JP2004343658A - Ultrasonic echo sounder transducer, its manufacturing method and ultrasonic flowmeter using the same - Google Patents

Ultrasonic echo sounder transducer, its manufacturing method and ultrasonic flowmeter using the same Download PDF

Info

Publication number
JP2004343658A
JP2004343658A JP2003140841A JP2003140841A JP2004343658A JP 2004343658 A JP2004343658 A JP 2004343658A JP 2003140841 A JP2003140841 A JP 2003140841A JP 2003140841 A JP2003140841 A JP 2003140841A JP 2004343658 A JP2004343658 A JP 2004343658A
Authority
JP
Japan
Prior art keywords
piezoelectric vibrator
adhesive layer
ultrasonic
vibrator
acoustic matching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003140841A
Other languages
Japanese (ja)
Inventor
Norihisa Takahara
範久 高原
Seigo Shiraishi
誠吾 白石
Kiyohide Amamiya
清英 雨宮
Hidetomo Nagahara
英知 永原
Taku Hashida
卓 橋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003140841A priority Critical patent/JP2004343658A/en
Publication of JP2004343658A publication Critical patent/JP2004343658A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic echo sounder transducer which makes the variation of the transmission/reception efficiency of an ultrasonic wave smaller by obtaining an adhesive layer with a uniform thickness when adhering and fixing a piezoelectric vibrator or a vibrator case including the piezoelectric vibrator with an acoustic matching member. <P>SOLUTION: In the ultrasonic echo sounder transducer having the piezoelectric vibrator and the acoustic matching member (6) provided between the piezoelectric vibrator and an object to be tested, the piezoelectric vibrator or the vibrator case (10) including the piezoelectric vibrator and the acoustic matching member (6) are adhered and fixed with the adhesive layer (7) composed of resin in which spherical fillers (8) are distributed. Preferably, the uniform adhesive layer (7) with a desired thickness is obtained by making the diameter of the spherical filler (8) approximately the same as the desired thickness of the adhesive layer (7), and the ultrasonic echo sounder transducer in which the variation of the transmission/reception efficiency of the ultrasonic waves is made smaller is obtained. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は超音波を利用して気体の流量を測定する流量計測装置や、物体との距離を測定する距離計測装置などに用いる超音波送受波器とその製造方法及びそれを用いた超音波流量計に関するもので、特に、圧電振動子または圧電振動子を内包する振動子ケースと、音響整合部材とを接着、固定する接着剤層に関するものである。
【0002】
【従来の技術】
従来の超音波送受波器の構成を示す断面図を図6に示す。超音波送受波器は、超音波を送受信するPZT等に代表される圧電セラミックスである圧電振動子1、圧電振動子1を内包する金属製の振動子ケース本体2および金属製の振動子ケース蓋3、圧電振動子1に電圧を印加する端子4a、4b、振動子ケース蓋3と端子4aの絶縁をとるとともに振動子ケースを密閉するための絶縁封止材5、圧電振動子1と被検体との音響整合をとるための音響整合部材6、振動子ケース本体2と音響整合層6を接着している接着剤層7からなる。
【0003】
次に、図6を用いて超音波送受波器の動作原理を説明する。圧電振動子1は上下面に電極が形成され(図示せず)、下面電極は端子4aに、上面電極は振動子ケース本体2に電気的に接続されている。ここで、圧電振動子1の上面電極と振動子ケース本体2は接着剤により接着されている。しかし、接着剤の厚みは非常に薄く(数ミクロン程度)、また、上面電極には凹凸があるために上面電極と振動子ケース本体2の界面の一部は接着剤を介することなく直接接合しているため、両者は電気的に接続している。振動子ケース本体2と振動子ケース蓋3は溶接されており、振動子ケース蓋3は端子4bに接続されている。従って、端子4aと4bとの間に電圧が加えられると、圧電振動子1に電圧が加わることとなる。端子4aと4bの間に交流電圧を加えることにより、それに応じて、圧電振動子1は振動する。この振動は振動子ケース本体2に伝播し、これを振動させ、さらに振動子ケース本体2の振動は接着剤層7を介して接着された音響整合部材6に伝播し、これを振動させる。そして、超音波を被検体に送信する。受信の際は、これと逆の過程で、被検体からの超音波が音響整合部材6→接着剤層7→金属ケース本体2→圧電振動子1と伝播し、端子4a、4bとの間で電気的な信号として取り出される。
【0004】
ところで、超音波の伝播において、その伝播効率を左右する一つの因子として、異種物質間の音響整合性がある。超音波は異種の物質間の界面を透過する際に、物質間の音響インピーダンスの差が大きいほど、その界面で反射され、伝播効率が低下する。気体の流量を測定する超音波流量計においては、圧電振動子から直接気体中に超音波を伝播させようとすると両者の音響インピーダンスの差が著しく大きいために、超音波を効率的に気体中に伝播させることができない。そのため、圧電振動子と気体との間に音響整合をとる部材(音響整合部材)が用いられる。この部材は、圧電振動子の音響インピーダンスと、気体の音響インピーダンスとの中間の音響インピーダンスを有しており、圧電振動子と、気体との間に介在させることにより、両者間の超音波の伝播を効率良く行うことができる。
【0005】
