JP4250468B2 - Magnetic resonance imaging system - Google Patents

Magnetic resonance imaging system Download PDF

Info

Publication number
JP4250468B2
JP4250468B2 JP2003196186A JP2003196186A JP4250468B2 JP 4250468 B2 JP4250468 B2 JP 4250468B2 JP 2003196186 A JP2003196186 A JP 2003196186A JP 2003196186 A JP2003196186 A JP 2003196186A JP 4250468 B2 JP4250468 B2 JP 4250468B2
Authority
JP
Japan
Prior art keywords
magnetic field
cable
generating means
gradient
field generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003196186A
Other languages
Japanese (ja)
Other versions
JP2005027863A (en
JP2005027863A5 (en
Inventor
輝昭 板橋
昌輝 石垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2003196186A priority Critical patent/JP4250468B2/en
Publication of JP2005027863A publication Critical patent/JP2005027863A/en
Publication of JP2005027863A5 publication Critical patent/JP2005027863A5/ja
Application granted granted Critical
Publication of JP4250468B2 publication Critical patent/JP4250468B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、静磁場方向が被検体の体軸方向と直交する垂直磁場方式の磁気共鳴イメージング装置(以下、MRI装置という。)に係り、特に、傾斜磁場コイル用ケーブルの取り付け技術に関する。
【0002】
【従来の技術】
MRI装置は、均一な静磁場内(撮影空間)に置かれた被検体に高周波磁場を照射したときに被検体を構成する原子の原子核に生じる核磁気共鳴現象を利用し、被検体からの核磁気共鳴信号(以下、NMR信号という。)を検出し、このNMR信号を使って画像再構成することにより、被検体の物理的性質をあらわす磁気共鳴画像(以下、MRI画像という。)を得るものである。このイメージングの位置情報を与えるために、静磁場に重畳して傾斜磁場が印加される。
【0003】
近年、静磁場方向が被検体の体軸方向と直交する垂直磁場方式のMRI装置において、上下に対向して配置されるコイル収容容器の対向面に凹状配置スペースを設け、該スペースに傾斜磁場コイルを収容するようにしたものが提案されており、所要起磁力を小さくするために望ましいとされている(例えば、特許文献1。)。
【0004】
【特許文献1】
特開平10-99296号公報
【0005】
上記特許文献1記載の垂直磁場方式のMRI装置において、傾斜磁場コイルのケーブルを傾斜磁場発生用コイルの外周部から引き出し、超電導磁石の撮影空間側に配置する例を、図3(a)に示す。
図3(a)において、101,102は上下に対向して配置され、コイル収容容器の上下対向面に凹状の傾斜磁場コイルの配置スペースを有した超電導磁石(101は上側、102は下側)、501,502は超電導磁石(101,102)の凹状配置スペースに上下対向して配置された傾斜磁場コイル(501は上側、502は下側)、901,902は傾斜磁場コイル(501,502)へ電流を供給するための傾斜磁場コイルのケーブル(901は上側、902は下側)、4は下側の超電導磁石102を床に固定するための土台、105は超電導磁石(101,102)の磁石内部を冷却するための冷凍機、106はMRI装置を設置する空間内に外界から入ってくる外来ノイズを防ぐためのシールドルームである。
【0006】
図3(a)において、静磁場の方向は上下方向であり、傾斜磁場コイルのケーブルは静磁場の方向に対して垂直な方向に向く箇所を持っていることから、その箇所に電流が流れるとローレンツ力が働く。従って、図3(a)の例では、超電導磁石の撮影空間側に接する面に傾斜磁場コイルのケーブルを強固に固定する必要がある。
【0007】
しかしながら、上記図3(a)の傾斜磁場コイルの配線例では、次の問題点がある。すなわち、図3(a)のように傾斜磁場コイルのケーブルを超電導磁石の撮影空間側に接する面に通過させる場合には、大電流が流れるケーブルが被検体のそばを通ることで被検体に悪影響を与えたりや、ケーブルが撮影空間近傍を通ることで撮影空間が狭くなる問題がある。また被検体を外部から被検体テーブルの天板の上に載せて移動するが、ケーブルがあると天板移動の妨げになる場合がある。従って、傾斜磁場コイルのケーブルを超電導磁石の撮影空間側を通過させることは好ましくない。
【0008】
そこで、図3(b)のように超電導磁石の中央に貫通穴を設け、この貫通穴を介して傾斜磁場コイルのケーブルを超電導磁石の撮影空間と反対側の面へ引き出して配置させる例が考えられる。図3(b)において、103、104は超電導磁石(101,102)の中央部に設けられた貫通穴(103は上側、104は下側)であり、傾斜磁場コイルのケーブル(901,902)は貫通穴内と超電導磁石の撮影空間と反対側の面に配置される。
【0009】
【発明が解決しょうとする課題】
しかしながら、図3(b)の例では超電導磁石下側と床面との間が、人が入ってケーブルを固定する作業空間となるため、その空間を広く保つ必要となる。そのために土台4の高さを高くしなければならず、その場合超電導磁石全体の高さが高くなり、撮影空間も高さも高くなる。撮影空間の高さが高くなると、被検体は高くなった撮影空間に配置されるため恐怖感を感じ、また装置を取り扱う医師や技師にとっては被検体へのアクセスがしづらくなるといった問題が生じる。更に、超電導磁石全体の高さが高くなった場合、超電導磁石の上側は、冷凍機105のメインテナンス作業に必要な空間を確保するため、シールドルーム106の天上高をも高くする必要があり、場合によっては部屋の天井の改造をも必要となる問題がある。したがって、現実の装置では下側の磁石の床面からの高さを低くしている。このため、傾斜磁場コイルのケーブル固定が非常に困難であるという課題を有している。
【0010】
本発明の目的は、下側の傾斜磁場コイルに電流を供給するためのケーブルを、磁石下の狭いスペースに好適に配置し、かつ固定することが可能な垂直磁場方式MRI装置を提供することにある。
【0011】
【課題を解決するための手段】
本発明によれば、撮影空間を間に挟んで鉛直方向に上下対向して配置され、撮影空間に鉛直方向に静磁場を発生させる一対の静磁場発生手段と、前記静磁場発生手段の前記撮影空間側に配置され、前記撮影空間に傾斜磁場を発生させる傾斜磁場発生手段と、前記傾斜磁場発生手段に傾斜磁場を発生させるために電流を供給するためのケーブルを備え、前記静磁場発生手段の中央部には前記ケーブルを配置するために貫通穴が設けられ前記ケーブルを、前記貫通穴から前記静磁場発生手段の前記撮影空間と反対側で前記静磁場発生手段の外周部までガイドするガイド手段を備えた磁気共鳴イメージング装置において、
前記ガイド手段は、前記静磁場発生手段の下側に配置された2本のレールと、前記レールの配置される方向を規定し、前記レールを前記静磁場発生手段の下側に固定するための金具を含み、前記ケーブルは、金具によって束ねられて前記貫通穴方向から挿入された際に、前記ケーブルを束ねた金具が前記レール上を滑らせて移動させられ、前記静磁場発生手段の下側に配置されることを特徴とする磁気共鳴イメージング装置が提供される。
【0012】
また本発明によれば、前記ガイド手段は、レールを備えており、前記ケーブルは前記レールに沿って挿入されて固定されていることを特徴とする磁気共鳴イメージング装置が提供される。
【0013】
また本発明によれば、前記ケーブルが複数本から成る場合には、前記複数本のケーブルを束ねる手段を備えることを特徴とする磁気共鳴イメージング装置が提供される。
