JP2004339640A - Polyamide hollow fiber fabric - Google Patents

Polyamide hollow fiber fabric Download PDF

Info

Publication number
JP2004339640A
JP2004339640A JP2003137095A JP2003137095A JP2004339640A JP 2004339640 A JP2004339640 A JP 2004339640A JP 2003137095 A JP2003137095 A JP 2003137095A JP 2003137095 A JP2003137095 A JP 2003137095A JP 2004339640 A JP2004339640 A JP 2004339640A
Authority
JP
Japan
Prior art keywords
hollow
polyamide
hollow fiber
fabric
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003137095A
Other languages
Japanese (ja)
Inventor
Shintaro Kazahaya
新太郎 風早
Nobuhiro Yoshimura
暢浩 吉村
Kiyoshi Akazawa
潔 赤澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2003137095A priority Critical patent/JP2004339640A/en
Publication of JP2004339640A publication Critical patent/JP2004339640A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Fiber Materials (AREA)
  • Woven Fabrics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polyamide hollow fiber fabric suitable for the applications of ordinary clothing with stable low air permeability doubling as the pliability/softness of touch feeling even with ordinary density levels and also of industrial material. <P>SOLUTION: The fabric comprises hollow polyamide multifilaments. In this fabric, the multifilaments are deformed so that there is no void among the single filaments of the filament yarns constituting the fabric and hollows remain. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、一般衣料用途、産業資材用途に適したポリアミド中空繊維からなる織物に関するものである。
【0002】
【従来の技術】
各用途分野において従来から、耐水圧や低通気性を高める手法として、織物に加熱及びプレス加工処理を施したカレンダー加工などが使用されてきた。
【0003】
その中で、軽量かつ防水性、透湿性のすぐれたテント用基布の製造方法が知られている(例えば、特許文献1参照)。これは、単繊維繊度が6デニール以下のマルチフィラメント糸を用いて、経・緯方向のカバーファクターの和が1900以上の織物を製織し、該織物に撥水加工並びに加熱及びプレス加工を施して、耐水圧400mm以上、且つ通気度を0.2cc/cm/sec以上としたものである。かかる技術においては、経方向又は緯方向のカバーファクターのいずれかが800未満である場合や経・緯方向のカバーファクターの和が1900未満である場合においては、織物全体としての密度が低く、たとえ加熱及びプレス加工処理を施しても、その気密性が低いため耐水圧を400mm以上とすることは困難であった。言い換えれば耐水圧400mm以上を満たし、風合いがしなやかで柔らかい経・緯方向のカバーファクターの和が1900未満程度の通常密度の織物は得られなかったのである。
【0004】
さらに、熱可塑性合成繊維のマルチフィラメント糸からなる中空糸を用い、織成後加熱ロールにより加圧下、熱セットを行うかさ地が提案されている(例えば特許文献2参照)。これは、軽度の防水性で以て、織物の防水性と保形性を維持し、該織物に施した染料の移行昇華を防ぐことができるかさ地の提供を目的としたものである。かかる技術においては、少なくとも経糸又は緯糸の一部に横断面形状を中空円形に形成した単糸の集束体であるマルチフィラメント糸を用いて織成後、加熱ロールにより加圧下、熱セットにより、中空糸の各単糸を偏平体に変形させ、糸条を幅方向に広がらせて織組織の間隙を詰めて水不透過性を高めたものである。しかしながら、変形した各単糸は偏平体であるから単糸間の空隙が残っており、安定した低通気性は得られなかったのである。
【0005】
【特許文献1】特公平1−52510号公報
【0006】
【特許文献2】特開2000−34670号公報
【0007】
【発明が解決しようとする課題】
本発明は、上記従来技術ではなし得なかった風合いのしなやかさ・柔らかさと、通常密度クラスにおいても安定的な低通気性とを兼ね備えた一般衣料用途、産業資材用途に適したポリアミド中空繊維からなる織物を提供するものである。
【0008】
【課題を解決するための手段】
かかる目的を達成するために鋭意研究を重ね、風合いのしなやかさ・柔らかさを維持しつつ、通常密度クラスにおいても安定的な低通気性を実現することができる、ポリアミド中空繊維からなる織物に到達した。
【0009】
即ち、本発明のポリアミド中空繊維織物は、中空部を有するポリアミドマルチフィラメント糸を含む織物であって、織物を構成する糸条の単糸間空隙が実質的になくなるよう変形され、かつ中空部が残っていることを特徴とする。
【0010】
また、本発明のポリアミド中空繊維織物の製造方法は、単糸中空率が10%以上40%以下で、非円形の中空部を有するポリアミドマルチフィラメント中空糸を用いて製織後、加熱及びプレス加工処理を施して、該中空糸の単糸間空隙が実質的になくなるように、かつ、中空部が残るように押圧変形することを特徴とする。
【0011】
【発明の実施の形態】