また、超音波が異種物質間を伝播していく際に、超音波の伝播効率を左右するもう一つの因子として、それぞれの物質の厚みがある。物質の厚みが変動した場合、異種物質間の界面において超音波の入射波と反射波の干渉状態が変動し、結果的に、超音波の伝播効率が変動する。そのため、上記した音響整合部材は、所望の厚みになるように、研磨等により、精密に厚みを制御して作製される。
上記した超音波送受波器において、超音波の送受信は、
送信:圧電振動子→振動子ケース本体→接着剤層→音響整合部材→被検体
受信:被検体→音響整合部材→接着剤層→振動子ケース本体→圧電振動子
の伝播経路を辿る。この中で、振動子ケース本体と音響整合部材については、製造方法を工夫することによって、比較的容易に、所望の厚みを精度良く得られることができる。しかし、接着剤層については、通常、液状の樹脂を用いるために、その厚みを精度良く得ることが困難である。接着剤層の厚みが変動すると、その部分で超音波の伝播効率が変動し、その結果、超音波送受波器の送受信効率が変動する。そのため、従来、接着剤層の厚みを均一にするために、音響整合部材に管通孔を設け、圧電振動子と音響整合部材を接着する際に、余剰な接着剤を貫通孔から逃がし、均一な厚みの接着剤層を得る方法が開示されている(例えば特許文献1参照。)。
【0006】
【特許文献1】
特開2000−139916号公報(第1図)
【0007】
【発明が解決しようとする課題】
しかし、上記の方法では音響整合部材に貫通孔を設けるために、工程が煩雑になり、経済性においても不利である。また、超音波送受波器の送受信効率の変動を小さくするためには接着に際して均一な厚みの接着剤層が得られるように注意深く接着させることが大切であり、特に接着温度、接着剤の粘度および接着の際の押圧を厳密に管理することが必要であるといった課題があった。
【0008】
上記の課題を鑑み、本発明は、圧電振動子または圧電振動子を内包する振動子ケースと、音響整合部材とを接着、固定する際に、均一な厚みの接着剤層が得られるように工夫することにより、超音波の送受信効率の変動を小さくした超音波送受波器とその製造方法及びそれを用いた超音波流量計を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記の目的を達成するために、本発明の超音波送受波器は、圧電振動子と、前記圧電振動子と被検体との間に設けられた音響整合部材とを有する超音波送受波器において、前記圧電振動子または前記圧電振動子を内包する振動子ケースと、前記音響整合部材とを球状フィラーを分散させた樹脂からなる接着剤層で接着し、固定したことを特徴とする。
【0010】
本発明の超音波送受波器の製造方法は、圧電振動子または圧電振動子を内包した振動子ケースと、球状フィラーを分散させた樹脂と、音響整合部材を準備し、前記圧電振動子または圧電振動子を内包した振動子ケース上に前記球状フィラーを分散させた樹脂を塗布し、その上に前記音響整合部材を積層、硬化し、前記圧電振動子または圧電振動子を内包した振動子ケースと、前記音響整合部材とを接着し、固定することを含む。
【0011】
本発明の超音波流量計は、前記のいずれかの超音波送受波器を備えたことを特徴とする。
【0012】
【発明の実施の形態】
本発明は、圧電振動子または圧電振動子を内包する振動子ケースと、音響整合部材とを球状フィラーを分散させた樹脂からなる接着剤層で接着し、固定している。この際に、球状フィラーの直径を所望の接着剤層厚みと略同一にすることが好ましく、所望の厚みで、かつ均一な接着剤層を得ることができ、超音波の送受信効率の変動を小さくした超音波送受波器を得ることができる。前記において、略同一とは、所定の接着剤層厚みの±10%の範囲をいう。
【0013】
さらに、接着剤層の厚みを、接着剤中を伝播する超音波波長の10分の1以上、3分の1以下の範囲に設定することが好ましく、これにより接着剤層自体が音響整合層として機能するようになり、超音波の受信効率が向上した超音波送受波器を得ることができる。球状フィラーとしては、金属粉、酸化物粉、樹脂粉、カーボン粉、樹脂バルーン、ガラスバルーン等を用いることができる。さらに、接着剤層は音響整合部材より、音響インピーダンスが大きい方が好ましい。接着剤層よりも音響整合部材の音響インピーダンスが大きい場合、両者の界面で超音波が反射し、超音波の送受信効率が低下するためである。接着剤層の音響インピーダンスは、音響整合部材の音響インピーダンスよりも10から1000倍大きいことが好ましい。
【0014】
本発明の超音波送受波器の製造方法は、前記振動子ケース上に球状フィラーを分散させた樹脂を塗布し、その上に音響整合部材を積層、硬化し、圧電振動子または圧電振動子を内包した振動子ケースと、音響整合部材とを接着し、固定する。これにより、簡便な方法で、均一な厚みの接着剤層を得ることができ、その結果、超音波の送受信効率の変動が小さい超音波送受波器を得ることができる。
【0015】
以下、本発明の好ましい実施形態について図面を参照しながら説明する。
【0016】
図1は、本発明の超音波送受波器の一形態における超音波送受波器の断面図である。超音波送受波器の音響整合部材6は、球状フィラー8を含む樹脂9により、振動子ケース10に接着、固定されている。接着剤層7の厚みは、球状フィラー8の直径で規定されている。
【0017】
図1に示す超音波送受波器を得る具体的な製造方法を図2に従って、例示する。
【0018】
最初に、圧電振動子を内包した振動子ケースと、所望の直径を有した球状フィラーを分散させた樹脂と、音響整合部材を準備する。次に、振動子ケース10の天面に球状フィラー8を分散させた樹脂9を塗布する(図2(a))。次に、その塗布した樹脂上に、音響整合部材6を積層し、音響整合部材6と振動子ケース10を上下から加圧用治具11a、11bで加圧しながら、熱処理を行い、樹脂を硬化させる(図2(b))。最後に、加圧用治具11から取り外し、図2(c)に示した超音波送受波器12を得る。接着時に、接着剤層中に気泡が噛み込む場合は、真空ポンプなどを用いて接着部を負圧にすると、接着剤層中の気泡が脱泡され、気泡の噛み込みを抑制することができる。
【0019】
【実施例】
以下、本発明を実施例によりさらに詳細に説明するが、本発明は下記実施例に制限されるものではない。
【0020】
(実施例1)
実施例1の超音波送受波器を以下のようにして作製した。最初に、圧電振動子を内包したステンレス製の振動子ケースと、音響整合部材を準備した。音響整合部材にはケイ酸水溶液を乾燥して作製したシリカ乾燥ゲルを用いた(密度0.2g/cm、音速200m/s、音響インピーダンス0.04Mrayl)。上記、シリカ乾燥ゲルを直径10mm、厚み0.1mmの円板状に加工し、音響整合部材とした。
【0021】
次に、直径50μmの球状エポキシ樹脂硬化物を50wt%分散させた液状エポキシ樹脂を準備した。ここで、液状エポキシ樹脂には、球状エポキシ硬化物と同材料のものを使用した。液状エポキシ硬化後の接着剤層の密度は1.2g/cm、音速は2500m/s、音響インピーダンスは3.0Mraylである。
【0022】
次に、上記液状エポキシ樹脂を金属ケースの天面(直径12mmφ)に厚みが約60μmになるように塗布した。次に、その上に、上記音響整合部材を積層し、0.5kg/cmの圧力をかけつつ、150℃、2時間の熱処理を行うことにより振動子ケースと音響整合部材を接着して、超音波送受波器を得た。
【0023】
(比較例1)
実施例1において、液状エポキシ樹脂中に球状エポキシ樹脂硬化物を分散させなかったこと以外は実施例1と同様の方法で超音波送受波器を得た。比較例における接着剤層の密度は1.2g/cm、音速は2500m/s、音響インピーダンスは3.0Mraylで、実施例1と同一である。
【0024】
実施例1と比較例で作製した超音波送受波器n=20個ずつの送受信効率を以下のように測定した。測定系の概略を図3に示す。12は超音波送受波器、13は超音波を反射させるためのステンレス製の反射板で、両者の間は空気である。まず、実施例1と比較例で作製したそれぞれの超音波送受波器の5cm前方に反射板を設置する。圧電振動子に周波数500kHz、電圧20Vの交流電圧を加えることにより、超音波送受波器から超音波を空気中に送信する。送信された超音波は反射板で反射され、同一の超音波送受波器で受信される。送信側信号波形と受信側信号波形の一例を図4に示す。図4において、受信側信号波形のAの電圧を測定した結果ならびにその個体間のばらつき(n=20)について、(表1)に示す。
【0025】
【表1】

Figure 2004343658
【0026】
(表1)から分かるように、受信電圧Aの平均値は、両者でほぼ同一であった。しかし、n=20個中の個体間のばらつきは、球状フィラーを含まない樹脂で接着した比較例に比べて、球状フィラーを分散させた樹脂で接着した実施例1のほうが小さくなった。この理由を明らかにするために、実施例1、比較例1それぞれの超音波送受波器を断面研磨し、接着剤層の厚みを測定した。その結果、比較例では接着剤層の厚みの平均値が46.8μm、標準偏差σが5.2μmであったのに対して、実施例1では平均値が49.5μm、標準偏差σが2.2μmであった。このことより、実施例1と比較例1における個体間の受信電圧のばらつきの差は接着剤層の厚みのばらつきに起因したものであると推定される。
【0027】
(実施例2)
実施例1における球状フィラーである球状エポキシ硬化物の直径を50μm、100μm、500μm、1mm、1.25mm、1.7mm、2.5mmにしたこと以外は、実施例1と同様の方法で作製した7種類の超音波送受波器を準備した。ここで、7種類の超音波送受波器の接着剤層厚みは、接着剤層を伝播する超音波波長λ=5mmに対して、50μmでは100分の1、100μmでは50分の1、500μmでは10分の1、1mmでは5分の1、1.25mmでは4分の1、1.7mmでは3分の1、2.5mmでは2分の1である。
【0028】
次に、上述した方法で、これら7種類の超音波送受波器の送受信効率を測定した。図4における受信側信号波形のAの電圧を測定した結果を図5に示す。
【0029】
図5から分かるように、受信電圧Aは、500μm(10分の1波長)から1700μm(3分の1波長)の間で大きくなっている。これは、この厚み範囲で、接着剤層自身が音響整合層として機能し、その結果、超音波送受波器の送受信効率が向上したためであると考えられる。つまり、球状フィラーを用いて接着剤層の厚みを10分の1波長以上3分の1波長以下に制御することにより、接着剤層厚みが均一でなおかつ超音波の送受信効率が向上した超音波送受波器を得ることができる。
【0030】
本発明は、接着剤層部分が様々な気体中に曝されるために振動子ケースと、音響整合部材との間に強固な接着が必要で、そのため、必然的に、接着剤層の厚みを厚くしなければならない超音波流量計に特に有効である。
【0031】
なお、今回の実施例では、圧電振動子を内包する振動子ケースと、音響整合部材との接着に関して述べたが、圧電振動子上に直接、音響整合部材を接着する際にも同様の効果が得られる。
【0032】
また、球状フィラーとして球状エポキシ硬化物を用いた例で説明したが、球状フィラーとして、金属粉、酸化物粉、樹脂粉、カーボン粉、樹脂バルーン、ガラスバルーンを用いても同様の効果が得られ、適用がこの実施例に限定されるものではない。
【0033】
【発明の効果】
以上のように、本発明によれば、簡便な方法で、圧電振動子または圧電振動子を内包する振動子ケースと、音響整合部材とを接着、固定する際に、均一な厚みの接着剤層が得られるようになり、超音波の送受信効率の変動を小さくした超音波送受波器とその製造方法及びそれを用いた超音波流量計を得ることができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態における超音波送受波器の断面図
【図2】(a)〜(c)は、本発明の一実施例における超音波送受波器の製造工程図
【図3】本発明の一実施の形態における超音波送受波器の送受信効率測定のための測定系の概略図
【図4】本発明の一実施の形態における超音波送受波器の送受信効率測定時の送信側信号波形および受信側信号波形の一例を示す図
【図5】本発明の一実施の形態における接着剤層の厚みに対する受信電圧Aの変化を表すグラフ
【図6】従来の超音波送受波器の断面図
【符号の説明】
1 圧電振動子
2 振動子ケース本体
3 振動子ケース蓋
4a,4b 端子
5 絶縁封止材
6 音響整合部材
7 接着剤層
8 球状フィラー
9 樹脂
10 振動子ケース
11a,11b 加圧治具
12 超音波送受波器
13 反射板[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a flow rate measuring device for measuring a gas flow rate using ultrasonic waves, an ultrasonic transducer used for a distance measuring device for measuring a distance to an object, and a method for manufacturing the same, and an ultrasonic flow rate using the same. More particularly, the present invention relates to an adhesive layer for bonding and fixing a piezoelectric vibrator or a vibrator case including a piezoelectric vibrator and an acoustic matching member.
[0002]
[Prior art]
FIG. 6 is a cross-sectional view showing the configuration of a conventional ultrasonic transducer. The ultrasonic transducer includes a piezoelectric vibrator 1 which is a piezoelectric ceramic typified by PZT or the like which transmits and receives ultrasonic waves, a vibrator case main body 2 including the piezoelectric vibrator 1 and a vibrator case cover made of metal. 3, terminals 4a and 4b for applying a voltage to the piezoelectric vibrator 1, insulating sealing material 5 for insulating the vibrator case lid 3 and the terminal 4a and sealing the vibrator case, the piezoelectric vibrator 1 and the subject And an adhesive layer 7 for bonding the acoustic case layer 2 and the acoustic matching layer 6 to each other.
[0003]
Next, the operation principle of the ultrasonic transducer will be described with reference to FIG. Electrodes are formed on the upper and lower surfaces of the piezoelectric vibrator 1 (not shown), the lower electrode is electrically connected to the terminal 4a, and the upper electrode is electrically connected to the vibrator case body 2. Here, the upper surface electrode of the piezoelectric vibrator 1 and the vibrator case main body 2 are bonded by an adhesive. However, the thickness of the adhesive is very thin (about several microns), and since the top electrode has irregularities, a part of the interface between the top electrode and the vibrator case body 2 is directly joined without the use of an adhesive. Therefore, both are electrically connected. The vibrator case main body 2 and the vibrator case lid 3 are welded, and the vibrator case lid 3 is connected to the terminal 4b. Therefore, when a voltage is applied between the terminals 4a and 4b, a voltage is applied to the piezoelectric vibrator 1. When an AC voltage is applied between the terminals 4a and 4b, the piezoelectric vibrator 1 vibrates accordingly. This vibration propagates to the vibrator case main body 2 and causes it to vibrate. Further, the vibration of the vibrator case main body 2 propagates to the acoustic matching member 6 bonded via the adhesive layer 7 to vibrate it. Then, the ultrasonic waves are transmitted to the subject. At the time of reception, in the reverse process, the ultrasonic wave from the subject propagates through the acoustic matching member 6 → the adhesive layer 7 → the metal case body 2 → the piezoelectric vibrator 1 and between the terminals 4 a and 4 b. It is extracted as an electrical signal.
[0004]
By the way, in the propagation of an ultrasonic wave, one factor that affects the propagation efficiency is acoustic matching between different kinds of substances. When an ultrasonic wave transmits through an interface between different kinds of substances, the greater the difference in acoustic impedance between the substances, the more the ultrasonic waves are reflected at the interface and the lower the propagation efficiency. In an ultrasonic flowmeter that measures the flow rate of a gas, when ultrasonic waves are directly propagated into a gas from a piezoelectric vibrator, the difference in acoustic impedance between the two is extremely large. Cannot be propagated. Therefore, a member (acoustic matching member) for achieving acoustic matching between the piezoelectric vibrator and the gas is used. This member has an acoustic impedance intermediate between the acoustic impedance of the piezoelectric vibrator and the acoustic impedance of the gas. Can be performed efficiently.