【0014】
【発明の実施の形態】
以下、本発明の実施形態を添付図面に沿って具体的に説明する。
図1に、本発明に係る垂直磁場方式MRI装置の構成図を示す。101,102は撮影空間に均一な磁場を発生させるための超電導磁石であり、上下対向して配置されたコイル収容容器の対向面に凹状傾斜磁場コイルの配置スペースを設けたもの(101は上側、102は下側)、103,104は超電導磁石の中央部を貫通させた貫通穴(103は上側、104は下側)、2は被検体、3は被検体2を撮影空間に配置するための天板、4は超電導磁石を床に固定するための土台、501,502は超電導磁石(101,102)の凹状配置スペース内にそれぞれ配置され、撮影空間に位置情報を付加するための傾斜磁場コイル、601,602は被検体2のプロトン原子に対し高周波磁場を照射する高周波磁場コイル(601は上側、602は下側)、7は被検体2から発生するNMR信号を受信する高周波磁場受信コイル、801,802は傾斜磁場コイル(501,502)を固定するための傾斜磁場コイル支持台(801は上側、802は下側)、901、902は傾斜磁場コイルの中央部から超電導磁石の貫通穴(103,104)を通して撮影空間外へと引き出される傾斜磁場コイルのケーブルである(901は上側、902は下側)。更に、15は高周波磁場受信コイル7によって検出されたNMR信号を可聴周波数信号に変換するための送受信システム、16は可聴周波数信号に変換されたNMR信号をディジタル信号にA/D変換するためのAD変換器、17はA/D変換されたディジタル信号に必要な処理を行い、画像に再構成する動作制御部であり、18は傾斜磁場電源である。動作制御部18はまた、イメージングに必要な位置情報をNMR信号に付加するための傾斜磁場を発生させるために、傾斜磁場電源18により所定の電圧、電流値を適切なタイミングでケーブルを介して傾斜磁場コイルに印加する制御も行う。
【0015】
本発明の実施形態に係るMRI装置では更に、本発明の目的を達成するために次のように構成される。すなわち、10,11は下側の傾斜磁場コイルのケーブル(902)を束ねて挿入するための金具であり、10は挿入された際に貫通穴(104)内に配置されるもの、11は下側超電導磁石の下側に配置されるものである。下側の傾斜磁場コイルのケーブル(902)は、中に中空部分を持つ金具(10,11)の中に挿入して束ねられ、金具(10,11)を貫通穴内に挿入することによって適切な位置に配置される。12、13は下側超電導磁石(102)の下側に配置された2本のレールであり、ケーブル(902)を束ねた金具(11)が貫通穴(104)方向から挿入された際に、金具(11)がレール上に滑らせて移動させられ、好適にケーブル(902)が下側超電導磁石(102)の下側に配置されるようになっている。14はレール(12,13)の配置される方向を規定し、レール(12,13)を下側の超電導磁石(102)の下側に固定するための金具である。
【0016】
一方、上側の超電導磁石101の上側を通る傾斜磁場のケーブル(901)は、作業者が上側の超電導磁石101の上に上って固定する空間があるので、本実施の形態では、上側の傾斜磁場のケーブル(901)の固定は上側の超電導磁石(101)の上に張りつけて固定する。
【0017】
次に図2に、本発明の実施形態において下側の傾斜磁場コイルのケーブル(902)を固定する機構の拡大図を示す。
102は下側の超電導磁石、802は下側の傾斜磁場コイル支持台、902は下側の傾斜磁場コイルのケーブル、10,11,14は金具、12,13はレールである。ただし、図2で矢印で示したA側は図1の矢印で示したA側と同じである。
【0018】
下側の傾斜磁場コイルのケーブル(902)を固定する機構の組みたて手順は次の通りである。先ず、下側の超電導磁石102に傾斜磁場コイル支持台802を取り付ける。傾斜磁場コイル支持台802には、レール(12,13)を固定するための固定穴(図示せず。)が設置されており、レール(12,13)は固定穴にボルトとナット等で固定される。レール(12,13)は金具14の方向に配置され、金具14により下側超電導磁石102の最外周部の下側に固定される。
【0019】
一方、傾斜磁場コイルからは、傾斜磁場コイルのケーブル(902)が引き出されているが、それらは予め金具(10,11)によって束ねられる。(ただし、傾斜磁場コイルのケーブル(902)の本数は、MRI装置で必要とする傾斜磁場が一般的にX,Y,Z三次元座標に対応する3種類から成るので、傾斜磁場コイルの種類も3種類であり、傾斜磁場コイルのケーブル(902)の本数も入力と出力を合わせて全部で6本である。)そして傾斜磁場コイル、傾斜磁場コイルのケーブル(902)、傾斜磁場コイルのケーブル(902)を束ねた金具(10,11)は一体となって所定の位置へ設置されるが、その際ケーブル(902)を束ねた金具(10,11)は、傾斜磁場コイル支持台(802)の側面とレール(12,13)を滑らせるように配置される。
【0020】
金具(11)は、傾斜磁場コイル支持台(802)の側面からレール(12,13)上へ狭いスペースを方向転換するように配置されるが、方向転換する曲率半径が小さくても好適に方向転換できるように、金具(11)は複数個から成り、それぞれは挿入方向に対して長さが十分短くなっている。また、金具(11)の形状はレール(12,13)上を好適に滑らせることができるように、両者の相対する面が互いに噛み合わせられるようになっている。本実施の形態では2本のレール(12,13)の断面の形状は円形であり、これに相対する金具(11)の面には、2つの半円の溝が設けられており、その間隔は2本のレール(12,13)の間隔と同じであり、その半径はレールの半径と同じか、もしくは少し大きめである。
【0021】
上記実施形態によれば、作業者が下側の超電導磁石(102)の下側に入らなくても、下側傾斜磁場コイルのケーブル(902)を下側の超電導磁石(102)の下側に好適に配置できるので、撮影空間の高さは適切な高さでありながら、下側傾斜磁場コイルのケーブル(902)を、磁石下の狭いスペースに配置することが可能な垂直磁場方式MRI装置を提供できる。本発明は上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々に変形して実施できる。
【0022】
【発明の効果】
以上、本発明によれば、下側の傾斜磁場コイルに電流を供給するためのケーブルを、磁石下の狭いスペースに好適に配置することが可能な垂直磁場方式MRI装置を提供できる。
【図面の簡単な説明】
【図1】本発明に係る垂直磁場方式MRI装置の構成図。
【図2】下側の傾斜磁場コイルのケーブルを固定する機構の拡大図。
【図3】従来の垂直磁場方式のMRI装置における傾斜磁場コイルのケーブルの配線列。
【符号の説明】
10,11,14…金具
12,13…レール
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a perpendicular magnetic field type magnetic resonance imaging apparatus (hereinafter referred to as an MRI apparatus) in which a static magnetic field direction is orthogonal to a body axis direction of a subject, and particularly to a technique for attaching a gradient magnetic field coil cable.
[0002]
[Prior art]
The MRI system uses the nuclear magnetic resonance phenomenon that occurs in the nuclei of the atoms that make up the subject when the subject placed in a uniform static magnetic field (imaging space) is irradiated with a high-frequency magnetic field. By detecting a magnetic resonance signal (hereinafter referred to as an NMR signal) and reconstructing an image using the NMR signal, a magnetic resonance image (hereinafter referred to as an MRI image) representing the physical properties of the subject is obtained. It is. In order to give this imaging position information, a gradient magnetic field is applied in a superimposed manner on the static magnetic field.
