KR100301828B1 - Method for operating compressor with sensorless bldc motor - Google Patents

Method for operating compressor with sensorless bldc motor Download PDF

Info

Publication number
KR100301828B1
KR100301828B1 KR1019980012430A KR19980012430A KR100301828B1 KR 100301828 B1 KR100301828 B1 KR 100301828B1 KR 1019980012430 A KR1019980012430 A KR 1019980012430A KR 19980012430 A KR19980012430 A KR 19980012430A KR 100301828 B1 KR100301828 B1 KR 100301828B1
Authority
KR
South Korea
Prior art keywords
motor
compressor
electromotive force
operating frequency
compression torque
Prior art date
Application number
KR1019980012430A
Other languages
Korean (ko)
Other versions
KR19990079695A (en
Inventor
박성수
신현재
김용태
김학원
양순배
안웅섭
Original Assignee
구자홍
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 구자홍, 엘지전자 주식회사 filed Critical 구자홍
Priority to KR1019980012430A priority Critical patent/KR100301828B1/en
Publication of KR19990079695A publication Critical patent/KR19990079695A/en
Application granted granted Critical
Publication of KR100301828B1 publication Critical patent/KR100301828B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • F04B49/065Control using electricity and making use of computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • F04B35/045Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric using solenoids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0027Pulsation and noise damping means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/04Motor parameters of linear electric motors
    • F04B2203/0401Current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/04Motor parameters of linear electric motors
    • F04B2203/0404Frequency of the electric current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/12Kind or type gaseous, i.e. compressible
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S417/00Pumps

Abstract

PURPOSE: An operation method of a compressor having a sensorless BLDC(Brushless Direct Current) motor is provided to reduce operational noise of the compressor by keeping rpm of the motor constantly with regulating the operation frequency of the compressor. CONSTITUTION: Trial operation of a compressor is performed with constant operation frequency(S0). Rpm of a BLDC motor varied by irregular compression torque is detected(S1). Output of back electromotive force varying a cycle according to fluctuation of rpm is detected(S2). The operational frequency of the compressor is increased or decreased according to fluctuation of back electromotive force cycle(S3). Noise is reduced, and vibration of the motor is prevented with keeping constant rotational speed of the motor by controlling the frequency of the compressor.

Description

센서없는 무정류자(BLDC) 모터가 설치된 압축기의 운전방법Operation Method of Compressor with Sensorless BLDC Motor

본 발명은 센서없는(sensorless) 무정류자(BLDC) 모터의 운전방법에 관한 것으로, 특히 인버터 냉장고의 압축기에 사용된 모터의 운전방법에 관한 것이다.The present invention relates to a method of operating a sensorless non-commutator (BLDC) motor, and more particularly to a method of operating a motor used in a compressor of an inverter refrigerator.

일반적으로 냉장고는 식품을 신선하게 장기간 보관할 수 있도록 하는 기기로서, 일반적인 구성은 도 1에 나타낸 것과 같이 본체(1)와, 냉동실(2), 냉장실(3) 및 냉동싸이클(8)로 구성되어 있다. 냉동싸이클은 냉동실 및 냉장실에 냉기를 공급시키는 역할을 하는 것으로서, 그의 개략적인 구성은 도 2에 나타낸 것과 같이 압축기(4)와, 응축기(5), 모세관(6) 및 증발기(7), 그리고 팬모터(8)로 구성되어 있다.In general, a refrigerator is a device for keeping food fresh for a long time, and a general configuration includes a main body 1, a freezing chamber 2, a refrigerating chamber 3, and a freezing cycle 8, as shown in FIG. . The refrigeration cycle serves to supply cold air to the freezer compartment and the refrigerating compartment. The schematic configuration thereof includes a compressor 4, a condenser 5, a capillary tube 6 and an evaporator 7, and a fan as shown in FIG. It consists of the motor 8.

압축기(4)는 저온, 저압의 기체냉매를 고온, 고압의 기체냉매로 압축시키며, 응축기(5)는 고온, 고압의 기체냉매의 열을 발산시켜 고온, 고압의 액체냉매로 변환시킨다. 그리고, 고온, 고압의 액체냉매는 모세관(6)을 통해 흐르면서 저온, 저압의 액체냉매로 바뀌어지며, 증발기(7)는 저온, 저압의 액체냉매를 다시 저온, 저압의 기체냉매로 기화시키면서 냉기를 발생시킨다. 또, 팬모터(8)는 증발기에서 발생된 냉기를 냉장실 또는, 냉동실로 송풍시킨다.The compressor 4 compresses low-temperature, low-pressure gas refrigerant into high-temperature, high-pressure gas refrigerant, and the condenser 5 dissipates heat of the high-temperature, high-pressure gas refrigerant to convert it into a high-temperature, high-pressure liquid refrigerant. Then, the high temperature and high pressure liquid refrigerant flows through the capillary tube 6 and is converted into a low temperature and low pressure liquid refrigerant. The evaporator 7 vaporizes the cold air while vaporizing the low temperature and low pressure liquid refrigerant into a low temperature and low pressure gas refrigerant. Generate. In addition, the fan motor 8 blows cold air generated in the evaporator to the refrigerating chamber or the freezing chamber.

압축기는 센서없는 무정류자 모터의 회전력을 이용하여 냉매를 압축시키는데, 무정류자 모터와 그 구동회로의 개략적인 구조는 도 3에 나타낸 것과 같다. 모터의 회전자(도면미도시)가 회전하면, 감지부(23)는 모터의 회전속도와 회전자의 위치를 감지한다. 펄스발생부(24)는 회전자의 위치 또는, 속도에 따라 적절한 펄스신호를 발생시키고, 제어부(20)는 그 펄스신호로 제어신호를 생성한다.The compressor compresses the refrigerant by using the rotational force of the sensorless non-commutator motor. The schematic structure of the non-commutator motor and its driving circuit is shown in FIG. 3. When the rotor (not shown) of the motor rotates, the detector 23 detects the rotational speed of the motor and the position of the rotor. The pulse generator 24 generates an appropriate pulse signal according to the position or speed of the rotor, and the controller 20 generates a control signal with the pulse signal.

구동부(21)가 제어부의 제어신호에 따라 적절한 구동신호를 생성하여 모터(22)에 인가하면, 모터의 회전이 조절된다. 이 때, 제어부(20)는 일정한 운전주파수를 가지고, 제어신호를 생성하여 모터를 구동시킨다.When the driving unit 21 generates an appropriate driving signal according to the control signal of the controller and applies the driving signal to the motor 22, the rotation of the motor is controlled. At this time, the control unit 20 has a constant operating frequency, generates a control signal to drive the motor.

이상적인 압축기는 모터의 회전각도에 따라 항상 압축토크가 일정하지만, 실제의 압축기는 도 4에 나타낸 것과 같이 모터의 회전각도에 따라 압축토크가 일정하지 않게 나타난다.In an ideal compressor, the compression torque is always constant according to the rotational angle of the motor. However, in the actual compressor, the compression torque is not constant according to the rotational angle of the motor as shown in FIG.

그러므로, 압축토크가 높은 구간에서는 모터의 회전력을 높여주어야 하고, 압축토크가 낮은 구간에서는 모터의 회전력을 낮추어 줄 필요가 있다.Therefore, it is necessary to increase the rotational force of the motor in the section where the compression torque is high, and lower the rotational force of the motor in the section where the compression torque is low.

그런데, 이러한 종래의 센서없는 무정류자 모터의 구동방법에는 다음과 같은 문제점이 있다.However, the conventional method of driving a sensorless non-commutator motor has the following problems.

종래의 센서없는 무정류자 모터의 구동방법은 압축기의 운전주파수가 모든 구간에서 일정하므로, 모터의 회전력은 모든 구간에서 동일하다. 그런데, 압축기의 압축토크는 구간마다 높낮이가 다르므로, 모터의 회전력에 비해 압축토크가 높은 구간에서는 모터의 회전속도가 늦고, 압축토크가 낮은 구간에서는 모터의 회전속도가 빨라진다. 그 결과, 모터가 진동하게 되어 압축기의 소음이 심하게 발생하는 문제점이 있다.In the conventional sensorless driving method of a non-commutator motor, since the operating frequency of the compressor is constant in all sections, the rotational force of the motor is the same in all sections. However, since the compression torque of the compressor is different in each section, the rotation speed of the motor is slow in the section where the compression torque is higher than the rotational force of the motor, and the rotation speed of the motor is faster in the section where the compression torque is low. As a result, there is a problem that the motor vibrates and the noise of the compressor is severely generated.

본 발명의 압축기 운전방법은 이러한 문제점을 해결하기 위한 것으로, 압축기의 운전주파수를 일정하게 제어하여 모터의 회전속도를 일정하게 유지시킴으로써 압축기의 운전소음을 저감할 수 있도록 한 센서없는 무정류자 모터가 설치된 압축기의 운전방법을 제공하는데 그 목적이 있다.Compressor operation method of the present invention is to solve this problem, the sensorless non-commutator motor is installed to reduce the operation noise of the compressor by maintaining a constant rotation speed of the motor by controlling the constant operating frequency of the compressor It is an object of the present invention to provide a method of operating a compressor.

도 1은 일반적인 냉장고의 구조를 도시한 도면.1 is a view showing the structure of a typical refrigerator.

도 2는 냉장고의 냉동사이클의 구동원리를 도시한 블록도.Figure 2 is a block diagram showing the driving principle of the refrigeration cycle of the refrigerator.

도 3은 무정류자 모터의 개략적인 구조를 도시한 도면.3 shows a schematic structure of a non-commutator motor;

도 4는 종래의 압축기 운전방법에 의해 검출되는 압축토크와 역기전력신호를 시간에 따라 도시한 파형도.4 is a waveform diagram showing a compression torque and a counter electromotive force signal detected by a conventional compressor operation method with time;

도 5는 본 발명의 압축기 운전방법에 의해 검출되는 압축토크와 역기전력신호를 시간에 따라 도시한 파형도.5 is a waveform diagram showing the compression torque and the counter electromotive force signal detected by the compressor operating method of the present invention with time.

도 6은 본 발명의 운전방법을 도시한 흐름도.6 is a flowchart showing a driving method of the present invention.

도면의 주요부분에 대한 부호의 설명Explanation of symbols for main parts of the drawings

20 : 제어부 21 : 구동부20: control unit 21: drive unit

22 : 모터 23 : 감지부22: motor 23: detector

24 : 펄스발생부24: pulse generator

본 발명의 압축기 운전방법은 압축토크의 높낮이에 따라 압축기의 설정주파수를 변경하여 모터의 회전력을 변동시킴으로써, 압축토크가 각각 다른 구간의 모터 회전속도를 일정하게 유지시키는 것이 특징이다.Compressor operation method of the present invention is characterized by maintaining the motor rotational speed in a section in which the compression torque is different by varying the rotational force of the motor by changing the set frequency of the compressor according to the height of the compression torque.

이러한 특징을 갖는 본 발명의 압축기 운전방법은 도 6의 흐름도에 나타낸 것과 같이 압축기를 일정한 운전주파수로 시험 가동하는 단계(S0)와, 압축기의 불규칙한 압축토크에 의해 변동된 무정류자 모터의 회전속도를 감지하는 단계(S1)와, 회전속도의 변동에 따라 그 주기가 변동된 역기전력의 출력을 검출하는 단계(S2)와, 그리고 역기전력 주기의 변동에 따라 압축기의 운전주파수를 증감시키는 단계(S3)를 포함하여 이루어져 있다.Compressor operation method of the present invention having such a feature is the step (S0) of running the compressor at a constant operating frequency as shown in the flow chart of Figure 6, and the rotational speed of the non-commutator motor varied by the irregular compression torque of the compressor Detecting (S1), detecting an output of the counter electromotive force whose cycle is changed according to the change of the rotational speed (S2), and increasing or decreasing the operating frequency of the compressor according to the change of the counter electromotive force cycle (S3). Consists of including.

이 때, 운전주파수를 증감시키는 단계는 역기전력 출력의 주기가 길면 운전주파수를 증가시키고, 주기가 짧으면 운전주파수를 감소시키는 단계로 이루어진다. 그 결과 운전주파수를 증감시킴으로써 모터의 회전속도가 일정하게 되는 것이다.At this time, the step of increasing or decreasing the operating frequency is to increase the operating frequency if the period of the back EMF output is long, and to reduce the operating frequency if the period is short. As a result, the rotation speed of the motor is made constant by increasing or decreasing the operating frequency.

이하, 첨부된 도면을 참조로 하여 본 발명의 동작원리를 설명하도록 한다. 도 5는 본 발명의 압축기 운전방법을 도시한 신호의 파형도이다.Hereinafter, the operation principle of the present invention with reference to the accompanying drawings. 5 is a waveform diagram of a signal illustrating a compressor operating method of the present invention.

모터의 회전각도에 따라 압축기의 압축토크가 다르다. 이 때, 본 발명의 운전방법은 압축토크가 평균치보다 큰 구간에서는 압축기의 운전주파수를 높여 모터의 회전력을 강하게 한다. 따라서, 평균치보다 강해진 모터의 회전력이 압축토크가 평균치보다 큰 모터의 회전구간에 가함으로써, 큰 압축토크에 의해 모터의 회전속도가 떨어지는 것을 방지하게 된다. 그래서, 모터의 회전속도가 일정하게 되고, 그에 의해 역기전력이 규칙적으로 검출되는 것이다.Compressor torque of the compressor varies according to the rotation angle of the motor. At this time, the driving method of the present invention increases the operating frequency of the compressor in a section in which the compression torque is greater than the average value to strengthen the rotational force of the motor. Therefore, by applying the rotational force of the motor which is stronger than the average value to the rotation section of the motor whose compression torque is larger than the average value, the rotational speed of the motor is prevented from falling by the large compression torque. Therefore, the rotational speed of the motor becomes constant, whereby the counter electromotive force is detected regularly.

이하, 본 발명의 운전방법에 대하여 적당한 실시예를 통해 설명하도록 한다.Hereinafter, the operation method of the present invention to be described through a suitable embodiment.

(실시예)(Example)

먼저 일정한 운전주파수로 압축기를 시험 운전하여 역기전력을 검출한다. 이 때, 도 4에 나타낸 것과 같이 압축기의 압축토크가 모터의 회전구간에 따라 다르므로, 모터의 회전속도가 일정치 않아 역기전력이 불규칙하게 검출된다. 즉, 모터의 회전각도가 0°∼ 60°인 구간의 압축토크는 매우 낮지만, 회전각도가 60°∼ 120°인 구간의 압축기의 압축토크는 조금 높아진다. 또, 모터의 회전각도가 120°∼ 180°인 구간의 압축토크는 평균 상태를 유지되다가 모터의 회전각도가 180°∼ 300°인 구간의 압축토크는 다시 급격히 높아지고, 다시 모터의 회전각도가 300°∼ 360°인 구간의 압축토크는 급격히 낮아진다.First, test the compressor at a constant operating frequency to detect back EMF. At this time, as shown in Fig. 4, since the compression torque of the compressor varies depending on the rotational section of the motor, the rotational speed of the motor is not constant, so the counter electromotive force is irregularly detected. In other words, the compression torque in the section where the rotational angle of the motor is 0 ° to 60 ° is very low, but the compression torque of the compressor in the section where the rotation angle is 60 ° to 120 ° is slightly higher. In addition, the compression torque in the section where the rotation angle of the motor is 120 ° to 180 ° is maintained in an average state, but the compression torque in the section where the rotation angle of the motor is 180 ° to 300 ° is rapidly increased again, and the rotation angle of the motor is 300 again. The compression torque in the section of 360 ° to 360 ° drops sharply.

압축기를 일정한 운전주파수로 구동시키면, 모터의 회전력은 모든 구간에서 동일하다. 따라서, 압축토크가 높은 구간에서는 모터가 느리게 회전하고, 압축토크가 낮은 구간에서는 모터가 빠르게 회전한다. 그로 인해 모터의 역기전력이 불규칙적으로 검출된다. 즉, 압축토크가 높은 구간에서는 모터의 역기전력 검출주기가 길고, 압축토크가 낮은 구간에서는 모터의 역기전력 검출주기가 짧아진다. 이 때, 본 발명의 압축기 운전방법을 채용한 압축기 구동회로는 소정의 메모리에 역기전력의 검출주기를 기억해둔다.When the compressor is driven at a constant operating frequency, the rotational force of the motor is the same in all sections. Therefore, the motor rotates slowly in the section where the compression torque is high, and the motor rotates quickly in the section where the compression torque is low. As a result, the counter electromotive force of the motor is irregularly detected. That is, the period of the back electromotive force detection of the motor is long in the section where the compression torque is high, and the period of the back electromotive force detection of the motor is short in the section where the compression torque is low. At this time, the compressor driving circuit employing the compressor operating method of the present invention stores the detection period of the counter electromotive force in a predetermined memory.

그 후, 압축기의 구동회로가 압축기를 구동시킬 때, 본 발명은 도 5에 나타낸 것과 같이 역기전력의 검출주기가 짧았던 구간(t0', t5')의 압축기 운전주파수를 작게 하고, 역기전력의 검출주기가 길었던 구간(t2', t4')의 압축기 운전주파수를 크게 한다. 그래서, 본 발명의 운전방법은 역기저력의 검출주기가 짧았던 구간의 모터회전력을 낮추고, 역기전력의 검출주기가 길었던 구간의 모터회전력을 높인다. 그에 따라 모터의 회전속도가 일정하게 되는 것이다.Then, when the drive circuit of the compressor drives the compressor, the present invention reduces the compressor operation frequency in the sections t0 'and t5' where the detection period of the counter electromotive force is short as shown in FIG. Increase the compressor operating frequency in the long sections t2 'and t4'. Thus, the operation method of the present invention lowers the motor rotational power in the section where the detection period of the counter electromotive force is short, and increases the motor rotational power in the section where the detection period of the counter electromotive force is long. As a result, the rotation speed of the motor becomes constant.

즉, 본 발명의 압축기 운전방법은 일정한 운전주파수에 의해 검출된 역기전력 검출주기를 기억해 두었다가 모터의 회전자가 역기전력의 검출주기가 긴 구간에 이르면, 운전주파수를 높여 모터의 회전력을 강화시킴으로써 역기전력의 검출주기가 일정하게 되도록 하는 것이다. 그리고, 모터의 회전자가 역기전력의 검출주기가 짧은 구간에 이르면, 본 발명의 압축기 운전방법은 운전주파수를 낮추어 모터의 회전력을 약화시킴으로써 역기전력의 검출주기가 일정하게 되도록 하는 것이다. 그에 따라 모터의 전체 회전구간에서 모터 회전자의 회전속도가 일정하게 되는 것이다.That is, the compressor operation method of the present invention stores the back electromotive force detection cycle detected by a constant operating frequency, and when the rotor of the motor reaches a long period of detection of the counter electromotive force, increasing the operating frequency to enhance the rotational force of the motor to detect the counter electromotive force Is to be constant. When the rotor of the motor reaches a section in which the counter electromotive force is detected, the compressor operating method of the present invention lowers the operating frequency so as to weaken the rotational force of the motor so that the counter electromotive force detection period is made constant. Accordingly, the rotation speed of the motor rotor is constant in the entire rotation section of the motor.

본 발명의 운전방법은 종래의 운전방법에 비해 압축기의 운전소음이 대폭 줄어든다는 장점이 있다. 그 이유는 본 발명의 압축기 운전방법은 압축기의 압축토크의 변화분에 따라 압축기의 운전주파수를 변동시키기 때문이다. 그에 따라, 본 발명을 채용한 압축기는 압축토크가 변화되더라도 모터의 회전속도가 일정하게 유지되므로, 불규칙한 회전속도에 의해 발생된 모터의 요동이 줄어 압축기의 운전소음이 종래보다 적어지게 된다.The operation method of the present invention has the advantage that the operation noise of the compressor is significantly reduced compared to the conventional operation method. This is because the compressor operating method of the present invention changes the operating frequency of the compressor according to the change in the compression torque of the compressor. Accordingly, in the compressor employing the present invention, even if the compression torque is changed, the rotational speed of the motor is kept constant, so that the fluctuation of the motor generated by the irregular rotational speed is reduced, so that the operation noise of the compressor is smaller than before.

Claims (3)

센서없는 무정류자 모터가 포함된 압축기를 갖춘 인버터 냉장고의 압축기 운전방법에 있어서,In the compressor operation method of the inverter refrigerator with a compressor including a sensor-free rectifier motor, 압축기의 불규칙한 압축토크에 의해 변동된 무정류자 모터의 회전속도를 감지하는 단계;Sensing the rotational speed of the non-commutator motor changed by the irregular compression torque of the compressor; 상기 회전속도의 변동에 따라 그 주기가 변동된 역기전력의 출력을 검출하는 단계; 그리고,Detecting an output of counter electromotive force whose period is changed according to the change of the rotational speed; And, 상기 역기전력 출력의 주기가 길면 운전주파수를 증가시키고, 주기가 짧으면 운전주파수를 감소시키는 단계를 포함하여 이루어진 압축기의 운전방법.And increasing the operating frequency when the period of the counter electromotive force output is long, and decreasing the operating frequency when the period is short. 제 1 항에 있어서, 상기 운전주파수를 증감시키는 단계는 모터의 회전속도를 일정하게 하는 단계인 것을 특징으로 하는 압축기의 운전방법.The method of claim 1, wherein the step of increasing or decreasing the operating frequency is a step of making the rotational speed of the motor constant. 제 1 항에 있어서, 상기 모터의 회전속도를 감지하기 전에 일정한 운전주파수로 압축기를 가동하는 단계가 더 구비된 것을 특징으로 하는 압축기의 운전방법.The method of claim 1, further comprising operating the compressor at a constant operating frequency before detecting the rotational speed of the motor.
KR1019980012430A 1998-04-08 1998-04-08 Method for operating compressor with sensorless bldc motor KR100301828B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980012430A KR100301828B1 (en) 1998-04-08 1998-04-08 Method for operating compressor with sensorless bldc motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980012430A KR100301828B1 (en) 1998-04-08 1998-04-08 Method for operating compressor with sensorless bldc motor

Publications (2)

Publication Number Publication Date
KR19990079695A KR19990079695A (en) 1999-11-05
KR100301828B1 true KR100301828B1 (en) 2002-02-19

Family

ID=37529188

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980012430A KR100301828B1 (en) 1998-04-08 1998-04-08 Method for operating compressor with sensorless bldc motor

Country Status (1)

Country Link
KR (1) KR100301828B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100473321B1 (en) * 2002-10-17 2005-03-10 삼성전자주식회사 Method for detecting electromotive force of sensorless BLDC motor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030090053A (en) * 2002-05-21 2003-11-28 위니아만도 주식회사 Method for suppressing vibration in compressor
KR100480118B1 (en) * 2002-10-04 2005-04-06 엘지전자 주식회사 Stroke detecting apparatus and method for reciprocating compressor
KR100480117B1 (en) * 2002-10-04 2005-04-07 엘지전자 주식회사 Stroke conpensation apparatus and method for reciprocating compressor
KR101521781B1 (en) * 2014-04-22 2015-05-21 주식회사 에이알티코리아 Electronic power saving device for oilwell diggers: Pump Jack

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100473321B1 (en) * 2002-10-17 2005-03-10 삼성전자주식회사 Method for detecting electromotive force of sensorless BLDC motor

Also Published As

Publication number Publication date
KR19990079695A (en) 1999-11-05

Similar Documents

Publication Publication Date Title
US6109048A (en) Refrigerator having a compressor with variable compression capacity
JP3238916B2 (en) Inverter refrigerator operating speed variable apparatus and method
KR100301828B1 (en) Method for operating compressor with sensorless bldc motor
KR100301827B1 (en) Driving method of compressor using for sensorless BLDC Motor
KR100207087B1 (en) Refrigerator operating control method
KR100268262B1 (en) Compressor Chiller and Control Method
KR100931591B1 (en) Apparatus for controlling fan motor arefrigerator
KR100203072B1 (en) Cooling fan starting control device and it's method of refrigerator
KR100339530B1 (en) Freezing operation control method for refrigerator
KR100400470B1 (en) Fan Control Method of Air Conditioner
KR100207089B1 (en) Refrigerator oil supply control method
KR100246895B1 (en) Apparatus and method for cooling compressor of refrigerator
KR100492604B1 (en) Forward/reverse rotation compressor driving apparatus and method for refrigerator equiped with pole change motor
KR100270875B1 (en) Compressor cooling unit and control method thereof
KR19990079699A (en) How to detect the counter voltage of BLDC motor without sensor
KR100513989B1 (en) Control method for noise reduction of refrigerator
KR100196943B1 (en) Fan rotative speed control method and its control apparatus of a refrigerator
KR100421617B1 (en) Method for low temperature driveing control of electronic refrigerator
KR100234121B1 (en) Refrigerator and control method
KR100565340B1 (en) Forward/reverse rotation compressor driving method for refrigerator equiped with pole change motor
KR100492603B1 (en) Forward/reverse rotation compressor driving apparatus and method for refrigerator equiped with pole change motor
KR20000055339A (en) Control method for noise reduction of refrigerator
KR19990083639A (en) Device and method for cooling compressor for refrigerator
KR20020046314A (en) Method for driving PMSM of refrigerator compressor
KR19990080209A (en) How to control the operation of the refrigerator

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130514

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20140523

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20150522

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20160524

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20170512

Year of fee payment: 17

EXPY Expiration of term