本発明の構成要件を詳細に説明する。
【0012】
本発明の織物は、中空部を有するポリアミドマルチフィラメント糸を含み、織物を構成する糸条の単糸間空隙が実質的になくなるよう変形され、かつ中空部が残っている構成を有する。
【0013】
かかるポリアミドは、ナイロン6、ナイロン66で代表されるナイロンや、それらを主体とする共重合体や混合物であっても良い。
【0014】
ポリアミド中空繊維は、高粘度ナイロンを150Pa・sec以上の溶融粘度で、スリット長さ/スリット幅の比が6〜20であるスリットの3つを三角形状に配列している吐出孔から溶融紡糸して得る。なお、酸化チタンの含有量は、用途に応じて適宜設定すればよい。たとえば織物の破断強度を高めたい場合は実質的に含まない方が好ましく、あるいは光沢感を抑えたい場合にはその度合いに応じて含有すればよい。
【0015】
ここで得られる中空繊維の単糸中空部は、後述する加熱ロールでの加熱及びプレス加工処理により糸条の単糸間空隙が実質的になくなるよう押圧変形するために、潰れ難いことが必須で、全体として非円形であり、特に三角形であることが好ましい。最も好ましくは正三角形であるが、外側に膨らんだ曲面から形成される三角形状(おむすび型)であっても良い。あるいは、潰れ難さの観点から四角形や田型の中空部であっても構わない。
【0016】
特に中空部の三角形状としては、中空部の重心から中空部の外周までの最短距離と最長距離との比で表せる変形度が、1.2〜1.6の範囲内にあることが好ましい。変形度が1.2未満では中空部の潰れが生じ易く、また逆に変形度が1.6を越えると、やはり中空部の潰れが生じ易い。
【0017】
中空繊維の繊維横断面における中空部の占める面積すなわち中空率は、10%以上40%以下の範囲であることを要する。中空率が10%未満では、後述する加熱及びプレス加工処理による糸条の単糸間空隙が実質的になくなる押圧変形のための潰れしろが不十分である。中空率が40%を越えると高次加工工程において繊維横断面の潰れが発生し易くなるので、40%以下であることが重要であり、特に20〜30%の中空率が好ましい。
【0018】
また、中空形状、中空率および高強力を保持するために、相対粘度が2.9以上のポリアミドポリマーで形成されていることが好ましく、さらに、3.0以上がより好ましい。相対粘度が2.9未満では、中空率10%以上の中空繊維にすることが難しい。さらに、超軽量を得るという点を総合的に考慮すると、好ましい中空率は、20%以上30%以下であり、この中空率の中空繊維を得るためには相対粘度を3.1以上とすることが好ましい。
【0019】
繊維の強度は、横方向からの圧力による繊維横断面の潰れを防止するために、強度を高くすること、すなわち、4.4cN/dtex以上の強度を有することが好ましく、特に強度4.9cN/dtex以上が好ましい。強度が4.4cN/dtex未満では、最終繊維製品に必要な強さが不足して耐久性が劣る。特に、中空部の潰れや中空部壁の破裂が生じ易く、得られる繊維製品において所望の中空率を保持することができない。
【0020】
このように製糸して得られたポリアミド中空繊維を経糸及び/または緯糸に用い、ウォータージェットルームで製織する。または、加工糸・撚糸などの糸の形態や繊度、織物組織、製織性、製織コストなどに応じてエアージェットルームやレピアルーム、グリッパールームで製織しても構わない。
【0021】
中空繊維を経糸に使用する場合は、一般的な合繊糸と同様の公知の工程を経て織機ビームを作成する。即ち、荒巻整経機で整経ビームを作成後、サイジングが必要な場合はサイザーを経由して糊付し、ビーマーにて所要糸本数の織機ビームを作成する。サイジングが不必要な場合は、整経ビームからビーマーにて直接織機ビームを作成しても構わない。また、ワーパーサイザーにて直接サイジングビームを作成後、織機ビームを作成することも可能である。このようにして得られた織機ビームを、リージング、ドローイングを行って織機に仕掛けることは公知の方法で構わない。緯糸に使用する場合は、直接織機に仕掛けて、製織すればよい。
【0022】
織物組織は、織物の使用される用途によって平組織、綾組織、朱子組織やそれらの変化組織、混合組織のいずれであっても構わないが、低通気性や耐水性を高めるためには拘束点の多い平組織が最も好ましい。また、ダウンプルーフ用生地、アウトドア用生地、ウインドブレーカー用生地などにおいて、引裂強度を高める必要がある場合には、格子柄を構成する組織が好ましく、さらにはリップストップ部を有するリップストップ組織が最も好ましい。
【0023】
このように製織して得られたポリアミド中空繊維からなる織物を、通常の精練加工、プレセット加工、染色加工を実施する。また、用途に応じ撥水性などの機能を浸漬法(パディング法)等で付与した後、乾燥、キュアリングする。例えば撥水剤としては、通常市販の有機フッ素化合物系などの撥水処理剤を用いることができる。次いで、上記加工を行った織物に加熱およびプレス加工を施し、経糸及び緯糸を加熱収縮させ織物密度を混ませて織目間隔を小さくすると共に、経糸及び/または緯糸に用いたポリアミド中空繊維の糸条の単糸間空隙が実質的になくなるよう押圧変形し、かつ中空部を残すように加工する。単糸間空隙が実質的にない状態の織物断面を図1に示す。
【0024】
このとき、糸条の単糸間空隙が実質的になくなるよう押圧変形し、かつ中空部を残すようにするためには、上記に記したポリアミド中空繊維の形状であることが必須である。この要件を満たすことでロールによる加圧のトルクが、中空部内部へ働かずに、単糸間空隙が細密充填となるよう外側へ働き、単糸形状が歪んだ形状に変形し、単糸間空隙が実質的になくなるのである。しかしながら、中空部が円形の場合にはプレス加工処理により潰れやすく、偏平形状となる。そのため単糸間空隙が実質的になくならず好ましくない。
【0025】
加熱及びプレス加工は、通常のカレンダー加工機を用い、最近では熱カレンダー加工方式が一般的である。所望の値の耐水圧及び通気量を有する織物は、繊維の熱収縮率、生機密度と、加熱及びプレス加工での加熱温度、プレス圧力、処理時間等の加工条件とを適宜選択することで得られる。これらの条件は互いに関連し合うが、繊維の熱収縮率を勘案した上で通常加熱ロール温度160℃以上210℃以下、加熱ロール荷重98kN以上490kN以下、布走行速度10〜30m/minの範囲で適宜設定すればよい。
【0026】
生機の密度は、本発明の場合において、加熱及びプレス加工処理後の織物の経糸方向と緯糸方向のカバーファクターの和が1000以上2000以下の範囲となるように用途に応じて適宜調整すればよい。ダウンプルーフ用生地、アウトドア用生地、ウインドブレーカー用生地などにおいて、通常求められる通気量が1cc/cm・sec以下となるようにするには、経糸方向と緯糸方向のカバーファクターの和が1300以上1800以下の範囲内とすることが好ましい。本発明のポリアミド中空繊維からなる織物を使用しない場合は、上記に記すカバーファクターでは、ダウンプルーフ用途やウインドブレーカー用途に求められる通気量や耐水圧は、コーティング加工や膜加工などの層を付与しない限り達成できないのは明白である。
ここで、カバーファクターは、(経糸繊度(dtex)1/2×経糸密度(本/2.54cm))+(緯糸繊度(dtex)1/2×緯糸密度(本/2.54cm))である。
【0027】
上述した本発明のポリアミド中空繊維からなる織物は、裁断、縫製して寝袋、ダウンジャケット、スポーツカイト、アウトドア用テント、アウトドア用スパッツ、レインコート、ウインドブレーカーなどのアウトドア用途全般に好適に用いることができる。そのときの構成総繊度は8dtex〜78dtexを用いることが好ましい。特に8dtex〜33dtexのものが、超薄地、超軽量、コンパクトを実現でき最も好ましい。なお、上述した用途においては、織物の経、緯のそれぞれの引裂強力が9.8N以上14.7N以下の範囲内にあることが好ましい。
【0028】
その他、薄地化、軽量化、コンパクト化を特徴として、耐水圧や低通気性を必要とするカバン地、ゴム引き用途、ライフボート、ライフジャケット、エアバックなどの用途にも好適に用いることができる。そのときの構成総繊度は235dtex〜470dtexの糸条を用いることが好ましい。
【0029】
【実施例】以下、本発明を実施例で説明する。
【0030】
測定方法
(1)相対粘度
試料を秤量した後、濃硫酸(98.0%)に溶解する。その0.5重量%溶液をオストワルド粘度計にて25℃で測定する。
(2)繊維強度
オリエンテック社製の「テンシロン」を用いて測定する。初加重として糸条繊度の1/30のグラム数の荷重を加え、糸長50cm、引張速度50cm/minの条件で測定し、最高強力を求める。
(3)中空部の変形度
繊維の横断面写真から、中空部の重心から中空部の外周までの最長距離(L1)と最短距離(L2)とを求め、次式により算出する。
中空部の変形度=L1/L2
(4)中空率
繊維の横断面写真から、中空部の断面積と繊維外周内の断面積とを求め、次式により算出する。
中空率(%)=(中空部の断面積/繊維外周内の断面積)×100
(5)通気量
JIS L 1096 8.27通気性A法(フラジール形法)による。
(6)耐水圧
JIS L 1092 6.1 A法 による。
(7)引裂強力
JIS L 1096 8.15.1 A−1法 による。
【0031】
(実施例1)
<製糸>ε−カプロラクタムを常法によって重合することによって、相対粘度3.2、酸化チタンの含有量が0%(なし)のナイロンポリマを製造し、これらポリマを紡糸温度280℃、溶融粘度200Pa・secで、スリット長さ/スリット幅の比が11.3であるスリットの3つを三角形状に配列している吐出孔から溶融紡糸した後、通常の方法で冷却し、油分付着が0.4重量%となるように給油し、900m/minで引き取り、引き続き2.78倍に延伸し、2500m/minで巻き上げ28dtex12フィラメント(見かけ繊度33dtex)の中空繊維を製造した。この糸条の物性は次の通りである。
中空部形状: 三角形
単糸中空率: 24%
中空部変形度: 1.4
繊維強度: 5.5cN/dtex。
【0032】
<製織>上記の製糸で得られた28dtex12フィラメントのナイロン6中空繊維糸条を経糸及び緯糸に用いて、ウォータージェットルーム(津田駒製ZW304)により、織機回転数560rpm、リップストップ組織で、織上密度を経160本/2.54cm、緯145本/2.54cmとなるように製織した。かかる経糸は、アクリル糊材(互応化学JW95)を9.2重量%付着させて製織した。
【0033】
<染色・加工>上記の製織で得られたナイロン6中空繊維からなる生機を、1リットル当たり2gの苛性ソーダ(NaOH)を含む溶液でオープンソーパーにより精練し、シリンダー乾燥機にて120℃で乾燥し、次いで170℃にてプレセット、ジッガー染色機にて染色し、フッ素系樹脂化合物を浸漬(パディング法)、乾燥(120℃)、仕上げセット(175℃)して1.0重量%を付与した。次に加熱ロール表面温度180℃、加熱ロール加重147kN、布走行速度20m/minでカレンダー加工を実施した。得られた織物は、経密度150本/2.54cm、緯密度150本/2.54cm、経引裂強力10.1N、緯引裂強力9.8N、経方向のカバーファクター821、緯方向のカバーファクター821、経・緯のカバーファクターの和が1642であった。
【0034】
(実施例2)
実施例1のナイロン6中空繊維を緯糸にのみ使用し、経糸は17dtex7フィラメントのナイロン66丸断面繊維糸条(中実糸)を用いて、実施例1と同様の常法により製織、精練、中間セット、染色、撥水加工を行い、実施例1と同一のカレンダー加工を施して、経密度170本/2.54cm、緯密度150本/2.54cm、経引裂強力11.2N、緯引裂強力12.7N、経方向のカバーファクター658、緯方向のカバーファクター821、経・緯のカバーファクターの和が1479の織物を得た。
【0035】
(比較例1)
経糸に17dtex7フィラメントのナイロン66丸断面繊維糸条(中実糸)、緯糸に33dtex12フィラメントのナイロン66丸断面繊維糸条(中実糸)を用い、実施例1と同様の常法により製織、精練、中間セット、染色、撥水加工を行い、実施例1と同一のカレンダー加工を施して、経密度170本/2.54cm、緯密度150本/2.54cm、経方向のカバーファクター658、緯方向のカバーファクター821、経・緯のカバーファクターの和が1479の織物を得た。
【0036】
(比較例2)
経糸に17dtex7フィラメントのナイロン66丸断面繊維糸条(中実糸)、緯糸に中空部が円形の28dtex12フィラメントのナイロン6中空繊維糸条(中空率25%)を用い、実施例1と同様の常法により製織、精練、中間セット、染色、撥水加工を行い、実施例1と同一のカレンダー加工を施して、経密度170本/2.54cm、緯密度150本/2.54cm、経方向のカバーファクター658、緯方向のカバーファクター821、経・緯のカバーファクターの和が1479の織物を得た。
【0037】
(評価結果)
表1から明らかなように、本発明の実施例による織物は、通常密度であるにもかかわらず安定して優れた低通気性を奏し、耐水圧も高いレベルであることが認められる。これに対し、比較例1は丸断面が楕円程度に変形するが、単糸間空隙が残り細密充填とはならず、低通気性・耐水圧は通常の範囲で、また通気性が不安定であったりする。比較例2についても中空糸が扁平化するが同様に低通気性・耐水圧は通常の範囲で、また通気性が不安定であったりする。
【0038】
【表1】

Figure 2004339640
【0039】
【発明の効果】
上述したように、本発明のポリアミド中空繊維からなる織物は、非円形の中空部を有するポリアミドマルチフィラメント糸を用い、加熱及びプレス加工処理を施して、糸条の単糸間空隙が実質的になくなるよう押圧変形し、かつ中空部を残すことにより、従来技術ではなし得なかった風合いのしなやかさ・柔らかさと、通常密度クラスにおいても安定的な低通気性とを兼ね備えた織物を得ることができる。
【図面の簡単な説明】
【図1】本発明に係るポリアミド中空繊維織物の一例の断面SEM写真である。[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a woven fabric made of hollow polyamide fibers suitable for use in general clothing and industrial materials.
[0002]
[Prior art]
In each field of application, as a technique for increasing the water pressure resistance and low air permeability, calendering in which a woven fabric is subjected to heating and press working has been used.
[0003]
Among them, a method of manufacturing a lightweight, waterproof, and moisture-permeable base fabric for a tent is known (for example, see Patent Document 1). This is done by using a multifilament yarn having a single fiber fineness of 6 denier or less, weaving a woven fabric having a sum of cover factors in the warp and weft directions of 1900 or more, and subjecting the woven fabric to water repellency and heating and pressing. And a water pressure resistance of 400 mm or more and a gas permeability of 0.2 cc / cm 2 / sec or more. In such a technique, when either the warp or weft cover factor is less than 800 or when the sum of the warp and weft cover factors is less than 1900, the density of the entire woven fabric is low, Even when heating and pressing are performed, it is difficult to increase the water pressure resistance to 400 mm or more due to low airtightness. In other words, a fabric with a normal density satisfying the water pressure resistance of 400 mm or more and having a supple and soft cover factor in the warp and weft directions of less than about 1900 could not be obtained.
[0004]
Further, there has been proposed a bulk material in which a hollow fiber formed of a multifilament thermoplastic synthetic fiber is used and heat setting is performed under pressure by a heating roll after weaving (for example, see Patent Document 2). The purpose of this is to provide a bulk that can maintain the waterproofness and shape retention of the woven fabric and prevent migration and sublimation of the dye applied to the woven fabric with mild waterproofness. In this technique, after weaving using a multifilament yarn, which is a bundle of single yarns formed into a hollow circular cross-sectional shape at least a part of the warp or weft, under pressure by a heating roll, heat setting, Each single yarn of the yarn is deformed into a flat body, the yarn is widened in the width direction, and the gap of the weave structure is filled to increase the water impermeability. However, since each deformed single yarn is a flat body, a space between the single yarns remains, and stable low air permeability was not obtained.
[0005]
[Patent Document 1] Japanese Patent Publication No. 1-52510
[Patent Document 2] Japanese Patent Application Laid-Open No. 2000-34670
[Problems to be solved by the invention]
The present invention comprises a polyamide hollow fiber suitable for general clothing use and industrial material use, which has both a suppleness and softness of texture that could not be achieved by the above conventional technology and a stable low air permeability even in a normal density class. It provides a woven fabric.
[0008]
[Means for Solving the Problems]
In order to achieve this object, we have conducted intensive research and arrived at a woven fabric made of polyamide hollow fibers that can realize stable low air permeability even in the normal density class while maintaining the suppleness and softness of the texture. did.
[0009]
That is, the polyamide hollow fiber woven fabric of the present invention is a woven fabric containing a polyamide multifilament yarn having a hollow portion, which is deformed so that voids between single yarns of yarns constituting the woven fabric are substantially eliminated, and the hollow portion is formed. It is characterized by remaining.
[0010]
The method for producing a polyamide hollow fiber woven fabric according to the present invention comprises the steps of heating and pressing after weaving using a polyamide multifilament hollow fiber having a non-circular hollow portion having a single fiber hollow ratio of 10% to 40%. The hollow fiber is pressed and deformed so as to substantially eliminate the gap between the single yarns of the hollow fiber and to leave a hollow portion.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
The constituent features of the present invention will be described in detail.
[0012]
The woven fabric of the present invention includes a polyamide multifilament yarn having a hollow portion, has a configuration in which the voids between the single yarns of the yarns constituting the woven fabric are substantially eliminated, and the hollow portion remains.
[0013]
Such a polyamide may be nylon represented by nylon 6, nylon 66, or a copolymer or a mixture containing these as a main component.
[0014]
Polyamide hollow fiber is prepared by melt-spinning high-viscosity nylon from a discharge hole in which three slits having a melt viscosity of 150 Pa · sec or more and a slit length / slit width ratio of 6 to 20 are arranged in a triangular shape. Get it. Note that the content of titanium oxide may be set as appropriate depending on the application. For example, when it is desired to increase the breaking strength of the woven fabric, it is preferred that the woven fabric is not substantially contained, or when it is desired to suppress the glossiness, it may be contained in accordance with the degree.
[0015]
The single fiber hollow portion of the hollow fiber obtained here is pressed and deformed by heating and press working with a heating roll described later so that the gap between the single fibers of the yarn is substantially eliminated. Are generally non-circular, and are particularly preferably triangular. It is most preferably an equilateral triangle, but may be a triangular shape (diamond shape) formed from a curved surface bulging outward. Alternatively, from the viewpoint of the difficulty in crushing, a rectangular or rice-shaped hollow portion may be used.
[0016]
In particular, as the triangular shape of the hollow portion, it is preferable that the degree of deformation, which can be expressed by the ratio of the shortest distance from the center of gravity of the hollow portion to the outer periphery of the hollow portion, be in the range of 1.2 to 1.6. If the degree of deformation is less than 1.2, the hollow portion is likely to be crushed. Conversely, if the degree of deformation exceeds 1.6, the hollow portion is also likely to be crushed.
[0017]
The area occupied by the hollow portion in the fiber cross section of the hollow fiber, that is, the hollow ratio, needs to be in the range of 10% to 40%. When the hollow ratio is less than 10%, the crushing margin due to the pressing deformation that substantially eliminates the space between the single yarns of the yarn due to the heating and press processing described below is insufficient. If the hollow ratio exceeds 40%, the fiber cross section is likely to be crushed in the high-order processing step. Therefore, it is important that the hollow ratio is 40% or less, and a hollow ratio of 20 to 30% is particularly preferable.
[0018]
Further, in order to maintain the hollow shape, the hollow ratio and the high strength, it is preferably formed of a polyamide polymer having a relative viscosity of 2.9 or more, and more preferably 3.0 or more. If the relative viscosity is less than 2.9, it is difficult to make a hollow fiber having a hollow ratio of 10% or more. Furthermore, considering the point of obtaining an ultra-light weight, the preferable hollow ratio is 20% or more and 30% or less, and in order to obtain a hollow fiber having this hollow ratio, the relative viscosity must be 3.1 or more. Is preferred.
[0019]
The strength of the fiber is preferably increased in order to prevent the cross section of the fiber from being crushed by a pressure from the lateral direction, that is, the fiber preferably has a strength of 4.4 cN / dtex or more, and particularly has a strength of 4.9 cN / dtex. dtex or more is preferred. If the strength is less than 4.4 cN / dtex, the strength required for the final fiber product is insufficient and the durability is poor. In particular, the hollow portion is easily crushed and the hollow portion wall is easily ruptured, and a desired hollow ratio cannot be maintained in the obtained fiber product.
[0020]
The polyamide hollow fiber obtained by spinning in this manner is used for warp and / or weft and woven in a water jet loom. Alternatively, weaving may be performed in an air jet room, a rapier room, or a gripper room according to the form and fineness of the processed yarn or twisted yarn, the weave structure, the weaving property, the weaving cost, and the like.
[0021]
When a hollow fiber is used for a warp, a loom beam is produced through a known process similar to a general synthetic fiber. That is, after the warping beam is created by the Aramaki warping machine, if sizing is necessary, it is pasted through a sizer, and the loom beam of the required number of yarns is created by the beamer. If sizing is not necessary, a loom beam may be created directly from the warped beam by a beamer. It is also possible to create a loom beam after creating a sizing beam directly with a warper sizer. The loom beam thus obtained may be subjected to leasing and drawing and mounted on the loom by a known method. When used for wefts, weaving may be performed directly on a weaving machine.
[0022]
The woven structure may be any of a flat structure, a twill structure, a satin structure, a change structure thereof, or a mixed structure, depending on the use of the woven fabric. The most preferred is a flat structure with a large number. In the case of fabrics for downproofing, fabrics for outdoor use, fabrics for windbreakers, etc., when it is necessary to increase the tear strength, a structure constituting a lattice pattern is preferable, and a ripstop structure having a ripstop portion is most preferable. preferable.
[0023]
The woven fabric comprising the hollow polyamide fibers obtained by weaving in this manner is subjected to ordinary scouring, presetting and dyeing. After imparting functions such as water repellency by a dipping method (padding method) or the like according to the application, drying and curing are performed. For example, as the water repellent, a commercially available water repellent such as an organic fluorine compound can be used. Next, the woven fabric that has been subjected to the above-described processing is subjected to heating and press working, and the warp and the weft are shrunk by heating to reduce the weave spacing by mixing the woven fabric density, and the polyamide hollow fiber yarn used for the warp and / or the weft. The strip is pressed and deformed to substantially eliminate the gap between the single yarns, and is processed so as to leave a hollow portion. FIG. 1 shows a cross section of a woven fabric in a state where there is substantially no void between single yarns.
[0024]
At this time, the shape of the hollow polyamide fiber described above is indispensable in order to press-deform the yarn so as to substantially eliminate voids between the single yarns and leave a hollow portion. By satisfying this requirement, the torque of the pressurization by the roll does not act on the inside of the hollow part, but acts on the outside so that the gap between the single yarns is densely filled, and the shape of the single yarn is deformed into a distorted shape. The voids are substantially eliminated. However, when the hollow portion is circular, the hollow portion is liable to be crushed by the press processing, resulting in a flat shape. Therefore, the gap between the single yarns is not substantially eliminated, which is not preferable.
[0025]
Heating and pressing are performed using a normal calendering machine, and recently, a thermal calendering method is generally used. A woven fabric having a desired value of water pressure resistance and air permeability can be obtained by appropriately selecting processing conditions such as heat shrinkage of fiber, green density, and heating temperature, press pressure, and processing time in heating and pressing. Can be These conditions are related to each other, but in consideration of the heat shrinkage of the fiber, the heating roll temperature is usually 160 ° C. or more and 210 ° C. or less, the heating roll load is 98 kN or more and 490 kN or less, and the cloth traveling speed is in the range of 10 to 30 m / min. What is necessary is just to set suitably.
[0026]
In the case of the present invention, the density of the greige machine may be appropriately adjusted according to the application so that the sum of the cover factors in the warp direction and the weft direction of the woven fabric after the heating and press processing is in the range of 1000 or more and 2000 or less. . In a down-proof fabric, an outdoor fabric, a windbreaker fabric, and the like, in order for the normally required airflow to be 1 cc / cm 2 · sec or less, the sum of the cover factors in the warp direction and the weft direction is 1300 or more. It is preferable to be within the range of 1800 or less. When the woven fabric made of the polyamide hollow fiber of the present invention is not used, in the cover factor described above, the air permeability and water pressure required for down proof use and wind breaker use do not provide layers such as coating and film processing. It is clear that this cannot be achieved as long.
Here, the cover factor is (warp fineness (dtex) 1/2 × warp density (line / 2.54 cm)) + (weft fineness (dtex) 1/2 × weft density (line / 2.54 cm)). .
[0027]
The above-described woven fabric made of the polyamide hollow fiber of the present invention is cut and sewn, and is preferably used for general outdoor applications such as sleeping bags, down jackets, sports kites, outdoor tents, outdoor spats, raincoats, and windbreakers. it can. It is preferable to use the composition total fineness at that time of 8 dtex to 78 dtex. In particular, those having 8 dtex to 33 dtex are most preferable because they can realize ultra-thin fabric, ultra-light weight and compactness. In the above-mentioned applications, it is preferable that the tear strength of each of the warp and weft of the woven fabric is in the range of 9.8 N or more and 14.7 N or less.
[0028]
In addition, it is characterized by thinning, lightening, and compactness, and can be suitably used for applications such as bags that require water pressure resistance and low air permeability, rubber applications, life boats, life jackets, and air bags. . At this time, it is preferable to use a yarn having a total fineness of 235 dtex to 470 dtex.
[0029]
EXAMPLES The present invention will be described below with reference to examples.
[0030]
Measurement method (1) A relative viscosity sample is weighed and then dissolved in concentrated sulfuric acid (98.0%). The 0.5% by weight solution is measured at 25 ° C. using an Ostwald viscometer.
(2) Fiber strength Measured using "Tensilon" manufactured by Orientec. A load of 1/30 g of the yarn fineness is applied as an initial load, and the measurement is performed under the conditions of a yarn length of 50 cm and a pulling speed of 50 cm / min to determine the maximum tenacity.
(3) The longest distance (L1) and the shortest distance (L2) from the center of gravity of the hollow portion to the outer periphery of the hollow portion are obtained from the cross-sectional photograph of the fiber having the degree of deformation of the hollow portion, and are calculated by the following equation.
Deformation degree of hollow part = L1 / L2
(4) From the cross-sectional photograph of the hollow fiber, the cross-sectional area of the hollow portion and the cross-sectional area of the outer periphery of the fiber are determined, and are calculated by the following equation.
Hollow ratio (%) = (cross-sectional area of hollow portion / cross-sectional area in outer periphery of fiber) × 100
(5) Air permeability According to JIS L 1096 8.27 Air permeability A method (Fragile method).
(6) Water pressure resistance According to JIS L 1092 6.1 A method.
(7) Tear strength According to JIS L 1096 8.15.1 A-1 method.
[0031]
(Example 1)
<Spinning> A nylon polymer having a relative viscosity of 3.2 and a titanium oxide content of 0% (none) was produced by polymerizing ε-caprolactam by a conventional method, and these polymers were spun at a spinning temperature of 280 ° C. and a melt viscosity of 200 Pa.・ Secondly, three slits having a ratio of slit length / slit width of 11.3 are melt-spun from discharge holes arranged in a triangular shape, and then cooled by a usual method to reduce oil adhesion to 0.1. Oil was supplied at 4% by weight, taken up at 900 m / min, stretched 2.78 times and wound up at 2500 m / min to produce hollow fibers of 28 dtex 12 filaments (apparent fineness 33 dtex). The physical properties of this yarn are as follows.
Hollow shape: Triangular single yarn Hollow ratio: 24%
Deformation degree of hollow part: 1.4
Fiber strength: 5.5 cN / dtex.
[0032]
<Weaving> Using a 28 dtex 12 filament nylon 6 hollow fiber yarn obtained in the above-described yarn production as a warp and a weft, using a water jet loom (ZW304 manufactured by Tsuda Koma), a loom rotation speed of 560 rpm and a rip-stop structure, It woven so that density might be set to 160 lines / 2.54 cm and weft 145 lines / 2.54 cm. The warp yarn was woven by attaching 9.2% by weight of an acrylic paste material (Kyogaku Kagaku JW95).
[0033]
<Dyeing / Processing> The green fabric made of the nylon 6 hollow fibers obtained by the above weaving was scoured with a solution containing 2 g of caustic soda (NaOH) per liter by an open soaper, and dried at 120 ° C. in a cylinder dryer. Then, it was preset at 170 ° C., dyed with a Jigger dyeing machine, immersed (padding method), dried (120 ° C.), and finished (175 ° C.) with a fluororesin compound to give 1.0% by weight. . Next, calendering was performed at a heating roll surface temperature of 180 ° C., a heating roll weight of 147 kN, and a cloth traveling speed of 20 m / min. The obtained woven fabric has a warp density of 150 strands / 2.54 cm, a weft density of 150 strands / 2.54 cm, a tear strength of 10.1 N, a weft tear strength of 9.8 N, a longitudinal cover factor of 821, and a weft direction cover factor. 821, the sum of the cover factors of the process and the weft was 1,642.
[0034]
(Example 2)
The nylon 6 hollow fiber of Example 1 was used only for the weft yarn, and the warp yarn was a nylon 66 round cross section fiber yarn (solid yarn) having 17 dtex 7 filaments. After setting, dyeing and water-repellent processing, the same calender processing as in Example 1 was performed, and the warp density was 170 threads / 2.54 cm, the weft density was 150 threads / 2.54 cm, the tear strength was 11.2 N, and the weft tear strength was 1. A fabric having a total of 1479N, a longitudinal cover factor 658, a weft direction cover factor 821, and a warp / weft cover factor of 1479 was obtained.
[0035]
(Comparative Example 1)
Weaving and scouring in the same manner as in Example 1 using a nylon 66 round cross section fiber yarn (solid yarn) of 17 dtex 7 filament as the warp and a nylon 66 round cross section fiber yarn (solid yarn) of 33 dtex 12 filament as the weft. , Intermediate set, dyeing, water-repellent processing, and the same calender processing as in Example 1 were performed, and the warp density was 170 / 2.54 cm, the weft density was 150 / 2.54 cm, the cover factor 658 in the warp direction, the weft A woven fabric having a cover factor of 821 in the direction and a sum of the cover factors of the process and the weft of 1479 was obtained.
[0036]
(Comparative Example 2)
The same as in Example 1 using a nylon 66 hollow fiber yarn (hollow ratio: 25%) having a circular hollow portion of a 28 dtex 12 filament and a weft yarn of a nylon 66 round cross section fiber yarn (solid yarn) having a 17 dtex 7 filament and a 28 dtex 12 filament having a circular hollow portion as a weft. Weaving, scouring, intermediate setting, dyeing, and water repellent processing are performed by the same method, and the same calendering processing as in Example 1 is performed to obtain a warp density of 170 yarns / 2.54 cm, a weft density of 150 yarns / 2.54 cm, and a warp direction. A fabric having a cover factor of 658, a cover factor of 821 in the weft direction, and a sum of the cover factors of the warp and weft of 1479 was obtained.
[0037]
(Evaluation results)
As is clear from Table 1, it is recognized that the woven fabric according to the example of the present invention stably exhibits excellent low air permeability despite its normal density and also has a high level of water pressure resistance. On the other hand, in Comparative Example 1, the round cross section is deformed into an elliptical shape, but the voids between the single yarns remain to prevent the dense packing, the low air permeability and water pressure resistance are in the normal range, and the air permeability is unstable. There. In Comparative Example 2, the hollow fiber is flattened, but similarly, low air permeability and water pressure resistance are in the normal range, and air permeability is unstable.
[0038]
[Table 1]
Figure 2004339640
[0039]
【The invention's effect】
As described above, the woven fabric made of the polyamide hollow fiber of the present invention uses a polyamide multifilament yarn having a non-circular hollow portion, and is subjected to heating and pressing to substantially reduce the gap between single yarns of the yarn. By pressing and deforming so that it disappears, and leaving a hollow portion, it is possible to obtain a woven fabric having both suppleness and softness of texture that could not be achieved by conventional technology and stable low air permeability even in a normal density class. .
[Brief description of the drawings]
FIG. 1 is a cross-sectional SEM photograph of an example of a hollow polyamide fiber fabric according to the present invention.

Claims (8)

中空部を有するポリアミドマルチフィラメント糸を含む織物であって、織物を構成する糸条の単糸間空隙が実質的になくなるよう変形され、かつ中空部が残っていることを特徴とするポリアミド中空繊維織物。A hollow woven fabric comprising a polyamide multifilament yarn having a hollow portion, wherein the hollow portion is deformed so that voids between single yarns of yarns constituting the woven fabric are substantially eliminated, and a hollow portion remains. fabric. ポリアミドマルチフィラメント糸が、相対粘度が2.9以上のポリアミドポリマーからなり、繊維強度が4.4cN/dtex以上である、請求項1記載のポリアミド中空繊維織物。The polyamide hollow fiber fabric according to claim 1, wherein the polyamide multifilament yarn is made of a polyamide polymer having a relative viscosity of 2.9 or more, and has a fiber strength of 4.4 cN / dtex or more. 経糸方向と緯糸方向のカバーファクターの和が1000以上2000以下の範囲内にある請求項1または2記載のポリアミド中空繊維織物。The polyamide hollow fiber woven fabric according to claim 1 or 2, wherein the sum of the cover factors in the warp direction and the weft direction is in the range of 1,000 to 2,000. 通気量が1cc/cm・sec以下である、請求項1から3のいずれかに記載のポリアミド中空繊維織物。The polyamide hollow fiber woven fabric according to any one of claims 1 to 3, wherein an air permeability is 1 cc / cm 2 · sec or less. 請求項1から4のいずれかに記載のポリアミド中空繊維織物を使用したダウンプルーフ用生地。A fabric for down proof using the hollow polyamide hollow fiber fabric according to any one of claims 1 to 4. 請求項1から4のいずれかに記載のポリアミド中空繊維織物を使用したアウトドア用生地。Outdoor fabric using the polyamide hollow fiber fabric according to any one of claims 1 to 4. 請求項1から4のいずれかに記載のポリアミド中空繊維織物を使用したウインドブレーカー用生地。A fabric for a windbreaker, comprising the hollow hollow fiber polyamide fabric according to any one of claims 1 to 4. 単糸中空率が10%以上40%以下で、非円形の中空部を有するポリアミドマルチフィラメント中空糸を用いて製織後、加熱及びプレス加工処理を施して、該中空糸の単糸間空隙が実質的になくなるように、かつ、中空部が残るように押圧変形することを特徴とするポリアミド中空繊維織物の製造方法。After weaving using a polyamide multifilament hollow fiber having a non-circular hollow portion having a hollow ratio of a single yarn of 10% or more and 40% or less, heating and pressing are performed to substantially reduce the voids between the single yarns of the hollow fiber. A method for producing a polyamide hollow fiber woven fabric, wherein the hollow fiber portion is deformed by pressing so that the hollow portion remains and the hollow portion remains.
JP2003137095A 2003-05-15 2003-05-15 Polyamide hollow fiber fabric Pending JP2004339640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003137095A JP2004339640A (en) 2003-05-15 2003-05-15 Polyamide hollow fiber fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003137095A JP2004339640A (en) 2003-05-15 2003-05-15 Polyamide hollow fiber fabric

Publications (1)

Publication Number Publication Date
JP2004339640A true JP2004339640A (en) 2004-12-02

Family

ID=33526843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003137095A Pending JP2004339640A (en) 2003-05-15 2003-05-15 Polyamide hollow fiber fabric

Country Status (1)

Country Link
JP (1) JP2004339640A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012012726A (en) * 2010-06-30 2012-01-19 Teijin Fibers Ltd Heat-shielding woven or knitted fabric and clothing
JP2012057265A (en) * 2010-09-07 2012-03-22 Toyobo Specialties Trading Co Ltd High-density woven fabric
US8220499B2 (en) 2003-07-29 2012-07-17 Toyo Boseki Kabushiki Kaisha Fabric and production process thereof
JP2014125703A (en) * 2012-12-27 2014-07-07 Toray Ind Inc High-gloss fabric
US11214895B2 (en) 2015-11-06 2022-01-04 Inv Performance Materials, Llc Low permeability and high strength fabric and methods of making the same
US11634841B2 (en) 2017-05-02 2023-04-25 Inv Performance Materials, Llc Low permeability and high strength woven fabric and methods of making the same
US11708045B2 (en) 2017-09-29 2023-07-25 Inv Performance Materials, Llc Airbags and methods for production of airbags
CN118186745A (en) * 2024-05-16 2024-06-14 汕头市恒泰丰纺织有限公司 Quick-drying sun-proof fabric based on hollow heat-insulating fibers and preparation method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8220499B2 (en) 2003-07-29 2012-07-17 Toyo Boseki Kabushiki Kaisha Fabric and production process thereof
JP2012012726A (en) * 2010-06-30 2012-01-19 Teijin Fibers Ltd Heat-shielding woven or knitted fabric and clothing
JP2012057265A (en) * 2010-09-07 2012-03-22 Toyobo Specialties Trading Co Ltd High-density woven fabric
US9670605B2 (en) 2010-09-07 2017-06-06 Toyobo Specialties Trading Co., Ltd. High-density fabric
JP2014125703A (en) * 2012-12-27 2014-07-07 Toray Ind Inc High-gloss fabric
US11214895B2 (en) 2015-11-06 2022-01-04 Inv Performance Materials, Llc Low permeability and high strength fabric and methods of making the same
US11634841B2 (en) 2017-05-02 2023-04-25 Inv Performance Materials, Llc Low permeability and high strength woven fabric and methods of making the same
US11708045B2 (en) 2017-09-29 2023-07-25 Inv Performance Materials, Llc Airbags and methods for production of airbags
CN118186745A (en) * 2024-05-16 2024-06-14 汕头市恒泰丰纺织有限公司 Quick-drying sun-proof fabric based on hollow heat-insulating fibers and preparation method thereof
CN118186745B (en) * 2024-05-16 2024-07-05 汕头市恒泰丰纺织有限公司 Quick-drying sun-proof fabric based on hollow heat-insulating fibers and preparation method thereof

Similar Documents

Publication Publication Date Title
US8278227B2 (en) Polyester woven fabric
JP3855775B2 (en) Coat airbag base fabric
JP4563487B2 (en) fabric
KR102026166B1 (en) Textile using a flat multilobar cross-section fiber
JP5620761B2 (en) High density fabric
US20110033687A1 (en) Thin woven fabric
KR100493342B1 (en) Technical Fabrics for Airbags
JP2004339640A (en) Polyamide hollow fiber fabric
JP2012036541A (en) Stretchable woven fabric
JP3085811B2 (en) Low air permeability fabric and method for producing the same
JP2004176221A (en) Ground fabric for coated air bag and method for producing the same
JP6487946B2 (en) Thin fabric
JP2004156166A (en) Fabric and method for producing the same
JP2004339672A (en) Polyamide multifilament fabric and method for producing the same
JP4848658B2 (en) Manufacturing method for air bag base fabric
JP3284805B2 (en) Textile for industrial materials
JP3980511B2 (en) Lightweight fabric
JP3462914B2 (en) Thread for airbag
JP2005171427A (en) Union cloth
JP7483658B2 (en) Woven fabric and method for producing same
WO2004050973A1 (en) Polyamide multifilament woven fabric and process for producing the same
JP3863051B2 (en) Polyester spotted yarn
WO2023145557A1 (en) Woven fabric and garment using same
JP3732658B2 (en) Bulky place
JP2002309463A (en) Cloth made of hollow polyamide fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050719

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20060823

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20060912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070412

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070807