[0003]
In recent years, in a vertical magnetic field type MRI apparatus in which the direction of the static magnetic field is perpendicular to the body axis direction of the subject, a concave arrangement space is provided on the opposing surface of the coil container that is arranged to face the upper and lower sides, and the gradient magnetic field coil Has been proposed, and is desirable to reduce the required magnetomotive force (for example, Patent Document 1).
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 10-99296
FIG. 3 (a) shows an example in which the gradient magnetic field coil cable is pulled out from the outer periphery of the gradient magnetic field generating coil and arranged on the imaging space side of the superconducting magnet in the vertical magnetic field type MRI apparatus described in Patent Document 1 above. .
In FIG. 3 (a), 101 and 102 are vertically opposed to each other, and a superconducting magnet having a space for placing a concave gradient magnetic field coil on the vertically opposed surface of the coil container (101 is the upper side, 102 is the lower side). , 501 and 502 are gradient magnetic field coils (501 is the upper side and 502 is the lower side) arranged vertically opposite to the concave arrangement space of the superconducting magnet (101 and 102), and 901 and 902 are the gradient magnetic field coils (501 and 502). Gradient coil cable (901 is the upper side, 902 is the lower side), 4 is the base for fixing the lower superconducting magnet 102 to the floor, 105 is the superconducting magnet (101, 102) A refrigerator 106 for cooling the inside of the magnet is a shield room for preventing external noise from entering the space where the MRI apparatus is installed.
[0006]
In FIG. 3 (a), the direction of the static magnetic field is the vertical direction, and the cable of the gradient magnetic field coil has a portion that is oriented in a direction perpendicular to the direction of the static magnetic field. Lorentz force works. Therefore, in the example of FIG. 3 (a), it is necessary to firmly fix the cable of the gradient magnetic field coil to the surface of the superconducting magnet that contacts the imaging space side.
[0007]
However, the wiring example of the gradient magnetic field coil shown in FIG. 3 (a) has the following problems. In other words, as shown in FIG. 3 (a), when the cable of the gradient magnetic field coil is passed through the surface of the superconducting magnet that is in contact with the imaging space, the cable through which a large current flows passes by the subject, adversely affecting the subject. Or the cable passes through the vicinity of the shooting space, and the shooting space becomes narrow. The subject is moved from outside on the top of the subject table, but if there is a cable, it may hinder the top. Therefore, it is not preferable to pass the cable of the gradient coil through the imaging space side of the superconducting magnet.
[0008]
Therefore, an example is considered in which a through-hole is provided in the center of the superconducting magnet as shown in FIG. 3 (b), and the cable of the gradient magnetic field coil is drawn through the through-hole to the surface on the side opposite to the imaging space of the superconducting magnet. It is done. In FIG. 3 (b), reference numerals 103 and 104 denote through holes (103 is the upper side and 104 is the lower side) provided in the central portion of the superconducting magnet (101, 102), and the gradient coil coils (901, 902) Are arranged in the through hole and on the surface opposite to the imaging space of the superconducting magnet.
