WO2023145557A1 - Woven fabric and garment using same - Google Patents

Woven fabric and garment using same Download PDF

Info

Publication number
WO2023145557A1
WO2023145557A1 PCT/JP2023/001280 JP2023001280W WO2023145557A1 WO 2023145557 A1 WO2023145557 A1 WO 2023145557A1 JP 2023001280 W JP2023001280 W JP 2023001280W WO 2023145557 A1 WO2023145557 A1 WO 2023145557A1
Authority
WO
WIPO (PCT)
Prior art keywords
fabric
dtex
weft
multifilament
filament
Prior art date
Application number
PCT/JP2023/001280
Other languages
French (fr)
Japanese (ja)
Inventor
有地保
三本和章
飯塚正幸
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN202380017611.4A priority Critical patent/CN118613612A/en
Publication of WO2023145557A1 publication Critical patent/WO2023145557A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • A41D31/04Materials specially adapted for outerwear characterised by special function or use
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/283Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/30Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the fibres or filaments
    • D03D15/33Ultrafine fibres, e.g. microfibres or nanofibres

Definitions

  • the present invention relates to textiles.
  • Nylon-based fibers are widely used for lightweight and thin fabrics used for industrial materials and sports clothing. The reason why nylon fibers are widely used is that they generally have higher breaking strength per decitex than polyester.
  • Windbreakers and down jackets in particular require lightweight, thin, and windproof fabrics. It is A fabric with high fabric strength and low air permeability is required in order to prevent breakage of the fabric, have excellent wind resistance, and suppress the blowing out of batting and down.
  • down jackets in particular have adopted a method of directly enclosing down without using a down pack between the outer material and the lining, because it is possible to reduce the weight of the product and express the rich swelling of the quilted part. Further improvement in down shedding performance is required for the front and back sides.
  • a ripstop structure is a structure in which two or more warp and weft threads are arranged separately from the base structure. The use of a ripstop structure reduces stress concentration when the fabric is torn, preventing the fabric from tearing. Strength can be improved.
  • the fabric weave that satisfies this requirement is limited to a ripstop weave, and has the following problems.
  • the ripstop structure Since the ripstop structure has threads with a fineness that is thicker than the base structure, the texture of the fabric becomes stiff when bending, and voids occur in the fabric structure, resulting in a decrease in wind resistance, down, and batting. causes blowouts.
  • the fabric of the ripstop structure is kneaded during washing, the voids in the fabric structure expand, resulting in a decrease in wind resistance and an increase in blowout of down or batting. Sometimes it becomes.
  • woven fabrics with a ripstop structure may lack aesthetics because the reinforcing threads look like lattices or streaks, and the applications and designs of sewn products were limited.
  • Patent Document 1 discloses a lightweight thin fabric with excellent tear strength, but the fabric structure of both Examples and Comparative Examples is an invention that requires a ripstop structure. Moreover, regarding the flexibility (bending rigidity by KES) of the fabrics described in the claims and examples, there was a problem that the fabrics were all hard to bend.
  • Example 2 of Patent Document 2 discloses a woven fabric with a plain weave structure using nylon 22dtex in the background, but it is a woven fabric with a coarse density, the cover factor is less than 1600, and the air permeability after washing, that is, There is no disclosure of sufficient windproof performance and down shedding performance.
  • the present invention is a plain weave high density design using multifilaments of specific fineness and single fine fineness. To provide a lightweight thin woven fabric suitable for a breaker, a down jacket, etc., having a soft touch and excellent wind resistance.
  • the present inventors arrived at the present invention as a result of intensive studies to solve the above problems. That is, the present invention consists of the following configurations.
  • a plain weave fabric made of polyamide multifilaments wherein the fineness of the multifilament is 17 dtex or less in both weft and weft, and the single filament fineness of at least one of the multifilaments is 0.7 dtex or less, and A woven fabric having a fabric decomposition yarn strength of 4.5 cN/dtex or more and a cover factor of 1700 or more.
  • the woven fabric of the present invention is a woven fabric that is lightweight while realizing a soft texture and that can suppress blow-out when down and/or batting is included between the woven fabrics, and is particularly suitable for the side fabric of a down jacket. can be used.
  • ⁇ Textile structure> As for the woven fabric, a fabric with low air permeability is required in order to have excellent wind resistance and to suppress the blowing out of filling and down, and a plain weave fabric is used. Twill weaves and satin weaves other than plain weaves are not preferable from the viewpoints of wind resistance and down shedding because the warp yarns float a lot and the yarn crossing points are few.
  • the ripstop structure which is a partially modified plain weave structure, is an effective structure for improving tear strength. Hardening and formation of voids in the woven structure tend to reduce the wind resistance and blow out the down or batting.
  • the total fineness of the multifilament in the woven fabric of the present invention is 17 dtex or less both in the weft and weft. If the total fineness exceeds 17 dtex, the woven fabric tends to be stiff when bending, which is not preferable. Moreover, it is preferably 5 dtex or more in order to maintain the tear strength of the fabric.
  • the single filament fineness of at least one of the multifilaments in the weft and weft is 0.7 dtex or less. If the single yarn fineness exceeds 0.7 dtex, not only is it difficult to suppress the air permeability and the air permeability after washing, but the woven fabric becomes stiff when bending, which is not preferable. From the standpoint of dyeability and workability during spinning, the single yarn fineness is preferably 0.3 dtex or more.
  • the strength of the multifilament in the gray fabric after multifilament spinning is 6 cN or more.
  • the strength of the yarn decomposed from the fabric of the present invention that has been scoured and dyed on the gray fabric that is, the strength of the decomposed yarn of the fabric
  • the strength of the multifilament used for at least one of the warp and the weft and having a single yarn fineness of 0.7 dtex or less is required to be 4.5 cN/dtex or more
  • both the warp and the weft have a fabric decomposition yarn strength of 4.5 cN/dtex or more.
  • the multifilament (hereinafter sometimes referred to as raw yarn) strength decreases as the fineness of the multifilament used for textiles and the fineness of single yarn decrease, and the fabric tear strength tends to decrease, but the yarn strength tends to increase.
  • the yarn strength tends to increase.
  • Patent Documents 1 and 2 techniques such as not containing pigments such as titanium oxide and increasing the degree of polymerization (viscosity) of polyamide chips by solid-phase polymerization or the like have been mainly used. .
  • sufficient fiber strength cannot be obtained.
  • the original yarn strength is 6 cN It is possible to obtain a high-strength raw yarn with a strength of 4.5 cN/dtex or more and a polyamide multifilament with a strength reduction of 4.5 cN/dtex or more.
  • the elongation of the multifilament is 30 to 50% for both the warp and the weft.
  • the elongation of less than 30% is mainly used in industrial polyamide fibers.
  • the lower the elongation the higher the bending stiffness. Therefore, it is preferable to set the elongation to 30% or more, so that the flexural rigidity of the woven fabric can be further reduced.
  • the polyamide constituting the polyamide multifilament used in the present invention is a resin composed of a high molecular weight body in which a so-called hydrocarbon group is linked to the main chain via an amide bond.
  • Such polyamides are excellent in spinnability and mechanical properties.
  • Preferred examples of polyamides include mainly polycaproamide (nylon 6) and polyhexamethylene adipamide (nylon 66).
  • the degree of polymerization of the polyamide chips is preferably 2.5 to 4.0 in 98% sulfuric acid relative viscosity, from the viewpoint of fiber strength.
  • the polyamide multifilament of the present invention can be produced by a known melt spinning apparatus as long as filaments satisfying the range specified by the present invention can be produced. preferably. Exemplifying the basic process, a polyamide resin is melted, the polyamide polymer is metered and transported by a gear pump, and finally extruded through a discharge hole provided in a spinneret to form each filament. The filaments discharged from the spinneret are cooled and solidified to room temperature by blowing cooling air from a cooling device to each filament.
  • the multifilament is fed with oil by an oiling device and bundled to form a multifilament, entangled by a fluid entangling nozzle device, and passed through a take-up roller and a drawing roller.
  • the film is drawn according to the ratio of the peripheral speeds of the take-up roller and the drawing roller.
  • a polyamide multifilament can be produced by heat-treating the yarn by heating the drawing roller and winding it with a winding device.
  • ⁇ Ambient temperature> In the production process by the above-described direct draw spinning method, it is preferable to positively heat directly below the surface of the spinneret so that the ambient temperature is 250 to 300°C. As a result, the orientation of the polyamide polymer extruded during spinning is less likely to be degraded by heat, and the orientation can be relaxed. High strength can be realized by relaxation of orientation by slow cooling from the die surface to cooling. More preferably, it is 285 to 300°C.
  • the cooling device preferably uses an annular cooling device that blows out rectified cooling air from the outer periphery toward the center, or an annular cooling device that blows out rectified cooling air from the center toward the outer periphery.
  • the cooling air speed blown from the cooling air blowing surface is in the range of 20.0 to 40.0 (m / min) on average in the section from the upper end surface to the lower end surface of the cooling blowing part. It is preferable from the point of view of conversion.
  • heat treatment is preferably performed using the stretching roller as a heating roller, and the heat treatment temperature is preferably 150 to 190°C.
  • the heat treatment temperature is raised, the crystallization of the fiber is promoted, so high strength can be achieved. Furthermore, it is possible to suppress a decrease in strength due to heat history in the dyeing process. Preferably, it is 165-180°C.
  • the fabric of the present invention has a cover factor of 1700 or higher. 2000 is preferable as the upper limit. If the cover factor is less than 1700, the woven fabric will be softer and thinner, but it will be difficult to suppress air permeability, and the object of the present invention will not be satisfied. A cover factor of 2000 or less is preferable because the air permeability is kept low and the woven fabric is thin and does not become excessively stiff when bent.
  • the density of the reeds and healds which are loom parts, does not become too high, and troubles such as warp fluff and warp breakage during weaving. is extremely small, the quality of the woven fabric is excellent, and the weft yarn driving density is within a suitable range, so that the productivity is also excellent.
  • the woven fabric of the present invention preferably has a tear strength of 6 N or more, more preferably 6 to 15 N, in both the longitudinal and longitudinal directions by the pendulum method.
  • a tensile strength of 6 N or more is preferable in that tearing due to piercing by a projection when the sewn product is worn, and tearing due to concentration of load on the sewn portion, hooking, etc., are unlikely to occur.
  • the fabric has a plain weave structure using polyamide multifilaments with a total warp and weft fineness of 17 dtex or less, the tear strength is about 15 N at the highest.
  • the initial air permeability of the woven fabric of the present invention is preferably 1 cc/cm 2 /s (cm 3 /cm 2 /s) or less, more preferably 0.8 cc/cm 2 /s (cm 3 /cm 2 /s). ) or less, more preferably 0.5 cc/cm 2 /s (cm 3 /cm 2 /s) or less.
  • the air permeability is 1 cc/cm 2 /s (cm 3 /cm 2 /s) or less, the occurrence of blowing out of batting or down is suppressed to a greater extent.
  • the present inventors have not only measured the air permeability of the fabric when selling the sewn product as a new product, that is, the initial air permeability of the fabric, but also the product is rubbed by washing the sewn product at home or at a dry cleaning shop.
  • bending force is applied to the fabric, such as repeatedly following the movement of a person when wearing the product, or compressing and folding a down jacket for mountain climbing and carrying it.
  • the down missing index is also a desirable viewpoint.
  • the present inventors assumed that the down product was washed once a year, and used the air permeability of the fabric after 5 washes assuming a product life of 5 years as an index, and defined it as "post-wash air permeability".
  • the air permeability of the fabric of the present invention after washing five times is preferably 1 cc/cm 2 /s (cm 3 /cm 2 /s) or less, more preferably 0.8 cc/cm, like the initial air permeability.
  • the number of down pull-outs in the present invention is preferably 50 or less, more preferably 15 or less. If the number of missing down strands is 50 or less, the blowing out of the down-filled actual product during washing/wearing/storage will be suppressed, resulting in a decrease in the product's heat-retaining power and down on other clothes when putting on and taking off. Adhesion can be prevented.
  • the above-mentioned number of missing downs is a value evaluated by a method of measuring by a method described later.
  • a KES flexural rigidity of 0.008 gf ⁇ cm 2 /cm (0.0784 mN ⁇ cm 2 /cm) or less the woven fabric has a much smaller flexural stiffness, and the quilted portion when the product is filled with down. bulge is a very preferred embodiment.
  • the above-mentioned high-strength yarn is used to ensure the yarn strength in the fabric, and the number of filaments (single yarn fineness) and cover factor are within the ranges described above.
  • the woven fabric of the present invention can be suitably used for clothing, especially sports clothing such as windbreakers and down jackets, as well as material applications such as tents, sleeping bags, and canvas.
  • Total fineness/single filament fineness (fineness of raw yarn) A fiber sample is wound 400 times on a measuring machine with a frame circumference of 1.125 m under a tension of 1/30 cN ⁇ indicated decitex to prepare a skein. Dried at 105°C for 60 minutes, transferred to a desiccator, left to cool in an environment of 20°C and 55RH for 30 minutes, measured the mass of the skein, calculated the mass per 10,000 m, and in the case of nylon 6, the official moisture content. The total fineness of the fibers was calculated with a ratio of 4.5%. The measurement was performed 4 times, and the average value was taken as the total fineness. A value obtained by dividing the obtained total fineness by the number of filaments was taken as the single filament fineness.
  • Fineness of fabric decomposed yarn Two lines are drawn at intervals of 100 cm in the warp or weft direction of the fabric, and the warp or weft of the fabric within the lines is separated. Next, the tentative total fineness is calculated to determine the measurement load. A load of 2 g is applied to the obtained decomposed yarn, the length between two points (L cm) is measured, then cut between two points (L cm), the weight (Wg) is measured, and the temporary total fineness is calculated by the following formula. was calculated. Next, a load of 1/10 g/dtex (0.098 cN/dtex) was applied to the temporary total fineness, the length and weight between two points were measured in the same manner as above, and the total fineness was calculated by the following formula.
  • Total fineness W/L x 100000 (dtex)
  • a value obtained by dividing the obtained total fineness by the number of filaments was defined as a single yarn fineness (dtex). Similar measurements were repeated 5 times, and the average was described in the results.
  • Dwp is the warp density of the fabric (book/2.54 cm)
  • Dwt is the weft density of the fabric (book/2.54 cm)
  • Fwp and Fwt are the thicknesses of the warp and weft that make up the fabric ( dtex)].
  • Tear strength The tear strength of the woven fabric was measured according to the tear strength D method (pendulum method) specified in JIS L1096 (2010) 8.17.4.
  • the air permeability after washing was measured by the same method after washing 5 times according to the washing method C4M method specified in the appendix of JIS L1930 (2014), then hanging and drying.
  • the number of pieces of down missing was measured in accordance with the evaluation of down blowing out of fabrics specified in GB/T 14272 (2011) as an evaluation of down shedding property assuming an actual product.
  • the sample used for down blowout evaluation conforms to Method B of the above evaluation method, and the sample size is 120 x 170 mm (the size of the test bag after sewing (sewing thread: No. 13 for household use), and the filling amount is 30 g.
  • the filling ratio was 90% down/10% feather, and down with a fill power of 600 or more was used.
  • Example 1 As polyamide, titanium oxide-free nylon 6 chips having a sulfuric acid relative viscosity of 2.8 were melted at 282° C. and discharged from a spinneret (round hole). Steam of 285°C is blown to each filament discharged from the spinneret directly below the surface of the spinneret to set the atmospheric temperature to 285°C, and cooling air of 18°C is blown inward from the outside at a wind speed of 20 m/min. The yarn was passed through a cooling device to cool and solidify to room temperature.
  • each filament is converged to form a multifilament, and after being entangled, it is drawn at a drawing ratio of 2.4 times through a drawing roller heated to 155°C at a take-up roller speed of 1700 m/min. , to obtain a nylon 6 multifilament of 11 dtex and 8 filaments.
  • nylon 6 chips having a sulfuric acid relative viscosity of 3.3 and containing no titanium oxide were melted at 295°C and discharged from a spinneret (round hole).
  • a steam set at 290°C is blown to each filament discharged from the spinneret directly below the surface of the spinneret to make the ambient temperature 290°C, and cooling air at 18°C is blown inward from the outside at a wind speed of 15 m/min.
  • the yarn was passed through an annular cooling device to cool and solidify to room temperature.
  • each filament is converged to form a multifilament, and after being entangled, it is drawn at a drawing ratio of 1.52 times through a draw roller heated to 170°C at a take-up roller speed of 2700 m/min. , to obtain a nylon 6 multifilament of 11 dtex and 24 filaments.
  • the obtained 11 dtex, 8 filament nylon 6 multifilament was used as the warp, and the 11 dtex, 24 filament nylon 6 multifilament was used as the weft. / 2.54 cm.
  • the green fabric thus obtained was scoured and preliminarily set, and then dyed with a jet dyeing machine and dried. After that, water-repellent finishing and calendering were performed using a non-fluorine-based resin.
  • the resulting fabric had a soft feel and physical properties suitable for a down jacket. Table 1 shows the measurement results.
  • nylon 6 chips having a sulfuric acid relative viscosity of 2.8 and containing no titanium oxide were melted at 295° C. and discharged from a spinneret (round hole). Steam set at 295°C is blown to each filament discharged from the spinneret directly below the surface of the spinneret to set the ambient temperature to 295°C, and cooling air at 18°C is blown inward from the outside at a wind speed of 20 m/min. The yarn was passed through an annular cooling device to cool and solidify to room temperature.
  • each filament is converged to form a multifilament, and after being entangled, it is drawn at a drawing ratio of 1.82 times through a drawing roller heated to 170 ° C. at a take-up roller speed of 2500 m / min. , to obtain a nylon 6 multifilament of 15 dtex and 24 filaments.
  • Example 1 The 11 dtex, 8 filament nylon 6 multifilament obtained in Example 1 is used as the warp, and the 15 dtex, 24 filament nylon 6 multifilament is used as the weft.
  • the fabric was woven to have a weft density of 220 wefts/2.54 cm.
  • the obtained gray fabric was dyed in the same manner as in Example 1, and the physical properties of the obtained fabric were measured. Table 1 shows the measurement results.
  • nylon 6 chips having a sulfuric acid relative viscosity of 2.8 and containing no titanium oxide were melted at 275° C. and discharged from a spinneret (round hole). Directly below the surface of the spinneret, steam set at 275°C is blown onto each filament discharged from the spinneret to set the ambient temperature to 275°C, and cooling air at 18°C is blown inward from the outside at a wind speed of 20 m/min.
  • the yarn was passed through an annular cooling device to cool and solidify to room temperature.
  • each filament is converged to form a multifilament, and after being entangled, it is drawn at a drawing ratio of 1.80 times through a drawing roller heated to 170 ° C. at a take-up roller speed of 2400 m / min. , to obtain a nylon 6 multifilament of 17 dtex and 24 filaments.
  • the final finished fabric is a plain weave fabric in which the 11 dtex, 8 filament nylon 6 multifilament obtained in Example 1 is used as the warp and the 17 dtex, 24 filament nylon 6 multifilament is used as the weft. It was woven so that the weft density was 226 wefts/2.54 cm.
  • the obtained gray fabric was dyed in the same manner as in Example 1, and the physical properties of the obtained fabric were measured. Table 1 shows the measurement results.
  • nylon 6 chips having a sulfuric acid relative viscosity of 2.8 and containing no titanium oxide were melted at 282° C. and discharged from a spinneret (round hole). Directly below the surface of the spinneret, steam set at 285°C is blown onto each filament discharged from the spinneret to set the ambient temperature to 285°C, and cooling air at 18°C is blown inward from the outside at a wind speed of 20 m/min. The yarn was passed through an annular cooling device to cool and solidify to room temperature.
  • each filament is converged to form a multifilament, and after being entangled, it is drawn at a drawing ratio of 1.82 times through a draw roller heated to 170°C at a take-up roller speed of 2400 m/min. , to obtain a nylon 6 multifilament of 13 dtex and 24 filaments.
  • the obtained 13dtex, 24-filament nylon 6 multifilament was arranged in the warp and weft, and the final finished fabric was woven so that the warp density was 266 strands/2.54 cm and the weft density was 230 strands/2.54 cm.
  • the obtained gray fabric was dyed in the same manner as in Example 1, and the physical properties of the fabric were measured. Table 1 shows the measurement results.
  • Example 1 A plain weave fabric using the same warp and weft as in Example 1 was woven so that the finished fabric had a warp of 280/2.54 cm and a weft density of 220/2.54 cm.
  • the obtained gray fabric was dyed in the same manner as in Example 1, and the physical properties of the fabric were measured.
  • the resulting fabric had a soft texture, but the air permeability after washing exceeded 1.0 cc/cm 2 /s (cm 3 /cm 2 /s), and the number of down pieces removed after washing was also an acceptance criterion. 50, which is insufficient as a down jacket. Table 1 shows the measurement results.
  • nylon 6 chips having a sulfuric acid relative viscosity of 2.8 and containing no titanium oxide were melted at 265° C. and discharged from a spinneret (round hole). Directly under the surface of the spinneret, steam set at 265°C is blown onto each filament discharged from the spinneret to set the ambient temperature to 265°C, and cooling air at 18°C is blown inward from the outside at a wind speed of 15 m/min. The yarn is passed through an annular cooling device to cool and solidify to room temperature.
  • each filament is converged to form a multifilament, and after being entangled, it is drawn at a drawing ratio of 1.60 times through a drawing roller heated to 155 ° C. at a take-up roller speed of 2800 m / min. , to obtain a nylon 6 multifilament of 11 dtex and 24 filaments.
  • the same warp as in Example 1 and the 11 dtex, 24 filament nylon 6 multifilament obtained here are arranged in the weft, and the final finished fabric has a warp density of 280 / 2.54 cm and a weft density of 240 / 2. It was woven to be 0.54 cm.
  • the obtained gray fabric was dyed in the same manner as in Example 1, and the physical properties of the fabric were measured.
  • the tear strength in the weft direction of the fabric was below 6.0 N, which was insufficient as a down jacket. Table 1 shows the measurement results.
  • Example 3 A woven fabric with a ripstop structure using the same warp and weft as in Example 1 was woven so that the final finished fabric had a warp density of 291 threads/2.54 cm and a weft density of 236 threads/2.54 cm.
  • the obtained gray fabric was dyed in the same manner as in Example 1, and the physical properties of the fabric were measured. The fabric thus obtained had a hard texture when bent. Table 1 shows the measurement results.
  • nylon 6 chips having a sulfuric acid relative viscosity of 2.8 and containing no titanium oxide were melted at 282° C. and discharged from a spinneret (round hole). Directly below the surface of the spinneret, steam set at 285°C is blown onto each filament discharged from the spinneret to set the ambient temperature to 285°C, and cooling air at 18°C is blown inward from the outside at a wind speed of 20 m/min. The yarn is passed through an annular cooling device to cool and solidify to room temperature.
  • each filament is converged to form a multifilament, and after being entangled, it is drawn at a drawing ratio of 1.95 through a drawing roller heated to 170°C at a take-up roller speed of 2300 m/min. , to obtain a nylon 6 multifilament of 22 dtex and 20 filaments.
  • nylon 6 chips with a sulfuric acid relative viscosity of 2.8 and containing no titanium oxide were melted at 282°C and discharged from a spinneret (round hole).
  • Steam set at 285°C is blown to each filament discharged from the spinneret to set the atmospheric temperature to 285°C, and an annular cooling device blows cooling air at 18°C inward from the outside at a wind speed of 20 m/min.
  • the yarn is passed through and cooled to room temperature to solidify.
  • each filament is converged to form a multifilament, and after being entangled, it is drawn at a drawing ratio of 1.95 through a drawing roller heated to 170°C at a take-up roller speed of 2300 m/min. , to obtain a nylon 6 multifilament of 22 dtex and 24 filaments.
  • the obtained 22 dtex, 20 filament nylon 6 multifilament was used as the warp, and the 22 dtex, 24 filament nylon 6 multifilament was used as the weft.
  • the fabric was woven to a density of 153 strands/2.54 cm.
  • the obtained gray fabric was dyed in the same manner as in Example 1, and the physical properties of the fabric were measured.
  • the resulting fabric has a stiff texture, initial air permeability and post-washing air permeability exceeding 1.0 cc/cm 2 /s. It exceeded and was insufficient as a down jacket. It was insufficient as a down jacket.
  • the measurement results are shown in the table below.
  • Comparative Example 5 A plain weave fabric using the same warp and weft as in Comparative Example 4 was woven so that the final finished fabric had a warp density of 204/2.54 cm and a weft density of 160/2.54 cm.
  • the obtained gray fabric was dyed in the same manner as in Example 1, and the physical properties of the fabric were measured.
  • the fabric thus obtained had a hard texture when bent. The measurement results are shown in the table below.
  • nylon 6 chips having a sulfuric acid relative viscosity of 2.8 and containing no titanium oxide were melted at 282° C. and discharged from a spinneret (round hole). Directly below the surface of the spinneret, steam set at 285°C is blown onto each filament discharged from the spinneret to set the ambient temperature to 285°C, and cooling air at 18°C is blown inward from the outside at a wind speed of 20 m/min. The yarn was passed through an annular cooling device to cool and solidify to room temperature.
  • each filament is converged to form a multifilament, and after being entangled, it is drawn at a drawing ratio of 1.82 times through a draw roller heated to 170°C at a take-up roller speed of 2400 m/min. , to obtain a nylon 6 multifilament of 15 dtex and 20 filaments.
  • Example 2 The same warp as in Example 1 and the 15 dtex, 20 filament nylon 6 multifilament obtained here are arranged in the weft, and the final finished fabric has a warp density of 280 / 2.54 cm and a weft density of 220 / 2. It was woven to be 0.54 cm.
  • the obtained gray fabric was dyed in the same manner as in Example 1, and the physical properties of the fabric were measured.
  • the resulting fabric had a stiff texture, and the initial/post-washing air permeability exceeded 1.0 cc/cm 2 /s (cm 3 /cm 2 /s), which was insufficient as a down jacket.
  • the number of missing down strands of the down jacket also exceeded 50, which is the acceptance criterion, and was insufficient as a down jacket.
  • the measurement results are shown in the table below.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Woven Fabrics (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

The present invention provides a lightweight and thin woven fabric that has a soft feeling suitable for windbreakers, down jackets, and the like, and that has excellent wind-breaking properties. To this end, the present invention provides a woven fabric which comprises a polyamide multi-filament and is of a plain-weave structure, said woven fabric being characterized in that the overall fineness of the multi-filament is not more than 17 dtex for both warp and weft, the single-strand fineness of the multi-filament is not more than 0.7 dtex for warp and/or weft, the fabric breakdown thread strength is not less than 4.5 cN/dtex, and the cover factor is not less than 1,700.

Description

織物およびそれを用いた衣料Textiles and clothing using them
 本発明は織物に関するものである。 The present invention relates to textiles.
 産業資材やスポーツ衣料用途などに用いられる軽量、薄地織物には広くナイロン系繊維が使用されている。ナイロン系繊維が多く利用されている理由として一般的にポリエステルよりもデシテックス当りの破断強度が高いことが挙げられ、特にウィンドブレーカーやダウンジャケットには、軽量で薄地かつ防風性に優れた生地が要求されている。生地の破断を防ぎつつ、防風性に優れ、中綿やダウンの吹き出しを抑制するために、織物強度が高く、通気性の低い生地が要求される。特に近年のダウンジャケットは、製品の軽量化やキルト部分の豊かな膨らみを表現できる理由から、表地と裏地の間にダウンパックを用いずに、直接ダウンを封入する手法が多く取られており、より一層のダウン抜け性能の向上が表裏の側地に要求される。  Nylon-based fibers are widely used for lightweight and thin fabrics used for industrial materials and sports clothing. The reason why nylon fibers are widely used is that they generally have higher breaking strength per decitex than polyester. Windbreakers and down jackets in particular require lightweight, thin, and windproof fabrics. It is A fabric with high fabric strength and low air permeability is required in order to prevent breakage of the fabric, have excellent wind resistance, and suppress the blowing out of batting and down. In recent years, down jackets in particular have adopted a method of directly enclosing down without using a down pack between the outer material and the lining, because it is possible to reduce the weight of the product and express the rich swelling of the quilted part. Further improvement in down shedding performance is required for the front and back sides.
 また最近では、単に通気性が低いだけでなく、より軽量なものや、風合いがやわらかく、意匠性やファッション性の高い生地が求められている。しかし、生地を軽量化するためには、生地の厚さを薄くしたり、織物を構成するマルチフィラメントの繊度を小さくしなければならず、生地の引裂強力を維持することが難しかった。 Recently, there is a demand for fabrics that are not only low in breathability, but also lighter in weight, have a soft texture, and are highly designed and fashionable. However, in order to reduce the weight of the fabric, it is necessary to reduce the thickness of the fabric or reduce the fineness of the multifilament that constitutes the fabric, making it difficult to maintain the tear strength of the fabric.
 要求達成のため、ナイロンの11~33dtex クラスの繊維を用いた高密度織物を使用し、引裂き強度を上げるために、織物組織をリップストップ組織にする場合が多い。リップストップ組織とは、ベースの組織とは別に、縦糸及び緯糸を2本以上並び組織にするもので、リップストップ組織を使用することで織物が引き裂かれる時の応力集中を軽減し、生地の引裂強力を向上することができる。従来技術では当該要求を満たす織物の組織はリップストップ組織に限定され、次の課題を有していた。 In order to achieve the requirements, high-density fabrics using 11-33dtex class nylon fibers are used, and the fabric structure is often a ripstop structure to increase tear strength. A ripstop structure is a structure in which two or more warp and weft threads are arranged separately from the base structure.The use of a ripstop structure reduces stress concentration when the fabric is torn, preventing the fabric from tearing. Strength can be improved. In the prior art, the fabric weave that satisfies this requirement is limited to a ripstop weave, and has the following problems.
 リップストップ組織は、ベース組織より太い繊度の糸を織物中に配列していることから、生地の風合いが曲げ硬くなったり、織物構造中に空隙が発生することで防風性の低下及びダウンや中綿の吹き出しの原因となる。該リップストップ組織の生地を使用した縫製品について、洗濯時に生地が揉まれた際、織物構造中の空隙が拡大することにより、防風性の低下やダウンや中綿の吹き出し増加の現象がより顕著となる場合もある。 Since the ripstop structure has threads with a fineness that is thicker than the base structure, the texture of the fabric becomes stiff when bending, and voids occur in the fabric structure, resulting in a decrease in wind resistance, down, and batting. causes blowouts. When the fabric of the ripstop structure is kneaded during washing, the voids in the fabric structure expand, resulting in a decrease in wind resistance and an increase in blowout of down or batting. Sometimes it becomes.
 また、リップストップ組織の織物は補強糸が格子状や筋状に見えるため審美性に欠ける場合があり、縫製品の用途やデザインが限定されていた。 In addition, woven fabrics with a ripstop structure may lack aesthetics because the reinforcing threads look like lattices or streaks, and the applications and designs of sewn products were limited.
 特許文献1には、優れた引裂強力を備えた軽量薄地織物が開示されているが、織物組織は実施例・比較例いずれもリップストップ組織を必須とする発明である。また、請求項及び実施例に記載の生地の柔軟性(KESによる曲げ剛性)について、いずれも曲げ硬い生地であるという問題を有していた。 Patent Document 1 discloses a lightweight thin fabric with excellent tear strength, but the fabric structure of both Examples and Comparative Examples is an invention that requires a ripstop structure. Moreover, regarding the flexibility (bending rigidity by KES) of the fabrics described in the claims and examples, there was a problem that the fabrics were all hard to bend.
 特許文献2の実施例2には経緯にナイロン22dtexを使用した平織組織の織物が開示されているが、密度の粗い織物であり、カバーファクターが1600に満たず、洗濯後の通気度、つまりは防風性能及びダウン抜け性能として十分なものは開示されていない。 Example 2 of Patent Document 2 discloses a woven fabric with a plain weave structure using nylon 22dtex in the background, but it is a woven fabric with a coarse density, the cover factor is less than 1600, and the air permeability after washing, that is, There is no disclosure of sufficient windproof performance and down shedding performance.
特開2005-48298号公報JP-A-2005-48298 特開2013-245423 号公報Japanese Patent Application Laid-Open No. 2013-245423
 本発明は、上記の従来技術を用いたリップストップ組織を用いた織物に関する種々課題を解決するため、特定の繊度、単糸細繊度のマルチフィラメントを使用した平織高密度設計とすることで、ウィンドブレーカーやダウンジャケット等に好適な柔軟な風合いかつ防風性に優れた軽量薄地織物を提供する。 In order to solve the various problems related to the woven fabric using the ripstop structure using the above-mentioned conventional technology, the present invention is a plain weave high density design using multifilaments of specific fineness and single fine fineness. To provide a lightweight thin woven fabric suitable for a breaker, a down jacket, etc., having a soft touch and excellent wind resistance.
 本発明者らは上記課題を解決するために鋭意検討した結果、本発明に到達した。即ち本発明は下記の構成からなる。 The present inventors arrived at the present invention as a result of intensive studies to solve the above problems. That is, the present invention consists of the following configurations.
 (1)ポリアミドマルチフィラメントからなる平織組織の織物であって、該マルチフィラメントの繊度が経緯共に17dtex以下、経緯少なくともどちらかの該マルチフィラメントは、単糸繊度が0.7dtex以下であり、かつ、生地分解糸強度が4.5cN/dtex以上であり、カバーファクターが1700以上である織物。 (1) A plain weave fabric made of polyamide multifilaments, wherein the fineness of the multifilament is 17 dtex or less in both weft and weft, and the single filament fineness of at least one of the multifilaments is 0.7 dtex or less, and A woven fabric having a fabric decomposition yarn strength of 4.5 cN/dtex or more and a cover factor of 1700 or more.
 (2)該織物の引裂強力が経緯いずれも6N以上である前記(1)に記載の織物。 (2) The woven fabric according to (1) above, wherein the tear strength of the woven fabric is 6 N or more in both longitudinal and longitudinal directions.
 (3)初期通気度及び洗濯後の通気度が1cm/cm/s以下である前記(1)または(2)に記載の織物。 (3) The woven fabric according to (1) or (2), which has an initial air permeability and air permeability after washing of 1 cm 3 /cm 2 /s or less.
 (4)KESによる曲げ剛性が0.008gf・cm/cm以下である前記(1)~(3)のいずれかに記載の織物。 (4) The woven fabric according to any one of (1) to (3), which has a KES flexural rigidity of 0.008 gf·cm 2 /cm or less.
 (5)前記(1)~(4)のいずれかに記載の織物を用いた衣料。 (5) Clothing using the fabric according to any one of (1) to (4) above.
 本発明により、柔軟な風合い、防風性に優れ、さらには引裂強力に優れた織物を提供することが可能となる。 According to the present invention, it is possible to provide a woven fabric that has a soft feel, excellent wind resistance, and excellent tear strength.
 本発明の織物は、柔軟な風合いを実現しながら軽量かつダウン及び/または中綿を織物間に含んだ場合に、その吹き出しを抑制することができる織物であり、特にダウンジャケットの側地に好適に用いることができる。 INDUSTRIAL APPLICABILITY The woven fabric of the present invention is a woven fabric that is lightweight while realizing a soft texture and that can suppress blow-out when down and/or batting is included between the woven fabrics, and is particularly suitable for the side fabric of a down jacket. can be used.
 <織物組織>
 織物組織については、防風性に優れ、中綿やダウンの吹き出しを抑制するため、通気度の低い生地が要求され、平織組織を用いる。平織組織以外の綾組織、朱子組織では、経糸の浮きが多く糸の交錯点が少ないため、通気度を抑えることが難しく、防風性及びダウン抜けの観点から好ましくない。また、平織組織を一部変化させたリップストップ組織は、引裂強力を向上するために有効な組織であるが、ベース組織より太い繊度の糸を織物中に配列していることから、生地が曲げ硬くなったり、織物構造中に空隙が発生することで防風性の低下及びダウンや中綿の吹き出しが起こりやすい。また、リップストップ組織の生地を使用した縫製品について、洗濯時に生地が揉まれた際、織物構造中の空隙が拡大することにより、防風性の低下やダウンや中綿の吹き出し増加の現象がより顕著となるため好ましくない。
<Textile structure>
As for the woven fabric, a fabric with low air permeability is required in order to have excellent wind resistance and to suppress the blowing out of filling and down, and a plain weave fabric is used. Twill weaves and satin weaves other than plain weaves are not preferable from the viewpoints of wind resistance and down shedding because the warp yarns float a lot and the yarn crossing points are few. In addition, the ripstop structure, which is a partially modified plain weave structure, is an effective structure for improving tear strength. Hardening and formation of voids in the woven structure tend to reduce the wind resistance and blow out the down or batting. In addition, for sewn products using ripstop fabric, when the fabric is kneaded during washing, the voids in the fabric structure expand, resulting in a decrease in wind resistance and an increase in the blowing out of down and batting. It is not preferable because
 <繊度・フィラメント数>
 本発明の織物におけるマルチフィラメントの総繊度は経緯共に17dtex以下である。総繊度が17dtexを超えると織物が曲げ硬くなりやすいため好ましくない。また、織物の引裂強力を保持するため、5dtex以上が好ましい。
<Fineness/number of filaments>
The total fineness of the multifilament in the woven fabric of the present invention is 17 dtex or less both in the weft and weft. If the total fineness exceeds 17 dtex, the woven fabric tends to be stiff when bending, which is not preferable. Moreover, it is preferably 5 dtex or more in order to maintain the tear strength of the fabric.
 また、経緯少なくともどちらかのマルチフィラメントの単糸繊度が0.7dtex以下である。単糸繊度が0.7dtexを超えると、通気度及び洗濯後の通気度を抑えることが難しいだけでなく、織物が曲げ硬くなるため好ましくない。また、染色性及び紡糸時の操業性の点から、単糸繊度は0.3dtex以上が好ましい。 In addition, the single filament fineness of at least one of the multifilaments in the weft and weft is 0.7 dtex or less. If the single yarn fineness exceeds 0.7 dtex, not only is it difficult to suppress the air permeability and the air permeability after washing, but the woven fabric becomes stiff when bending, which is not preferable. From the standpoint of dyeability and workability during spinning, the single yarn fineness is preferably 0.3 dtex or more.
 <原糸強度>
 本発明の織物における総繊度17dtex以下かつ単糸繊度が0.7dtex以下のマルチフィラメントについて、マルチフィラメント紡糸後、生機におけるマルチフィラメントの強度が6cN以上であることが好ましい。
<Yarn strength>
Regarding the multifilament having a total fineness of 17 dtex or less and a single filament fineness of 0.7 dtex or less in the woven fabric of the present invention, it is preferable that the strength of the multifilament in the gray fabric after multifilament spinning is 6 cN or more.
 また生機に精練、染色等した本発明の織物から分解した糸の強度、すなわち、生地分解糸強度については以下のとおりである。すなわち本発明においては、経糸、緯糸の少なくとも一方に用いられている単糸繊度が0.7dtex以下であるマルチフィラメントの生地分解糸強度が4.5cN/dtex以上であることが必要であるが、経糸、緯糸ともに、生地分解糸強度が4.5cN/dtex以上であることが好ましい。 In addition, the strength of the yarn decomposed from the fabric of the present invention that has been scoured and dyed on the gray fabric, that is, the strength of the decomposed yarn of the fabric, is as follows. That is, in the present invention, the strength of the multifilament used for at least one of the warp and the weft and having a single yarn fineness of 0.7 dtex or less is required to be 4.5 cN/dtex or more, It is preferable that both the warp and the weft have a fabric decomposition yarn strength of 4.5 cN/dtex or more.
 織物に用いるマルチフィラメントの細繊度化、単糸細繊度化に伴いマルチフィラメント(以下、原糸ということがある)強度は低下し、織物引裂強力も低下する傾向にあるが、原糸強度を高くするために、例えば特許文献1、特許文献2においては、酸化チタン等の顔料を含まないこと、固相重合等によりポリアミドチップの重合度(粘度)を高くする手法等が主に用いられてきた。しかしながら、これら従来の手法だと、十分な原糸強度は得られない。そこで、本発明においては、生地分解糸強度を4.5cN/dtex以上とすベく、繊維構造を緻密に制御できる製糸条件として、例えば以下に記載の製造工程とすることで、原糸強度6cN/dtex以上の高強度化原糸や、生地分解糸強度4.5cN/dtex以上の強度低下が抑制されたポリアミドマルチフィラメントを得ることができる。 The multifilament (hereinafter sometimes referred to as raw yarn) strength decreases as the fineness of the multifilament used for textiles and the fineness of single yarn decrease, and the fabric tear strength tends to decrease, but the yarn strength tends to increase. In order to do so, for example, in Patent Documents 1 and 2, techniques such as not containing pigments such as titanium oxide and increasing the degree of polymerization (viscosity) of polyamide chips by solid-phase polymerization or the like have been mainly used. . However, with these conventional methods, sufficient fiber strength cannot be obtained. Therefore, in the present invention, in order to set the fabric decomposition yarn strength to 4.5 cN / dtex or more, as a yarn making condition that can precisely control the fiber structure, for example, by using the manufacturing process described below, the original yarn strength is 6 cN It is possible to obtain a high-strength raw yarn with a strength of 4.5 cN/dtex or more and a polyamide multifilament with a strength reduction of 4.5 cN/dtex or more.
 <原糸伸度>
 また、経糸、緯糸ともにマルチフィラメントの伸度は30~50%であることが好ましい。原糸強度を高くするために、産業用ポリアミド繊維においては、伸度を30%未満とすることが主に用いられている。しかしながら、衣料用ポリアミド繊維の場合、伸度が低くなればなるほど曲げ剛性が高くなる。そのため、伸度を30%以上とすることが好ましく、これにより、織物の曲げ剛性をより低くすることができる。
<Yarn elongation>
Further, it is preferable that the elongation of the multifilament is 30 to 50% for both the warp and the weft. In order to increase the yarn strength, the elongation of less than 30% is mainly used in industrial polyamide fibers. However, in the case of polyamide fibers for clothing, the lower the elongation, the higher the bending stiffness. Therefore, it is preferable to set the elongation to 30% or more, so that the flexural rigidity of the woven fabric can be further reduced.
 <ポリアミド>
 本発明で用いるポリアミドマルチフィラメントを構成するポリアミドは、いわゆる炭化水素基が主鎖にアミド結合を介して連結された高分子量体からなる樹脂である。かかるポリアミドは、製糸性、機械特性に優れている。ポリアミドの具体例としては、主としてポリカプロアミド(ナイロン6)、ポリヘキサメチレンアジパミド(ナイロン66)が好ましく挙げられる。
<Polyamide>
The polyamide constituting the polyamide multifilament used in the present invention is a resin composed of a high molecular weight body in which a so-called hydrocarbon group is linked to the main chain via an amide bond. Such polyamides are excellent in spinnability and mechanical properties. Preferred examples of polyamides include mainly polycaproamide (nylon 6) and polyhexamethylene adipamide (nylon 66).
 高強度化を実現するためには、酸化チタンに代表される艶消し剤など各種添加剤を含有しないことが好ましいが、染色工程での熱履歴に伴う強度低下を抑制するために耐熱剤などは必要に応じて含有していてもよい。また、ポリアミドチップの重合度は、98%硫酸相対粘度で2.5~4.0であることが、原糸強度の観点から好ましい。 In order to achieve high strength, it is preferable not to contain various additives such as matting agents represented by titanium oxide, but heat resistant agents etc. are not included in order to suppress strength reduction due to heat history in the dyeing process. It may be contained as necessary. Moreover, the degree of polymerization of the polyamide chips is preferably 2.5 to 4.0 in 98% sulfuric acid relative viscosity, from the viewpoint of fiber strength.
 <製糸プロセス>
 本発明のポリアミドマルチフィラメントは、本発明で規定する範囲を満たすフィラメントが製造できる限りにおいて、公知の溶融紡糸装置で製造できるが、高強度化のためには、直接延伸紡糸法による製造プロセスで製造することが好ましい。基本的な工程を例示すると、ポリアミド樹脂を溶融し、ポリアミドポリマーをギヤポンプにて計量・輸送し、紡糸口金に設けられた吐出孔から最終的に押し出し、各フィラメントを形成する。紡糸口金から吐出された各フィラメントに、冷却装置によって冷却風を吹きあてることにより糸条を室温まで冷却固化する。その後、給油装置で油剤付与するとともに各フィラメントを集束しマルチフィラメントを形成し、流体交絡ノズル装置で交絡し、引き取りローラー、延伸ローラーを通過する。その際引き取りローラーと延伸ローラーの周速度の比に従って延伸する。さらに、糸条を延伸ローラーの加熱により熱処理し、巻取装置で巻き取ることでポリアミドマルチフィラメントを製造することができる。
<Yellow process>
The polyamide multifilament of the present invention can be produced by a known melt spinning apparatus as long as filaments satisfying the range specified by the present invention can be produced. preferably. Exemplifying the basic process, a polyamide resin is melted, the polyamide polymer is metered and transported by a gear pump, and finally extruded through a discharge hole provided in a spinneret to form each filament. The filaments discharged from the spinneret are cooled and solidified to room temperature by blowing cooling air from a cooling device to each filament. After that, the multifilament is fed with oil by an oiling device and bundled to form a multifilament, entangled by a fluid entangling nozzle device, and passed through a take-up roller and a drawing roller. At that time, the film is drawn according to the ratio of the peripheral speeds of the take-up roller and the drawing roller. Furthermore, a polyamide multifilament can be produced by heat-treating the yarn by heating the drawing roller and winding it with a winding device.
 <雰囲気温度>
 上記直接延伸紡糸法による製造プロセスにおいて、口金面直下を積極的に加熱し、雰囲気温度を250~300℃にすることが好ましい。これにより、紡糸時に吐出されたポリアミドポリマーを、熱劣化させることが少なく、配向緩和させることができる。口金面から冷却までの徐冷による配向緩和によって高強度化を実現することができる。さらに好ましくは285~300℃である。
<Ambient temperature>
In the production process by the above-described direct draw spinning method, it is preferable to positively heat directly below the surface of the spinneret so that the ambient temperature is 250 to 300°C. As a result, the orientation of the polyamide polymer extruded during spinning is less likely to be degraded by heat, and the orientation can be relaxed. High strength can be realized by relaxation of orientation by slow cooling from the die surface to cooling. More preferably, it is 285 to 300°C.
 <均一冷却:環状冷却装置>
 上記プロセスにおいて、冷却装置は、外周側から中心側に向けて冷却整流風を吹き出す環状冷却装置、あるいは中心側から外周に向けて冷却整流風を吹き出す環状冷却装置を用いることが好ましい。また、冷却風吹出し面から吹き出される冷却風速は、冷却吹出し部上端面から下端面までの区間の平均で20.0~40.0(m/min)の範囲にあることが糸の高強度化の点から好ましい。
<Uniform cooling: annular cooling device>
In the above process, the cooling device preferably uses an annular cooling device that blows out rectified cooling air from the outer periphery toward the center, or an annular cooling device that blows out rectified cooling air from the center toward the outer periphery. In addition, the cooling air speed blown from the cooling air blowing surface is in the range of 20.0 to 40.0 (m / min) on average in the section from the upper end surface to the lower end surface of the cooling blowing part. It is preferable from the point of view of conversion.
 <熱セット温度>
 上記プロセスにおいて、延伸ローラーを加熱ローラーとして熱処理を施すことが好ましく、熱処理温度は150~190℃であることが好ましい。熱処理温度を高くすると繊維の結晶化が促進されるので高強度化を実現することができる。さらには、染色工程での熱履歴に伴う強度低下を抑制することができる。好ましくは、165~180℃である。
<Heat set temperature>
In the above process, heat treatment is preferably performed using the stretching roller as a heating roller, and the heat treatment temperature is preferably 150 to 190°C. When the heat treatment temperature is raised, the crystallization of the fiber is promoted, so high strength can be achieved. Furthermore, it is possible to suppress a decrease in strength due to heat history in the dyeing process. Preferably, it is 165-180°C.
 <カバーファクター>
 本発明の織物のカバーファクターは、1700以上である。上限としては2000が好ましい。カバーファクターが1700未満であれば織物はさらに柔らかく、薄くなるが、通気度を抑えることが難しくなり、本発明の目的を満足しない。カバーファクターが2000以下であることで、通気度は低く抑えられ、かつ織物は薄く、曲げ硬くなりすぎることがないので好ましい。また、経緯17dtex以下の糸を使用してカバーファクター2000以下の織物を製織することで、織機部品である筬やヘルドの密度は高密度となりすぎず、製織時の経糸毛羽や経糸切れ等のトラブルが極めて少なく、織物の品位に優れ、また緯糸打込み密度も相応の範囲となるので生産性にも優れる点で好ましい。
<Cover factor>
The fabric of the present invention has a cover factor of 1700 or higher. 2000 is preferable as the upper limit. If the cover factor is less than 1700, the woven fabric will be softer and thinner, but it will be difficult to suppress air permeability, and the object of the present invention will not be satisfied. A cover factor of 2000 or less is preferable because the air permeability is kept low and the woven fabric is thin and does not become excessively stiff when bent. In addition, by weaving a woven fabric with a cover factor of 2000 or less using yarns of 17 dtex or less for warp and weft, the density of the reeds and healds, which are loom parts, does not become too high, and troubles such as warp fluff and warp breakage during weaving. is extremely small, the quality of the woven fabric is excellent, and the weft yarn driving density is within a suitable range, so that the productivity is also excellent.
 <引裂強力>
 本発明の織物はペンジュラム法による引裂強力が経緯共に6N以上であることが好ましく、6~15Nの範囲がより好ましい。6N以上であることで、縫製品着用時の突起物による突き刺しによる破れ、縫製部分への加重集中や引っ掛け等による引裂が発生しにくい点で好ましい。また、経緯の総繊度を17dtex以下のポリアミドマルチフィラメントを用いた平織組織の織物であることから、引裂強力としては強くて15N程度である。
<Tear strength>
The woven fabric of the present invention preferably has a tear strength of 6 N or more, more preferably 6 to 15 N, in both the longitudinal and longitudinal directions by the pendulum method. A tensile strength of 6 N or more is preferable in that tearing due to piercing by a projection when the sewn product is worn, and tearing due to concentration of load on the sewn portion, hooking, etc., are unlikely to occur. In addition, since the fabric has a plain weave structure using polyamide multifilaments with a total warp and weft fineness of 17 dtex or less, the tear strength is about 15 N at the highest.
 <通気度>
 本発明の織物の初期通気度は1cc/cm/s(cm/cm/s)以下であることが好ましく、より好ましくは0.8cc/cm/s(cm/cm/s)以下、更に好ましくは0.5cc/cm/s(cm/cm/s)以下である。通気度が1cc/cm/s(cm/cm/s)以下であることで、中綿やダウンの吹き出し発生がより高度に抑制される。特にダウンジャケットは表地と裏地の間にダウンパックを用いずに、直接ダウンを封入する手法が近年多く取られており、生地の通気度を抑制することによるダウン抜け性能向上が好ましい。
<Permeability>
The initial air permeability of the woven fabric of the present invention is preferably 1 cc/cm 2 /s (cm 3 /cm 2 /s) or less, more preferably 0.8 cc/cm 2 /s (cm 3 /cm 2 /s). ) or less, more preferably 0.5 cc/cm 2 /s (cm 3 /cm 2 /s) or less. When the air permeability is 1 cc/cm 2 /s (cm 3 /cm 2 /s) or less, the occurrence of blowing out of batting or down is suppressed to a greater extent. In particular, in recent years, many down jackets have adopted a method of enclosing the down directly without using a down pack between the outer material and the lining, and it is preferable to improve the ability to remove the down by suppressing the air permeability of the fabric.
 本発明者らは製品の実用上、縫製品を新品で販売する際の生地通気度、すなわち生地の初期通気度だけでなく、縫製品を家庭やクリーニング店で洗濯することにより製品が揉まれ、織物の交錯点が動いて偏ることによる通気度低下、すなわち洗濯後の通気度を抑制する生地設計も望ましいと考えた。製品を着用した際の人の動きへの追従の繰り返しや、登山用のダウンジャケットを小さく圧縮して折り畳んでの持ち運び等、生地に折り曲げの力が加わるシーンは実用上多く、それを加味した生地のダウン抜け指標も望ましい観点である。 In terms of practical use of the product, the present inventors have not only measured the air permeability of the fabric when selling the sewn product as a new product, that is, the initial air permeability of the fabric, but also the product is rubbed by washing the sewn product at home or at a dry cleaning shop. We thought it would be desirable to design a fabric that would reduce the air permeability of the fabric due to uneven movement of the intersecting points of the fabric, that is, suppress the air permeability after washing. There are many practical situations where bending force is applied to the fabric, such as repeatedly following the movement of a person when wearing the product, or compressing and folding a down jacket for mountain climbing and carrying it. The down missing index is also a desirable viewpoint.
 本発明者らは、ダウン商品を1年に1回洗濯すると仮定し、5年の商品寿命を仮定した5回洗濯後の生地通気度を指標とし、「洗濯後の通気度」とした。本発明の織物の5回洗濯後の通気度は、初期通気度と同様に1cc/cm/s(cm/cm/s)以下であることが好ましく、より好ましくは0.8cc/cm/s(cm/cm/s)以下、更に好ましくは0.5cc/cm/s(cm/cm/s)以下であり、通気度が1cc/cm/s(cm/cm/s)以下であることにより中綿やダウンの吹き出し発生が高度に抑制されるのは前述の通りである。 The present inventors assumed that the down product was washed once a year, and used the air permeability of the fabric after 5 washes assuming a product life of 5 years as an index, and defined it as "post-wash air permeability". The air permeability of the fabric of the present invention after washing five times is preferably 1 cc/cm 2 /s (cm 3 /cm 2 /s) or less, more preferably 0.8 cc/cm, like the initial air permeability. 2 /s (cm 3 /cm 2 /s) or less, more preferably 0.5 cc/cm 2 /s (cm 3 /cm 2 /s) or less, and the air permeability is 1 cc/cm 2 /s (cm 3 /cm 2 /s) or less, the occurrence of blowing out of batting or down is highly suppressed as described above.
 <ダウン抜け本数>
 本発明のダウン抜け本数は50本以下であることが好ましく、より好ましくは15本以下である。ダウン抜け本数が50本以下であることにより、ダウンが充填された実製品の洗濯/着用/収納時のダウンの吹き出しが抑制され、製品の保温力低下や着脱時の他の衣類へのダウンの付着を防止することができる。なお、上記ダウン抜け本数は、後述の方法により測定される方法で評価される値である。
<Number of down missing pieces>
The number of down pull-outs in the present invention is preferably 50 or less, more preferably 15 or less. If the number of missing down strands is 50 or less, the blowing out of the down-filled actual product during washing/wearing/storage will be suppressed, resulting in a decrease in the product's heat-retaining power and down on other clothes when putting on and taking off. Adhesion can be prevented. The above-mentioned number of missing downs is a value evaluated by a method of measuring by a method described later.
 <KESによる曲げ剛性>
 本発明の織物のKESによる曲げ剛性は0.008gf・cm/cm以下であることが好ましく(1gf=0.0098N=9.8mN)、より好ましくは0.006gf・cm/cm(0.0558mN・cm/cm)以下である。KESによる曲げ剛性が0.008gf・cm/cm(0.0784mN・cm/cm)以下であることにより、織物は曲げ硬さがよりいっそう小さくなり、製品にダウンを充填した際のキルト部分の膨らみが非常に好ましい態様となる。
<Bending stiffness by KES>
The KES flexural rigidity of the woven fabric of the present invention is preferably 0.008 gf·cm 2 /cm or less (1 gf = 0.0098 N = 9.8 mN), more preferably 0.006 gf · cm 2 /cm (0.0098 N = 9.8 mN). 0558 mN·cm 2 /cm) or less. With a KES flexural rigidity of 0.008 gf·cm 2 /cm (0.0784 mN·cm 2 /cm) or less, the woven fabric has a much smaller flexural stiffness, and the quilted portion when the product is filled with down. bulge is a very preferred embodiment.
 <引裂強力・曲げ剛性・通気度の両立>
 織物の風合いを柔らかく保ったまま通気度を抑制する手段としては、使用する糸の単糸繊度を細くする手段が一般的に知られているが、単糸繊度を細くすることは原糸強力の低下に繋がり、織物の引裂強力を低下させる場合が多い。引裂強力を向上させる手段としては使用する糸の単糸繊度を太くする、または織密度を下げることが知られているが、単糸繊度を上げると生地は曲げ硬くなり、織密度を下げると通気度が大きくなりダウンジャケット用織物に好適でなくなる。特に本発明のような17dtex以下の原糸を使用した薄地織物において、柔らかな風合い・通気度・引裂強力の3点のバランスをとることは難しい。本発明においてこの3点を同時に達成する手段として、前述の高強力原糸を使用することで織物中の糸強度を確保し、かつフィラメント数(単糸繊度)・カバーファクターを上記に記載の範囲とすることで、実着用でも上述の優れた性能を付与できる引裂強力である6.0N以上を備え、初期通気度・洗濯後の通気度ともに1.0cc/cm/s(cm/ cm/s)以下に抑制され、曲げ剛性が0.0080gf・cm/cm以下である織物を得ることができる。
<Combination of tear strength, bending rigidity, and air permeability>
As a means of suppressing the air permeability while maintaining the soft texture of the fabric, it is generally known to reduce the single yarn fineness of the yarn used, but reducing the single yarn fineness reduces the strength of the raw yarn. In many cases, the tear strength of the fabric is lowered. It is known that increasing the single yarn fineness of the yarn used or lowering the weaving density is a known means of improving tear strength, but increasing the single yarn fineness makes the fabric bending stiffer, and lowering the weaving density makes it more breathable. It becomes unsuitable for fabrics for down jackets. In particular, it is difficult to balance the three points of soft feel, air permeability, and tear strength in thin fabrics using raw yarns of 17 dtex or less as in the present invention. In the present invention, as a means for achieving these three points at the same time, the above-mentioned high-strength yarn is used to ensure the yarn strength in the fabric, and the number of filaments (single yarn fineness) and cover factor are within the ranges described above. By doing so, it has a tear strength of 6.0 N or more, which can provide the above-mentioned excellent performance even when actually worn, and both the initial air permeability and the air permeability after washing are 1.0 cc/cm 2 /s (cm 3 / cm 2 /s) or less, and a woven fabric having a flexural rigidity of 0.0080 gf·cm 2 /cm or less can be obtained.
 本発明の織物は、衣料、中でもウィンドブレーカーやダウンジャケット等のスポーツ用衣料、またテント、寝袋、帆布等の資材用途等に好適に使用できる。 The woven fabric of the present invention can be suitably used for clothing, especially sports clothing such as windbreakers and down jackets, as well as material applications such as tents, sleeping bags, and canvas.
 実施例により更に具体的に説明する。しかしながら、本発明はこれら実施例により何ら限定されるものではない。 A more specific explanation will be given with an example. However, the present invention is by no means limited by these examples.
 実施例で用いた、評価測定方法は以下の通りである。 The evaluation and measurement methods used in the examples are as follows.
 (1)総繊度・単糸繊度
 [繊度]
 (原糸の繊度)
 枠周1.125mの検尺機に繊維試料を、1/30cN×表示デシテックスの張力で400回巻き、かせを作成する。105℃で60分乾燥しデシケーターに移し、20℃55RH環境下で30分放冷し、かせの質量を測定して得られた値から10000m当たりの質量を算出し、ナイロン6の場合は公定水分率を4.5%として繊維の総繊度を算出した。測定は4回行い、平均値を総繊度とした。また、得られた総繊度をフィラメント数で割り返した値を単糸繊度とした。
(1) Total fineness/single filament fineness [fineness]
(fineness of raw yarn)
A fiber sample is wound 400 times on a measuring machine with a frame circumference of 1.125 m under a tension of 1/30 cN×indicated decitex to prepare a skein. Dried at 105°C for 60 minutes, transferred to a desiccator, left to cool in an environment of 20°C and 55RH for 30 minutes, measured the mass of the skein, calculated the mass per 10,000 m, and in the case of nylon 6, the official moisture content. The total fineness of the fibers was calculated with a ratio of 4.5%. The measurement was performed 4 times, and the average value was taken as the total fineness. A value obtained by dividing the obtained total fineness by the number of filaments was taken as the single filament fineness.
 (生地分解糸の繊度)
 織物の経もしくは緯方向に100cm間隔で2本の線を引き、その線内の織物の経糸もしくは緯糸を分解する。次に、測定荷重を決めるために仮総繊度を算出する。得られた分解糸に、2gの荷重をかけ、2点間の長さ(Lcm)を測定後、2点間(Lcm)で切断、その重さ(Wg)を測定、下式により仮総繊度を算出した。次に、仮総繊度に対し、1/10g/dtex(0.098cN/dtex)の荷重をかけ、上記同様に2点間の長さ、重さを測定、下式により総繊度を算出した。
(fineness of fabric decomposed yarn)
Two lines are drawn at intervals of 100 cm in the warp or weft direction of the fabric, and the warp or weft of the fabric within the lines is separated. Next, the tentative total fineness is calculated to determine the measurement load. A load of 2 g is applied to the obtained decomposed yarn, the length between two points (L cm) is measured, then cut between two points (L cm), the weight (Wg) is measured, and the temporary total fineness is calculated by the following formula. was calculated. Next, a load of 1/10 g/dtex (0.098 cN/dtex) was applied to the temporary total fineness, the length and weight between two points were measured in the same manner as above, and the total fineness was calculated by the following formula.
 総繊度(織物分解糸)=W/L×100000(dtex)
 また、得られた総繊度をフィラメント数で割り返した値を単糸繊度(dtex)とした。
同様の測定を5回繰り返し、その平均を結果に記載した。
Total fineness (textile decomposed yarn) = W/L x 100000 (dtex)
A value obtained by dividing the obtained total fineness by the number of filaments was defined as a single yarn fineness (dtex).
Similar measurements were repeated 5 times, and the average was described in the results.
 (2)糸強度、伸度
 原糸、生地分解糸を、JIS L1013(2010)引張強さ及び伸び率に準じて、引張強さ-伸び曲線を描く。試験条件としては、試験機の種類は定速伸長形、つかみ間隔50cm、引張速度50cm/分にて行った。なお、切断時の引張強さが最高強さより小さい場合は、最高引張強さおよびそのときの伸びを測定した。
強度、伸度は、下記式にて求めた。
(2) Yarn strength and elongation Draw a tensile strength-elongation curve for raw yarn and fabric decomposed yarn according to JIS L1013 (2010) tensile strength and elongation rate. As for the test conditions, the type of tester was a constant speed elongation type, the grip interval was 50 cm, and the tensile speed was 50 cm/min. When the tensile strength at break was smaller than the maximum strength, the maximum tensile strength and elongation at that time were measured.
The strength and elongation were obtained by the following formulas.
 強度(cN/dtex)=切断時の引張強さ(cN)/繊度(dtex)
 伸度(%)=切断時の伸び(cm)/つかみ間隔(cm)×100
 (3)織密度
 織物の密度は、 JIS L1096(2010) 8.6.1に規定されている密度測定方法A法(JIS法)に準拠して測定した。
Strength (cN/dtex) = tensile strength at break (cN)/fineness (dtex)
Elongation (%) = Elongation at break (cm) / Grip interval (cm) x 100
(3) Weave Density The density of the woven fabric was measured according to the density measurement method A (JIS method) specified in JIS L1096 (2010) 8.6.1.
 (4)カバーファクター(CF)
 織物のCFは次式にて求めた。
(4) Cover factor (CF)
The CF of the woven fabric was determined by the following formula.
 CF=Dwp×(Fwp)1/2+Dwt×(Fwt)1/2
[式中、Dwpは織物の経密度(本/2.54cm)、Dwtは織物の緯密度(本/2.54cm)を示し、FwpおよびFwtは、織物を構成する経糸および緯糸の太さ(dtex)を表わす]。
CF = Dwp x (Fwp) 1/2 + Dwt x (Fwt) 1/2
[In the formula, Dwp is the warp density of the fabric (book/2.54 cm), Dwt is the weft density of the fabric (book/2.54 cm), and Fwp and Fwt are the thicknesses of the warp and weft that make up the fabric ( dtex)].
 (5)引裂強力
 織物の引裂強力はJIS L1096(2010) 8.17.4に規定されている引裂き強さD法(ペンジュラム法)に準拠して測定した。
(5) Tear strength The tear strength of the woven fabric was measured according to the tear strength D method (pendulum method) specified in JIS L1096 (2010) 8.17.4.
 (6)初期通気度/洗濯後通気度
 織物の初期通気度は、JIS L1096(2010) 8.26.1に規定されている通気性A法(フラジール形法)に準拠して測定した。
(6) Initial Air Permeability/Air Permeability After Washing The initial air permeability of the woven fabric was measured according to the air permeability method A (Fragile method) specified in JIS L1096 (2010) 8.26.1.
 また、洗濯後通気度はJIS L1930(2014) 付属書に定められている洗濯方法C4M法に従って5回洗濯を実施した後、吊り干し乾燥後、同様の方法で通気度を測定した。 In addition, the air permeability after washing was measured by the same method after washing 5 times according to the washing method C4M method specified in the appendix of JIS L1930 (2014), then hanging and drying.
 (7)KESによる曲げ剛性(KES曲げ剛性)
 織物の曲げ剛性は、カトーテック社製KES-FB2曲げ特性試験機を用いた。試験片は20cm×20cmを幅方向に少なくとも2点採取し、1cmの間隔のチャックに試料を把持して、曲率K=-2.5~+2.5の範囲で等速度曲率の純曲げ試験を実施した。試験方向は経糸が曲がる方向を経、緯糸が曲がる方向を緯とし、それぞれ3回行い、平均値を求め、各方向のKES曲げ剛性値とした。さらにその平均値をKES曲げ剛性値とした。
(7) Bending stiffness by KES (KES bending stiffness)
The flexural rigidity of the woven fabric was measured using a KES-FB2 flexural property tester manufactured by Kato Tech. At least two test pieces of 20 cm × 20 cm are sampled in the width direction, the sample is held in a chuck with an interval of 1 cm, and a constant velocity curvature pure bending test is performed in the range of curvature K = -2.5 to +2.5. carried out. The direction in which the warp bends is the warp direction, and the direction in which the weft yarn bends is the weft. Furthermore, the average value was taken as the KES bending stiffness value.
 (8)ダウン抜け本数
 実製品を仮定したダウン抜け性の評価としてGB/T 14272(2011)に規定された織物のダウン吹き出し評価に準拠してダウン抜け本数を測定した。ダウン吹き出し評価に使用するサンプルは上記評価方法の方法Bに準拠し、サンプルサイズは120×170mm(縫製後の試験袋のサイズ(縫い糸:家庭用13番)、充填量は30gの評価用サンプルを作製した。充填物の混合比率はダウン90%/フェザー10%、フィルパワー600以上のダウンを使用した。
(8) Number of pieces of down missing The number of pieces of down missing was measured in accordance with the evaluation of down blowing out of fabrics specified in GB/T 14272 (2011) as an evaluation of down shedding property assuming an actual product. The sample used for down blowout evaluation conforms to Method B of the above evaluation method, and the sample size is 120 x 170 mm (the size of the test bag after sewing (sewing thread: No. 13 for household use), and the filling amount is 30 g. The filling ratio was 90% down/10% feather, and down with a fill power of 600 or more was used.
 また、洗濯後のダウン抜け性はJIS L1930(2014) 付属書に定められている洗濯方法C4M法に従って織物について5回洗濯を実施した後、吊り干し乾燥後、ダウン吹き出し評価用サンプルを作製し、同様の方法でダウン抜け本数を測定した。 In addition, after washing, the fabric was washed 5 times according to the washing method C4M method specified in the appendix of JIS L1930 (2014). The number of down pullouts was measured in the same manner.
 [実施例1]
 ポリアミドとして、硫酸相対粘度2.8の酸化チタンを含まないナイロン6チップを282℃にて溶融し、紡糸口金(丸孔)より吐出させた。紡糸口金から吐出された各フィラメントに、口金面直下において285℃の蒸気を吹きつけ雰囲気温度を285℃とし、18℃の冷却風を20m/minの風速で外から内向きに冷却風を吹き出す環状冷却装置を通過させて糸条を室温まで冷却固化した。その後、紡糸油剤を付与するとともに各フィラメントを収束しマルチフィラメントを形成し、交絡を付与した後、引き取りローラー速度1700m/min、155℃に加熱した延伸ローラーを介して延伸倍率2.4倍で延伸、巻き取りを行い、11dtex、8フィラメントのナイロン6マルチフィラメントを得た。
[Example 1]
As polyamide, titanium oxide-free nylon 6 chips having a sulfuric acid relative viscosity of 2.8 were melted at 282° C. and discharged from a spinneret (round hole). Steam of 285°C is blown to each filament discharged from the spinneret directly below the surface of the spinneret to set the atmospheric temperature to 285°C, and cooling air of 18°C is blown inward from the outside at a wind speed of 20 m/min. The yarn was passed through a cooling device to cool and solidify to room temperature. After that, a spinning oil is applied, each filament is converged to form a multifilament, and after being entangled, it is drawn at a drawing ratio of 2.4 times through a drawing roller heated to 155°C at a take-up roller speed of 1700 m/min. , to obtain a nylon 6 multifilament of 11 dtex and 8 filaments.
 ポリアミドとして、硫酸相対粘度3.3、酸化チタンを含まないナイロン6チップを295℃で溶融し、紡糸口金(丸孔)より吐出させた。紡糸口金から吐出された各フィラメントに、口金面直下において290℃に設定した蒸気を吹きつけ雰囲気温度290℃とし、18℃の冷却風を15m/minの風速で外から内向きに冷却風を吹き出す環状冷却装置を通過させて糸条を室温まで冷却固化した。その後、紡糸油剤を付与するとともに各フィラメントを収束しマルチフィラメントを形成し、交絡を付与した後、引き取りローラー速度2700m/min、170℃に加熱した延伸ローラーを介して延伸倍率1.52倍で延伸、巻き取りを行い、11dtex、24フィラメントのナイロン6マルチフィラメントを得た。 As the polyamide, nylon 6 chips having a sulfuric acid relative viscosity of 3.3 and containing no titanium oxide were melted at 295°C and discharged from a spinneret (round hole). A steam set at 290°C is blown to each filament discharged from the spinneret directly below the surface of the spinneret to make the ambient temperature 290°C, and cooling air at 18°C is blown inward from the outside at a wind speed of 15 m/min. The yarn was passed through an annular cooling device to cool and solidify to room temperature. After that, a spinning oil is applied, each filament is converged to form a multifilament, and after being entangled, it is drawn at a drawing ratio of 1.52 times through a draw roller heated to 170°C at a take-up roller speed of 2700 m/min. , to obtain a nylon 6 multifilament of 11 dtex and 24 filaments.
 得られた11dtex、8フィラメントのナイロン6マルチフィラメントを経糸に、11dtex、24フィラメントのナイロン6マルチフィラメントを緯糸に配した平織物を最終仕上がり生地で経密度280本/2.54cm、緯密度240本/2.54cmとなるよう製織した。得られた生機を常法に従って、精練、予備セットの後に液流染色機にて染色し乾燥した。その後、非フッ素系樹脂による撥水加工、カレンダー加工を行った。得られた生地は柔軟な風合いかつダウンジャケットに好適な物性を備えていた。測定結果を表1に示す。 The obtained 11 dtex, 8 filament nylon 6 multifilament was used as the warp, and the 11 dtex, 24 filament nylon 6 multifilament was used as the weft. / 2.54 cm. The green fabric thus obtained was scoured and preliminarily set, and then dyed with a jet dyeing machine and dried. After that, water-repellent finishing and calendering were performed using a non-fluorine-based resin. The resulting fabric had a soft feel and physical properties suitable for a down jacket. Table 1 shows the measurement results.
 [実施例2]
 ポリアミドとして、硫酸相対粘度2.8、酸化チタンを含まないナイロン6チップを295℃で溶融し、紡糸口金(丸孔)より吐出させた。紡糸口金から吐出された各フィラメントに、口金面直下において295℃に設定した蒸気を吹きつけ雰囲気温度295℃とし、18℃の冷却風を20m/minの風速で外から内向きに冷却風を吹き出す環状冷却装置を通過させて糸条を室温まで冷却固化した。その後、紡糸油剤を付与するとともに各フィラメントを収束しマルチフィラメントを形成し、交絡を付与した後、引き取りローラー速度2500m/min、170℃に加熱した延伸ローラーを介して延伸倍率1.82倍で延伸、巻き取りを行い、15dtex、24フィラメントのナイロン6マルチフィラメントを得た。
[Example 2]
As the polyamide, nylon 6 chips having a sulfuric acid relative viscosity of 2.8 and containing no titanium oxide were melted at 295° C. and discharged from a spinneret (round hole). Steam set at 295°C is blown to each filament discharged from the spinneret directly below the surface of the spinneret to set the ambient temperature to 295°C, and cooling air at 18°C is blown inward from the outside at a wind speed of 20 m/min. The yarn was passed through an annular cooling device to cool and solidify to room temperature. After that, a spinning oil is applied, each filament is converged to form a multifilament, and after being entangled, it is drawn at a drawing ratio of 1.82 times through a drawing roller heated to 170 ° C. at a take-up roller speed of 2500 m / min. , to obtain a nylon 6 multifilament of 15 dtex and 24 filaments.
 実施例1で得られた11dtex、8フィラメントのナイロン6マルチフィラメントを経糸に、15dtex、24フィラメントのナイロン6マルチフィラメントを緯糸に配した平織物を最終仕上がり生地で経密度288本/2.54cm、緯密度220本/2.54cmとなるよう製織した。得られた生機を実施例1と同様の方法で染色加工し、得られた生地の物性を測定した。測定結果を表1に示す。 The 11 dtex, 8 filament nylon 6 multifilament obtained in Example 1 is used as the warp, and the 15 dtex, 24 filament nylon 6 multifilament is used as the weft. The fabric was woven to have a weft density of 220 wefts/2.54 cm. The obtained gray fabric was dyed in the same manner as in Example 1, and the physical properties of the obtained fabric were measured. Table 1 shows the measurement results.
 [実施例3]
 ポリアミドとして、硫酸相対粘度2.8、酸化チタンを含まないナイロン6チップを275℃で溶融し、紡糸口金(丸孔)より吐出させた。紡糸口金から吐出された各フィラメントに、口金面直下において275℃に設定した蒸気を吹きつけ雰囲気温度275℃とし、18℃の冷却風を20m/minの風速で外から内向きに冷却風を吹き出す環状冷却装置を通過させて糸条を室温まで冷却固化した。その後、紡糸油剤を付与するとともに各フィラメントを収束しマルチフィラメントを形成し、交絡を付与した後、引き取りローラー速度2400m/min、170℃に加熱した延伸ローラーを介して延伸倍率1.80倍で延伸、巻き取りを行い、17dtex、24フィラメントのナイロン6マルチフィラメントを得た。
[Example 3]
As the polyamide, nylon 6 chips having a sulfuric acid relative viscosity of 2.8 and containing no titanium oxide were melted at 275° C. and discharged from a spinneret (round hole). Directly below the surface of the spinneret, steam set at 275°C is blown onto each filament discharged from the spinneret to set the ambient temperature to 275°C, and cooling air at 18°C is blown inward from the outside at a wind speed of 20 m/min. The yarn was passed through an annular cooling device to cool and solidify to room temperature. After that, a spinning oil is applied, each filament is converged to form a multifilament, and after being entangled, it is drawn at a drawing ratio of 1.80 times through a drawing roller heated to 170 ° C. at a take-up roller speed of 2400 m / min. , to obtain a nylon 6 multifilament of 17 dtex and 24 filaments.
 実施例1で得られた11dtex、8フィラメントのナイロン6マルチフィラメントを経糸に、17dtex、24フィラメントのナイロン6マルチフィラメントを緯糸に配した平織物を最終仕上がり生地で経密度296本/2.54cm 、緯密度226本/2.54cm となるよう製織した。得られた生機を実施例1と同様の方法で染色加工し、得られた生地の物性を測定した。測定結果を表1に示す。 The final finished fabric is a plain weave fabric in which the 11 dtex, 8 filament nylon 6 multifilament obtained in Example 1 is used as the warp and the 17 dtex, 24 filament nylon 6 multifilament is used as the weft. It was woven so that the weft density was 226 wefts/2.54 cm. The obtained gray fabric was dyed in the same manner as in Example 1, and the physical properties of the obtained fabric were measured. Table 1 shows the measurement results.
 [実施例4]
 ポリアミドとして、硫酸相対粘度2.8、酸化チタンを含まないナイロン6チップを282℃で溶融し、紡糸口金(丸孔)より吐出させた。紡糸口金から吐出された各フィラメントに、口金面直下において285℃に設定した蒸気を吹きつけ雰囲気温度285℃とし、18℃の冷却風を20m/minの風速で外から内向きに冷却風を吹き出す環状冷却装置を通過させて糸条を室温まで冷却固化した。その後、紡糸油剤を付与するとともに各フィラメントを収束しマルチフィラメントを形成し、交絡を付与した後、引き取りローラー速度2400m/min、170℃に加熱した延伸ローラーを介して延伸倍率1.82倍で延伸、巻き取りを行い、13dtex、24フィラメントのナイロン6マルチフィラメントを得た。
[Example 4]
As the polyamide, nylon 6 chips having a sulfuric acid relative viscosity of 2.8 and containing no titanium oxide were melted at 282° C. and discharged from a spinneret (round hole). Directly below the surface of the spinneret, steam set at 285°C is blown onto each filament discharged from the spinneret to set the ambient temperature to 285°C, and cooling air at 18°C is blown inward from the outside at a wind speed of 20 m/min. The yarn was passed through an annular cooling device to cool and solidify to room temperature. After that, a spinning oil is applied, each filament is converged to form a multifilament, and after being entangled, it is drawn at a drawing ratio of 1.82 times through a draw roller heated to 170°C at a take-up roller speed of 2400 m/min. , to obtain a nylon 6 multifilament of 13 dtex and 24 filaments.
 得られた13dtex、24フィラメントのナイロン6マルチフィラメントを経緯に配した平織物を最終仕上がり生地で経密度266本/2.54cm、緯密度230本/2.54cmとなるよう製織した。得られた生機を実施例1と同様の方法で染色加工し、生地の物性を測定した。測定結果を表1に示す。 The obtained 13dtex, 24-filament nylon 6 multifilament was arranged in the warp and weft, and the final finished fabric was woven so that the warp density was 266 strands/2.54 cm and the weft density was 230 strands/2.54 cm. The obtained gray fabric was dyed in the same manner as in Example 1, and the physical properties of the fabric were measured. Table 1 shows the measurement results.
 [比較例1]
 実施例1と同様の経糸、緯糸を使用した平織物を最終仕上がり生地で経280本/2.54cm、緯密度220本/2.54cmとなるよう製織した。得られた生機を実施例1と同様の方法で染色加工し、生地の物性を測定した。得られた生地は柔軟な風合いであったが、洗濯後の通気度が1.0cc/cm/s(cm/cm/s)を超えており、洗濯後のダウン抜け本数も合格基準である50本を超えておりダウンジャケットとして不十分であった。測定結果を表1に示す。
[Comparative Example 1]
A plain weave fabric using the same warp and weft as in Example 1 was woven so that the finished fabric had a warp of 280/2.54 cm and a weft density of 220/2.54 cm. The obtained gray fabric was dyed in the same manner as in Example 1, and the physical properties of the fabric were measured. The resulting fabric had a soft texture, but the air permeability after washing exceeded 1.0 cc/cm 2 /s (cm 3 /cm 2 /s), and the number of down pieces removed after washing was also an acceptance criterion. 50, which is insufficient as a down jacket. Table 1 shows the measurement results.
 [比較例2]
 ポリアミドとして、硫酸相対粘度2.8、酸化チタンを含まないナイロン6チップを265℃で溶融し、紡糸口金(丸孔)より吐出させた。紡糸口金から吐出された各フィラメントに、口金面直下において265℃に設定した蒸気を吹きつけ雰囲気温度265℃とし、18℃の冷却風を15m/minの風速で外から内向きに冷却風を吹き出す環状冷却装置を通過させて糸条を室温まで冷却固化する。その後、紡糸油剤を付与するとともに各フィラメントを収束しマルチフィラメントを形成し、交絡を付与した後、引き取りローラー速度2800m/min、155℃に加熱した延伸ローラーを介して延伸倍率1.60倍で延伸、巻き取りを行い、11dtex、24フィラメントのナイロン6マルチフィラメントを得た。実施例1と同様の経糸と、ここで得られた11dtex、24フィラメントのナイロン6マルチフィラメントを緯糸に配した平織物を最終仕上がり生地で経密度280本/2.54cm、緯密度240本/2.54cmとなるよう製織した。得られた生機を実施例1と同様の方法で染色加工し、生地の物性を測定した。生地の緯方向引裂強力は6.0Nを下回っており、ダウンジャケットとして不十分であった。測定結果を表1に示す。
[Comparative Example 2]
As the polyamide, nylon 6 chips having a sulfuric acid relative viscosity of 2.8 and containing no titanium oxide were melted at 265° C. and discharged from a spinneret (round hole). Directly under the surface of the spinneret, steam set at 265°C is blown onto each filament discharged from the spinneret to set the ambient temperature to 265°C, and cooling air at 18°C is blown inward from the outside at a wind speed of 15 m/min. The yarn is passed through an annular cooling device to cool and solidify to room temperature. After that, a spinning oil is applied, each filament is converged to form a multifilament, and after being entangled, it is drawn at a drawing ratio of 1.60 times through a drawing roller heated to 155 ° C. at a take-up roller speed of 2800 m / min. , to obtain a nylon 6 multifilament of 11 dtex and 24 filaments. The same warp as in Example 1 and the 11 dtex, 24 filament nylon 6 multifilament obtained here are arranged in the weft, and the final finished fabric has a warp density of 280 / 2.54 cm and a weft density of 240 / 2. It was woven to be 0.54 cm. The obtained gray fabric was dyed in the same manner as in Example 1, and the physical properties of the fabric were measured. The tear strength in the weft direction of the fabric was below 6.0 N, which was insufficient as a down jacket. Table 1 shows the measurement results.
 [比較例3]
 実施例1と同様の経糸、緯糸を使用したリップストップ組織の織物を最終仕上がり生地で経密度291本/2.54cm、緯密度236本/2.54cmとなるよう製織した。得られた生機を実施例1と同様の方法で染色加工し、生地の物性を測定した。得られた生地は曲げ硬い風合いであった。測定結果を表1に示す。
[Comparative Example 3]
A woven fabric with a ripstop structure using the same warp and weft as in Example 1 was woven so that the final finished fabric had a warp density of 291 threads/2.54 cm and a weft density of 236 threads/2.54 cm. The obtained gray fabric was dyed in the same manner as in Example 1, and the physical properties of the fabric were measured. The fabric thus obtained had a hard texture when bent. Table 1 shows the measurement results.
 [比較例4]
 ポリアミドとして、硫酸相対粘度2.8、酸化チタンを含まないナイロン6チップを282℃で溶融し、紡糸口金(丸孔)より吐出させた。紡糸口金から吐出された各フィラメントに、口金面直下において285℃に設定した蒸気を吹きつけ雰囲気温度285℃とし、18℃の冷却風を20m/minの風速で外から内向きに冷却風を吹き出す環状冷却装置を通過させて糸条を室温まで冷却固化する。その後、紡糸油剤を付与するとともに各フィラメントを収束しマルチフィラメントを形成し、交絡を付与した後、引き取りローラー速度2300m/min、170℃に加熱した延伸ローラーを介して延伸倍率1.95倍で延伸、巻き取りを行い、22dtex、20フィラメントのナイロン6マルチフィラメントを得た。
[Comparative Example 4]
As the polyamide, nylon 6 chips having a sulfuric acid relative viscosity of 2.8 and containing no titanium oxide were melted at 282° C. and discharged from a spinneret (round hole). Directly below the surface of the spinneret, steam set at 285°C is blown onto each filament discharged from the spinneret to set the ambient temperature to 285°C, and cooling air at 18°C is blown inward from the outside at a wind speed of 20 m/min. The yarn is passed through an annular cooling device to cool and solidify to room temperature. After that, a spinning oil is applied, each filament is converged to form a multifilament, and after being entangled, it is drawn at a drawing ratio of 1.95 through a drawing roller heated to 170°C at a take-up roller speed of 2300 m/min. , to obtain a nylon 6 multifilament of 22 dtex and 20 filaments.
 ポリアミドとして、硫酸相対粘度2.8、酸化チタンを含まないナイロン6チップを282℃で溶融し、紡糸口金(丸孔)より吐出させた。紡糸口金から吐出された各フィラメントに、285℃に設定した蒸気を吹きつけ雰囲気温度285℃とし、18℃の冷却風を20m/minの風速で外から内向きに冷却風を吹き出す環状冷却装置を通過させて糸条を室温まで冷却固化する。その後、紡糸油剤を付与するとともに各フィラメントを収束しマルチフィラメントを形成し、交絡を付与した後、引き取りローラー速度2300m/min、170℃に加熱した延伸ローラーを介して延伸倍率1.95倍で延伸、巻き取りを行い、22dtex、24フィラメントのナイロン6マルチフィラメントを得た。 As the polyamide, nylon 6 chips with a sulfuric acid relative viscosity of 2.8 and containing no titanium oxide were melted at 282°C and discharged from a spinneret (round hole). Steam set at 285°C is blown to each filament discharged from the spinneret to set the atmospheric temperature to 285°C, and an annular cooling device blows cooling air at 18°C inward from the outside at a wind speed of 20 m/min. The yarn is passed through and cooled to room temperature to solidify. After that, a spinning oil is applied, each filament is converged to form a multifilament, and after being entangled, it is drawn at a drawing ratio of 1.95 through a drawing roller heated to 170°C at a take-up roller speed of 2300 m/min. , to obtain a nylon 6 multifilament of 22 dtex and 24 filaments.
 得られた22dtex、20フィラメントのナイロン6マルチフィラメントを経糸に、22dtex、24フィラメントのナイロン6マルチフィラメントを緯糸に配したリップストップ組織の織物を最終仕上がり生地で経密度205本/2.54cm 、緯密度153本/2.54cm となるよう製織した。得られた生機を実施例1と同様の方法で染色加工し、生地の物性を測定した。得られた生地は曲げ硬い風合いであり、初期/洗濯後の通気度がいずれも1.0cc/cm/sを超えており、初期/洗濯後のダウン抜け本数も合格基準である50本を超えておりダウンジャケットとして不十分であった。ダウンジャケットとして不十分であった。測定結果を下表に示す。 The obtained 22 dtex, 20 filament nylon 6 multifilament was used as the warp, and the 22 dtex, 24 filament nylon 6 multifilament was used as the weft. The fabric was woven to a density of 153 strands/2.54 cm. The obtained gray fabric was dyed in the same manner as in Example 1, and the physical properties of the fabric were measured. The resulting fabric has a stiff texture, initial air permeability and post-washing air permeability exceeding 1.0 cc/cm 2 /s. It exceeded and was insufficient as a down jacket. It was insufficient as a down jacket. The measurement results are shown in the table below.
 [比較例5]
 比較例4と同様の経糸、緯糸を使用した平織物を最終仕上がり生地で経密度204本/2.54cm 、緯密度160本/2.54cm となるよう製織した。得られた生機を実施例1と同様の方法で染色加工し、生地の物性を測定した。得られた生地は曲げ硬い風合いであった。測定結果を下表に示す。
[Comparative Example 5]
A plain weave fabric using the same warp and weft as in Comparative Example 4 was woven so that the final finished fabric had a warp density of 204/2.54 cm and a weft density of 160/2.54 cm. The obtained gray fabric was dyed in the same manner as in Example 1, and the physical properties of the fabric were measured. The fabric thus obtained had a hard texture when bent. The measurement results are shown in the table below.
 [比較例6]
 ポリアミドとして、硫酸相対粘度2.8、酸化チタンを含まないナイロン6チップを282℃で溶融し、紡糸口金(丸孔)より吐出させた。紡糸口金から吐出された各フィラメントに、口金面直下において285℃に設定した蒸気を吹きつけ雰囲気温度285℃とし、18℃の冷却風を20m/minの風速で外から内向きに冷却風を吹き出す環状冷却装置を通過させて糸条を室温まで冷却固化した。その後、紡糸油剤を付与するとともに各フィラメントを収束しマルチフィラメントを形成し、交絡を付与した後、引き取りローラー速度2400m/min、170℃に加熱した延伸ローラーを介して延伸倍率1.82倍で延伸、巻き取りを行い、15dtex、20フィラメントのナイロン6マルチフィラメントを得た。
[Comparative Example 6]
As the polyamide, nylon 6 chips having a sulfuric acid relative viscosity of 2.8 and containing no titanium oxide were melted at 282° C. and discharged from a spinneret (round hole). Directly below the surface of the spinneret, steam set at 285°C is blown onto each filament discharged from the spinneret to set the ambient temperature to 285°C, and cooling air at 18°C is blown inward from the outside at a wind speed of 20 m/min. The yarn was passed through an annular cooling device to cool and solidify to room temperature. After that, a spinning oil is applied, each filament is converged to form a multifilament, and after being entangled, it is drawn at a drawing ratio of 1.82 times through a draw roller heated to 170°C at a take-up roller speed of 2400 m/min. , to obtain a nylon 6 multifilament of 15 dtex and 20 filaments.
 実施例1と同様の経糸と、ここで得られた15dtex、20フィラメントのナイロン6マルチフィラメントを緯糸に配した平織物を最終仕上がり生地で経密度280本/2.54cm、緯密度220本/2.54cmとなるよう製織した。得られた生機を実施例1と同様の方法で染色加工し、生地の物性を測定した。得られた生地は曲げ硬い風合いであり、初期/洗濯後の通気度が1.0cc/cm/s(cm/cm/s)を超えておりダウンジャケットとして不十分であり、洗濯後のダウン抜け本数も合格基準である50本を超えておりダウンジャケットとして不十分であった。測定結果を下表に示す。 The same warp as in Example 1 and the 15 dtex, 20 filament nylon 6 multifilament obtained here are arranged in the weft, and the final finished fabric has a warp density of 280 / 2.54 cm and a weft density of 220 / 2. It was woven to be 0.54 cm. The obtained gray fabric was dyed in the same manner as in Example 1, and the physical properties of the fabric were measured. The resulting fabric had a stiff texture, and the initial/post-washing air permeability exceeded 1.0 cc/cm 2 /s (cm 3 /cm 2 /s), which was insufficient as a down jacket. The number of missing down strands of the down jacket also exceeded 50, which is the acceptance criterion, and was insufficient as a down jacket. The measurement results are shown in the table below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Claims (5)

  1. ポリアミドマルチフィラメントからなる平織組織の織物であって、該マルチフィラメントの総繊度が経緯共に17dtex以下、経緯少なくともどちらかの該マルチフィラメントの単糸繊度が0.7dtex以下であり、かつ、生地分解糸強度が4.5cN/dtex以上であり、カバーファクターが1700以上である織物。 A plain weave fabric composed of polyamide multifilaments, wherein the total fineness of the multifilaments is 17 dtex or less in both the weft and weft, and the single filament fineness of at least one of the multifilaments is 0.7 dtex or less, and the fabric is decomposed. A woven fabric having a strength of 4.5 cN/dtex or more and a cover factor of 1700 or more.
  2. 該織物の引裂強力が経緯いずれも6N以上である請求項1に記載の織物。 2. The fabric according to claim 1, wherein the tear strength of said fabric is 6N or more in both directions.
  3. 初期通気度及び洗濯後の通気度が1cm/cm/s以下である請求項1または2に記載の織物。 3. The fabric according to claim 1, wherein the initial air permeability and the air permeability after washing are 1 cm 3 /cm 2 /s or less.
  4. KESによる曲げ剛性が0.008gf・cm/cm以下である請求項1~3のいずれかに記載の織物。 The woven fabric according to any one of claims 1 to 3, which has a flexural rigidity measured by KES of 0.008 gf·cm 2 /cm or less.
  5. 請求項1~4のいずれかに記載の織物を用いた衣料。 A garment using the fabric according to any one of claims 1 to 4.
PCT/JP2023/001280 2022-01-28 2023-01-18 Woven fabric and garment using same WO2023145557A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202380017611.4A CN118613612A (en) 2022-01-28 2023-01-18 Fabric and clothing using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-011569 2022-01-28
JP2022011569 2022-01-28

Publications (1)

Publication Number Publication Date
WO2023145557A1 true WO2023145557A1 (en) 2023-08-03

Family

ID=87471440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001280 WO2023145557A1 (en) 2022-01-28 2023-01-18 Woven fabric and garment using same

Country Status (3)

Country Link
CN (1) CN118613612A (en)
TW (1) TW202332816A (en)
WO (1) WO2023145557A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003171814A (en) * 2001-12-05 2003-06-20 Toray Ind Inc Windbreaker
WO2005010256A1 (en) * 2003-07-29 2005-02-03 Toyo Boseki Kabushiki Kaisha Woven fabric and method of manufacturing the same
JP2006057190A (en) * 2004-08-18 2006-03-02 Toray Ind Inc Polyamide woven fabric
JP2010236136A (en) * 2009-03-31 2010-10-21 Toray Ind Inc Woven fabric
JP2012057265A (en) * 2010-09-07 2012-03-22 Toyobo Specialties Trading Co Ltd High-density woven fabric
CN112301441A (en) * 2020-10-29 2021-02-02 厦门安踏体育用品有限公司 Preparation method of superfine denier nylon fiber and ultralight fabric and ultralight jacket

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003171814A (en) * 2001-12-05 2003-06-20 Toray Ind Inc Windbreaker
WO2005010256A1 (en) * 2003-07-29 2005-02-03 Toyo Boseki Kabushiki Kaisha Woven fabric and method of manufacturing the same
JP2006057190A (en) * 2004-08-18 2006-03-02 Toray Ind Inc Polyamide woven fabric
JP2010236136A (en) * 2009-03-31 2010-10-21 Toray Ind Inc Woven fabric
JP2012057265A (en) * 2010-09-07 2012-03-22 Toyobo Specialties Trading Co Ltd High-density woven fabric
CN112301441A (en) * 2020-10-29 2021-02-02 厦门安踏体育用品有限公司 Preparation method of superfine denier nylon fiber and ultralight fabric and ultralight jacket

Also Published As

Publication number Publication date
CN118613612A (en) 2024-09-06
TW202332816A (en) 2023-08-16

Similar Documents

Publication Publication Date Title
JP4563487B2 (en) fabric
JP5620761B2 (en) High density fabric
US6705353B2 (en) Woven strecth fabric
JP3797486B2 (en) Woven fabric and method for producing the same
TW201407013A (en) The fabrics using the flat multi-lobed cross-section fiber
CN107075741B (en) Ultrafine high-tenacity polyamide multifilament and core-spun yarn, stocking, and fabric using same
US10323341B2 (en) Highly air-permeable woven fabric resistant to washing
TW200400289A (en) Conjugate fiber and method for production thereof
US20150159303A1 (en) Core-Sheath Conjugated Fiber
JP5433259B2 (en) Composite spun yarn, production method thereof, and fabric using the composite spun yarn
JP5700708B2 (en) Abrasion resistant polyester fiber and knitted fabric
JP3835616B2 (en) Polyamide multifilament fabric and process for producing the same
KR20230036066A (en) Knitted fabrics and garments containing them
JP4631481B2 (en) Polyester core-sheath composite fiber
WO2023145557A1 (en) Woven fabric and garment using same
JP4866103B2 (en) Composite fiber
JP2003119631A (en) Covered yarn and method for producing the same
JP4480460B2 (en) Lining and manufacturing method thereof
WO2004050973A1 (en) Polyamide multifilament woven fabric and process for producing the same
JP7376436B2 (en) fabric
JP2004183193A (en) Woven fabric
JP4266316B2 (en) High-strength fabric with excellent see-through resistance
JP2022006743A (en) fabric
JP4130782B2 (en) High density fabric
CN116096948A (en) Polyamide multifilament yarn, method for producing the same, and braid

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023505690

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23746771

Country of ref document: EP

Kind code of ref document: A1