[0005]
Another factor that affects the propagation efficiency of ultrasonic waves when ultrasonic waves propagate between different kinds of substances is the thickness of each substance. When the thickness of the material fluctuates, the interference state between the incident wave and the reflected wave of the ultrasonic wave fluctuates at the interface between the different materials, and as a result, the propagation efficiency of the ultrasonic wave fluctuates. Therefore, the above-described acoustic matching member is manufactured by precisely controlling the thickness by polishing or the like so as to have a desired thickness.
In the above ultrasonic transducer, transmission and reception of ultrasonic waves
Transmission: piezoelectric vibrator → vibrator case main body → adhesive layer → acoustic matching member → subject Reception: subject → acoustic matching member → adhesive layer → vibrator case main body → piezoelectric vibrator follows the propagation path. Among these, as for the vibrator case main body and the acoustic matching member, a desired thickness can be relatively easily and accurately obtained by devising a manufacturing method. However, since a liquid resin is usually used for the adhesive layer, it is difficult to accurately obtain the thickness. When the thickness of the adhesive layer fluctuates, the propagation efficiency of the ultrasonic wave fluctuates at that part, and as a result, the transmission / reception efficiency of the ultrasonic wave transducer fluctuates. Therefore, conventionally, in order to make the thickness of the adhesive layer uniform, a pipe through-hole is provided in the acoustic matching member, and when bonding the piezoelectric vibrator and the acoustic matching member, excess adhesive is released from the through-hole, and uniform. A method for obtaining an adhesive layer having a large thickness is disclosed (for example, see Patent Document 1).
[0006]
[Patent Document 1]
JP 2000-139916 A (FIG. 1)
[0007]
[Problems to be solved by the invention]
However, in the above-described method, since a through hole is provided in the acoustic matching member, the process is complicated, which is disadvantageous in terms of economy. In addition, in order to reduce the fluctuation of the transmission and reception efficiency of the ultrasonic transducer, it is important to adhere carefully so that an adhesive layer having a uniform thickness is obtained at the time of adhesion, and in particular, the adhesion temperature, the viscosity of the adhesive and There has been a problem that it is necessary to strictly control the pressure at the time of bonding.
[0008]
In view of the above problems, the present invention is devised so as to obtain an adhesive layer having a uniform thickness when bonding and fixing a piezoelectric vibrator or a vibrator case including a piezoelectric vibrator and an acoustic matching member. Accordingly, it is an object of the present invention to provide an ultrasonic transducer and a method of manufacturing the same, and a method of manufacturing the same and an ultrasonic flowmeter using the same, in which fluctuations in the transmission and reception efficiency of the ultrasonic waves are reduced.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, an ultrasonic transducer according to the present invention is an ultrasonic transducer having a piezoelectric vibrator and an acoustic matching member provided between the piezoelectric vibrator and the subject. The piezoelectric vibrator or a vibrator case enclosing the piezoelectric vibrator and the acoustic matching member are bonded and fixed with an adhesive layer made of a resin in which a spherical filler is dispersed.
[0010]
The method of manufacturing an ultrasonic transducer according to the present invention comprises preparing a piezoelectric vibrator or a vibrator case including a piezoelectric vibrator, a resin in which a spherical filler is dispersed, and an acoustic matching member. A resin in which the spherical filler is dispersed is applied to a vibrator case including a vibrator, and the acoustic matching member is laminated and cured thereon, and the vibrator case includes the piezoelectric vibrator or the piezoelectric vibrator. And bonding and fixing the acoustic matching member.
[0011]
An ultrasonic flowmeter according to the present invention includes any one of the ultrasonic transducers described above.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
According to the present invention, the piezoelectric vibrator or the vibrator case including the piezoelectric vibrator and the acoustic matching member are bonded and fixed with an adhesive layer made of a resin in which a spherical filler is dispersed. At this time, it is preferable that the diameter of the spherical filler is substantially the same as the desired thickness of the adhesive layer, and a desired thickness can be obtained, and a uniform adhesive layer can be obtained. The obtained ultrasonic transducer can be obtained. In the above, substantially the same means a range of ± 10% of a predetermined adhesive layer thickness.
[0013]
Further, it is preferable that the thickness of the adhesive layer is set in a range of one-tenth or more and one-third or less of the ultrasonic wavelength propagating in the adhesive, whereby the adhesive layer itself serves as an acoustic matching layer. It is possible to obtain an ultrasonic transmitter / receiver that functions and has improved ultrasonic reception efficiency. As the spherical filler, metal powder, oxide powder, resin powder, carbon powder, resin balloon, glass balloon and the like can be used. Further, the adhesive layer preferably has a higher acoustic impedance than the acoustic matching member. This is because when the acoustic impedance of the acoustic matching member is larger than that of the adhesive layer, the ultrasonic waves are reflected at the interface between the two, and the transmission and reception efficiency of the ultrasonic waves is reduced. Preferably, the acoustic impedance of the adhesive layer is 10 to 1000 times greater than the acoustic impedance of the acoustic matching member.
[0014]
The method of manufacturing an ultrasonic transducer according to the present invention includes applying a resin in which a spherical filler is dispersed on the vibrator case, laminating and curing an acoustic matching member thereon, and forming a piezoelectric vibrator or a piezoelectric vibrator. The enclosed oscillator case and the acoustic matching member are adhered and fixed. As a result, an adhesive layer having a uniform thickness can be obtained by a simple method, and as a result, it is possible to obtain an ultrasonic transducer having a small variation in ultrasonic transmission and reception efficiency.
[0015]
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
[0016]
FIG. 1 is a cross-sectional view of an ultrasonic transducer in one embodiment of the ultrasonic transducer of the present invention. The acoustic matching member 6 of the ultrasonic transducer is bonded and fixed to the vibrator case 10 by a resin 9 containing a spherical filler 8. The thickness of the adhesive layer 7 is defined by the diameter of the spherical filler 8.
[0017]
A specific manufacturing method for obtaining the ultrasonic transducer shown in FIG. 1 will be described with reference to FIG.
[0018]
First, a vibrator case including a piezoelectric vibrator, a resin in which a spherical filler having a desired diameter is dispersed, and an acoustic matching member are prepared. Next, a resin 9 in which spherical fillers 8 are dispersed is applied to the top surface of the vibrator case 10 (FIG. 2A). Next, the acoustic matching member 6 is laminated on the applied resin, and heat treatment is performed while applying pressure to the acoustic matching member 6 and the vibrator case 10 from above and below with the pressing jigs 11a and 11b to cure the resin. (FIG. 2 (b)). Finally, the ultrasonic transducer 12 is removed from the pressing jig 11 to obtain the ultrasonic transducer 12 shown in FIG. When air bubbles are caught in the adhesive layer at the time of bonding, if the bonding portion is made to have a negative pressure using a vacuum pump or the like, the air bubbles in the adhesive layer are defoamed, and the air bubbles can be prevented from being caught. .
[0019]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples.
[0020]
(Example 1)
The ultrasonic transducer of Example 1 was manufactured as follows. First, a stainless steel vibrator case including a piezoelectric vibrator and an acoustic matching member were prepared. As the acoustic matching member, a silica dry gel produced by drying a silicic acid aqueous solution was used (density: 0.2 g / cm 3 , sound speed: 200 m / s, acoustic impedance: 0.04 Mrayl). The dried silica gel was processed into a disk shape having a diameter of 10 mm and a thickness of 0.1 mm to obtain an acoustic matching member.
[0021]
Next, a liquid epoxy resin in which a spherical epoxy resin cured product having a diameter of 50 μm was dispersed at 50 wt% was prepared. Here, the liquid epoxy resin used was the same material as the spherical epoxy cured product. The density of the adhesive layer after the liquid epoxy curing is 1.2 g / cm 3 , the sound speed is 2500 m / s, and the acoustic impedance is 3.0 Mrayl.
[0022]
Next, the liquid epoxy resin was applied to the top surface (diameter: 12 mmφ) of the metal case so as to have a thickness of about 60 μm. Next, the acoustic matching member is laminated thereon, and the oscillator case and the acoustic matching member are bonded by performing a heat treatment at 150 ° C. for 2 hours while applying a pressure of 0.5 kg / cm 2 , An ultrasonic transducer was obtained.
[0023]
(Comparative Example 1)
An ultrasonic transducer was obtained in the same manner as in Example 1, except that the cured spherical epoxy resin was not dispersed in the liquid epoxy resin. The density of the adhesive layer in the comparative example was 1.2 g / cm 3 , the sound speed was 2500 m / s, and the acoustic impedance was 3.0 Mrayl, which is the same as in Example 1.
[0024]
The transmission / reception efficiency of each of the n = 20 ultrasonic transducers manufactured in Example 1 and Comparative Example was measured as follows. FIG. 3 shows an outline of the measurement system. Reference numeral 12 denotes an ultrasonic transducer, and reference numeral 13 denotes a stainless steel reflecting plate for reflecting ultrasonic waves, and air is provided between the two. First, a reflector is placed 5 cm ahead of each of the ultrasonic transducers manufactured in Example 1 and Comparative Example. An ultrasonic wave is transmitted from the ultrasonic transducer into the air by applying an AC voltage having a frequency of 500 kHz and a voltage of 20 V to the piezoelectric vibrator. The transmitted ultrasonic wave is reflected by the reflector and received by the same ultrasonic transducer. FIG. 4 shows an example of the transmission-side signal waveform and the reception-side signal waveform. In FIG. 4, (Table 1) shows the result of measuring the voltage of A of the signal waveform on the receiving side and the variation (n = 20) between the individuals (n = 20).
[0025]
[Table 1]
Figure 2004343658
[0026]
As can be seen from (Table 1), the average value of the reception voltage A was almost the same in both cases. However, the variation among individuals in n = 20 was smaller in Example 1 in which the resin was bonded with the resin in which the spherical filler was dispersed than in the comparative example in which the resin was bonded with the resin not including the spherical filler. To clarify the reason, the ultrasonic transducers of Example 1 and Comparative Example 1 were polished in cross section, and the thickness of the adhesive layer was measured. As a result, in the comparative example, the average value of the thickness of the adhesive layer was 46.8 μm and the standard deviation σ was 5.2 μm, whereas in Example 1, the average value was 49.5 μm and the standard deviation σ was 2 .2 μm. From this, it is presumed that the difference in the variation of the reception voltage between individuals in Example 1 and Comparative Example 1 was caused by the variation in the thickness of the adhesive layer.
[0027]
(Example 2)
A spherical epoxy cured product as a spherical filler in Example 1 was produced in the same manner as in Example 1, except that the diameter was 50 μm, 100 μm, 500 μm, 1 mm, 1.25 mm, 1.7 mm, and 2.5 mm. Seven types of ultrasonic transducers were prepared. Here, the adhesive layer thickness of the seven types of ultrasonic transducers is 1/100 at 50 μm, 1/50 at 100 μm, and 1/50 at 500 μm with respect to the ultrasonic wavelength λ = 5 mm propagating through the adhesive layer. One tenth, one fifth at 1 mm, one fourth at 1.25 mm, one third at 1.7 mm, and one half at 2.5 mm.
[0028]
Next, the transmission and reception efficiencies of these seven types of ultrasonic transducers were measured by the method described above. FIG. 5 shows the result of measuring the voltage A of the signal waveform on the receiving side in FIG.
[0029]
As can be seen from FIG. 5, the reception voltage A increases between 500 μm (1/10 wavelength) and 1700 μm (1/3 wavelength). This is considered to be because the adhesive layer itself functions as an acoustic matching layer in this thickness range, and as a result, the transmission and reception efficiency of the ultrasonic transducer has been improved. In other words, by controlling the thickness of the adhesive layer to be less than or equal to one-tenth wavelength and less than or equal to one-third wavelength by using the spherical filler, the ultrasonic transmission / reception in which the adhesive layer thickness is uniform and the ultrasonic wave transmission / reception efficiency is improved. You can get a wave filter.
[0030]
According to the present invention, since the adhesive layer portion is exposed to various gases, strong adhesion is required between the vibrator case and the acoustic matching member. Therefore, the thickness of the adhesive layer is inevitably reduced. It is particularly effective for ultrasonic flowmeters that need to be thick.
[0031]
In this embodiment, the description has been given of the bonding between the vibrator case including the piezoelectric vibrator and the acoustic matching member. However, the same effect can be obtained when the acoustic matching member is directly bonded on the piezoelectric vibrator. can get.
[0032]
In addition, although an example using a spherical epoxy cured product as the spherical filler has been described, similar effects can be obtained by using a metal powder, an oxide powder, a resin powder, a carbon powder, a resin balloon, and a glass balloon as the spherical filler. The application is not limited to this embodiment.
[0033]
【The invention's effect】
As described above, according to the present invention, when bonding and fixing the piezoelectric vibrator or the vibrator case including the piezoelectric vibrator and the acoustic matching member by a simple method, the adhesive layer having a uniform thickness is used. Can be obtained, and it is possible to obtain an ultrasonic transducer and a method of manufacturing the same and an ultrasonic flowmeter using the same, in which fluctuations in the transmission and reception efficiency of the ultrasonic waves are reduced.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an ultrasonic transducer according to an embodiment of the present invention. FIGS. 2A to 2C are manufacturing process diagrams of the ultrasonic transducer according to an embodiment of the present invention. FIG. 3 is a schematic diagram of a measurement system for measuring transmission / reception efficiency of an ultrasonic transducer according to an embodiment of the present invention. FIG. 4 is a diagram illustrating measurement of transmission / reception efficiency of an ultrasonic transducer according to an embodiment of the present invention. FIG. 5 is a diagram showing an example of a transmission-side signal waveform and a reception-side signal waveform of FIG. 5. FIG. 5 is a graph showing a change in a reception voltage A with respect to the thickness of an adhesive layer in one embodiment of the present invention. Sectional view of wave device [Explanation of reference numerals]
REFERENCE SIGNS LIST 1 piezoelectric vibrator 2 vibrator case main body 3 vibrator case lid 4 a, 4 b terminal 5 insulating sealing material 6 acoustic matching member 7 adhesive layer 8 spherical filler 9 resin 10 vibrator case 11 a, 11 b pressing jig 12 ultrasonic Transducer 13 Reflector

Claims (6)

圧電振動子と、前記圧電振動子と被検体との間に設けられた音響整合部材とを有する超音波送受波器において、前記圧電振動子または前記圧電振動子を内包する振動子ケースと、前記音響整合部材とを球状フィラーを分散させた樹脂からなる接着剤層で接着し、固定したことを特徴とする超音波送受波器。In an ultrasonic transducer having a piezoelectric vibrator and an acoustic matching member provided between the piezoelectric vibrator and the subject, a vibrator case including the piezoelectric vibrator or the piezoelectric vibrator, An ultrasonic transducer, wherein the acoustic matching member is bonded and fixed with an adhesive layer made of a resin in which a spherical filler is dispersed. 前記接着剤層の厚みが、前記球状フィラーの直径により規定されている請求項1に記載の超音波送受波器。The ultrasonic transducer according to claim 1, wherein the thickness of the adhesive layer is defined by a diameter of the spherical filler. 前記接着剤層の厚みが、前記接着剤層中を伝播する超音波波長の10分の1以上、3分の1以下の範囲である請求項1に記載の超音波送受波器。The ultrasonic transducer according to claim 1, wherein the thickness of the adhesive layer is in a range of one-tenth or more and one-third or less of an ultrasonic wavelength propagating in the adhesive layer. 前記球状フィラーが、金属粉、酸化物粉、樹脂粉、カーボン粉、樹脂バルーン及びガラスバルーンから選ばれる少なくとも一つである請求項1に記載の超音波送受波器。The ultrasonic transducer according to claim 1, wherein the spherical filler is at least one selected from metal powder, oxide powder, resin powder, carbon powder, resin balloon, and glass balloon. 圧電振動子または圧電振動子を内包した振動子ケースと、球状フィラーを分散させた樹脂と、音響整合部材を準備し、前記圧電振動子または圧電振動子を内包した振動子ケース上に前記球状フィラーを分散させた樹脂を塗布し、その上に前記音響整合部材を積層、硬化し、前記圧電振動子または圧電振動子を内包した振動子ケースと、前記音響整合部材とを接着し、固定することを含む超音波送受波器の製造方法。A piezoelectric vibrator or a vibrator case containing a piezoelectric vibrator, a resin in which a spherical filler is dispersed, and an acoustic matching member are prepared, and the spherical filler is provided on the piezoelectric vibrator or a vibrator case containing a piezoelectric vibrator. Is applied, and the acoustic matching member is laminated thereon and cured, and the acoustic matching member is adhered to the piezoelectric vibrator or the vibrator case including the piezoelectric vibrator, and fixed. A method for manufacturing an ultrasonic transducer including: 請求項1〜4のいずれかに記載された超音波送受波器を備えた超音波流量計。An ultrasonic flowmeter comprising the ultrasonic transducer according to any one of claims 1 to 4.
JP2003140841A 2003-05-19 2003-05-19 Ultrasonic echo sounder transducer, its manufacturing method and ultrasonic flowmeter using the same Withdrawn JP2004343658A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003140841A JP2004343658A (en) 2003-05-19 2003-05-19 Ultrasonic echo sounder transducer, its manufacturing method and ultrasonic flowmeter using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003140841A JP2004343658A (en) 2003-05-19 2003-05-19 Ultrasonic echo sounder transducer, its manufacturing method and ultrasonic flowmeter using the same

Publications (1)

Publication Number Publication Date
JP2004343658A true JP2004343658A (en) 2004-12-02

Family

ID=33529440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003140841A Withdrawn JP2004343658A (en) 2003-05-19 2003-05-19 Ultrasonic echo sounder transducer, its manufacturing method and ultrasonic flowmeter using the same

Country Status (1)

Country Link
JP (1) JP2004343658A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100442024C (en) * 2006-12-22 2008-12-10 西安森舍电子科技有限责任公司 High-temperature-resistant high-pressure-resistant ceramic strain gauge sensor and its package curing method
WO2017221762A1 (en) * 2016-06-23 2017-12-28 株式会社村田製作所 Electroacoustic transducer
EP3813385A4 (en) * 2018-06-25 2021-07-28 Panasonic Intellectual Property Management Co., Ltd. Ultrasonic sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100442024C (en) * 2006-12-22 2008-12-10 西安森舍电子科技有限责任公司 High-temperature-resistant high-pressure-resistant ceramic strain gauge sensor and its package curing method
WO2017221762A1 (en) * 2016-06-23 2017-12-28 株式会社村田製作所 Electroacoustic transducer
US10536779B2 (en) 2016-06-23 2020-01-14 Murata Manufacturing Co., Ltd. Electroacoustic transducer
EP3813385A4 (en) * 2018-06-25 2021-07-28 Panasonic Intellectual Property Management Co., Ltd. Ultrasonic sensor

Similar Documents

Publication Publication Date Title
US6788620B2 (en) Acoustic matching member, ultrasound transducer, ultrasonic flowmeter and method for manufacturing the same
JP2918102B2 (en) Ultrasonic transducer
JP3611796B2 (en) Ultrasonic transducer, manufacturing method of ultrasonic transducer, and ultrasonic flowmeter
JP4723732B2 (en) Pulse detection device and ultrasonic diagnostic device
CN101364632B (en) Piezoelectric element applied in ultrasonic transducer and sensor and manufacturing method thereof
JP4988034B2 (en) Pulse detection device and ultrasonic diagnostic device
JP2004343658A (en) Ultrasonic echo sounder transducer, its manufacturing method and ultrasonic flowmeter using the same
JP4014940B2 (en) Acoustic matching member, ultrasonic transducer, ultrasonic flow meter, and manufacturing method thereof
JP2008261732A (en) Ultrasonic transmitting/receiving device and ultrasonic current flow meter
WO2020174640A1 (en) Sonar, ultrasonic transducer, and production method therefor
JP3488102B2 (en) Ultrasonic probe
JP4080374B2 (en) Acoustic matching member, ultrasonic transducer, ultrasonic flow meter, and manufacturing method thereof
JP2005037219A (en) Ultrasonic transmitter/receiver and manufacturing method therefor
JP2001258097A (en) Ultrasonic wave transducer and its manufacturing method
JP2005020700A (en) Ultrasonic wave transmitter/receiver and method for manufacturing the same
JP2005017093A (en) Ultrasonic transmitter/receiver and ultrasonic flowmeter using it
JP4400004B2 (en) Ultrasonic transducer
CN218988820U (en) MEMS chip packaging structure and ultrasonic sensor with same
JP4610790B2 (en) Method for manufacturing piezoelectric transducer
WO2017075888A1 (en) Radial-mode-based single-element ultrasonic low-frequency transducer
JPS63255677A (en) Ultrasonic vibrator
JP2019176291A (en) Ultrasonic transducer
JP2001145194A (en) Ultrasonic wave generator and method of manufacturing the same
JPH05169028A (en) Method for bonding ultrasonic vibrator
JP2003329501A (en) Acoustic matching member, ultrasonic wave transceiver, and ultrasonic wave flowmeter

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060801