1]は、ポールピースに切り欠きを設けると、切り欠き部の磁性体の物量が減るため、静磁場の均一度を低減させてしまう。また、超電導コイル容器の開放側に切り欠きを設けることは容易ではなく、切り欠くスペースもない。[特許文献2]は、配線を超電導コイル中央の穴を経由して外部に取り出しているため、配線にはローレンツ力による振動が発生する。この振動が画像へ悪影響を及ぼすため、配線を強固に固定しなければならないが、具体的な固定方法が示されていない。
【0008】
そこで本発明は、垂直磁場方式のMRI装置において、イメージングに影響を与えず、かつ、開放性を損なうことなく、傾斜磁場コイル、高周波磁場コイル、シムコイルへの電流供給とエコー信号の受信を行うための配線および傾斜磁場コイルを冷却する冷媒を供給するための配管の固定と、お互いの接続が、共に容易にでき、また、メンテナンス時の傾斜磁場コイル、高周波磁場コイル、シムコイルの着脱を容易にすることを目的とする。
【0009】
【課題を解決するための手段】
前記課題を解決するために、本発明は以下の様に構成される。
(1)対向配置されて間の空間に均一静磁場領域を形成する1対の静磁場発生源と静磁場の均一度を調節するシムコイルからなる静磁場発生系と、前記静磁場発生系の対向面側に均一静磁場領域を挟んで対向配置された1対の傾斜磁場コイルと、高周波磁場を発生させて被検体に磁気共鳴現象を誘起させる高周波磁場コイルを備えた磁気共鳴イメージング装置において、
前記傾斜磁場コイルは、電流受給用端子を備え、
前記静磁場発生系は、前記傾斜磁場コイルを収容する凹みと、対向面側とその反対面側とを結んで貫通する貫通穴を備え、
前記貫通穴内に、前記傾斜磁場コイルに電流を供給する配線が固定され、
前記配線は、その前記傾斜磁場コイル側に電流供給用端子を備え、
前記電流受給用端子と前記電流供給用端子とを接続し、
前記傾斜磁場コイルを前記静磁場発生系の凹みに固定して
構成される。
(2)また、好ましくは、前記(1)に於いて、前記高周波磁場コイルと前記シムコイルへの電流供給のための配線と、前記高周波コイルにて受信したエコー信号を送信するための配線が、前記貫通穴内に固定される。
(3)好ましくは、前記(1)または前記(2)に於いて、前記傾斜磁場コイルは、その略側面に少なくても1以上の電流受給用端子を備え、前記静磁場発生系は、前記凹みの略側面に少なくとも1以上の前記貫通穴を備える。
(4)また、好ましくは、前記(1)または前記(2)に於いて、前記傾斜磁場コイルは、その均一静磁場側面の反対側面の略中央に少なくても1以上の電流受給用端子を備え、前記静磁場発生系は、前記凹みの略中央に少なくとも1以上の前記貫通穴を備える。
(5)また、好ましくは、前記(1)または前記(2)または前記(3)または前記(4)に於いて、前記貫通穴と前記配線の隙間にクッション材を充填することによって、前記貫通穴内に前期配線を固定する。
(6)また、好ましくは、前記(3)に於いて、前記貫通穴と前記配線の隙間に液状の固定剤を充填して硬化させることによって、前記貫通穴内に前期配線を固定する。
(7)また、好ましくは、前記(3)に於いて、直線状のガイドに前記配線を固定し、前記貫通穴には当該ガイドを案内するレールを設置し、当該ガイドを当該レールに沿って挿入して固定することによって、前記貫通穴内に前期配線を固定したことを特徴とする磁気共鳴イメージング装置。
(8)また、好ましくは、前記(1)または前記(2)または前記(3)または前記(4)に於いて、前記電流供給用端子と前記電流需給端子のいずれか一方は窪みを備え、他方は当該窪みに挿入される突起を備え、当該突起を当該窪みに挿入することにより、前記傾斜磁場コイルと前記配線を接続する。
(9)また、好ましくは、前記(3)に於いて、前記電流受給用端子と前記電流供給用端子のいずれにも、お互いをボルト締結するための穴を備え、当該ボルト締結用の穴を通してボルト締結することにより、前記傾斜磁場コイルと前記配線を接続する。
(10)また、好ましくは、前記(1)または前記(2)または前記(3)または前記(4)に於いて、お互いに電気的に接触する一対のコネクタの内、一方を前記電流受給用端子が備え、他方を前記電流供給用端子が備えて、当該1対のコネクタを接続することにより、前記傾斜磁場コイルと前記配線を接続する。
(11)また、好ましくは、対向配置されて間の空間に均一静磁場領域を形成する1対の静磁場発生源と静磁場の均一度を調節するシムコイルからなる静磁場発生系と、前記静磁場発生系の対向面側に均一静磁場領域を挟んで対向配置された1対の傾斜磁場コイルと、高周波磁場を発生させて被検体に磁気共鳴現象を誘起させる高周波磁場コイルを備えた磁気共鳴イメージング装置において、
前記傾斜磁場コイルは、冷媒受給用端子を備え、
前記静磁場発生系は、前記傾斜磁場コイルを収容する凹みと、対向面側とその反対面側とを結んで貫通する貫通穴を備え、
前記貫通穴内に、前記傾斜磁場コイル側に冷媒を供給する配管が固定され、
前記配管は、その前記傾斜磁場コイル側に冷媒供給用端子を備え、
前記冷媒供給用端子と前記冷媒受給端子とを接続し、
前記傾斜磁場コイルを前記静磁場発生系の凹みに固定して
構成される。
(12)また、好ましくは、前記(11)に於いて、前記傾斜磁場コイルは、その略側面に少なくても1以上の冷媒受給用端子を備え、前記静磁場発生系は、前記凹みの略側面に少なくとも1以上の前記貫通穴を備える。
(13)また、好ましくは、前記(11)に於いて、前記傾斜磁場コイルは、その均一静磁場側面の反対側面の略中央に少なくても1以上の冷媒供給用端子を備え、前記静磁場発生系は、前記凹みの略中央に少なくとも1以上の前記貫通穴を備える。
(14)また、好ましくは、前記(11)に於いて、前記冷媒供給用端子と前記冷媒需給端子のいずれか一方は窪みを備え、他方は当該窪みに挿入される突起を備え、当該突起を当該窪みに挿入することにより、前記傾斜磁場コイルと前記配管を接続する。
(15)また、好ましくは、前記(11)に於いて、お互いに冷媒を搬送させる一対のコネクタの内、一方を前記冷媒受給用端子が備え、他方を前記冷媒供給用端子が備えて、当該1対のコネクタを接続することにより、前記傾斜磁場コイルと前記配管を接続する。
【0010】
これにより、MRI装置において、開放性を損なうことのなく、傾斜磁場コイル、高周波磁場コイル、シムコイルへの電流供給とエコー信号の受信を行うための配線および傾斜磁場コイルを冷却する冷媒を供給するための配管の固定と、お互いの接続が、共に容易にでき、また、メンテナンス時の傾斜磁場コイル、高周波磁場コイル、シムコイルの着脱が容易にできるようになる。
【0011】
【発明の実施の形態】
以下、本発明の実施例を添付図面に基づいて説明する。なお、発明の実施の形態を説明するための全図において、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。
【0012】
最初にMRI装置の基本的な概要を図1に基づいて説明する。MRI装置は、核磁気共鳴現象を利用して被検体の断層画像を得るもので、同図に示すように静磁場発生系1と、傾斜磁場コイル2と、高周波磁場コイル3とを備えて構成される。
【0013】
静磁場発生系1は、上下に対向して配置されて均一静磁場領域50を形成する1対の静磁場発生源と図示せぬ静磁場均一度を調節するシムコイルからなる。静磁場発生源には、超電導磁石または常電導磁石または永久磁石が用いられる。超電導磁石の場合は、超電導材料をコイル形状に巻いた超電導コイルをステンレスまたはGFRP製のクライオ容器内に収容して構成される。
【0014】
図示せぬ被検体は図示せぬベッド上に横たわって、均一静磁場領域50内に配置される。傾斜磁場コイル2は、均一静磁場領域50を挟んで上下に対向して配置され、静磁場発生系1の均一静磁場領域50側の凹み内に固定される。高周波磁場コイル3は、均一静磁場領域50を挟んで上下に対向して配置され、傾斜磁場コイル2の均一静磁場領域50側(つまり、最も内側)に固定される。
【0015】
傾斜磁場コイル2は、互いに直交する3軸方向に傾斜磁場を発生させるため、3つのコイルから構成される。各コイルは傾斜磁場電源31に接続されて駆動電流が供給される。この傾斜磁場コイル2は、静磁場発生系1に設けた図示せぬ固定スタッド(台座)に取り付けられる。
【0016】
高周波磁場コイル3は送信器32に接続され、送信器32は高周波電流を高周波磁場コイル3に送り、高周波磁場を発生させる。また、高周波磁場コイル3は、受信器33にも接続され、受信器33は高周波磁場コイル3を通して被検体からのNMR信号を受信する。受信器33で得られたNMR信号は、データ処理器34に送られ、再構成画像を得るための信号処理が行われる。
【0017】
制御器30は、前記傾斜磁場電源31と、送信器32と、受信器33に対して、適切なタイミングで動作するように制御する。
【0018】
次に、本発明に係る第1実施例を図1に基づいて説明する。
静磁場発生系1には、中央の凹み4の側面付近、つまり傾斜磁場コイル側面付近に、少なくとも1以上(図1では両側に2つ)の貫通穴5が対向面側からその反対面側を結んで開けられている。穴の断面形状は、円、四角形、楕円などでいずれでも良い。
【0019】
図2に傾斜磁場コイル、及び高周波磁場コイルの配線を固定する構造を示す。静磁場発生系組立時に、貫通穴に配線6を通し、液ダメ7を穴の下方に配置し、上方から固定剤(例えば樹脂、発泡剤)8を流し込んで硬化させることにより配線を固定する。液ダメ7は、樹脂、またはシリコンゴムなどの高分子材料でもよく、気密性の高いものが良い。
【0020】
また図3に示すように、あらかじめ外径が穴形状に加工されたクッション材(例えばコルク、緩衝材)9に配線6を固定し、前記クッション材を穴に挿入しても良い。クッション材9の固定は、あらかじめクッション材外表面に接着剤を塗っておくか、または、挿入後に接着剤を流し込む方法でも良い。
【0021】
また図4に示すように、直線状のガイド21に配線6を固定しても良い。一方、貫通穴5には、ガイド21を案内するレール22を設ける。これにより、配線を固定したガイドをレール22に沿って案内し、所定の位置でガイド21を固定する。
【0022】
図5には、配線6と、傾斜磁場コイルからの端子を接続する構造を示す。図6は図5を上方から見た図である。端子10は静磁場発生系側からの配線の先に取り付けた電流供給端子であり、端子11は傾斜磁場コイルから出ている電流受給端子である。図6のように上方からアクセスできるため、視認性が良く、ボルト12にて締結が容易である。また、ボルトを外すだけで配線と分離できるので、傾斜磁場コイルの取り付け、取り外しが容易になる。
【0023】
また、端子は図5の様にボルトで締結せずに、コネクタを用いて電気的に接触させるだけでも良い。一例として、図7にコネクタ(例えば、マルチコンタクト社製の「フォークプラグ」)を用いた電流供給端子13、電流受給端子14の例を示す。
【0024】
以上が第1実施例であるが、図1に基づく第2実施例として、事前に傾斜磁場コイル2に配線6を取り付けておき、傾斜磁場コイル2を静磁場発生系1に取り付ける際に、配線6を貫通穴5に固定する方法を説明する。
傾斜磁場コイル2から引き出している配線6は、取り付ける際に貫通穴5を通す。方法としては、ケーブルにガイド21となる棒状のものを仮固定し、ガイド21を貫通穴に設けたレール22に通す。次に、貫通穴5の下方に液ダメを配置し、上方より固定剤8を流し込み、硬化させる。
【0025】
または、レールを用いずにガイドのみで貫通穴を通し、貫通穴5の下方に液ダメを配置し、上方より固定剤8を流し込み硬化させても良い。また、ガイドの先端に配線6を仮固定し、貫通穴をガイドした後はガイドを取り外しても良い。
【0026】
次に、本発明に係る第3実施例を図8に基づいて説明する。
図8の静磁場発生系1には、中央の凹み4の中心部に少なくとも1以上(図8では1つ)の貫通穴5が対向面側からその反対面側を結んで開けられている。接続端子以外の構成は、第1実施例の図1と同じである。
【0027】
図9に配線6と、傾斜磁場コイル2からの端子を接続する構造を示す。端子15は静磁場発生系側からの配線の先に取り付けた電流供給端子であり、窪みを設けている。ここでは、この窪みの形状を円形としているが、特に円形である必要はなく多角形でも良い。端子16は、傾斜磁場コイル2から出ている電流受給端子であり、端子15の円形の窪みに挿入される突起を設けている。そして、電流受給端子16を電流供給端子15に挿入することにより、傾斜磁場コイル2を配線6に接続する。このようにすることで、静磁場発生系1の中央部にて配線の接続ができ、取り外しも容易になる。この様なコネクタの具体例として、マルチコンタクト社製の「B10Nソケット」と「S10Nプラグ」を用いることができる。さらには、ロック式のコネクタ(例えば、マルチコネクタ社製の「B10AR―Nソケット」と「S10AR―Nプラグ」)または図7に示すようなコネクタで垂直方向に接続可能なものを用いても良い。
【0028】
以上が第3実施例であるが、図8に基づく第4実施例として、第3実施例において事前に傾斜磁場コイル2に配線6を取り付けておき、傾斜磁場コイル2を静磁場発生系1に取り付ける際に、配線6を貫通穴5に固定する方法を説明する。
傾斜磁場コイル2から引き出している配線6は、取り付ける際に貫通穴5を通す。図10に示すように、方法としては、あらかじめ外径が穴形状に加工されたクッション材17を配線6に固定し、クッション材17を穴に挿入する。クッション材17の固定は、クッション材外表面にあらかじめ塗布された接着剤に固定する。
【0029】
以上は、傾斜磁場コイルへの配線について説明したが、高周波磁場コイルやシムコイルへの配線とお互いの接続も同様に行うことができる。その際複数の貫通穴を設けて個別に、或いは、グループ別けしてそれぞれを貫通穴に通しても良い。或いは、全ての必要な配線を束ねて一つにまとめた状態で貫通穴に固定することができる。
【0030】
次に、傾斜磁場コイルを冷却する冷媒を供給するための配管の固定について説明する。
図11には、傾斜磁場コイル側面部にて、配管と傾斜磁場コイルからの端子を接続する構造を示す。端子100は静磁場発生系側からの配管の先に取り付けた冷媒供給端子であり、端子101は傾斜磁場コイルから出ている冷媒受給端子である。
この配管及び端子には、中空の貫通穴が設けられている。形状は四角形でも円でも良い。冷媒供給端子100の先端部突起は、冷媒受給端子101に設けられた窪みに挿入される。この端子に、図12のようなロック式のコネクタ102を用いることで、着脱が可能となる。
【0031】
または、図13のように、冷媒供給端子100を省略し、さらには外部からの配管にゴム製のチューブ105を用いた場合は、固定用バンド103をネジ104で締め付けることにより配管を固定しても良い。この様な端子の例としてストーブリ社製の「クイックリリースカップリング」を用いることができる。
【0032】
または、冷媒供給端子100、及び冷媒受給端子101に非磁性の金属材料(真鍮、ステンレスなど)を用いた場合は、ろう付けにより固定しても良い。または、図14のように、ナット106を回転させることにより配管と端子を固定するスウェージロック式のコネクタを用いても良い。
【0033】
以上のように構成することにより、管内に冷媒(液体、または気体)を循環させ、傾斜磁場コイルの外部で前記冷媒を冷却することにより、傾斜磁場コイルを冷却できる。さらには、この配管及び端子に導電性材を用いる場合には、電源からの電流を配管に接続することで、傾斜磁場コイルに電流を供給することもできる。
以上は、傾斜磁場コイル側面部にて、接続する場合の構造であるが、図15のように、中央部にも適応できる。
【0034】
【発明の効果】
本発明によれば、MRI装置において、開放性を損なうことのなく、傾斜磁場コイル、高周波磁場コイル、シムコイルへの電流供給とエコー信号の受信を行うための配線および傾斜磁場コイルを冷却する冷媒を供給するための配管の固定と、お互いの接続が、共に容易にでき、また、メンテナンス時の傾斜磁場コイル、高周波磁場コイル、シムコイルの着脱が容易にできるようになる。
【図面の簡単な説明】
【図1】第1実施例の磁気共鳴イメージング装置を示す図。
【図2】第1実施例の配線の固定構造(固定剤方式)を示す図。
【図3】第1実施例の配線の固定構造(クッション方式)を示す図。
【図4】第1実施例の配線の固定構造(ガイド・レール方式)を示す図。
【図5】第1実施例の端子接続方法を示す図。
【図6】第1実施例の図5の上面を示す図。
【図7】第1実施例の端子接続方法を示す図。
【図8】第3実施例の磁気共鳴イメージング装置を示す図。
【図9】第3実施例の端子接続方法を示す図。
【図10】第4実施例の端子接続方法を示す図。
【図11】凹みの略側面での配管の端子接続方法を示す図。
【図12】ロック式のコネクタを用いた配管の接続方法を示す図。
【図13】ゴム製のチューブを用いた配管の接続方法を示す図。
【図14】スウェージロック式のコネクタを用いた配管の接続方法を示す図。
【図15】凹みの略中央での配管の端子接続方法を示す図。
【符号の説明】
1 静磁場発生系、2 傾斜磁場コイル、3 高周波磁場コイル、4 中央の凹み、5 貫通穴、6 配線、7 液ダメ、8 固定剤、9 クッション材、10 電流供給端子、11 電流受給端子、12 ボルト、13 電流供給端子、14 電流受給端子、15 電流供給端子、16 電流受給端子、17 クッション材、21 ガイド、22 レール、30 制御器、31 傾斜磁場電源、32 送信器、33 受信器、34 データ処理器、50 均一静磁場領域、100 配管端子、101 配管端子、102 ロック式コネクタ、103 固定バンド、104 ねじ、105 ゴムチューブ、106 ナット
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a vertical magnetic field type magnetic resonance imaging (hereinafter, referred to as “MRI”) apparatus, and more particularly to a wiring for supplying a current to a gradient magnetic field coil or a high frequency magnetic field coil, and a refrigerant for cooling the gradient magnetic field coil. The present invention relates to a pipe fixing structure for supplying.
[0002]
[Prior art]
As the MRI apparatus, there are a cylindrical type of a horizontal magnetic field type and a facing type of a vertical magnetic field type as a method of generating a static magnetic field, and the facing type of a vertical magnetic field type is excellent in openness. Means for generating a static magnetic field include those using a normal magnet, a permanent magnet, and a superconducting magnet. A superconducting magnet is used to generate a high static magnetic field strength. Furthermore, in imaging, when receiving a nuclear magnetic resonance (hereinafter referred to as “NMR”) signal induced by irradiating the subject with an electromagnetic wave through a high-frequency magnetic field coil, the subject is subjected to a gradient magnetic field by applying a gradient magnetic field. Is given to the NMR signal.
[0003]
In the above-described vertical magnetic field type MRI apparatus, a pair of static magnetic field generating sources are generally arranged to face each other in the vertical direction, and the static magnetic field direction is orthogonal to the body axis direction of the subject. Therefore, the plate-shaped gradient magnetic field coils are arranged to face each other with a uniform static magnetic field region formed between both static magnetic field generation sources. Further, in an MRI apparatus using a superconducting magnet as a vertical magnetic field type static magnetic field generating source, the gradient magnetic field coil is disposed in a recess of the superconducting coil in order to enhance openness.
[0004]
Furthermore, in addition to the gradient magnetic field coil and the high frequency magnetic field coil, power is supplied through a static magnetic field generation system to supply current to the shim coil and the high frequency magnetic field coil for adjusting the uniformity of the static magnetic field and to supply the refrigerant for cooling the inside of the gradient magnetic field coil. It is necessary to connect wiring and piping from the device and the refrigerant circulation device. Specifically, it is necessary to connect about 6 to 10 cables or pipes having an outer diameter of φ10 to 30 mm. However, if the wires or pipes are fixed on the open side, the openness of the MRI apparatus is lost.
[0005]
Known examples that solve the above problem include [Patent Document 1] and [Patent Document 2]. In [Patent Document 1], wiring is fixed through a notch provided in a pole piece. Further, in [Patent Document 2], the wiring is wired via a central hole of the static magnetic field generator.
[0006]
[Patent Document 1]
Japanese Patent Application No. 2001-240937 [Patent Document 2]
Japanese Patent Application No. 2000-243058
[Problems to be solved by the invention]
In Patent Literature 1, when a notch is provided in a pole piece, the amount of the magnetic material in the notch portion is reduced, so that the uniformity of the static magnetic field is reduced. Further, it is not easy to provide a notch on the open side of the superconducting coil container, and there is no space for notching. In Patent Literature 2, the wiring is taken out to the outside via a hole in the center of the superconducting coil, so that the wiring generates vibration due to Lorentz force. Since the vibration adversely affects the image, the wiring must be firmly fixed, but no specific fixing method is disclosed.
[0008]
Accordingly, the present invention provides a vertical magnetic field type MRI apparatus for supplying current to a gradient magnetic field coil, a high frequency magnetic field coil, a shim coil and receiving an echo signal without affecting imaging and without impairing openness. Wiring and piping for supplying coolant for cooling the gradient magnetic field coil can be easily fixed and connected to each other, and the gradient magnetic field coil, high frequency magnetic field coil, and shim coil can be easily attached and detached during maintenance. The purpose is to:
[0009]
[Means for Solving the Problems]
In order to solve the above problems, the present invention is configured as follows.
(1) A static magnetic field generating system including a pair of static magnetic field generating sources that form a uniform static magnetic field region in a space therebetween and a shim coil that adjusts the uniformity of the static magnetic field, and opposing the static magnetic field generating system. In a magnetic resonance imaging apparatus including a pair of gradient magnetic field coils opposed to each other with a uniform static magnetic field region on the surface side and a high frequency magnetic field coil for generating a high frequency magnetic field and inducing a magnetic resonance phenomenon in a subject,
The gradient magnetic field coil includes a current receiving terminal,
The static magnetic field generation system includes a recess for accommodating the gradient magnetic field coil, and a through hole penetrating the opposite surface side and the opposite surface side.
Wiring for supplying current to the gradient coil is fixed in the through hole,
The wiring includes a current supply terminal on the gradient magnetic field coil side,
Connecting the current receiving terminal and the current supplying terminal,
The gradient magnetic field coil is fixed to a recess of the static magnetic field generation system.
(2) Also, preferably, in the above (1), wiring for supplying a current to the high-frequency magnetic field coil and the shim coil, and wiring for transmitting an echo signal received by the high-frequency coil, It is fixed in the through hole.
(3) Preferably, in the above (1) or (2), the gradient magnetic field coil has at least one or more current receiving terminals on a substantially side surface thereof, and the static magnetic field generating system has At least one or more of the through holes are provided on substantially the side surface of the recess.
(4) Preferably, in the above (1) or (2), the gradient magnetic field coil has at least one or more current receiving terminals substantially at the center of the side opposite to the uniform static magnetic field side. And the static magnetic field generation system includes at least one or more of the through holes substantially at the center of the recess.
(5) Preferably, in the above (1) or (2) or (3) or (4), a cushion material is filled in a gap between the through hole and the wiring, so that the through hole is formed. Fix the wiring in the hole.
(6) Preferably, in (3), the wiring is fixed in the through-hole by filling and curing a liquid fixing agent in a gap between the through-hole and the wiring.
(7) Preferably, in (3), the wiring is fixed to a linear guide, a rail for guiding the guide is provided in the through hole, and the guide is placed along the rail. A magnetic resonance imaging apparatus wherein the wiring is fixed in the through hole by inserting and fixing.
(8) Further, preferably, in the above (1) or (2) or (3) or (4), one of the current supply terminal and the current supply / reception terminal has a depression, The other is provided with a projection inserted into the depression, and the gradient coil is connected to the wiring by inserting the projection into the depression.
(9) Preferably, in the above (3), each of the current receiving terminal and the current supplying terminal is provided with a hole for bolting each other, and the current receiving terminal and the current supplying terminal are provided with holes for bolting each other. The gradient magnetic field coil and the wiring are connected by bolting.
(10) Preferably, in (1), (2), (3), or (4), one of a pair of connectors that are in electrical contact with each other is used for receiving the current. A terminal is provided, and the other is provided by the current supply terminal, and the pair of connectors are connected to connect the gradient magnetic field coil to the wiring.
(11) Preferably, a static magnetic field generating system including a pair of static magnetic field generating sources which are arranged opposite to each other to form a uniform static magnetic field region in a space therebetween and a shim coil for adjusting the uniformity of the static magnetic field; A magnetic resonance system including a pair of gradient magnetic field coils opposed to each other across a uniform static magnetic field region on the opposite surface side of a magnetic field generation system and a high frequency magnetic field coil for generating a high frequency magnetic field and inducing a magnetic resonance phenomenon in a subject. In an imaging device,
The gradient magnetic field coil includes a refrigerant receiving terminal,
The static magnetic field generation system includes a recess for accommodating the gradient magnetic field coil, and a through hole penetrating the opposite surface side and the opposite surface side.
In the through hole, a pipe for supplying a refrigerant to the gradient magnetic field coil side is fixed,
The pipe includes a refrigerant supply terminal on the side of the gradient magnetic field coil,
Connecting the refrigerant supply terminal and the refrigerant reception terminal,
The gradient magnetic field coil is fixed to a recess of the static magnetic field generation system.
(12) Preferably, in the above (11), the gradient magnetic field coil has at least one or more refrigerant receiving terminals on a substantially side surface thereof, and the static magnetic field generating system has a structure in which the recess is substantially formed. At least one through hole is provided on a side surface.
(13) Preferably, in the above (11), the gradient magnetic field coil has at least one or more refrigerant supply terminals substantially at the center of a side opposite to the uniform static magnetic field side, and The generating system includes at least one or more of the through holes substantially at the center of the recess.
(14) Preferably, in the above (11), one of the refrigerant supply terminal and the refrigerant supply / reception terminal has a depression, and the other has a projection inserted into the depression, and The gradient coil is connected to the pipe by being inserted into the depression.
(15) Preferably, in the above (11), one of the pair of connectors for transporting the refrigerant to each other is provided with the refrigerant receiving terminal, and the other is provided with the refrigerant supplying terminal. The gradient coil and the pipe are connected by connecting a pair of connectors.
[0010]
Thereby, in the MRI apparatus, the wiring for supplying current to the gradient magnetic field coil, the high frequency magnetic field coil, the shim coil and receiving the echo signal, and supplying the coolant for cooling the gradient magnetic field coil without impairing the openness. The pipes can be easily fixed and connected to each other easily, and the gradient coil, the high-frequency magnetic field coil, and the shim coil can be easily attached and detached during maintenance.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In all the drawings for describing the embodiments of the present invention, components having the same functions are denoted by the same reference numerals, and their repeated description will be omitted.
[0012]
First, a basic outline of the MRI apparatus will be described with reference to FIG. The MRI apparatus obtains a tomographic image of a subject using a nuclear magnetic resonance phenomenon, and includes a static magnetic field generating system 1, a gradient magnetic field coil 2, and a high frequency magnetic field coil 3, as shown in FIG. Is done.
[0013]
The static magnetic field generating system 1 includes a pair of static magnetic field generating sources which are arranged to face each other up and down to form a uniform static magnetic field region 50, and a shim coil (not shown) for adjusting the uniformity of the static magnetic field. A superconducting magnet, a normal conducting magnet, or a permanent magnet is used as the static magnetic field generation source. In the case of a superconducting magnet, a superconducting coil in which a superconducting material is wound into a coil shape is accommodated in a cryocontainer made of stainless steel or GFRP.
[0014]
A subject (not shown) lies on a bed (not shown) and is arranged in the uniform static magnetic field region 50. The gradient magnetic field coils 2 are arranged vertically opposite to each other with the uniform static magnetic field region 50 interposed therebetween, and are fixed in a recess of the static magnetic field generation system 1 on the side of the uniform static magnetic field region 50. The high-frequency magnetic field coil 3 is disposed to face up and down with the uniform static magnetic field area 50 interposed therebetween, and is fixed to the uniform static magnetic field area 50 side (that is, the innermost side) of the gradient magnetic field coil 2.
[0015]
The gradient magnetic field coil 2 is composed of three coils to generate gradient magnetic fields in three axial directions orthogonal to each other. Each coil is connected to a gradient magnetic field power supply 31 and supplied with a drive current. The gradient magnetic field coil 2 is attached to a fixed stud (pedestal) (not shown) provided in the static magnetic field generation system 1.
[0016]
The high frequency magnetic field coil 3 is connected to a transmitter 32, and the transmitter 32 sends a high frequency current to the high frequency magnetic field coil 3 to generate a high frequency magnetic field. The high frequency magnetic field coil 3 is also connected to a receiver 33, and the receiver 33 receives the NMR signal from the subject through the high frequency magnetic field coil 3. The NMR signal obtained by the receiver 33 is sent to a data processor 34, where signal processing for obtaining a reconstructed image is performed.
[0017]
The controller 30 controls the gradient magnetic field power supply 31, the transmitter 32, and the receiver 33 to operate at appropriate timing.
[0018]
Next, a first embodiment according to the present invention will be described with reference to FIG.
In the static magnetic field generation system 1, at least one or more (two in FIG. 1 two on each side) through holes 5 are provided near the side surface of the central recess 4, that is, near the side surface of the gradient magnetic field coil. It is tied and opened. The cross-sectional shape of the hole may be any of a circle, a square, an ellipse, and the like.
[0019]
FIG. 2 shows a structure for fixing the wiring of the gradient magnetic field coil and the high frequency magnetic field coil. At the time of assembling the static magnetic field generating system, the wiring 6 is passed through the through-hole, the liquid waste 7 is arranged below the hole, and a fixing agent (eg, resin or foaming agent) 8 is poured from above and cured to fix the wiring. The liquid damper 7 may be a resin or a polymer material such as silicone rubber, and preferably has a high airtightness.
[0020]
Further, as shown in FIG. 3, the wiring 6 may be fixed to a cushion material (for example, cork, cushioning material) 9 whose outer diameter is previously processed into a hole shape, and the cushion material may be inserted into the hole. The cushion material 9 may be fixed by applying an adhesive on the outer surface of the cushion material in advance, or by pouring the adhesive after the insertion.
[0021]
Further, as shown in FIG. 4, the wiring 6 may be fixed to a linear guide 21. On the other hand, a rail 22 for guiding the guide 21 is provided in the through hole 5. As a result, the guide to which the wiring is fixed is guided along the rail 22, and the guide 21 is fixed at a predetermined position.
[0022]
FIG. 5 shows a structure for connecting the wiring 6 and a terminal from the gradient coil. FIG. 6 is a view of FIG. 5 as viewed from above. The terminal 10 is a current supply terminal attached to the end of the wiring from the static magnetic field generation system side, and the terminal 11 is a current supply terminal coming out of the gradient magnetic field coil. Since it can be accessed from above as shown in FIG. 6, visibility is good, and fastening with the bolt 12 is easy. Further, since the wiring can be separated from the wiring simply by removing the bolt, the mounting and dismounting of the gradient magnetic field coil become easy.
[0023]
Further, the terminals may not be fastened by bolts as shown in FIG. 5 but may be simply brought into electrical contact using a connector. As an example, FIG. 7 shows an example of a current supply terminal 13 and a current reception terminal 14 using a connector (for example, a “fork plug” manufactured by Multi Contact).
[0024]
The above is the first embodiment, but as a second embodiment based on FIG. 1, wiring 6 is attached to the gradient magnetic field coil 2 in advance, and when the gradient magnetic field coil 2 is A method of fixing the through holes 6 to the through holes 5 will be described.
The wiring 6 drawn from the gradient magnetic field coil 2 passes through the through hole 5 at the time of attachment. As a method, a rod-shaped material serving as a guide 21 is temporarily fixed to a cable, and the guide 21 is passed through a rail 22 provided in a through hole. Next, the liquid waste is arranged below the through hole 5, and the fixing agent 8 is poured from above and cured.
[0025]
Alternatively, it is also possible to pass through the through-hole only with the guide without using the rail, dispose the liquid dam below the through-hole 5, and pour the fixing agent 8 from above to harden. Alternatively, the wire 6 may be temporarily fixed to the end of the guide, and the guide may be removed after guiding the through hole.
[0026]
Next, a third embodiment according to the present invention will be described with reference to FIG.
In the static magnetic field generation system 1 of FIG. 8, at least one (one in FIG. 8) through-hole 5 is formed in the center of the central recess 4 by connecting the opposite surface side to the opposite surface side. The configuration other than the connection terminals is the same as that of FIG. 1 of the first embodiment.
[0027]
FIG. 9 shows a structure for connecting the wiring 6 and a terminal from the gradient coil 2. The terminal 15 is a current supply terminal attached to the tip of the wiring from the static magnetic field generation system side, and has a depression. Here, the shape of the depression is circular, but need not be circular in particular, and may be polygonal. The terminal 16 is a current receiving terminal coming out of the gradient magnetic field coil 2, and has a projection inserted into a circular recess of the terminal 15. Then, the gradient coil 2 is connected to the wiring 6 by inserting the current receiving terminal 16 into the current supplying terminal 15. By doing so, wiring can be connected at the center of the static magnetic field generation system 1 and removal becomes easy. As a specific example of such a connector, "B10N socket" and "S10N plug" manufactured by Multi Contact Co., Ltd. can be used. Further, a lock type connector (for example, “B10AR-N socket” and “S10AR-N plug” manufactured by Multiconnector) or a connector as shown in FIG. 7 that can be connected in the vertical direction may be used. .
[0028]
The above is the third embodiment. As a fourth embodiment based on FIG. 8, the wiring 6 is attached to the gradient magnetic field coil 2 in advance in the third embodiment, and the gradient magnetic field coil 2 is attached to the static magnetic field generation system 1. A method of fixing the wiring 6 to the through hole 5 when attaching the wiring 6 will be described.
The wiring 6 drawn from the gradient magnetic field coil 2 passes through the through hole 5 at the time of attachment. As shown in FIG. 10, as a method, a cushion material 17 having an outer diameter previously processed into a hole shape is fixed to the wiring 6, and the cushion material 17 is inserted into the hole. The cushion member 17 is fixed to an adhesive previously applied to the outer surface of the cushion member.
[0029]
In the above, the wiring to the gradient magnetic field coil has been described. However, the wiring to the high frequency magnetic field coil and the shim coil can be similarly connected to each other. At this time, a plurality of through holes may be provided, and the individual holes may be passed through the through holes individually or in groups. Alternatively, all necessary wirings can be bundled and fixed to the through hole in a state of being united.
[0030]
Next, fixing of a pipe for supplying a coolant for cooling the gradient coil will be described.
FIG. 11 shows a structure in which the piping and the terminals from the gradient coil are connected at the side of the gradient coil. The terminal 100 is a refrigerant supply terminal attached to the tip of the pipe from the static magnetic field generation system side, and the terminal 101 is a refrigerant supply terminal coming out of the gradient magnetic field coil.
The pipe and the terminal are provided with a hollow through hole. The shape may be a square or a circle. The distal end protrusion of the coolant supply terminal 100 is inserted into a recess provided in the coolant supply terminal 101. By using a lock-type connector 102 as shown in FIG. 12 for these terminals, attachment and detachment becomes possible.
[0031]
Alternatively, as shown in FIG. 13, when the refrigerant supply terminal 100 is omitted and a rubber tube 105 is used for external piping, the piping is fixed by tightening the fixing band 103 with the screw 104. Is also good. As an example of such a terminal, "Quick Release Coupling" manufactured by Stäubli can be used.
[0032]
Alternatively, when a non-magnetic metal material (brass, stainless steel, or the like) is used for the refrigerant supply terminal 100 and the refrigerant reception terminal 101, they may be fixed by brazing. Alternatively, as shown in FIG. 14, a swage lock type connector for fixing the pipe and the terminal by rotating the nut 106 may be used.
[0033]
With the configuration described above, the gradient magnetic field coil can be cooled by circulating the refrigerant (liquid or gas) in the tube and cooling the refrigerant outside the gradient magnetic field coil. Furthermore, when a conductive material is used for the pipe and the terminal, a current from a power supply can be connected to the pipe to supply a current to the gradient magnetic field coil.
The above is the structure in the case where the connection is made at the side of the gradient magnetic field coil. However, the structure can be applied to the center as shown in FIG.
[0034]
【The invention's effect】
According to the present invention, in an MRI apparatus, a gradient magnetic field coil, a high-frequency magnetic field coil, a wiring for performing current supply to a shim coil and reception of an echo signal, and a refrigerant for cooling the gradient magnetic field coil without impairing openness. The supply pipes can be easily fixed and connected to each other, and the gradient coil, the high-frequency magnetic field coil, and the shim coil can be easily attached and detached during maintenance.
[Brief description of the drawings]
FIG. 1 is a diagram showing a magnetic resonance imaging apparatus according to a first embodiment.
FIG. 2 is a diagram showing a wiring fixing structure (fixing agent method) according to the first embodiment.
FIG. 3 is a view showing a wiring fixing structure (cushion method) according to the first embodiment;
FIG. 4 is a view showing a wiring fixing structure (guide-rail system) according to the first embodiment;
FIG. 5 is a diagram showing a terminal connection method according to the first embodiment.
FIG. 6 is a diagram showing the upper surface of FIG. 5 of the first embodiment.
FIG. 7 is a diagram showing a terminal connection method according to the first embodiment.
FIG. 8 is a diagram illustrating a magnetic resonance imaging apparatus according to a third embodiment.
FIG. 9 is a diagram illustrating a terminal connection method according to a third embodiment.
FIG. 10 is a diagram showing a terminal connection method according to a fourth embodiment.
FIG. 11 is a diagram showing a method of connecting terminals of piping on substantially the side surface of the recess.
FIG. 12 is a diagram showing a method of connecting pipes using a lock-type connector.
FIG. 13 is a diagram showing a method of connecting pipes using a rubber tube.
FIG. 14 is a diagram showing a method of connecting pipes using a swagelok type connector.
FIG. 15 is a diagram showing a method of connecting terminals of piping substantially at the center of the recess.
[Explanation of symbols]
1 static magnetic field generation system, 2 gradient magnetic field coil, 3 high frequency magnetic field coil, 4 central recess, 5 through hole, 6 wiring, 7 liquid dam, 8 fixing agent, 9 cushion material, 10 current supply terminal, 11 current receiving terminal, 12 volt, 13 current supply terminal, 14 current reception terminal, 15 current supply terminal, 16 current reception terminal, 17 cushion material, 21 guide, 22 rail, 30 controller, 31 gradient power supply, 32 transmitter, 33 receiver, 34 data processor, 50 uniform static magnetic field area, 100 piping terminal, 101 piping terminal, 102 locking connector, 103 fixing band, 104 screw, 105 rubber tube, 106 nut

Claims (15)

対向配置されて間の空間に均一静磁場領域を形成する1対の静磁場発生源と静磁場の均一度を調節するシムコイルからなる静磁場発生系と、前記静磁場発生系の対向面側に均一静磁場領域を挟んで対向配置された1対の傾斜磁場コイルと、高周波磁場を発生させて被検体に核磁気共鳴現象を誘起させる高周波磁場コイルを備えた磁気共鳴イメージング装置において、
前記傾斜磁場コイルは、電流受給用端子を備え、
前記静磁場発生系は、前記傾斜磁場コイルを収容する凹みと、対向面側とその反対面側とを結んで貫通する貫通穴を備え、
前記貫通穴内に、前記傾斜磁場コイルに電流を供給する配線が固定され、
前記配線は、その前記傾斜磁場コイル側に電流供給用端子を備え、
前記電流受給用端子と前記電流供給用端子とを接続し、
前記傾斜磁場コイルを前記静磁場発生系の凹みに固定して
構成されたことを特徴とする磁気共鳴イメージング装置。
A static magnetic field generating system including a pair of static magnetic field generating sources for forming a uniform static magnetic field region in a space between the static magnetic fields and a shim coil for adjusting the uniformity of the static magnetic field; In a magnetic resonance imaging apparatus including a pair of gradient magnetic field coils opposed to each other with a uniform static magnetic field region interposed therebetween, and a high frequency magnetic field coil for generating a high frequency magnetic field to induce a nuclear magnetic resonance phenomenon in a subject,
The gradient magnetic field coil includes a current receiving terminal,
The static magnetic field generation system includes a recess for accommodating the gradient magnetic field coil, and a through-hole penetrating the opposite surface side and the opposite surface side.
Wiring for supplying current to the gradient coil is fixed in the through hole,
The wiring includes a current supply terminal on the gradient magnetic field coil side,
Connecting the current receiving terminal and the current supplying terminal,
A magnetic resonance imaging apparatus, wherein the gradient magnetic field coil is fixed to a recess of the static magnetic field generation system.
請求項1に於いて、前記高周波磁場コイルと前記シムコイルへの電流供給のための配線と、前記高周波コイルにて受信したエコー信号を送信するための配線が、前記貫通穴内に固定されたことを特徴とする磁気共鳴イメージング装置。2. The device according to claim 1, wherein a wire for supplying a current to the high-frequency magnetic field coil and the shim coil, and a wire for transmitting an echo signal received by the high-frequency coil are fixed in the through hole. A magnetic resonance imaging apparatus. 請求項1または請求項2に於いて、前記傾斜磁場コイルは、その略側面に少なくても1以上の電流受給用端子を備え、前記静磁場発生系は、前記凹みの略側面に少なくとも1以上の前記貫通穴を備えたことを特徴とする磁気共鳴イメージング装置。3. The gradient magnetic field coil according to claim 1, wherein the gradient magnetic field coil has at least one or more current receiving terminals on a substantially side surface thereof, and the static magnetic field generating system has at least one or more current receiving terminals on a substantially side surface of the recess. A magnetic resonance imaging apparatus comprising the through hole. 請求項1または請求項2に於いて、前記傾斜磁場コイルは、その均一静磁場側面の反対側面の略中央に少なくても1以上の電流受給用端子を備え、前記静磁場発生系は、前記凹みの略中央に少なくとも1以上の前記貫通穴を備えたことを特徴とする磁気共鳴イメージング装置。The gradient magnetic field coil according to claim 1 or 2, wherein the gradient magnetic field coil includes at least one or more current receiving terminals substantially at a center of a side opposite to a side of the uniform static magnetic field, and the static magnetic field generating system includes: A magnetic resonance imaging apparatus comprising at least one or more through-holes substantially at the center of a recess. 請求項1または請求項2または請求項3または請求項4に於いて、前記貫通穴と前記配線の隙間にクッション材を充填することによって、前記貫通穴内に前期配線を固定したことを特徴とする磁気共鳴イメージング装置。5. The wiring according to claim 1, wherein the wiring is fixed in the through hole by filling a cushion material in a gap between the through hole and the wiring. Magnetic resonance imaging device. 請求項3に於いて、前記貫通穴と前記配線の隙間に液状の固定剤を充填して硬化させることによって、前記貫通穴内に前期配線を固定したことを特徴とする磁気共鳴イメージング装置。4. The magnetic resonance imaging apparatus according to claim 3, wherein the wiring is fixed in the through-hole by filling and curing a liquid fixing agent in a gap between the through-hole and the wiring. 請求項3に於いて、直線状のガイドに前記配線を固定し、前記貫通穴には当該ガイドを案内するレールを設置し、当該ガイドを当該レールに沿って挿入して固定することによって、前記貫通穴内に前期配線を固定したことを特徴とする磁気共鳴イメージング装置。4. The method according to claim 3, wherein the wiring is fixed to a linear guide, a rail for guiding the guide is installed in the through hole, and the guide is inserted and fixed along the rail. A magnetic resonance imaging apparatus characterized in that the wiring is fixed in the through hole. 請求項1または請求項2または請求項3または請求項4に於いて、前記電流供給用端子と前記電流需給端子のいずれか一方は窪みを備え、他方は当該窪みに挿入される突起を備え、当該突起を当該窪みに挿入することにより、前記傾斜磁場コイルと前記配線を接続したことを特徴とする磁気共鳴イメージング装置。Claim 1 or Claim 2, Claim 3 or Claim 4, wherein one of the current supply terminal and the current supply / reception terminal has a depression, and the other has a projection inserted into the depression. The magnetic resonance imaging apparatus, wherein the gradient magnetic field coil and the wiring are connected by inserting the projection into the depression. 請求項3に於いて、前記電流受給用端子と前記電流供給用端子のいずれにも、お互いをボルト締結するための穴を備え、当該ボルト締結用の穴を通してボルト締結することにより、前記傾斜磁場コイルと前記配線を接続したことを特徴とする磁気共鳴イメージング装置。4. The gradient magnetic field according to claim 3, wherein each of the current receiving terminal and the current supplying terminal is provided with a hole for bolting each other, and bolted through the bolt fastening hole. A magnetic resonance imaging apparatus, wherein a coil and the wiring are connected. 請求項1または請求項2または請求項3または請求項4に於いて、お互いに電気的に接触する一対のコネクタの内、一方を前記電流受給用端子が備え、他方を前記電流供給用端子が備えて、当該1対のコネクタを接続することにより、前記傾斜磁場コイルと前記配線を接続したことを特徴とする磁気共鳴イメージング装置。In Claim 1, Claim 2, Claim 3, or Claim 4, one of the pair of connectors that are in electrical contact with each other is provided with the current receiving terminal, and the other is provided with the current supplying terminal. A magnetic resonance imaging apparatus comprising: connecting the pair of connectors to connect the gradient magnetic field coil and the wiring. 対向配置されて間の空間に均一静磁場領域を形成する1対の静磁場発生源と静磁場の均一度を調節するシムコイルからなる静磁場発生系と、前記静磁場発生系の対向面側に均一静磁場領域を挟んで対向配置された1対の傾斜磁場コイルと、高周波磁場を発生させて被検体に磁気共鳴現象を誘起させる高周波磁場コイルを備えた磁気共鳴イメージング装置において、
前記傾斜磁場コイルは、冷媒受給用端子を備え、
前記静磁場発生系は、前記傾斜磁場コイルを収容する凹みと、対向面側とその反対面側とを結んで貫通する貫通穴を備え、
前記貫通穴内に、前記傾斜磁場コイルに冷媒を供給する配管が固定され、
前記配管は、その前記傾斜磁場コイル側に冷媒供給用端子を備え、
前記冷媒供給用端子と前記冷媒受給端子とを接続し、
前記傾斜磁場コイルを前記静磁場発生系の凹みに固定して
構成されたことを特徴とする磁気共鳴イメージング装置。
A static magnetic field generating system including a pair of static magnetic field generating sources for forming a uniform static magnetic field region in a space between the static magnetic fields and a shim coil for adjusting the uniformity of the static magnetic field; In a magnetic resonance imaging apparatus including a pair of gradient magnetic field coils opposed to each other with a uniform static magnetic field region interposed therebetween and a high frequency magnetic field coil for generating a high frequency magnetic field and inducing a magnetic resonance phenomenon in a subject,
The gradient magnetic field coil includes a refrigerant receiving terminal,
The static magnetic field generation system includes a recess for accommodating the gradient magnetic field coil, and a through-hole penetrating the opposite surface side and the opposite surface side.
In the through hole, a pipe for supplying a refrigerant to the gradient magnetic field coil is fixed,
The pipe includes a refrigerant supply terminal on the side of the gradient magnetic field coil,
Connecting the refrigerant supply terminal and the refrigerant reception terminal,
A magnetic resonance imaging apparatus, wherein the gradient magnetic field coil is fixed to a recess of the static magnetic field generation system.
請求項11に於いて、前記傾斜磁場コイルは、その略側面に少なくても1以上の冷媒受給用端子を備え、前記静磁場発生系は、前記凹みの略側面に少なくとも1以上の前記貫通穴を備えたことを特徴とする磁気共鳴イメージング装置。12. The gradient magnetic field coil according to claim 11, wherein the gradient magnetic field coil has at least one or more refrigerant receiving terminals on substantially a side surface thereof, and the static magnetic field generation system has at least one or more of the through holes on substantially a side surface of the recess. A magnetic resonance imaging apparatus comprising: 請求項11に於いて、前記傾斜磁場コイルは、その均一静磁場側面の反対側面の略中央に少なくても1以上の冷媒供給用端子を備え、前記静磁場発生系は、前記凹みの略中央に少なくとも1以上の前記貫通穴を備えたことを特徴とする磁気共鳴イメージング装置。12. The gradient magnetic field coil according to claim 11, wherein the gradient magnetic field coil has at least one or more refrigerant supply terminals substantially at the center of a side surface opposite to the uniform static magnetic field side surface, and the static magnetic field generation system is substantially at the center of the recess. A magnetic resonance imaging apparatus comprising at least one through hole. 請求項11に於いて、前記冷媒供給用端子と前記冷媒需給端子のいずれか一方は窪みを備え、他方は当該窪みに挿入される突起を備え、当該突起を当該窪みに挿入することにより、前記傾斜磁場コイルと前記配管を接続したことを特徴とする磁気共鳴イメージング装置。The method according to claim 11, wherein one of the refrigerant supply terminal and the refrigerant supply / demand terminal has a depression, and the other has a projection inserted into the depression, and the projection is inserted into the depression, A magnetic resonance imaging apparatus, wherein a gradient magnetic field coil and the pipe are connected. 請求項11に於いて、お互いに冷媒を搬送させる一対のコネクタの内、一方を前記冷媒受給用端子が備え、他方を前記冷媒供給用端子が備えて、当該1対のコネクタを接続することにより、前記傾斜磁場コイルと前記配管を接続したことを特徴とする磁気共鳴イメージング装置。In Claim 11, one of the pair of connectors for transporting the refrigerant to each other is provided by the refrigerant receiving terminal, and the other is provided by the refrigerant supply terminal, and the pair of connectors is connected to each other. A magnetic resonance imaging apparatus, wherein the gradient magnetic field coil and the pipe are connected.
JP2003117804A 2003-04-23 2003-04-23 Magnetic resonance imaging system Expired - Fee Related JP4336138B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003117804A JP4336138B2 (en) 2003-04-23 2003-04-23 Magnetic resonance imaging system
US10/554,164 US7307421B2 (en) 2003-04-23 2004-04-22 Magnetic resonance imaging device
PCT/JP2004/005781 WO2004093681A1 (en) 2003-04-23 2004-04-22 Magnetic resonance imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003117804A JP4336138B2 (en) 2003-04-23 2003-04-23 Magnetic resonance imaging system

Publications (3)

Publication Number Publication Date
JP2004344182A true JP2004344182A (en) 2004-12-09
JP2004344182A5 JP2004344182A5 (en) 2006-06-15
JP4336138B2 JP4336138B2 (en) 2009-09-30

Family

ID=33524459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003117804A Expired - Fee Related JP4336138B2 (en) 2003-04-23 2003-04-23 Magnetic resonance imaging system

Country Status (1)

Country Link
JP (1) JP4336138B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012105977A (en) * 2010-11-15 2012-06-07 General Electric Co <Ge> Apparatus and method for providing electric cable within magnetic resonance imaging system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012105977A (en) * 2010-11-15 2012-06-07 General Electric Co <Ge> Apparatus and method for providing electric cable within magnetic resonance imaging system

Also Published As

Publication number Publication date
JP4336138B2 (en) 2009-09-30

Similar Documents

Publication Publication Date Title
US6437568B1 (en) Low noise MRI scanner
JP4965426B2 (en) Asymmetric very short gradient coil for magnetic resonance imaging system
US7161353B2 (en) Magnetic resonance tomograph with an insertable gradient coil and a bundled detachably coupled water and electrical supply line
US6501275B1 (en) Gradient coil arrangement comprising dampening of inner mechanical vibrations
EP1077382B1 (en) Reduced noise RF coil apparatus for MR imaging system
US10578692B2 (en) MRI gradient coil having non-uniform coolant passageway within gradient coil conductor
EP2572209B1 (en) Magnetic resonance imaging gradient coil, magnet assembly, and system
JPH0795974A (en) Magnetic resonance image pickup device
US7141974B2 (en) Active-passive electromagnetic shielding to reduce MRI acoustic noise
GB2411237A (en) Method for producing transverse non-cylindrical gradient coils having at least one divergent section
CN101796425A (en) Magnetic resonance examination system with reduced acoustic noise
US7307421B2 (en) Magnetic resonance imaging device
JP4336138B2 (en) Magnetic resonance imaging system
US6469604B1 (en) Coil for a magnet and a method of manufacture thereof
US10459048B2 (en) Magnetic resonance imaging apparatus and gradient coil
GB2379019A (en) Noise suppression for MRI apparatus
JP6296631B2 (en) Magnetic resonance imaging system
US6763572B2 (en) Method of manufacturing a coil for a magnet
JP3808818B2 (en) Static magnetic field correction coil device, static magnetic field forming device, and magnetic resonance imaging device
JP2001149338A (en) Magnetic resonance imaging device
JP6454789B2 (en) Magnetic resonance imaging system
JP2001149334A (en) Magnetic field generator for magnetic resonance imaging device
JP2011143033A (en) Magnetic resonance imaging apparatus
JP4250468B2 (en) Magnetic resonance imaging system
JP4651236B2 (en) Magnetic resonance imaging system

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060221

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090626

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees