JP2004340542A - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
JP2004340542A
JP2004340542A JP2003140182A JP2003140182A JP2004340542A JP 2004340542 A JP2004340542 A JP 2004340542A JP 2003140182 A JP2003140182 A JP 2003140182A JP 2003140182 A JP2003140182 A JP 2003140182A JP 2004340542 A JP2004340542 A JP 2004340542A
Authority
JP
Japan
Prior art keywords
rotation speed
compressor
speed
refrigerator
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003140182A
Other languages
Japanese (ja)
Inventor
Shinichi Sato
真一 佐藤
Toshihiro Komatsu
利広 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Home and Life Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Home and Life Solutions Inc filed Critical Hitachi Home and Life Solutions Inc
Priority to JP2003140182A priority Critical patent/JP2004340542A/en
Publication of JP2004340542A publication Critical patent/JP2004340542A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To save electric power while securing reliability of a compression mechanism part in a refrigerator. <P>SOLUTION: The refrigerator is equipped with an inverter driven compressor of which rotation speed is controlled by a control device. The control device is provided with a low-speed operation mode. The low-speed operation mode operates the compressor at a rotation speed lower than the minimum rotation speed allowing supplying of lubricating oil to the compression mechanism part of the compressor, and controls to operate to for intermittently increase the rotation speed to be higher than the minimum rotation speed during the operation. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、インバータ駆動圧縮機を搭載した冷蔵庫に関し、特に、圧縮機の運転回転数を可能な限り低速化させて運転することにより省電力化を図る冷蔵庫に関するものである。
【0002】
【従来の技術】
家庭用冷蔵庫に対する省電力化の訴求に伴い、従来からインバータ駆動圧縮機を搭載した冷蔵庫においては、常温時や庫内負荷の軽い時や扉の開閉頻度が少ない時などに、冷蔵庫の庫内温度を適正範囲に保持できるだけの必要最低限の圧縮機入力に抑えるために、最小限の圧縮機回転数まで低速化させて運転することにより、冷蔵庫の消費電力量をできるだけ低減するようにしている。
【0003】
圧縮機の運転回転数を低速化させていくと、圧縮機構部への潤滑油の供給が減少していくため、従来の低速運転制御では、一定の運転回転数で圧縮機を連続して運転させた場合に圧縮機構部に潤滑油を継続して供給可能な最低回転数N1を定め、この給油可能な最低回転数N1以上の運転回転数で圧縮機を運転するように制御している。即ち、この回転数N1は圧縮機の給油における信頼性を保証できる限界回転数であり、この回転数N1よりも更に低速化させた回転数で圧縮機を連続的に運転させると、圧縮機構部に十分な潤滑油を供給することができなくなり、信頼性を低下させてしまう問題を抱えていた。
【0004】
そこで、従来の冷蔵庫では、できるだけ省電力化を図るために、上記の回転数N1を少しでも下げるべく、圧縮機の給油構造を工夫して低速回転でも十分な潤滑油の供給ができるように対応してきた。このような従来の冷蔵庫に用いられる密閉形電動圧縮機として、特開2000−314380号公報(特許文献1)に記載されたものが挙げられる。この密閉形電動圧縮機は、図5に示すように、クランクシャフト24の縦穴内壁部24bにコイルスプリング26を設け、縦穴内壁部24bとコイルスプリング26との相対速度の差によって、低速運転時においても圧縮機構部22に給油ができるようになっている。
【0005】
【特許文献1】
特開2000−314380号公報
【0006】
【発明が解決しようとする課題】
しかし、特許文献1に示された対応を含む圧縮機の圧縮機構部への給油構造の改良による低速化を図る対応では、十分に低速化を図ることが難しく、冷蔵庫の省電力化をさらに進めることが困難であった。従来の対応では、一定の運転回転数で圧縮機を連続して運転させた場合に圧縮機構部に潤滑油を継続して供給可能な最低回転数N1を限界最低回転数とするものであり、この回転数N1よりも更に回転数を下げてしまうと、圧縮機構部の信頼性を低下させる問題があるとして、冷蔵庫での圧縮機運転制御における最低回転数を回転数N1以上とするように制約しており、これが冷蔵庫の省電力化に対する制約となっていた。
【0007】
本発明の目的は、圧縮機構部の信頼性を確保しつつ省電力化が図れる冷蔵庫を提供することにある。
【0008】
【課題を解決するための手段】
前記目的を達成するために、本発明は、制御装置により回転数を制御されるインバータ駆動圧縮機を搭載した冷蔵庫において、前記圧縮機の圧縮機構部に潤滑油を供給可能な最低回転数よりも低い回転数で前記圧縮機を運転すると共に、この運転中に間歇的に前記最低回転数以上の回転数に上げる運転を行うように、前記制御装置で制御する低速運転モードを備える構成にしたことにある。
【0009】
また、本発明は、制御装置により回転数を制御されるインバータ駆動圧縮機、凝縮器、前記制御装置により流量抵抗を制御される減圧装置、蒸発器を順次接続して構成された冷凍サイクルを備える冷蔵庫において、前記圧縮機の圧縮機構部に潤滑油を供給可能な最低回転数よりも低い回転数で前記圧縮機を運転すると共に、この運転中に間歇的に前記最低回転数以上の回転数に上げる運転を行い、これらの運転中に前記減圧装置の流量抵抗を大きくするように、前記制御装置で制御する低速運転モードを備える構成にしたことにある。
【0010】
【発明の実施の形態】
以下、本発明の冷蔵庫の複数の実施例について図を用いて説明する。尚、各実施例の図及び従来例の図における同一符号は同一物または相当物を示す。
【0011】
まず、本発明の第1実施例の冷蔵庫を図1から図4を参照しながら説明する。
【0012】
図1は本発明の第1実施例の冷蔵庫の冷凍サイクル及び制御装置を説明する図である。図1において、冷凍サイクル1は、インバータ駆動圧縮機2、凝縮器3、露付き防止バイプ4、ドライヤ5、減圧装置6、蒸発器7を順次環状に接続して構成されている。減圧装置6は、2本の流量抵抗の異なるキャピラリチューブ6a、6bと、これらキャピラリチューブ6a、6bの接続を切替える切替弁6cとを備えて構成されている。
【0013】
制御装置8は、圧縮機2の運転回転数を高速から低速まで制御すると共に、流路切替弁6cの流路切替を制御するように構成されている。また、制御装置8は、運転制御モードとして、通常運転モードと低速運転モードとを切替制御する。低速運転モードへの切替は、常温時や庫内負荷の軽い時や扉の開閉頻度が少ない時などを検出した場合に行なわれる。
【0014】
冷凍サイクル1に封入された冷媒(例えばHC冷媒)は、圧縮機2で圧縮されて高温高圧とされ、凝縮器3で周囲空気に放熱され、減圧装置6で減圧され、蒸発器7で周囲空気から吸熱し、圧縮機2に戻される。この動作が繰返されることにより、冷凍サイクルによる冷蔵庫内の冷却が行なわれる。
【0015】
キャピラリチューブ6a、6bの流量抵抗はキャピラリチューブ6a<キャピラリチューブ6bとなるように設定されている。冷蔵庫の通常運転モード時には、常にキャピラリチューブ6aの方を冷媒が流れるように制御装置8により流路切替弁6cが制御されると共に、キャピラリチューブ6aの流量抵抗値が通常運転で適正な値になるように定められている。一方、低速運転モード時には、キャピラリチューブ6bの方を冷媒が流れるように制御装置8により流路切替弁6cが制御されると共に、キャピラリチューブ6bの流量抵抗値が低速運転モードで適正な値になるように定められている。この低速運転モード時に圧縮機1が超低速回転となって冷蔵庫の冷却能力が不足する場合に、冷媒がキャピラリチューブ6aからキャピラリチューブ6bに流れるように流路切替弁6cを切替えて流量抵抗を増加させる。これによって、蒸発器7の温度を低下させて冷蔵庫の冷却能力の不足を補うことができる。係る流路切替弁6cの切替は冷蔵庫の冷却能力の不足を検出した場合に切替えるようにしている。尚、制御を簡単にするために低速運転モードへの切替と同期して流路切替弁6cを切替えるようにしてもよい。
【0016】
次に、圧縮機2の詳細を図2を参照しながら説明する。図2は図1の冷蔵庫に用いる圧縮機の縦断面図である。
【0017】
圧縮機2は、密閉容器21内に、圧縮機構部22及び電動機部23を収納して構成されている。圧縮機構部21と電動機部23とは、給油路24aを有するクランクシャフト24を介して連結されている。密閉容器21の底部には潤滑油25が貯留されている。
【0018】
そして、電動機部23が運転されると、クランクシャフト24が回転され、これに伴って圧縮機構部22が駆動される。圧縮機構部22が駆動によって、密閉容器21内の低圧の冷媒が圧縮機構部22に吸込まれて圧縮され、吐出パイプ22aを通して密閉容器21の外部(凝縮器3)に吐出される。また、クランクシャフト24の回転によって、密閉容器21の底部に貯留された潤滑油25に給油路24aによる遠心力が加えられ、この潤滑油25が給油路24aを通って圧縮機構部22の軸受や摺動部などに供給される。この潤滑油25の供給は給油路24aの遠心力によるものであるため、その供給量は圧縮機2の運転回転数(具体的にはクランクシャフト24の運転回転数)に比例して低速になると低下する。
【0019】
次に、低速運転モード時の動作について図3を参照しながら説明する。図3は図1の冷蔵庫の低速運転モード時における圧縮機回転数と時間との関係を示す図である。
【0020】
図3において、回転数N1は一定の運転回転数で圧縮機2を連続して運転させた場合に圧縮機構部22に潤滑油を継続して供給可能な最低回転数、即ち信頼性を保証する最低回転数である。回転数N2は回転数N1よりも更に低い回転数である。
【0021】
室温が比較的高くない時(例えば室温が常温の時)や庫内温度負荷が軽い時や扉開閉動作の頻度が少ない時など、圧縮機2の冷力を回転数N1による運転時の冷力よりも低い冷力で運転しても庫内温度を適正な範囲に保持できる条件となった場合に、冷蔵庫2の適切な検出手段を用いてこの条件を検出する。制御装置8は、これに基づいて、それまでに運転していた回転数N1あるいはそれ以上の圧縮機回転数による通常運転モードから、図3に示す低速運転モードに切替制御する。この低速運転モードは、圧縮機回転数を回転数N1(またはそれ以上の回転数)と回転数N2とに交互に切替える繰返し運転を基本としている。
【0022】
冷蔵庫の庫内温度の変化に応じて、上記低速運転モードは運転率100%の連続運転となる場合もあれば、図3に示すような断続運転(庫内温度が十分冷えていれば圧縮機2を停止する運転)となる場合もある。以下では断続運転をする場合について詳細に説明する。
【0023】
回転数N1および回転数N2の繰返し運転において、回転数N2での運転時間が長くなると、圧縮機構部22への給油が不足し、圧縮機構部22へのストレスが付加されて圧縮機2の入力が上昇する傾向となると共に、圧縮機2の信頼性も確保できなくなるため、図3に示すように、回転数N2で所定時間(予め定められた第1の時間)T2運転したら、回転数N1に切替えて所定時間(予め定められた第2の時間)T1運転するようにしている。尚、時間T1<時間T2と設定されている。このような構成によって、回転数N1及び時間T1で示される圧縮機構部22への給油が間歇的に行なわれ、低速運転モードを継続した場合でも圧縮機2の積算入力の増加や給油不足による摩耗などが起らないようにすることができる。特に、時間T2を時間T1の2倍以上にすることにより、その効果をより一段と向上することができる。
【0024】
ここで、圧縮機2の積算入力の増加と給油不足による摩耗の防止を両立させて最適になるように、回転数N1、N2及び時間T1、T2の値を定めることが必要である。回転数N1、N2及び時間T1、T2の具体的な設定方法を図4の方法と比較して説明する。図4は通常運転モードで低速運転を行った場合の圧縮機回転数と時間との関係を示す図である。
【0025】
図4の低速運転時の運転パターンは、回転数N1を一定として与えられて、圧縮機2の運転/停止の断続運転を行うものである。この図4の運転パターンの場合は、図3の低速運転モードの運転パターンに対し、圧縮機2の冷力をより高く保持して運転することになる。このため、図4の運転パターンでは、図3の運転パターンに比較して、回転数N1で運転している時の圧縮機2の消費電力が大きくなるが、運転率が減少することによって圧縮機2の消費電力が小さくなる。換言すれば、図3の運転パターンでは、図4の運転パターンに比較して、回転数N1、N2の繰り返しで運転している時の圧縮機2の消費電力が小さくなるが、運転率が増加することによって圧縮機2の消費電力が大きくなる。
【0026】
従って、図3の運転パターンの消費電力量を図4の運転パターンの消費電力量より小さくするには、圧縮機2の消費電力量の増加分を減少分が上回ることが必要である。具体的には、以下に説明する考え方に基づいて回転数N1、N2、時間T1、T2の値を定める。即ち、回転数N2を少しでも低く設定すれば切替え直後の圧縮機入力はより低減できるが、前述したように回転数を低下するほど給油不足のストレスが増加するため、入力の上昇度合いが大きくなり、時間T2を長く保持することはできなくなる。また、間歇的に設ける回転数N1については、高い値にすれば給油がし易くなるので、時間T1は短くても十分な給油ができる。このような回転数、保持時間、給油状態の相互作用の関係を考慮して、回転数N1、N2、時間T1、T2の値を適切な組合せに設定することにより、低速運転モードの運転率が従来運転よりも大きくなった場合でも、消費電力量の積算値を従来運転時よりも低減することが可能となる。
【0027】
また、低速運転モードで圧縮機2が断続する場合に、圧縮機2への給油を十分に確保するための手段として、圧縮機2の始動開始時に、始動開始回転数N3から直ぐに回転数N2になるように制御せずに、一定時間t1の間、まず回転数N1(またはそれ以上の回転数)で運転して給油路24b及び圧縮機構部22への給油を確保してから、回転数N2の運転に切替えるように制御している。さらには、圧縮機2の停止直前に、回転数N2から回転数N1(またはそれ以上の回転数)に切替えて一定時間t2の間、給油運転させてから圧縮機を停止させるように制御している。これにより、次に圧縮機2が始動するときに、圧縮機構部22への給油切れを生じさせないようにすることができる。
【0028】
回転数N1の範囲を1400min−1〜1600min−1とし、回転数N2の範囲を1200min−1〜1400min−1とし、時間T1の範囲を30秒〜2分未満とし、時間T2の範囲を2分〜10分とすることにより、圧縮機構部22へのストレスを発生させることなく、圧縮機2の信頼性の確保をした上で、低入力運転が実現できて冷蔵庫の消費電力量を従来よりも低減できることが確認できた。
【0029】
また、時間t1の範囲を1分以上とし、時間t2の範囲を1分以上とすることにより、圧縮機2の断続運転の運転開始時の十分な給油確保できることが確認できた。
【0030】
そして、回転数N1、N2、時間T1、T2、t1、t2の値は、冷蔵庫の庫内温度を適正範囲に確保し、且つ圧縮機2の圧縮機構部22に信頼性上のダメージを与えない条件を満足させる値に設定されている。また、回転数N1、N2の繰返し運転による各圧縮機運転時間(圧縮機起動開始から停止までの時間)は、冷蔵庫の庫内温度を適正範囲に確保し、且つ圧縮機2の圧縮機構部22に信頼性上のダメージを与えない条件を満足させる値に設定されている。
【0031】
尚、図3における低速運転モードにて、間歇的に設ける回転数N1は、消費電力量の低減ができる運転パターンとして成立することができれば、回転数N1以上の値に置き換えても良い。
【0032】
本実施例によれば、低速化制御モードを設けて圧縮機2を運転させることにより、冷蔵庫の庫内温度を適正範囲に確保し、且つ圧縮機2の圧縮機構部22に信頼性上のダメージを与えずに、従来決められている圧縮機の信頼性保証最低回転数よりも更に回転数を下げて冷蔵庫を運転することが可能となり、従来よりも更なる省電力化を図ることができる。
【0033】
次に、本発明の第2実施例を図5を用いて説明する。図5は本発明の第2実施例の冷蔵庫の冷凍サイクル及び制御装置を説明する図である。この第2実施例は、次に述べる通り第1実施例と相違するものであり、その他の点については第1実施例と基本的には同一である。
【0034】
この第2実施例では、減圧装置6の構成を1本のキャピラリチューブ6aと膨張弁6dの直列接続に置き換えたものである。制御装置8は膨張弁6dの開度を制御するようになっている。係る構成において、第1実施例と同様な考え方に基づき、通常運転モードに対して低速運転モードに切り替わるときに、膨張弁6dの開度を小さくして減圧装置6全体の流量抵抗を増加させることにより、冷蔵庫の冷却性能が不足する問題を解消して、常に庫内温度を適正な範囲に保持することができるようになっている。
【0035】
尚、本発明の低速運転モードを行う冷蔵庫の冷凍サイクルとしては、上述した実施例に限らず、低速化運転時に適正な冷力を保持できる冷蔵庫であれば、減圧装置6を1本のキャピラリチューブで与えて通常運転時と低速運転モード時の流量抵抗を同じくした一般的な冷凍サイクル構成に置き換えたものであっても良い。
【0036】
【発明の効果】
本発明によれば、圧縮機構部の信頼性を確保しつつ省電力化が図れる冷蔵庫を提供することができる。
【図面の簡単な説明】
【図1】本発明の第1実施例の冷蔵庫の冷凍サイクル及び制御装置を説明する図である。
【図2】図1の冷蔵庫に用いる圧縮機の縦断面図である。
【図3】図1の冷蔵庫の低速運転モード時における圧縮機回転数と時間との関係を示す図である。
【図4】通常運転モードで低速運転を行った場合の圧縮機回転数と時間との関係を示す図である。
【図5】本発明の第2実施例の冷蔵庫の冷凍サイクル及び制御装置を説明する図である。
【図6】従来の冷蔵庫における圧縮機の縦断面図である。
【符号の説明】
N1、N2…回転数、T1、T2、t1、t2…時間、1…冷凍サイクル、2…圧縮機、3…凝縮器、4…露付防止パイプ、5…ドライヤ、6…減圧装置、6a、6b…キャピラリチューブ、6c…流路切替弁、6d…膨張弁、7…蒸発器、8…制御装置、21…密閉容器、22…圧縮機構部、22a…吐出管、23…電動機部、24…クランクシャフト、24a…給油路、24b…縦穴内壁部、25…潤滑油、26…コイルスプリング。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a refrigerator equipped with an inverter-driven compressor, and more particularly to a refrigerator that saves power by operating the compressor at an operation speed as low as possible.
[0002]
[Prior art]
Along with the demand for power saving in home refrigerators, refrigerators equipped with inverter-driven compressors have been used to reduce the refrigerator's internal In order to suppress the compressor input to the minimum necessary for maintaining the compressor in an appropriate range, the refrigerator is operated at a reduced speed to the minimum number of revolutions of the compressor to reduce the power consumption of the refrigerator as much as possible.
[0003]
When the operating speed of the compressor is reduced, the supply of lubricating oil to the compression mechanism decreases, so the conventional low-speed operation control operates the compressor continuously at a constant operating speed. In this case, the minimum rotational speed N1 at which lubricating oil can be continuously supplied to the compression mechanism is determined, and the compressor is controlled to operate at an operating rotational speed equal to or higher than the minimum rotational speed N1 at which lubricating oil can be supplied. That is, the rotation speed N1 is a limit rotation speed at which the reliability of refueling of the compressor can be guaranteed. If the compressor is continuously operated at a rotation speed lower than the rotation speed N1, the compression mechanism unit Supply of sufficient lubricating oil cannot be performed, and the reliability is reduced.
[0004]
In order to reduce power consumption as much as possible, conventional refrigerators have been devised to reduce the rotation speed N1 as much as possible so that the lubrication structure of the compressor can be improved so that sufficient lubricating oil can be supplied even at low rotation speeds. I've been. An example of a hermetic electric compressor used in such a conventional refrigerator is described in JP-A-2000-314380 (Patent Document 1). As shown in FIG. 5, this hermetic electric compressor is provided with a coil spring 26 on an inner wall portion 24b of a vertical hole of a crankshaft 24, and a difference in the relative speed between the inner wall portion 24b of the vertical hole and the coil spring 26 at low speed operation. Also, oil can be supplied to the compression mechanism 22.
[0005]
[Patent Document 1]
JP 2000-314380 A
[Problems to be solved by the invention]
However, it is difficult to reduce the speed sufficiently by improving the oil supply structure to the compression mechanism of the compressor, including the measures disclosed in Patent Document 1, and it is difficult to sufficiently reduce the speed, and further promote the power saving of the refrigerator. It was difficult. According to the conventional measures, when the compressor is continuously operated at a constant operation speed, the minimum speed N1 at which the lubricating oil can be continuously supplied to the compression mechanism portion is set as a minimum speed limit. If the number of rotations is further reduced from the number of rotations N1, there is a problem that the reliability of the compression mechanism is reduced. Therefore, the minimum number of rotations in the compressor operation control in the refrigerator is limited to the number of rotations N1 or more. This has been a constraint on the power saving of refrigerators.
[0007]
An object of the present invention is to provide a refrigerator capable of saving power while ensuring the reliability of a compression mechanism.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a refrigerator equipped with an inverter-driven compressor whose rotation speed is controlled by a control device, the rotation speed being lower than a minimum rotation speed at which lubricating oil can be supplied to a compression mechanism of the compressor. The compressor has a low-speed operation mode controlled by the control device so as to operate the compressor at a low rotation speed and to intermittently increase the rotation speed to the minimum rotation speed or more during the operation. It is in.
[0009]
The present invention also includes a refrigeration cycle configured by sequentially connecting an inverter-driven compressor whose number of revolutions is controlled by a control device, a condenser, a pressure reducing device whose flow resistance is controlled by the control device, and an evaporator. In the refrigerator, the compressor is operated at a rotation speed lower than the minimum rotation speed capable of supplying the lubricating oil to the compression mechanism of the compressor, and the rotation speed is intermittently increased to the rotation speed equal to or higher than the minimum rotation speed during the operation. The present invention is configured to include a low-speed operation mode controlled by the control device so as to increase the flow resistance of the pressure reducing device during these operations.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a plurality of embodiments of the refrigerator of the present invention will be described with reference to the drawings. The same reference numerals in the drawings of the respective embodiments and the drawings of the conventional example indicate the same or corresponding components.
[0011]
First, a refrigerator according to a first embodiment of the present invention will be described with reference to FIGS.
[0012]
FIG. 1 is a diagram illustrating a refrigeration cycle and a control device of a refrigerator according to a first embodiment of the present invention. In FIG. 1, a refrigeration cycle 1 is configured by sequentially connecting an inverter-driven compressor 2, a condenser 3, a dew-prevention pipe 4, a dryer 5, a decompression device 6, and an evaporator 7 in a ring shape. The decompression device 6 includes two capillary tubes 6a and 6b having different flow resistances, and a switching valve 6c for switching the connection between the capillary tubes 6a and 6b.
[0013]
The control device 8 is configured to control the operation speed of the compressor 2 from a high speed to a low speed, and to control the flow path switching of the flow path switching valve 6c. In addition, the control device 8 controls switching between the normal operation mode and the low-speed operation mode as the operation control mode. Switching to the low-speed operation mode is performed when normal temperature, when the load in the refrigerator is light, or when the frequency of opening and closing of the door is low is detected.
[0014]
The refrigerant (for example, HC refrigerant) sealed in the refrigeration cycle 1 is compressed by the compressor 2 to high temperature and high pressure, radiated to the ambient air by the condenser 3, decompressed by the decompression device 6, and decompressed by the evaporator 7. And is returned to the compressor 2. By repeating this operation, the inside of the refrigerator is cooled by the refrigeration cycle.
[0015]
The flow resistance of the capillary tubes 6a and 6b is set so that the capillary tube 6a <the capillary tube 6b. In the normal operation mode of the refrigerator, the flow path switching valve 6c is controlled by the control device 8 so that the refrigerant always flows through the capillary tube 6a, and the flow resistance value of the capillary tube 6a becomes an appropriate value in the normal operation. It is determined as follows. On the other hand, in the low-speed operation mode, the controller 8 controls the flow path switching valve 6c so that the refrigerant flows through the capillary tube 6b, and the flow resistance value of the capillary tube 6b becomes an appropriate value in the low-speed operation mode. It is determined as follows. In the low-speed operation mode, when the compressor 1 is rotated at an extremely low speed and the cooling capacity of the refrigerator is insufficient, the flow path switching valve 6c is switched so that the refrigerant flows from the capillary tube 6a to the capillary tube 6b to increase the flow resistance. Let it. As a result, the temperature of the evaporator 7 can be reduced to compensate for the lack of cooling capacity of the refrigerator. The switching of the flow path switching valve 6c is performed when the shortage of the cooling capacity of the refrigerator is detected. Incidentally, in order to simplify the control, the flow path switching valve 6c may be switched in synchronization with the switching to the low-speed operation mode.
[0016]
Next, details of the compressor 2 will be described with reference to FIG. FIG. 2 is a longitudinal sectional view of a compressor used in the refrigerator of FIG.
[0017]
The compressor 2 is configured such that a compression mechanism 22 and an electric motor 23 are housed in a closed container 21. The compression mechanism 21 and the electric motor 23 are connected via a crankshaft 24 having an oil supply passage 24a. A lubricating oil 25 is stored at the bottom of the sealed container 21.
[0018]
When the electric motor 23 is operated, the crankshaft 24 is rotated, and the compression mechanism 22 is driven accordingly. When the compression mechanism 22 is driven, the low-pressure refrigerant in the closed vessel 21 is sucked into the compression mechanism 22 and compressed, and is discharged to the outside of the closed vessel 21 (the condenser 3) through the discharge pipe 22a. In addition, the rotation of the crankshaft 24 applies a centrifugal force to the lubricating oil 25 stored in the bottom of the sealed container 21 by the oil supply passage 24a. Supplied to sliding parts. Since the supply of the lubricating oil 25 is based on the centrifugal force of the oil supply passage 24a, the amount of the supply of the lubricating oil 25 decreases in proportion to the operating speed of the compressor 2 (specifically, the operating speed of the crankshaft 24). descend.
[0019]
Next, the operation in the low-speed operation mode will be described with reference to FIG. FIG. 3 is a diagram showing a relationship between the number of rotations of the compressor and time in the low-speed operation mode of the refrigerator of FIG.
[0020]
In FIG. 3, the rotation speed N1 is the minimum rotation speed at which the compressor 2 can be continuously supplied with the lubricating oil when the compressor 2 is continuously operated at a constant operation rotation speed, that is, the reliability is guaranteed. This is the minimum rotation speed. The rotation speed N2 is a rotation speed even lower than the rotation speed N1.
[0021]
When the room temperature is not relatively high (for example, when the room temperature is room temperature), when the temperature load in the refrigerator is light, or when the frequency of the door opening / closing operation is low, the cooling power of the compressor 2 during the operation at the rotation speed N1 is used. When the condition that the inside temperature of the refrigerator can be maintained in an appropriate range even when the refrigerator is operated at a lower cooling power is used, the condition is detected by using an appropriate detection unit of the refrigerator 2. Based on this, the control device 8 controls to switch from the normal operation mode with the compressor speed of N1 or higher which has been operating up to that time to the low-speed operation mode shown in FIG. This low-speed operation mode is based on a repetitive operation in which the compressor speed is alternately switched between a speed N1 (or a higher speed) and a speed N2.
[0022]
Depending on the change in the refrigerator internal temperature, the low-speed operation mode may be a continuous operation at an operation rate of 100%, or may be an intermittent operation as shown in FIG. 3 (if the internal temperature is sufficiently low, the compressor 2 operation). Hereinafter, the case of the intermittent operation will be described in detail.
[0023]
In the repetitive operation of the rotation speed N1 and the rotation speed N2, if the operation time at the rotation speed N2 becomes longer, the oil supply to the compression mechanism 22 becomes insufficient, stress is applied to the compression mechanism 22 and the input of the compressor 2 is increased. And the reliability of the compressor 2 cannot be ensured. Therefore, as shown in FIG. 3, after the operation at the rotation speed N2 for a predetermined time (a first predetermined time) T2, the rotation speed N1 And the operation is performed for a predetermined time (a second predetermined time) T1. Note that time T1 <time T2 is set. With such a configuration, oil supply to the compression mechanism 22 indicated by the rotation speed N1 and the time T1 is intermittently performed, and even when the low-speed operation mode is continued, an increase in the integrated input of the compressor 2 or wear due to insufficient oil supply. Can be prevented from occurring. In particular, by setting the time T2 to be twice or more the time T1, the effect can be further improved.
[0024]
Here, it is necessary to determine the values of the rotation speeds N1 and N2 and the times T1 and T2 so as to achieve both optimization of the increase in the integrated input of the compressor 2 and prevention of wear due to insufficient oil supply. A specific method of setting the rotational speeds N1, N2 and the times T1, T2 will be described in comparison with the method of FIG. FIG. 4 is a diagram showing the relationship between the compressor speed and time when low-speed operation is performed in the normal operation mode.
[0025]
The operation pattern at the time of the low-speed operation in FIG. 4 is that an intermittent operation of the operation / stop of the compressor 2 is performed while the rotation speed N1 is given constant. In the case of the operation pattern of FIG. 4, the compressor 2 is operated with the cooling power kept higher than the operation pattern of the low-speed operation mode of FIG. For this reason, in the operation pattern of FIG. 4, the power consumption of the compressor 2 when operating at the rotation speed N1 is larger than that of the operation pattern of FIG. 2 consumes less power. In other words, in the operation pattern of FIG. 3, compared to the operation pattern of FIG. 4, the power consumption of the compressor 2 when operating at the repetition of the rotation speeds N1 and N2 is smaller, but the operation rate is increased. By doing so, the power consumption of the compressor 2 increases.
[0026]
Therefore, in order to make the power consumption of the operation pattern of FIG. 3 smaller than the power consumption of the operation pattern of FIG. 4, it is necessary that the increase in the power consumption of the compressor 2 is greater than the decrease in the power consumption. Specifically, the values of the rotation speeds N1, N2 and the times T1, T2 are determined based on the concept described below. That is, the compressor input immediately after switching can be further reduced by setting the rotational speed N2 as low as possible. However, as described above, the lower the rotational speed, the more the oil shortage stress increases. , The time T2 cannot be kept long. In addition, if the intermittent rotation speed N1 is set to a high value, refueling becomes easy, so that sufficient refueling can be performed even if the time T1 is short. By setting the values of the rotation speeds N1 and N2 and the times T1 and T2 to an appropriate combination in consideration of the interaction between the rotation speed, the holding time, and the refueling state, the operation rate in the low-speed operation mode is reduced. Even when it becomes larger than the conventional operation, the integrated value of the power consumption can be reduced as compared with the conventional operation.
[0027]
In addition, when the compressor 2 is interrupted in the low-speed operation mode, as a means for ensuring sufficient oil supply to the compressor 2, at the start of the start of the compressor 2, the rotational speed N2 is immediately changed from the start rotational speed N3. Without the control, during the fixed time t1, the operation is performed at the rotation speed N1 (or higher rotation speed) to secure the oil supply to the oil supply passage 24b and the compression mechanism 22, and then the rotation speed N2 It is controlled to switch to the operation of. Further, immediately before the compressor 2 is stopped, the rotation speed is switched from the rotation speed N2 to the rotation speed N1 (or a higher rotation speed), the oil supply operation is performed for a certain time t2, and then the compressor is stopped. I have. Thus, when the compressor 2 starts next, it is possible to prevent the compression mechanism 22 from running out of oil.
[0028]
The range of the rotation speed N1 and 1400min -1 ~1600min -1, the range of the rotation speed N2 and 1200min -1 ~1400min -1, the range of time T1 is 30 seconds less than 2 minutes, 2 minutes a time range T2 By setting the time to 10 minutes, the reliability of the compressor 2 is ensured without generating stress on the compression mechanism section 22, and a low input operation can be realized, thereby reducing the power consumption of the refrigerator as compared with the conventional case. It was confirmed that it could be reduced.
[0029]
Further, it was confirmed that by setting the range of the time t1 to 1 minute or more and the range of the time t2 to 1 minute or more, sufficient refueling at the start of the intermittent operation of the compressor 2 could be secured.
[0030]
The values of the rotation speeds N1 and N2 and the times T1, T2, t1, and t2 ensure the refrigerator internal temperature in an appropriate range and do not damage the compression mechanism 22 of the compressor 2 in reliability. It is set to a value that satisfies the conditions. In addition, the compressor operation time (time from the start to the stop of the compressor) by the repetitive operation of the rotation speeds N1 and N2 ensures the temperature in the refrigerator to be within an appropriate range, and the compression mechanism 22 of the compressor 2 Is set to a value that satisfies the condition that does not cause reliability damage.
[0031]
In the low-speed operation mode in FIG. 3, the intermittent rotation speed N1 may be replaced with a value equal to or higher than the rotation speed N1 as long as the driving pattern can reduce the power consumption.
[0032]
According to the present embodiment, by operating the compressor 2 with the low-speed control mode, the temperature inside the refrigerator is secured in an appropriate range, and the compression mechanism 22 of the compressor 2 is damaged in reliability. , It is possible to operate the refrigerator at a lower rotation speed than the conventionally guaranteed minimum rotation speed of the compressor which guarantees reliability, thereby achieving further power saving compared to the conventional case.
[0033]
Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 5 is a diagram illustrating a refrigeration cycle and a control device of a refrigerator according to a second embodiment of the present invention. The second embodiment is different from the first embodiment as described below, and the other points are basically the same as the first embodiment.
[0034]
In the second embodiment, the configuration of the pressure reducing device 6 is replaced with a single capillary tube 6a and an expansion valve 6d connected in series. The control device 8 controls the degree of opening of the expansion valve 6d. In such a configuration, based on the same concept as in the first embodiment, when switching from the normal operation mode to the low-speed operation mode, the opening degree of the expansion valve 6d is reduced to increase the flow resistance of the entire decompression device 6. Thereby, the problem that the cooling performance of the refrigerator is insufficient can be solved, and the internal temperature can always be maintained in an appropriate range.
[0035]
The refrigerating cycle of the refrigerator that performs the low-speed operation mode of the present invention is not limited to the above-described embodiment, and any refrigerator that can maintain appropriate cooling power during the low-speed operation can be configured by using a single capillary tube. May be replaced with a general refrigeration cycle configuration having the same flow resistance in the normal operation and the low-speed operation mode.
[0036]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the refrigerator which can achieve power saving while ensuring the reliability of a compression mechanism part can be provided.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a refrigeration cycle and a control device of a refrigerator according to a first embodiment of the present invention.
FIG. 2 is a longitudinal sectional view of a compressor used in the refrigerator of FIG.
FIG. 3 is a diagram showing a relationship between a compressor rotation speed and time in a low-speed operation mode of the refrigerator of FIG. 1;
FIG. 4 is a diagram illustrating a relationship between a compressor speed and time when a low-speed operation is performed in a normal operation mode.
FIG. 5 is a diagram illustrating a refrigeration cycle and a control device of a refrigerator according to a second embodiment of the present invention.
FIG. 6 is a longitudinal sectional view of a compressor in a conventional refrigerator.
[Explanation of symbols]
N1, N2: rotation speed, T1, T2, t1, t2: time, 1: refrigeration cycle, 2: compressor, 3: condenser, 4: anti-dew pipe, 5: dryer, 6: decompression device, 6a, 6b: Capillary tube, 6c: Flow path switching valve, 6d: Expansion valve, 7: Evaporator, 8: Control device, 21: Sealed container, 22: Compression mechanism, 22a: Discharge tube, 23: Electric motor, 24 ... Crankshaft, 24a: oil supply path, 24b: inner wall of vertical hole, 25: lubricating oil, 26: coil spring.

Claims (7)

制御装置により回転数を制御されるインバータ駆動圧縮機を搭載した冷蔵庫において、
前記圧縮機の圧縮機構部に潤滑油を供給可能な最低回転数よりも低い回転数で前記圧縮機を運転すると共に、この運転中に間歇的に前記最低回転数以上の回転数に上げる運転を行うように、前記制御装置で制御する低速運転モードを備える
ことを特徴とする冷蔵庫。
In a refrigerator equipped with an inverter-driven compressor whose rotation speed is controlled by a control device,
While operating the compressor at a rotation speed lower than the minimum rotation speed at which lubricating oil can be supplied to the compression mechanism of the compressor, an operation of intermittently increasing the rotation speed to the minimum rotation speed or more during this operation is performed. A refrigerator provided with a low-speed operation mode controlled by the control device.
前記圧縮機の断続運転の運転開始時に前記最低回転数以上の回転数で前記圧縮機構部へ給油する運転を行なってから前記最低回転数よりも低い回転数に切替えるように制御する前記低速運転モードとしたことを特徴とする請求項1に記載の冷蔵庫。The low-speed operation mode in which the compressor is operated to supply oil to the compression mechanism at a rotation speed equal to or higher than the minimum rotation speed at the start of the intermittent operation of the compressor, and is then controlled to switch to a rotation speed lower than the minimum rotation speed. The refrigerator according to claim 1, wherein: 前記圧縮機の断続運転の運転停止時に前記最低回転数以上の回転数で前記圧縮機構部へ給油する運転を行なってから前記圧縮機の運転を停止させるように制御する前記低速運転モードとしたことを特徴とする請求項1に記載の冷蔵庫。The low-speed operation mode in which the compressor is controlled to stop the operation after performing an operation of supplying oil to the compression mechanism at a rotation speed equal to or higher than the minimum rotation speed when the intermittent operation of the compressor is stopped. The refrigerator according to claim 1, wherein: 前記最低回転数よりも低い回転数の運転と前記最低回転数以上の運転とを定期的な周期で繰り返し、この繰り返し運転では前記最低回転数よりも低い回転数の運転の時間を前記最低回転数以上の運転の時間より長くなるように制御する前記低速運転モードとしたことを特徴とする請求項1に記載の冷蔵庫。The operation of the rotation speed lower than the minimum rotation speed and the operation of the rotation speed higher than the minimum rotation speed are repeated at regular intervals, and in this repeated operation, the operation time of the rotation speed lower than the minimum rotation speed is reduced to the minimum rotation speed. The refrigerator according to claim 1, wherein the low-speed operation mode is controlled to be longer than the operation time. 制御装置により回転数を制御されるインバータ駆動圧縮機、凝縮器、前記制御装置により流量抵抗を制御される減圧装置、蒸発器を順次接続して構成された冷凍サイクルを備える冷蔵庫において、
前記圧縮機の圧縮機構部に潤滑油を供給可能な最低回転数よりも低い回転数で前記圧縮機を運転すると共に、この運転中に間歇的に前記最低回転数以上の回転数に上げる運転を行い、これらの運転中に前記減圧装置の流量抵抗を大きくするように、前記制御装置で制御する低速運転モードを備える
ことを特徴とする冷蔵庫。
An inverter-driven compressor whose rotation speed is controlled by a control device, a condenser, a decompression device whose flow resistance is controlled by the control device, and a refrigerator having a refrigeration cycle configured by sequentially connecting evaporators,
While operating the compressor at a rotation speed lower than the minimum rotation speed at which lubricating oil can be supplied to the compression mechanism of the compressor, an operation of intermittently increasing the rotation speed to the minimum rotation speed or more during this operation is performed. The refrigerator is provided with a low-speed operation mode controlled by the control device so as to increase the flow resistance of the pressure reducing device during these operations.
並列に接続される流量抵抗の異なる複数のキャピラリチューブと前記キャピラリチューブの接続を切替える流路切替弁とを有する前記減圧装置とし、前記低速運転モード時に前記キャピラリチューブの流量抵抗が大きくなるように前記制御装置で前記流路切替弁を制御することを特徴とする請求項5に記載の冷蔵庫。The pressure reducing device having a plurality of capillary tubes having different flow resistances connected in parallel and a flow path switching valve for switching the connection of the capillary tubes, wherein the flow resistance of the capillary tubes is increased during the low-speed operation mode. The refrigerator according to claim 5, wherein the control device controls the flow path switching valve. キャピラリチューブとその前方または後方に直列に接続された膨張弁とを有する前記減圧装置とし、前記低速運転モード時に前記膨張弁の流量抵抗が大きくなるように前記制御装置で前記膨張弁を制御することを特徴とする請求項5に記載の冷蔵庫。The pressure reducing device having a capillary tube and an expansion valve connected in series at the front or rear thereof, wherein the control device controls the expansion valve so that the flow resistance of the expansion valve increases during the low-speed operation mode. The refrigerator according to claim 5, characterized in that:
JP2003140182A 2003-05-19 2003-05-19 Refrigerator Pending JP2004340542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003140182A JP2004340542A (en) 2003-05-19 2003-05-19 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003140182A JP2004340542A (en) 2003-05-19 2003-05-19 Refrigerator

Publications (1)

Publication Number Publication Date
JP2004340542A true JP2004340542A (en) 2004-12-02

Family

ID=33528969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003140182A Pending JP2004340542A (en) 2003-05-19 2003-05-19 Refrigerator

Country Status (1)

Country Link
JP (1) JP2004340542A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006132638A1 (en) 2005-06-07 2006-12-14 Carrier Corporation Variable speed compressor motor control for low speed operation
JP2007032895A (en) * 2005-07-25 2007-02-08 Denso Corp Supercritical refrigerating cycle device and its control method
JP2015200470A (en) * 2014-04-09 2015-11-12 株式会社東芝 air conditioner
JP2016176609A (en) * 2015-03-18 2016-10-06 株式会社デンソー Refrigeration cycle device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006132638A1 (en) 2005-06-07 2006-12-14 Carrier Corporation Variable speed compressor motor control for low speed operation
EP1893923A1 (en) * 2005-06-07 2008-03-05 Carrier Corporation Variable speed compressor motor control for low speed operation
US7854137B2 (en) * 2005-06-07 2010-12-21 Carrier Corporation Variable speed compressor motor control for low speed operation
EP1893923A4 (en) * 2005-06-07 2012-05-30 Carrier Corp Variable speed compressor motor control for low speed operation
JP2007032895A (en) * 2005-07-25 2007-02-08 Denso Corp Supercritical refrigerating cycle device and its control method
JP2015200470A (en) * 2014-04-09 2015-11-12 株式会社東芝 air conditioner
JP2016176609A (en) * 2015-03-18 2016-10-06 株式会社デンソー Refrigeration cycle device

Similar Documents

Publication Publication Date Title
EP2668051B1 (en) Efficient control algorithm for start-stop operation of refrigeration unit powered by an engine
JP2006233954A (en) Variable displacement compressor and start operation method thereof
KR20110087465A (en) A refrigerator and a control method the same
JP4525855B1 (en) Compressor for refrigerator
JP2010043806A (en) Refrigerator
JP4525854B1 (en) refrigerator
KR100463254B1 (en) Refrigerating apparatus
JP2003028553A (en) Refrigerator
JP2004340542A (en) Refrigerator
KR200288717Y1 (en) Structure of refrigerator for entrainment cars
JP3398022B2 (en) Freezer refrigerator
JP5862867B2 (en) refrigerator
JP2007046903A (en) Refrigerator
JP2001056173A (en) Freezer/refrigerator
KR100301828B1 (en) Method for operating compressor with sensorless bldc motor
JP3903693B2 (en) refrigerator
JP2005127654A (en) Freezer-refrigerator
JP2005214522A (en) Refrigerator
JP2011158251A (en) Refrigerator
KR20010076895A (en) Refrigerator and operating control method thereof
US20230349609A1 (en) Refrigerator and control method thereof
JP2010078265A (en) Cooling system
CN109307400B (en) Refrigerator refrigerating capacity control method and device and refrigerator
JP2016065711A (en) refrigerator
JP2004076994A (en) Refrigerator and its control method