[0009]
[Problems to be solved by the invention]
However, in the example of FIG. 3 (b), the space between the lower side of the superconducting magnet and the floor surface is a work space where a person enters and fixes the cable. Therefore, it is necessary to keep the space wide. For this purpose, the height of the base 4 must be increased. In this case, the height of the entire superconducting magnet is increased, and the imaging space and height are also increased. When the height of the imaging space is increased, the subject is placed in the increased imaging space, so that a sense of fear is felt, and access to the subject is difficult for doctors and engineers who handle the apparatus. Furthermore, when the height of the entire superconducting magnet is increased, the top of the superconducting magnet must have a high ceiling height in the shield room 106 in order to secure a space necessary for the maintenance work of the refrigerator 105. Depending on the situation, it may be necessary to modify the ceiling of the room. Therefore, in the actual apparatus, the height of the lower magnet from the floor surface is lowered. For this reason, it has the subject that the cable fixation of a gradient magnetic field coil is very difficult.
[0010]
An object of the present invention is to provide a vertical magnetic field type MRI apparatus capable of suitably arranging and fixing a cable for supplying a current to a lower gradient magnetic field coil in a narrow space under a magnet. is there.
[0011]
[Means for Solving the Problems]
According to the present invention, a pair of static magnetic field generating means that are arranged vertically opposite to each other with the imaging space interposed therebetween and generate a static magnetic field in the imaging space in the vertical direction, and the imaging of the static magnetic field generating means A gradient magnetic field generating means arranged on the space side for generating a gradient magnetic field in the imaging space; and a cable for supplying a current for generating a gradient magnetic field in the gradient magnetic field generating means, A through hole is provided in the central portion for arranging the cable, and the cable guides the cable from the through hole to the outer peripheral portion of the static magnetic field generating means on the side opposite to the imaging space of the static magnetic field generating means. In a magnetic resonance imaging apparatus comprising means ,
The guide means defines two rails arranged below the static magnetic field generating means and a direction in which the rails are arranged, and fixes the rail to the lower side of the static magnetic field generating means. When the cable is bundled by the bracket and inserted from the direction of the through hole, the bracket bundled with the cable is slid and moved on the rail, and the lower side of the static magnetic field generating means A magnetic resonance imaging apparatus is provided.
[0012]
According to the present invention, there is provided a magnetic resonance imaging apparatus, wherein the guide means includes a rail, and the cable is inserted and fixed along the rail .
[0013]
According to the present invention, there is provided a magnetic resonance imaging apparatus comprising means for bundling the plurality of cables when the cable is composed of a plurality of cables.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be specifically described below with reference to the accompanying drawings.
FIG. 1 shows a configuration diagram of a vertical magnetic field type MRI apparatus according to the present invention. 101 and 102 are superconducting magnets for generating a uniform magnetic field in the imaging space, and are provided with a concave gradient magnetic field coil arrangement space on the opposing surface of the coil storage container arranged vertically opposite (101 is the upper side, 102 is the lower side), 103 and 104 are through-holes that penetrate the central part of the superconducting magnet (103 is the upper side, 104 is the lower side), 2 is the subject, 3 is for placing the subject 2 in the imaging space Top plate, 4 is a base for fixing the superconducting magnet to the floor, 501 and 502 are each arranged in the concave arrangement space of the superconducting magnet (101, 102), and a gradient magnetic field coil for adding positional information to the imaging space , 601 and 602 are high-frequency magnetic field coils that irradiate a high-frequency magnetic field to proton atoms of the subject 2 (601 is the upper side, 602 is the lower side), 7 is a high-frequency magnetic field receiving coil that receives the NMR signal generated from the subject 2, Reference numerals 801 and 802 denote gradient magnetic field coils for fixing the gradient magnetic field coils (501 and 502). 901 and 902 are gradient coil coils that are drawn out of the imaging space from the center of the gradient coil through the through holes (103, 104) of the superconducting magnet. (901 is the upper side, 902 is the lower side). Further, 15 is a transmission / reception system for converting the NMR signal detected by the high-frequency magnetic field receiving coil 7 into an audio frequency signal, and 16 is an AD for A / D converting the NMR signal converted into the audio frequency signal into a digital signal. A converter 17 is an operation control unit that performs necessary processing on the A / D converted digital signal and reconstructs the image, and 18 is a gradient magnetic field power source. The motion control unit 18 also tilts a predetermined voltage and current value via a cable at an appropriate timing by the gradient magnetic field power source 18 in order to generate a gradient magnetic field for adding position information necessary for imaging to the NMR signal. Control is also applied to the magnetic field coil.
[0015]
The MRI apparatus according to the embodiment of the present invention is further configured as follows to achieve the object of the present invention. That is, 10 and 11 are brackets for bundling and inserting the cable (902) of the lower gradient coil, 10 being placed in the through hole (104) when inserted, and 11 being the lower It is arrange | positioned under a side superconducting magnet. The cable (902) of the lower gradient coil is inserted and bundled into the metal fittings (10, 11) having a hollow portion therein, and is appropriately inserted by inserting the metal fittings (10, 11) into the through holes. Placed in position. 12 and 13 are two rails arranged on the lower side of the lower superconducting magnet (102), and when the metal fitting (11) bundled with the cable (902) is inserted from the direction of the through hole (104), The metal fitting (11) is slid and moved on the rail, and the cable (902) is preferably arranged below the lower superconducting magnet (102). 14 is a metal fitting for defining the direction in which the rails (12, 13) are arranged and fixing the rails (12, 13) to the lower side of the lower superconducting magnet (102).
[0016]
On the other hand, the gradient magnetic field cable (901) passing through the upper side of the upper superconducting magnet 101 has a space for the operator to climb up and fix it on the upper superconducting magnet 101. The magnetic field cable (901) is fixed on the upper superconducting magnet (101).
[0017]
Next, FIG. 2 shows an enlarged view of a mechanism for fixing the cable (902) of the lower gradient coil in the embodiment of the present invention.
102 is a lower superconducting magnet, 802 is a lower gradient coil support, 902 is a lower gradient coil cable, 10, 11 and 14 are metal fittings, and 12 and 13 are rails. However, the A side indicated by the arrow in FIG. 2 is the same as the A side indicated by the arrow in FIG.
[0018]
The procedure for assembling the mechanism for fixing the cable (902) of the lower gradient coil is as follows. First, the gradient coil support base 802 is attached to the lower superconducting magnet 102. The gradient coil support 802 is provided with fixing holes (not shown) for fixing the rails (12, 13). The rails (12, 13) are fixed to the fixing holes with bolts and nuts. Is done. The rails (12, 13) are arranged in the direction of the metal fitting 14, and are fixed to the lower side of the outermost peripheral portion of the lower superconducting magnet 102 by the metal fitting 14.
[0019]
On the other hand, a cable (902) of the gradient coil is drawn out from the gradient coil, but they are bundled in advance by the metal fittings (10, 11). (However, the number of gradient coil coils (902) consists of three types of gradient magnetic fields that are required for the MRI apparatus, which generally correspond to three-dimensional coordinates of X, Y, Z. There are three types, and the number of gradient coil cables (902) is 6 in total, including input and output.) And gradient coil, gradient coil cable (902), gradient coil cable ( The brackets (10, 11) bundled with the 902) are integrally installed at a predetermined position. At this time, the brackets (10, 11) bundled with the cables (902) are mounted on the gradient coil support (802). The side and rails (12, 13) are arranged to slide.
[0020]
The metal fitting (11) is arranged so as to change the direction of a narrow space from the side surface of the gradient coil support (802) onto the rails (12, 13). The metal fittings (11) are composed of a plurality of pieces so that they can be converted, and each of them is sufficiently short in the insertion direction. Further, the shape of the metal fitting (11) is such that the opposing surfaces of the metal fitting (11) can mesh with each other so that the rail (12, 13) can be suitably slid. In the present embodiment, the cross-sectional shape of the two rails (12, 13) is circular, and two semicircular grooves are provided on the surface of the metal fitting (11) opposite to this, and the interval between them is Is the same as the distance between the two rails (12, 13), and the radius is the same as or slightly larger than the rail radius.
[0021]
According to the above embodiment, even if the operator does not enter the lower superconducting magnet (102), the lower gradient coil cable (902) is placed below the lower superconducting magnet (102). A vertical magnetic field MRI apparatus that can arrange the cable (902) of the lower gradient magnetic field coil in a narrow space under the magnet while the height of the imaging space is an appropriate height. Can be provided. The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
[0022]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a vertical magnetic field MRI apparatus in which a cable for supplying a current to the lower gradient coil can be suitably arranged in a narrow space under the magnet.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a vertical magnetic field type MRI apparatus according to the present invention.
FIG. 2 is an enlarged view of a mechanism for fixing a cable of a lower gradient coil.
FIG. 3 is a wiring array of gradient coil coils in a conventional vertical magnetic field type MRI apparatus.
[Explanation of symbols]
10, 11, 14 ... metal fittings
12, 13 ... Rail

Claims (1)

撮影空間を間に挟んで鉛直方向に上下対向して配置され、撮影空間に鉛直方向に静磁場を発生させる一対の静磁場発生手段と、前記静磁場発生手段の前記撮影空間側に配置され、前記撮影空間に傾斜磁場を発生させる傾斜磁場発生手段と、前記傾斜磁場発生手段に傾斜磁場を発生させるために電流を供給するためのケーブルを備え、前記静磁場発生手段の中央部には前記ケーブルを配置するために貫通穴が設けられ前記ケーブルを、前記貫通穴から前記静磁場発生手段の前記撮影空間と反対側で前記静磁場発生手段の外周部までガイドするガイド手段を備えた磁気共鳴イメージング装置において、
前記ガイド手段は、前記静磁場発生手段の下側に配置された2本のレールと、前記レールの配置される方向を規定し、前記レールを前記静磁場発生手段の下側に固定するための金具を含み、前記ケーブルは、金具によって束ねられて前記貫通穴方向から挿入された際に、前記ケーブルを束ねた金具が前記レール上を滑らせて移動させられ、前記静磁場発生手段の下側に配置されることを特徴とする磁気共鳴イメージング装置。
A pair of static magnetic field generating means for vertically generating a static magnetic field in the imaging space, and disposed on the imaging space side of the static magnetic field generating means; A gradient magnetic field generating means for generating a gradient magnetic field in the imaging space; and a cable for supplying an electric current for generating a gradient magnetic field in the gradient magnetic field generating means, wherein the cable is provided at the center of the static magnetic field generating means through holes provided for arranging the magnetic resonance of the cable, with a guide for guiding means to the outer peripheral portion of the static magnetic field generating means in the imaging space opposite of the static magnetic field generating means from the through-hole In the imaging device,
The guide means defines two rails arranged below the static magnetic field generating means and a direction in which the rails are arranged, and fixes the rail to the lower side of the static magnetic field generating means. When the cable is bundled by the bracket and inserted from the direction of the through hole, the bracket bundled with the cable is slid and moved on the rail, and the lower side of the static magnetic field generating means A magnetic resonance imaging apparatus, wherein
JP2003196186A 2003-07-14 2003-07-14 Magnetic resonance imaging system Expired - Fee Related JP4250468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003196186A JP4250468B2 (en) 2003-07-14 2003-07-14 Magnetic resonance imaging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003196186A JP4250468B2 (en) 2003-07-14 2003-07-14 Magnetic resonance imaging system

Publications (3)

Publication Number Publication Date
JP2005027863A JP2005027863A (en) 2005-02-03
JP2005027863A5 JP2005027863A5 (en) 2006-08-24
JP4250468B2 true JP4250468B2 (en) 2009-04-08

Family

ID=34206769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003196186A Expired - Fee Related JP4250468B2 (en) 2003-07-14 2003-07-14 Magnetic resonance imaging system

Country Status (1)

Country Link
JP (1) JP4250468B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011143033A (en) * 2010-01-13 2011-07-28 Toshiba Corp Magnetic resonance imaging apparatus
US8735723B2 (en) * 2010-11-15 2014-05-27 General Electric Company Apparatus and method for providing electric cables within a magnetic resonance imaging system

Also Published As

Publication number Publication date
JP2005027863A (en) 2005-02-03

Similar Documents

Publication Publication Date Title
US11397233B2 (en) Ferromagnetic augmentation for magnetic resonance imaging
JP2584005B2 (en) Magnetic field gradient coil device and magnetic resonance imaging system using the same
US6933722B2 (en) Magnetic resonance imaging device and gradient magnetic field coil used for it
US6437568B1 (en) Low noise MRI scanner
US5600245A (en) Inspection apparatus using magnetic resonance
US20070188173A1 (en) Asymmetric ultra-short gradient coil for magnetic resonance imaging system
JP3654463B2 (en) Magnetic resonance imaging system
JP5932815B2 (en) Magnetic resonance imaging system
JP4250468B2 (en) Magnetic resonance imaging system
CN113848520A (en) Ultralow field magnetic resonance imaging system
US7307421B2 (en) Magnetic resonance imaging device
CN217007651U (en) Magnetic resonance apparatus
Rudd et al. Permanent magnet selection coils design for single-sided field-free line magnetic particle imaging
US20050122106A1 (en) Gradient coil arrangement
JP4651236B2 (en) Magnetic resonance imaging system
JP5465583B2 (en) Magnetic resonance imaging system
EP1521976A2 (en) An mri system with a conductive member having a damping effect for vibrations
JP2003061930A (en) Thermal diffusion device and magnetic resonance imaging apparatus
JPWO2011114975A1 (en) Magnetic resonance imaging apparatus and maintenance method thereof
JP4336138B2 (en) Magnetic resonance imaging system
US20240219494A1 (en) Magnetic resonance imaging systems and components thereof
JPH0217036A (en) Antenna for imaging apparatus by nuclear magnetic resonance
JP2006014751A (en) Magnetic resonance imaging apparatus
JPH0819525A (en) Static magnetic field generating device for magnetic resonance imaging
JP2001149335A (en) Magnetic field generator for magnetic resonance imaging device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060711

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140123

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees