JP2004156166A - Fabric and method for producing the same - Google Patents

Fabric and method for producing the same Download PDF

Info

Publication number
JP2004156166A
JP2004156166A JP2002322167A JP2002322167A JP2004156166A JP 2004156166 A JP2004156166 A JP 2004156166A JP 2002322167 A JP2002322167 A JP 2002322167A JP 2002322167 A JP2002322167 A JP 2002322167A JP 2004156166 A JP2004156166 A JP 2004156166A
Authority
JP
Japan
Prior art keywords
fabric
section
cross
yarn
warp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002322167A
Other languages
Japanese (ja)
Inventor
Taiichi Okada
泰一 岡田
Hiroaki Tokutome
博明 徳留
Isoo Saito
磯雄 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2002322167A priority Critical patent/JP2004156166A/en
Publication of JP2004156166A publication Critical patent/JP2004156166A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a fabric which has low air permeability, excellent tenacity and heat resistance and flexibility and thin thickness and is useful for various kinds of non-clothing applications, especially for an air bag and to provide a method for producing the same. <P>SOLUTION: The fabric is obtained by using filament yarns of flat cross-sectional fibers with the cross-sectional shape of each filament having a flatness ratio (the ratio of major axis length to minor axis length) of 1.5-8 as warps and wefts. In the section of the fabric, the horizontal degree index (HI) expressed by the total average of cosines (hi) of angles (θ) between the major axis directions and the horizontal directions of the fabric of each of the warp and the weft filaments constituting the fabric is 0.85-1.0. The major axis of the flat section of each filament is arranged in the horizontal direction of the fabric. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、低通気性で、強力および耐熱性に優れ、かつ柔軟性に優れた厚みの薄い布帛に関するものである。各種非衣料用途、特にエアバッグ用として好適な布帛とその製造方法を提供するものである。
【0002】
【従来の技術】
近年、エアバッグは自動車に搭乗した乗員の安全を確保するための装置として欠かせないものとなり、自動車への装着率が益々高まっている。
【0003】
安全装置としてのエアバッグに対する信頼性向上の要求は一段と強まっており、また、エアバッグ装置のコンパクト化、衝突時におけるバッグ展開時の乗員の顔面擦傷防止、コストダウン等といった要求も益々強まりつつある。このため、エアバッグを構成するエアバッグ用基布、エアバッグ用原糸および布帛の製造工程にも上記要求を満足させるよう一層の改善が求められている。
【0004】
これまでも、エアバッグ用基布としての機械的特性を損なうことなく、折り畳み性に優れ、収納容積の小さなエアバッグを実現させるための技術が開示されている。なかでも異形断面糸を用いた布帛をエアバッグ用基布として用いる技術は、安全性および収納性等の次世代エアバッグとして求められる性能を満足できることから注目される。
【0005】
異形断面糸を用いた従来技術としては、特開平4−193647号公報、特開平4−201650号公報、特開平7−252740号公報、特開平8−60425公報、および特開2002−129444号公報等がある。
【0006】
軽量でかつ柔軟性および収納性に優れ、かつ機械的特性の優れたエアバッグ用基布として、単糸繊度が1.0〜12デニール、単糸変形度が1.5〜7.0である扁平を含む異形断面を有する単糸の複数本からなるポリアミドマルチフィラメントを用いたエアバッグ用基布が開示されている(例えば特許文献1および2参照)。しかしながら、当該技術は布帛表面にシリコーンゴムなどのエラストマーを塗布したいわゆるコート基布を前提に発明されたものであり、ノンコート基布に該技術を適用した場合には、柔軟性、収納性および機械的特性等に優れるもののエアバッグとして最も重要な特性の1つである低通気性については解決されものではなかった。
【0007】
一方、異形断面糸を用いたノンコート基布に関する技術として、扁平率1.5以上の扁平断面糸を用いることにより低通気性、高収納性、機械的特性等を兼ね備えたノンコートエアバッグ用基布が得られることが開示されている(例えば特許文献3参照)。しかしながら、当該技術では124Pa下の通気量が0.3cc/cm/sec以上であって、近年要求されるより低い通気性を十分に満足できるものではなかった。
【0008】
また、単糸の横断面において、扁平基部の長手方向に略半円形状突起部からなる対称に付与された凸部を1〜3個有し、扁平断面糸の長軸と短軸との比が4/1〜2/1であり、かつ単糸繊度が2〜10デニール、強度が7g/d以上であるエアバッグ用繊維についても開示されている(例えば特許文献4参照)。該突起を有する繊維は、製糸性、品位ともに良好で、また、該繊維を用いて得られるエアバッグ用布帛は、柔軟性、コンパクト性に優れるとされている。しかしながら、エアバッグ用布帛に重要な特性である通気性に関する記載はなく、単糸断面に突起部を有すことから、単糸同士のパッキング状態が密にならず、すなわち単糸間に多くの空隙を生じる結果、低通気性の達成という点で課題を残すのものであった。
【0009】
そして、扁平糸を用いたノンコートエアバッグ用布帛であって、低通気性と優れた収納性を備えた布帛を提供する優れた技術も開示されている(例えば特許文献5参照)。しかし、扁平糸の特徴を扁平糸布帛として最大に活かすための工夫、即ち、布帛の断面において、該布帛を構成する該経糸フイラメントおよび緯糸フイラメントが、それぞれのフィラメントの扁平断面の長軸が布帛の水平方向に高度に配列した布帛とすることにより、一層の低通気性および優れた収納性を達成できることの記述はなく、またその製造方法等についても一切記述されていない。
【0010】
【特許文献1】
特開平4−193647号公報、
【0011】
【特許文献2】
特開平4−201650号公報
【0012】
【特許文献3】
特開平7−252740号公報
【0013】
【特許文献4】
特開平8−60425公報
【0014】
【特許文献5】
特開2002−129444号公報
【0015】
【発明が解決しようとする課題】
上記のように従来技術では、低通気性、柔軟性および収納性、機械的特性などエアバッグ用基布に要求されるあらゆる特性を兼備した布帛は得られていなかった。また、近年におけるより厳しい低通気性および収納性改善への要求に対し、十分に満足できる布帛を提供することは一層難しくなっている。
【0016】
本発明は上述の従来技術における問題点を解消し、エアバッグ用布帛としては勿論、広く非衣料用途に使用できる布帛、例えば、パラグライダー、パラシュート、テント、ターポリン等に好適な布帛を提供すること、およびその製造方法を提供することにある。
【0017】
【課題を解決するための手段】
上述の課題を解決するために、本発明の布帛は、主として次の構成を有する。すなわち、
断面形状が扁平率(長軸と短軸の長さの比)1.5〜8の範囲内にある扁平断面フィラメント糸条を経糸および緯糸として用いた布帛であって、該布帛の断面において、該布帛を構成する該経糸および緯糸フィラメントの長軸方向が該布帛の水平方向とのなす角度(θ)の余弦(hi)の総和平均で表した水平度指数(HI)が0.85〜1.0となるように、該フィラメントの扁平断面の長軸が布帛の水平方向に配列していることを特徴とする布帛。
【0018】
さらに、本発明の布帛においては、次の(a)、(b)が好ましい態様であり、これらの要件を満たすことによって、さらに優れた効果を得ることができる。
(a)カバーファクター:1700〜2400
引張り強力≧500N/cm
引裂き強力≧150N
124 Paの圧力下での通気度(A)≦0.1cc/cm/sec
19.6KPaの圧力下での通気度(B)≦10cc/cm/sec
布帛の厚み:0.15〜0.30mm
であること。
(b)扁平断面糸がポリアミド繊維からなること。
【0019】
また、本発明の布帛の製造方法は、主として次の構成を有する。すなわち、
断面形状が扁平率1.5〜8の扁平断面フィラメントを経糸および緯糸として用いて布帛を製造する方法において、製織時の経糸および緯糸をそれぞれ張力0.2〜0.6cN/dtexの張力をかけて製織し、布帛の断面の該布帛を構成する該経糸および緯糸フィラメントの長軸方向が該布帛の水平方向とのなす角度(θ)の余弦(hi)の総和平均で表した水平度指数(HI)が0.85〜1.0となるように製造することを特徴とする布帛の製造方法。
【0020】
さらに、本発明の布帛の製造方法においては、次の(c)、(d)が好ましい態様であり、これらの条件を適用することによって、さらに優れた効果を得ることができる。
(c)前記製織して得られた布帛に加熱加圧加工を施すこと。
(d)扁平断面糸の交絡数が3〜20個/mであり、布帛中での該扁平断面糸の交絡数が3個/m以下となるように製織すること。
【0021】
また、本発明の布帛は、エアバッグ用布帛として用いることによって、特に優れた効果を期待できるものである。
【0022】
【発明の実施の形態】
以下に本発明について詳述する。
【0023】
本発明の布帛は合成繊維、例えば、ポリアミド繊維、ポリエステル繊維、ポリオレフィン繊維、ポリビニルアルコール繊維等からなる布帛であって、繊維の素材は特に限定されるものではないが、好適な素材はポリアミド繊維である。ポリアミド繊維とは、ポリヘキサメチレン(N66)、ポリカプラミド(N6)、ポリテトラメチレンアジパミド(N46)およびそれらポリマの共重合物、ブレンド物等からなる繊維である。
【0024】
特に本発明の高強度、高タフネスの布帛を得るためには硫酸相対粘度で3.0以上、好ましくは3.3以上の高分子量ポリアミドポリマを用いる。
【0025】
また、本発明の布帛はエアバッグをはじめ資材用途に広く適用するために、化学的耐久性、例えば、高度の耐熱性、耐候性、耐酸化防止性を有するよう各種の耐熱剤、耐光剤、酸化防止剤等を含有した繊維を用いることが好ましい。例えば、ポリアミド繊維の場合は、酢酸銅、沃化銅、臭化銅、塩化第二銅や無機または有機銅錯塩等の各種銅塩、沃化カリウム、沃化ナトリウム、臭化カリウム、塩化リチウム、塩化カルシウム等のハロゲン化アルカリ金属およびハロゲン化アルカリ土金属、ヒンダードフェノール系抗酸化剤やジフェニルアミン系酸化防止剤、イミダゾ−ル系抗酸化剤、無機、有機の燐化合物および紫外線吸収剤、マンガン塩等を用いる。含有量は通常、金属塩の場合は金属として10〜100ppm、その他の添加剤は500〜5000ppm程度である。
【0026】
また、用途によっては、酸化チタン、炭酸カルシウム、カオリン等の艶消し剤、
ステアリン酸カルシウム等の滑剤等を用いることもできる。
【0027】
本発明の布帛に用いる繊維の単糸断面形状は、通常は図1(ア)に示すような楕円形、および図1(イ)に示すような向かい合う辺が平行である楕円形であるが、楕円形以外の形状であっても、長軸と短軸が後述の関係を満たすものであればいずれも用いることができる。例えば、長方形、菱形、繭型のような左右対称型は勿論、左右非対称型でもよく、あるいはそれらの組み合わせ型でもよい。また、更に上記を基本型として、本発明の効果を損ねない範囲で突起や凹み、或いは中空部が存在しても良い。
【0028】
ここで、長軸および短軸とは楕円形の長径、短径に相当するものである。一方、単糸断面形状が上記のとおり楕円形以外の場合には、該単糸断面形状において重心を通る重心線を引き、その最も長い線分をもって長軸と定義する。また、その長軸に対し垂直方向における最も長い線分を短軸とする。
【0029】
本発明における扁平断面糸は、単糸の断面形状が扁平率(長軸と短軸の長さの比)1.5〜8であることが必須であり、好ましくは2〜6である。かかる範囲の扁平断面形状糸を使用することで、各単糸の長軸が基布の水平方向に配列することが可能となり、通常の円断面糸を使用した場合に比べ、得られる布帛の厚みは薄く収納性に優れ、また通気性を低く抑えることができるようになる。扁平率が1.5未満では円断面糸に近く、扁平断面糸を用いた効果、すなわち、低通気性と柔軟性、収納性を兼備する布帛を得ることができなくなる。一方、扁平率が8を越えると、扁平断面糸を用いる効果が飽和するばかりか、高強度、高タフネス繊維を良好な品位で安定に製糸することが難しくなるという問題が生じる。
【0030】
一般の円断面糸においては単糸繊度が小さいほど、布帛上でのカバリング性が向上し、得られる布帛の低通気性、柔軟性および収納性は向上する。しかしながら一方で単糸繊度が細くなるに従い製糸性が悪化するという問題が生じる。つまり、生産性(生産効率および収率)を考慮すると、単糸繊度を細くすることによって低通気性、柔軟性、収納性等を更に改善するには限界がある。
【0031】
これに対し、上述の扁平断面糸は、実際の単糸繊度を小さくせずとも、円断面糸で単糸繊度を大幅に細くしたのと同等以上の大きな効果を発揮することができる。例えば、扁平率3.5、単糸繊度10dtexの扁平断面形状のポリアミドフィラメントの短軸は、単糸繊度2.4dtexの円断面フィラメントの直径に相当するからである。さらに、例えば、扁平率3.5、単糸繊度4dtexの扁平断面糸の短軸長は、円断面糸では単糸繊度1dtex以下、いわゆるマイクロファイバーの直径に相当し、本発明の高強度糸を安定に製糸することが困難な領域である。然るに、本発明の扁平断面糸を用いると円断面糸では得られないレベルの低通気性、柔軟性および収納性を実現することができるのである。
【0032】
本発明における扁平断面糸は、強度7〜10cN/dtex、伸度10〜30%、沸騰水収縮率3〜8%であることが好ましく、該物性を有する合成繊維を使用することで引張強力、引裂強力等の機械的特性に優れた布帛を得ることができる。
【0033】
本発明の布帛においては、各フィラメントの断面形状が上記特定の扁平率を有する扁平断面糸からなり、布帛を構成する該各フィラメントの長軸方向が該布帛の水平方向に配列していることが将に最大かつ重要な特徴である。このことを定量的に表現するため、水平度指数(HI:Horizontal Index)を定義した。水平度指数HIは、布帛を構成する経糸および緯糸フィラメントの長軸方向が布帛の水平方向とのなす角度(θ)の余弦(hi)とし、その総和平均として表す。すなわち、以下の式で算出することができる。
【0034】
HI=(Σhi)/f
hi=cosθ
θ:各フィラメントの長軸方向と布帛の水平方向とのなす角度
f:フィラメント数
本発明の布帛は、扁平断面糸を経糸および緯糸に用い、経糸および緯糸断面共に水平度指数HIが0.85〜1.0であり、好ましくは0.90〜1.0、より好ましくは0.95〜1.0である。水平度指数HIをかかる範囲とすることで、柔軟性、収納性に優れ、かつ、低通気性を有する布帛を得ることができる。HIが0.85未満では、せっかく扁平断面糸を用いても、本発明の効果、すなわちカバリング性が良いことによる低通気性と柔軟性、収納性が十分に発現しない。また、HIが0.85〜1.0であることは、事実上、各フィラメントの長軸方向が布帛の水平方向に整然と配列していることを意味する。
【0035】
本発明の布帛のカバーファクターは1700〜2400が好ましい。ここで、カバーファクターとは経糸の総繊度をD(dtex)、織密度をN(本/2.54cm)、緯糸の総繊度をD(dtex)、織密度をN( 本/2.54cm)としたときに、(D×0.9)1/2 ×N+(D×0.9)1/2 ×Nで表される値である。カバーファクターは布帛の通気度および収納性と大きく関係し、適切な範囲にあることがエアバッグ用基布として極めて重要である。なお、本発明の布帛は、各フィラメントの断面形状が扁平形状であり、かつ該フィラメントの長軸方向が布帛の水平方向に整然と配列しているために、カバリング性が良く、通常の円断面糸を用いた布帛よりカバーファクターが10〜30%低くても、低通気性を確保できることが特徴である。カバーファクターを低く設定できることは、すなわち、使用する繊維量が減り、また打ち込み本数が少なくて良いことから製織時間を短縮でき、布帛の製織コストを低減できることになる。
【0036】
本発明の布帛は低通気性と柔軟性、収納性を兼ね備えることをも特徴とするが、通気度は、124Paの圧力下での通気度(A)が0.1cc/cm/sec以下、19.6KPaの圧力下での通気度(B)が10cc/cm/sec以下であることが好ましい。このようにあらゆる圧力下において、低い通気性を達成することで、エアバッグとして該布帛を用いた際にエアバッグの展開速度が速くなり、より高い確率で乗員の安全性を確保できるようになる。本発明の布帛が低通気性を達成できるのは、扁平断面フィラメントが布帛の水平方向に整然と配列することで、布帛の垂直方向における間隙が極端に減少するためである。
【0037】
本発明の布帛の厚みは0.15〜0.30mmであることが好ましく、より狭い場所への収納性が必要となる用途、例えば小型車以下のエアバッグ用布帛として好適である。本発明の布帛では、扁平率1.5〜8である扁平断面糸を用い、経糸および緯糸共に各フィラメントの断面の長軸が布帛の水平方向に整然と配列する構造を有することから、同一の単糸繊度および同一のカバーファクターの円断面糸からなる布帛とその厚みを比較した場合、およそ20%以上薄くできることが特徴である。
【0038】
本発明の布帛の機械的特性は、引張り強力≧500N/cm、引裂き強力≧150Nが好ましく、各種非衣料用途布帛として好適である。特にエアバッグ用布帛においては、バッグ展開時の衝撃力に耐え得るだけの高い強力が必要になる。上記範囲の強力を有する布帛は、あらゆるエアバッグ用布帛、すなわち、運転席用エアバッグ、助手席用エアバッグ、サイドエアバッグ、ニーエアバッグ、インフレータブルカーテン用エアバッグのいずれにも適用可能であるが、中でも、特に折り畳み性の良さやコンパクトさが要求されるものに用いられてより効果を発揮する。
【0039】
本発明の布帛は、通常円断面糸からなる布帛に比べ、引裂強力が引張強力に対して相対的に高いことが特徴であり、衝撃により布帛に生じた裂け、穴などの破損が布帛上で次々と伝播するのを防ぐために有効である。本発明の布帛では、扁平断面糸が極めて高密度に集束充填されて織り込まれているため、あたかも一本の扁平モノフィラメントのような挙動を示し、高い引裂強力が発現するのではないかと推測される。
【0040】
次に本発明の布帛を製造するための方法の一例を説明する。
【0041】
本発明の布帛に用いる扁平断面を有する合成繊維は、前記したとおり種々のポリマからなる繊維を用いることができるが、高強度・高タフネスを有する繊維を得るためにはポリアミド繊維が好ましく、特に硫酸相対粘度3.0以上の高粘度のナイロン66ポリマを用いたポリアミド繊維が好ましい。また、前記した各種耐熱剤、耐光剤、酸化防止剤等を含有したポリアミド繊維がさらに好ましい。
【0042】
繊維を製造するには、ポリマを溶融し、濾過した後、口金の細孔から紡出するが、口金孔形状は各フィラメントの断面が本発明で特定する扁平断面となるよう設計した口金を用いる。特に、紡出され糸条が冷却固化するまでの、溶融ポリマの表面張力による断面形状の変化を考慮して口金孔形状を設計する。
【0043】
例えば、図1(ア)の楕円形状を有する繊維を得るには口金吐出形状を図2の(ア)に示すような長方形状に設計すればよい。長方形のタテ長さc、ヨコ長さdは得ようとする繊維の単糸繊度および扁平率によって適宜設定すればよい。一方、単糸断面が図1の(イ)に示したように向かい合う辺が平行である楕円形状にするためには、図2(イ)のように、両端および内部に小円孔を配し、小円孔同士をスリット孔で繋いだ形状に設計すればよい。この場合の小円孔の数、小円孔の径、スリット孔の長さ、スリット孔の幅、また、全体のタテ長さc、ヨコ長さd等については、得ようとする繊維の単糸繊度、扁平率に応じて適宜選択すればよい。向かい合う辺をより平行な直線状とするには、口金吐出後の雰囲気状態にも因るが、小円孔の数4〜8個、径0.1〜0.3mm、スリットの幅0.1〜0.3mm、長さ0.1〜0.3mmの範囲にあることが好ましい。
【0044】
紡出糸条は冷却固化した後、油剤を付与され、所定の回転速度で回転する引き取りローラーに捲回して引き取る。引き続き、そのまま連続して糸条を順次高速度で回転するネルソンローラに捲回することで延伸を行う。より高強度の繊維を得るためには2段以上の多段延伸することが好ましい。また、最終延伸ローラ温度は200℃以上に設定し延伸熱処理を施した後、該最終延伸ローラの次に配置されたリラックスローラとの間で数%の弛緩処理をした後で巻き取る。最近は製糸生産効率の向上に伴い、巻き取り速度は2500〜4500m/minで糸条数はが4〜8糸条のような、高速・多糸条の直接紡糸延伸法で行われている。
【0045】
通常、巻き取り前の糸条に集束性を付与するため交絡処理を行う。交絡処理は走行糸条に対し略交差方向に、複数のノズル孔から高圧の空気を噴射させて行う。交絡数が多いほど糸条は集束され、整経や製織での工程通過性がよくなるため好まれる。しかしながら一方で、糸条に与えられた交絡は製織後は解れて、布帛中での糸条交絡数は実質的になくなることが好ましい。布帛に交絡が多数残っているとフィラメントがところどころ捻れていることになり、本発明で特定する水平度指数HIを得るのが難しくなることがある。本発明における繊維に付与する好ましい交絡数は3〜20個/m、より好ましくは5〜15個/mである。また、布帛中での該繊維の交絡数は経糸および緯糸共に3個/m以下が好ましく、実質的に0であることがより好ましい。かかる範囲の交絡数とすることで、整経、製織における工程通過性を損なうことなく、該繊維からなる布帛のHIを十分に高めることができ、その結果、低通気性で柔軟かつ収納性に優れた本発明布帛を高い生産性で得ることができる。
【0046】
次に、上記得られた繊維は整経され、製織される。織機はウォータージェットルームが多く用いられるが、レピアルームやエアージェットルームなど何ら限定されるものではない。また、布帛の織構造についても、通常、平織りが多いが、ツイル織りなどいずれの構造であっても構わない。
【0047】
整経および製織工程においては、本発明に係る扁平断面フィラメントが布帛の水平方向に並ぶように、経糸張力および緯糸の打ち込み張力が適切となるよう制御しながら行う。水平度指数(HI)を上述した0.85〜1.0の範囲内とするための適度な経糸張力の範囲は0.2〜0.6cN/dtexである。製織時の経糸張力が0.2cN/dtex未満であると、本発明の重要な要件である布帛断面中での扁平断面フィラメントの配列状態を表す水平度指数(HI)が十分に高くならず、低通気性で柔軟性および収納性に優れた布帛を得ることができなくなる。逆に、経糸張力が0.6cN/dtexを越えた場合においても、水平度指数(HI)はむしろ低下し、本発明布帛の特徴が得られないことがある。また、製織時の経糸張力が高すぎると、単糸切れ、全糸切れが発生し製織機の停台を起し、布帛の品位が低下し、かつ生産効率が低下する。
【0048】
一方緯糸は、整経工程がなく、直接製織工程で緯糸打ち込みされるため、原糸に付与されている交絡の解除と扁平断面糸の長軸が布帛の水平方向に配列するよう、十分配慮した張力管理が必要である。通常、原糸チーズから糸条を解除し、緯糸を打ち込む直前の測長ドラム上までの間で、緯糸の交絡が概ね解消されるよう、張力を付与する。その張力範囲は0.2〜0.6cN/dtexである。
特に、0.3〜0.5cN/dtexの範囲が好ましい。そして、緯糸打ち込み時の張力も同様0.2〜0.6cN/dtexの範囲とする。最近の高速製織されるウォータージェットルームの場合は、緯糸の打ち込み張力は比較的高いので、緯糸打ち込み直前までに交絡が解消されていなくても製織時に緯糸の各フィラメントの長軸は布帛の水平方向に配列するが、レピア織機やエアージェット織機で製織する場合は緯糸打ち込み張力が低いので、緯糸打ち込みの前までに張力をかけて原糸の交絡を解消させておく必要がある。
【0049】
かくして、経糸および緯糸ともに、各扁平断面フィラメントの長軸がそれぞれ布帛の水平方向に配列した布帛となり、本発明の扁平糸基布が得られる。
【0050】
また、更に本発明効果を確実かつ安定に発現させ、かつ従来の扁平糸基布より一段と性能を発揮させるために、上記得られた布帛に加熱加圧加工処理、所謂カレンダー加工処理を加えることが好ましい。
【0051】
カレンダー加工機は通常のカレンダー機でよい。カレンダー加工の温度は180〜220℃、圧力は50〜150トン、速度は4〜50m/分が好ましい。カレンダー加工は、少なくとも片面に施してあれば性能は充分に得られる。
【0052】
なお、カレンダー加工に先立ち、精練は行なう場合と行わない場合とがある。ウォータージェット織機で製織した場合は通常精練は行わず、レピア織機やエアージェット織機で製織した場合は精練を行うことが多い。
【0053】
上記、本発明の態様について詳述してきたが、本発明においては、特定した扁平断面形状を有する繊維、および特定の構造を有する布帛をそれぞれ設計すること、すなわち、経糸及び緯糸共にフィラメントの断面形状が扁平率1.5〜8の扁平断面糸を使用し、経糸および緯糸の各フィラメントの長軸方向のそれぞれが共に布帛の水平方向に整然と配列していることによって、低通気性、柔軟性および収納性を兼ね備えた布帛を得ることができる。
【0054】
また、該扁平断面糸および該布帛は高い生産性(生産効率および高い収率)で得ることができ、極めて実用的である。
【0055】
【実施例】
以下に実施例および比較例を挙げて、本発明を具体的に説明する。
【0056】
なお、発明の詳細な説明および実施例に示した物性の測定法は次の通りである。
原糸特性
[扁平率]:
繊維を切断してその断面を、光学顕微鏡を用いて200倍で写真撮影し、焼き付けた。写真上で単糸の長軸(a)と短軸(b)の長さを測定し、その比をもって扁平率とした。単糸を10本測定し、その平均値で示した。
【0057】
扁平率=a/b
[総繊度]:
JIS L−1013の方法により、正量繊度を測定した。
[単糸繊度]:
総繊度をフィラメント数で除して算出した。
[強度、伸度]:
20℃−65%の温湿度調整室に24時間以上、カセ状にして放置した試料をJIS L−1013の方法により、試長25cm、引張速度30cm/分の条件で測定した。
[沸騰水収縮率]:
原糸をカセ状にサンプリングして、20℃、65%RHの温湿度調整室で24時間以上調整し、試料に1cN/dex相当の荷重をかけて長さLを測定した。次に、この試料を無緊張状態で沸騰水中に30分間浸漬した後、上記温室度調整室で4時間風乾し、再び試料に1cN/dex相当の荷重をかけて長さLを測定した。それぞれの長さLおよびLから次式により沸騰水収縮率を求めた。
【0058】
沸騰水収縮率=[(L−L)/L]×100(%)
[交絡数]:
水浸漬法により長さ1mm以上の交絡部の個数を測定し、1mあたりの個数に換算した。原糸10本を測定し、その平均値で示した。
【0059】
水浸漬バスは、長さ70cm、幅15cm、深さ5cmで、長手方向の両端より10cmの位置に仕切板を設けたものを用いた。このバスに純水を満たし、原糸サンプルを水浸させ、交絡部個数を測定した。なお、油剤等の不純物の影響を排除するために測定毎に純水を交換した。
[布帛糸の交絡数]:
布帛を分解し、経糸および緯糸を10本ずつサンプリングして測定試料とした。該試料を上記交絡数と同様の水浸漬法で測定し、経糸、緯糸とも10本の平均値で示した。
布帛特性
[カバーファクター]:
経糸の総繊度D(dtex)、織密度N(本/2.54cm)、緯糸の総繊度D(dtex)、織密度N( 本/2.54cm)を用いて、次式により算出した。
【0060】
カバーファクター=(D×0.9)1/2 ×N+(D×0.9)1/2 ×N
[水平度指数HI]:
布帛を経糸断面および緯糸断面方向にそれぞれ切断し、走査電子顕微鏡(SEM)でそれぞれ布帛の断面を写真撮影した。写真上で経糸断面および緯糸断面それぞれについて、扁平断面フィラメントの長軸が布帛の水平方向となす角度(θ)を各フィラメント毎に測定した。測定した角度の余弦値(hi)を求め、その総和平均を水平度指数(HI)とした。
【0061】
水平度指数HI=(Σhi)/f
hi=cosθ
θ:各フィラメントの長軸方向と布帛の水平方向とのなす角度
f:フィラメント数
特に断らない限り、経糸および緯糸各1本を選びその全フィラメントについて測定した。
[引張強力]:
JIS L1096(6.12.1A法)の方法で測定した。
[引裂強力]:
JIS L1096(6.15.2A−2法)の方法で測定し、経方向と緯方向の平均値を求めた。
[通気度(A)]:
JIS L1096(6.27.1A法)の方法に準じて測定した。
【0062】
その詳細は、タテ20cm、ヨコ15cmの布帛サンプルにおいて、直径10cmの円形部分に層流管式通気度測定機を用いて、124Paの圧力に調整した空気を流したときに通過する空気量(cc/cm/sec)を測定した。
[通気度(B)]:
タテ20cm、ヨコ15cmの布帛サンプルにおいて、直径10cmの円形部分に層流管式通気度測定機を用いて、19.6KPaの圧力に調整した空気を流したときに通過する空気量(cc/cm/sec)を測定した。
[布帛の厚み]:
JIS L1096(6.5)の方法で測定した。
[剛軟度]:
JIS L1096(6.19.1A法)に準じ測定した。
[エアバッグの厚み(バッグの収納性)]:
作製した布帛を用いて、後述の60リットル容量のエアバッグを製織し、150×150mmの面積になるよう、先ず左右方向からそれぞれ4回蛇腹に折り畳んだ後、次に上下方向からそれぞれ4回蛇腹に折り畳み、この折り畳んだバッグに4000gの荷重をかけ、そのときのバッグの厚さを測定した。
[実施例1〜8、比較例1〜5]
硫酸相対粘度(98%硫酸を用いて25℃で測定)が3.7で、酢酸銅を銅として70ppm、沃化カリウムおよび臭化カリウムを各0.1重量%含有するナイロン66チップをエクストルーダ型紡糸機を用いて溶融し、溶融ポリマを計量ポンプで計量した後紡糸パックに供給した。溶融ポリマは紡糸パック中で濾過された後、紡糸口金を通して紡出した。紡糸温度(紡糸パック入り口のポリマ温度)が295℃となるようエクストルーダーおよびスピンプロック(スピンビーム)等の温度を調整した。紡糸口金は、扁平断面糸および円断面糸について総繊度、フィラメント数、単糸繊度、扁平率等の異なる糸条を得るために、孔数、孔形状、孔寸法等を考慮して設計した口金を作製して適用した。
【0063】
口金直下には300℃に加熱した長さ250mmの加熱筒を設け、紡出糸条は一旦該300℃の加熱空気雰囲気中を通過させた後、20℃の冷風を吹きつけて冷却固化させた。次に該糸条に水系エマルジョン油剤を付与し、紡糸引き取りローラに捲回して引き取った。引き取り糸条は一旦巻き取ることなく連続して延伸・熱処理ゾーンに供給し、2段延伸後弛緩処理を施してナイロン66繊維を得た。
【0064】
まず、引き取りローラと給糸ローラの間で3%のストレッチをかけ、次いで給糸ローラと第1延伸ローラの間で1段目の延伸、該第1延伸ローラと第2延伸ローラの間で2段目の延伸を行った。引き続き、該第2延伸ローラと弛緩ローラとの間で7%の弛緩熱処理を施し、交絡付与装置にて糸条を交絡処理した後、巻き取り機にて巻き取った。各ローラの表面温度は、引き取りローラが常温、給糸ローラが40℃、第1延伸ローラ、第2延伸ローラがそれぞれ140℃、230℃、弛緩ローラが150℃となるように設定した。各ローラの周速度は、第1延伸ローラを3200m/min、第2延伸ローラを4000m/minの一定とし、引き取りローラと給糸ローラの速度は、単糸繊度や単糸の断面形状等の変化による延伸倍率に応じて、それぞれ変化させた。交絡処理は、交絡付与装置内で走行糸条に対し略直角方向に高圧空気を噴射することにより行った。噴射する空気の圧力を0.05〜0.4MPaの範囲で変更し、糸条の交絡数を変化させた。
【0065】
得られたナイロン66繊維の特性を表1に示した。
【0066】
次に各種得られたナイロン66繊維を300m/minの速度で整経し、次いで津田駒製ウォータージェットルーム(ZW303)を用いて織密度を調整し、回転速度1000rpmで製織し生機を得た。その際、経糸の整経張力および製織時の経糸張力、緯糸の解ジョから測長ドラム間の張力および緯糸打ち込み張力等を変化させて製織した。
【0067】
一部の生機はそのまま熱処理装置を通過させ、乾燥ゾーンを100℃で通過させた後、180℃、1分間の熱処理を施し布帛を得た。
【0068】
また、一部の生機は、カレンダー加工処理を行った。加工機はトルクモーター式多段金属ロールセットからなり、金属表面温度で150℃、50トンの圧力をかけて1分間、次いで180℃、90トンの圧力をかけて1.5分間セットした。 布帛の製造条件および布帛特性等も表1に示した。
【0069】
次に得られた布帛を用い、エアバッグ用基布を作製した。
【0070】
まず、直径725mmの円状布帛2枚を打ち抜き法にて裁断し、一方の円状布帛の中央部に同一布帛からなる直径200mmの円状補強布帛を3枚積層して、直径110mm、145mm、175mmの円周上を470dtex/1×3から構成されるナイロン66製の縫い糸で本縫いによるミシン縫製した。また、布帛に直径90mmの孔を設け、インフレータの取り付け口とした。次に中心部からバイアス方向に225mmの位置に相反して同一布帛からなる直径75mmの円状補強布帛を1枚当て、直径50mm、60mmの円周上を470dtex/1×3から構成されるナイロン66製の縫い糸で本縫いによるミシン縫製し、直径40mmの孔を設け、ベントホール2カ所を作製した。最後に、本円状布帛の補強布側を外にし、他方の円状布帛と経軸を45度ずらして重ね合わせ、直径700mm、710mmの円周上を1400dtex/1から構成されるナイロン66製の縫い糸で二重縫いによるミシン縫製をし、袋体を裏返し60リットル容量のエアバッグを作製した。
【0071】
得られた袋体エアバッグの厚み(バッグの収納性)を表1に併せて示す。
【0072】
【表1】

Figure 2004156166
【0073】
【表2】
Figure 2004156166
【0074】
表1〜2の結果から明らかなように、本発明実施例の扁平断面糸を用いた布帛は、布帛の経糸断面、緯糸断面共に、扁平糸の長軸方向が布帛の水平方向に整然と配列した極めて緻密な布帛となり、その結果、通気性が極めて低く、同時に柔軟性、収納性、機械的特性に優れるものであった。また、前記特性を兼備した布帛は、安全に対する信頼性および収納性の点から特にエアバッグ用布帛として好適に用いることができる。
【0075】
一方、原糸の断面形状および布帛の構造が本発明の範囲外である比較例1〜4の布帛は、通気性を十分低くすることはできず、柔軟性、収納性の面でも本発明品に対し劣るものであった。また、単糸断面の扁平率を9に設計しようとした比較例5では、製糸糸切れが多発しナイロン66繊維を得ることができなかった。
【0076】
【発明の効果】
本発明の布帛は、低通気性でかつ収納性すなわちコンパクト性に優れ、また良好な機械的特性、耐熱性等を併せもつことから、各種非衣料用途、例えばエアバッグ、パラグライダー、パラシュート、テント、ターポリン、傘地等の用途に好適である。
【0077】
特に本発明の布帛が有す上記特性は、安全性と狭いスペースの搭載、さらにはコストダウンといった要求がなされる各種エアバッグ用布帛として最適に使用することができる。
【図面の簡単な説明】
【図1】本発明の布帛に用いる繊維の単糸断面形状の一例である。
【図2】本発明の布帛に用いる単糸断面の繊維を得るための口金吐出孔形状の一例である。
【符号の説明】
a:長軸
b:短軸
c:口金短軸
d:口金長軸[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a thin cloth having low air permeability, excellent strength and heat resistance, and excellent flexibility. An object of the present invention is to provide a fabric suitable for various non-clothing applications, particularly for airbags, and a method for producing the same.
[0002]
[Prior art]
2. Description of the Related Art In recent years, airbags have become indispensable as devices for ensuring the safety of occupants in vehicles, and the mounting rate on vehicles has been increasing.
[0003]
Demands for improving the reliability of airbags as safety devices are growing stronger, and demands for more compact airbag devices, preventing occupant face abrasions during bag deployment in the event of a collision, and cost reductions are also increasing. . For this reason, further improvements are required in the manufacturing process of the base fabric for an airbag, the yarn for the airbag, and the fabric constituting the airbag so as to satisfy the above requirements.
[0004]
Heretofore, there has been disclosed a technique for realizing an airbag having excellent foldability and a small storage volume without impairing the mechanical properties of an airbag base fabric. Above all, a technique using a fabric using a modified cross-section yarn as a base fabric for an airbag is attracting attention because it can satisfy the performance required for a next-generation airbag such as safety and storability.
[0005]
Conventional techniques using modified cross-section yarns include JP-A-4-193647, JP-A-4-201650, JP-A-7-252740, JP-A-8-60425, and JP-A-2002-129444. Etc.
[0006]
As a base fabric for an airbag which is lightweight, has excellent flexibility and storage properties, and has excellent mechanical properties, the single-fiber fineness is 1.0 to 12 denier and the single-fiber deformation degree is 1.5 to 7.0. BACKGROUND ART An airbag base fabric using a polyamide multifilament formed of a plurality of single yarns having a deformed cross section including a flat shape is disclosed (for example, see Patent Documents 1 and 2). However, this technology was invented on the premise of a so-called coated base fabric in which an elastomer such as silicone rubber was applied to the surface of the fabric, and when the technology was applied to a non-coated base fabric, flexibility, storability, and mechanical properties were reduced. However, low air permeability, which is one of the most important characteristics as an airbag, has not been solved.
[0007]
On the other hand, as a technique relating to a non-coated base fabric using a modified cross-section yarn, a base cloth for a non-coated air bag having low air permeability, high storage properties, mechanical characteristics, etc. by using a flat cross-section yarn having a flatness of 1.5 or more is used. Is disclosed (for example, see Patent Document 3). However, in this technique, the ventilation rate under 124 Pa is 0.3 cc / cm.2/ Sec or more, and the lower air permeability required in recent years was not sufficiently satisfied.
[0008]
Further, in the cross section of the single yarn, the flat base has from 1 to 3 symmetrically provided convex portions formed of substantially semicircular protrusions in the longitudinal direction of the flat base portion, and the ratio of the long axis to the short axis of the flat cross section yarn. Is 4/1 to 2/1, and the fiber for airbags having a single yarn fineness of 2 to 10 denier and a strength of 7 g / d or more is also disclosed (for example, see Patent Document 4). It is said that the fibers having the projections have good spinnability and quality, and that the fabric for an airbag obtained using the fibers is excellent in flexibility and compactness. However, there is no description about air permeability which is an important property of the fabric for an airbag, and since the single yarn has a protruding portion in the cross section, the packing state between the single yarns does not become dense, that is, there are many between the single yarns. As a result of the formation of voids, there remains a problem in achieving low air permeability.
[0009]
There is also disclosed an excellent technique for providing a non-coated airbag fabric using flat yarns, the fabric having low air permeability and excellent storage properties (for example, see Patent Document 5). However, a device for maximizing the characteristics of the flat yarn as the flat yarn cloth, that is, in the cross section of the cloth, the warp filament and the weft filament constituting the cloth are each formed by the long axis of the flat cross section of each filament. There is no description that a fabric having a high degree of arrangement in the horizontal direction can achieve even lower air permeability and excellent storage properties, and there is no description of a method for producing the fabric.
[0010]
[Patent Document 1]
JP-A-4-193647,
[0011]
[Patent Document 2]
JP-A-4-201650
[0012]
[Patent Document 3]
JP-A-7-252740
[0013]
[Patent Document 4]
JP-A-8-60425
[0014]
[Patent Document 5]
JP-A-2002-129444
[0015]
[Problems to be solved by the invention]
As described above, in the prior art, a fabric having all the characteristics required for an airbag base fabric, such as low air permeability, flexibility and storability, and mechanical characteristics, has not been obtained. In addition, it has become even more difficult to provide a fabric that can sufficiently satisfy recent demands for stricter low air permeability and improved storage properties.
[0016]
The present invention solves the above-mentioned problems in the prior art, and provides a cloth suitable for airbags as well as non-clothing applications, such as paragliders, parachutes, tents, and tarpaulins. And a method of manufacturing the same.
[0017]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the fabric of the present invention mainly has the following configuration. That is,
A cloth using a flat cross-section filament yarn having a cross-sectional shape in a range of 1.5 to 8 in a flatness ratio (a ratio of a long axis to a short axis) as a warp and a weft, and in the cross section of the cloth, A horizontality index (HI) expressed as a sum average of cosine (hi) of an angle (θ) formed between a major axis direction of the warp and the weft filaments constituting the fabric and a horizontal direction of the fabric is 0.85 to 1; 2.0, wherein the long axes of the flat cross sections of the filaments are arranged in the horizontal direction of the fabric so as to be 0.0.
[0018]
Further, in the fabric of the present invention, the following embodiments (a) and (b) are preferred embodiments, and by satisfying these requirements, more excellent effects can be obtained.
(A) Cover factor: 1700-2400
Tensile strength ≧ 500N / cm
Tear strength ≧ 150N
Air permeability under a pressure of 124 Pa (A) ≦ 0.1 cc / cm2/ Sec
Air permeability under pressure of 19.6 KPa (B) ≦ 10 cc / cm2/ Sec
Fabric thickness: 0.15 to 0.30 mm
That.
(B) The flat cross-section yarn is made of polyamide fiber.
[0019]
The method for producing a fabric of the present invention mainly has the following configuration. That is,
In a method of manufacturing a fabric using a flat cross-section filament having a flatness of 1.5 to 8 as a warp and a weft, a tension of 0.2 to 0.6 cN / dtex is applied to the warp and the weft at the time of weaving. The horizontality index expressed by the sum average of the cosine (hi) of the angle (θ) between the major axis direction of the warp and the weft filaments constituting the fabric of the cross section of the fabric and the horizontal direction of the fabric. HI) is from 0.85 to 1.0.
[0020]
Further, in the method for producing a fabric of the present invention, the following (c) and (d) are preferred embodiments, and by applying these conditions, a more excellent effect can be obtained.
(C) subjecting the cloth obtained by weaving to heat and pressure.
(D) Weaving so that the number of entangled flat cross-section yarns is 3 to 20 yarns / m and the number of entangled flat cross-section yarns in the fabric is 3 yarns / m or less.
[0021]
In addition, the fabric of the present invention can be expected to have particularly excellent effects when used as an airbag fabric.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
[0023]
The fabric of the present invention is a synthetic fiber, for example, a polyamide fiber, a polyester fiber, a polyolefin fiber, a fabric made of polyvinyl alcohol fiber and the like, the material of the fiber is not particularly limited, but the preferred material is polyamide fiber. is there. The polyamide fiber is a fiber composed of polyhexamethylene (N66), polycapramid (N6), polytetramethylene adipamide (N46), and copolymers and blends of these polymers.
[0024]
In particular, in order to obtain the high-strength, high-toughness fabric of the present invention, a high-molecular-weight polyamide polymer having a sulfuric acid relative viscosity of 3.0 or more, preferably 3.3 or more is used.
[0025]
In addition, the fabric of the present invention is widely used in material applications such as airbags, and has various chemical resistances, such as high heat resistance, weather resistance, and various kinds of heat resistance, light resistance, It is preferable to use a fiber containing an antioxidant or the like. For example, in the case of polyamide fibers, copper acetate, copper iodide, copper bromide, various copper salts such as cupric chloride and inorganic or organic copper complex salts, potassium iodide, sodium iodide, potassium bromide, lithium chloride, Alkali metal halides and alkaline earth metal halides such as calcium chloride, hindered phenol antioxidants and diphenylamine antioxidants, imidazole antioxidants, inorganic and organic phosphorus compounds and ultraviolet absorbers, manganese salts And so on. The content is usually about 10 to 100 ppm as a metal in the case of a metal salt, and about 500 to 5000 ppm for other additives.
[0026]
Also, depending on the application, titanium oxide, calcium carbonate, matting agents such as kaolin,
A lubricant such as calcium stearate can also be used.
[0027]
The single yarn cross-sectional shape of the fiber used for the fabric of the present invention is usually an elliptical shape as shown in FIG. 1 (A) and an elliptical shape as shown in FIG. Any shape other than the elliptical shape can be used as long as the major axis and the minor axis satisfy the relationship described below. For example, a symmetrical type such as a rectangle, a rhombus, and a cocoon may be used, of course, or an asymmetrical type or a combination thereof. Further, with the above as a basic type, a projection, a dent, or a hollow portion may be present as long as the effects of the present invention are not impaired.
[0028]
Here, the major axis and the minor axis correspond to the major axis and minor axis of the ellipse. On the other hand, when the single yarn cross-sectional shape is other than the elliptical shape as described above, a barycentric line passing through the center of gravity is drawn in the single yarn cross-sectional shape, and the longest line segment is defined as a long axis. The longest line segment in the direction perpendicular to the major axis is defined as the minor axis.
[0029]
In the flat cross-section yarn in the present invention, it is essential that the cross-sectional shape of the single yarn has a flatness ratio (ratio of the length of the long axis to the short axis) of 1.5 to 8, and preferably 2 to 6. By using a yarn having a flat cross section in such a range, the long axis of each single yarn can be arranged in the horizontal direction of the base cloth, and the thickness of the obtained fabric is smaller than when using a normal circular cross section yarn. Is thin and has excellent storage properties, and the air permeability can be kept low. If the flatness is less than 1.5, the yarn is close to the circular cross-section yarn, and it is not possible to obtain the effect of using the flat cross-section yarn, that is, a fabric having both low air permeability, flexibility, and storability. On the other hand, when the flatness exceeds 8, not only the effect of using the flat cross-section yarn is saturated, but also it becomes difficult to stably produce high-strength, high-toughness fibers with good quality.
[0030]
In general circular cross-section yarns, the smaller the single yarn fineness, the better the covering property on the fabric, and the lower the air permeability, flexibility and storability of the resulting fabric. However, on the other hand, there is a problem that as the fineness of the single yarn becomes smaller, the spinning property deteriorates. In other words, in consideration of productivity (production efficiency and yield), there is a limit to further improving low air permeability, flexibility, storability, and the like by reducing the single yarn fineness.
[0031]
On the other hand, the above-mentioned flat cross-section yarn can exert a great effect equal to or more than that of the circular cross-section yarn having significantly reduced single-filament fineness without reducing the actual single-filament fineness. For example, the short axis of a polyamide filament having a flat cross section having a flatness of 3.5 and a single yarn fineness of 10 dtex corresponds to the diameter of a circular cross section filament having a single yarn fineness of 2.4 dtex. Further, for example, the short-axis length of a flat cross-section yarn having a flatness of 3.5 and a single yarn fineness of 4 dtex corresponds to a diameter of a so-called microfiber of 1 dtex or less in a circular cross-section yarn, and corresponds to the diameter of a so-called microfiber. This is an area where stable yarn production is difficult. However, when the flat cross-section yarn of the present invention is used, low air permeability, flexibility, and storability that cannot be obtained with the circular cross-section yarn can be realized.
[0032]
The flat cross-section yarn in the present invention preferably has a strength of 7 to 10 cN / dtex, an elongation of 10 to 30%, and a boiling water shrinkage of 3 to 8%. A fabric having excellent mechanical properties such as tear strength can be obtained.
[0033]
In the fabric of the present invention, the cross-sectional shape of each filament is made of a flat cross-section yarn having the specific flatness, and the long axis direction of each filament constituting the fabric is arranged in the horizontal direction of the fabric. This is the biggest and most important feature of the general. In order to express this quantitatively, a horizontality index (HI) was defined. The horizontality index HI is expressed as the cosine (hi) of the angle (θ) between the major axis direction of the warp and the weft filaments constituting the fabric and the horizontal direction of the fabric, and is expressed as an average sum thereof. That is, it can be calculated by the following equation.
[0034]
HI = (Σhi) / f
hi = cos θ
θ: Angle between the long axis direction of each filament and the horizontal direction of the fabric
f: Number of filaments
The fabric of the present invention uses a flat cross-section yarn for warp and weft, and has a horizontality index HI of 0.85 to 1.0, preferably 0.90 to 1.0, more preferably 0 to 0 for both warp and weft cross sections. .95 to 1.0. By setting the horizontality index HI within such a range, a fabric having excellent flexibility and storability and having low air permeability can be obtained. If the HI is less than 0.85, the effects of the present invention, that is, low air permeability, flexibility, and storability due to good covering properties are not sufficiently exhibited even if a flat cross-section yarn is used. The fact that the HI is 0.85 to 1.0 means that the long axis direction of each filament is practically arranged in the horizontal direction of the fabric.
[0035]
The cover factor of the fabric of the present invention is preferably 1700 to 2400. Here, the cover factor refers to the total fineness of the warp as D1(Dtex), the weave density is N1(Book / 2.54 cm), the total fineness of the weft is D2(Dtex), the weave density is N2(Book / 2.54 cm), (D1× 0.9)1/2× N1+ (D2× 0.9)1/2× N2Is the value represented by The cover factor is greatly related to the air permeability and the storability of the fabric, and it is extremely important that the cover factor is in an appropriate range as a base fabric for an airbag. The fabric of the present invention has good covering properties because the filaments have a flat cross-sectional shape and the long axes of the filaments are arranged in the horizontal direction of the fabric. It is characterized in that low air permeability can be ensured even if the cover factor is lower by 10 to 30% than that of the fabric using the same. The fact that the cover factor can be set low means that the weaving time can be shortened and the weaving cost of the fabric can be reduced because the amount of fibers used is small and the number of fibers to be driven can be small.
[0036]
The fabric of the present invention is also characterized by having both low air permeability, flexibility and storability, but the air permeability is such that the air permeability (A) under a pressure of 124 Pa is 0.1 cc / cm.2/ Sec or less, the air permeability (B) under a pressure of 19.6 KPa is 10 cc / cm.2/ Sec or less. By achieving low air permeability under all pressures as described above, when the fabric is used as an airbag, the deployment speed of the airbag is increased, and occupant safety can be secured with a higher probability. . The reason why the fabric of the present invention can achieve low air permeability is that the gaps in the vertical direction of the fabric are extremely reduced by arranging the flat cross-section filaments in the horizontal direction of the fabric.
[0037]
The fabric of the present invention preferably has a thickness of 0.15 to 0.30 mm, and is suitable for applications requiring storage in a narrower space, for example, as an airbag fabric for a small car or smaller. In the fabric of the present invention, a flat cross-section yarn having a flatness of 1.5 to 8 is used, and since both warp and weft have a structure in which the major axes of the cross sections of the respective filaments are arranged neatly in the horizontal direction of the fabric, the same single yarn is used. When compared with a fabric made of a circular cross-section yarn having the same fineness and the same cover factor, the thickness can be reduced by about 20% or more.
[0038]
The mechanical properties of the fabric of the present invention preferably have a tensile strength ≧ 500 N / cm and a tear strength ≧ 150 N, and are suitable for various non-clothing fabrics. Particularly in the case of an airbag fabric, it is necessary to have high strength enough to withstand the impact force when the bag is deployed. The fabric having the strength in the above range can be applied to any airbag fabric, that is, any of a driver airbag, a passenger airbag, a side airbag, a knee airbag, and an inflatable curtain airbag. However, among others, it is more effective when it is used for a material requiring good foldability and compactness.
[0039]
The cloth of the present invention is characterized in that the tear strength is relatively higher than the tensile strength as compared with a cloth usually made of a circular cross-section yarn. It is effective to prevent propagation one after another. In the fabric of the present invention, since the flat cross-section yarns are bundled and woven with extremely high density, they behave like a single flat monofilament, and it is speculated that high tear strength may be exhibited. .
[0040]
Next, an example of a method for producing the fabric of the present invention will be described.
[0041]
The synthetic fiber having a flat cross section used for the fabric of the present invention can be a fiber made of various polymers as described above. In order to obtain a fiber having a high strength and a high toughness, a polyamide fiber is preferable. A polyamide fiber using a high-viscosity nylon 66 polymer having a relative viscosity of 3.0 or more is preferable. Further, polyamide fibers containing the above-mentioned various heat-resistant agents, light-resistant agents, antioxidants and the like are more preferable.
[0042]
To produce the fibers, the polymer is melted, filtered, and spun from the pores of the die. The die hole shape uses a die designed so that the cross section of each filament is the flat cross section specified in the present invention. . In particular, the die hole shape is designed in consideration of the change in the cross-sectional shape due to the surface tension of the molten polymer until the spun yarn is cooled and solidified.
[0043]
For example, in order to obtain the fiber having the elliptical shape shown in FIG. 1 (A), the nozzle discharge shape may be designed in a rectangular shape as shown in FIG. 2 (A). The rectangular vertical length c and the horizontal length d may be appropriately set according to the single-filament fineness and the flatness of the fiber to be obtained. On the other hand, in order to make the cross section of the single yarn into an elliptical shape in which the opposite sides are parallel as shown in FIG. 1A, small circular holes are arranged at both ends and inside as shown in FIG. What is necessary is just to design in the shape which connected small circular holes with the slit hole. In this case, the number of the small holes, the diameter of the small holes, the length of the slit holes, the width of the slit holes, and the overall vertical length c, the horizontal length d, and the like are determined by the length of the fiber to be obtained. What is necessary is just to select suitably according to a yarn fineness and an oblateness. In order to make the opposing sides more parallel straight lines, the number of small circular holes is 4 to 8, the diameter is 0.1 to 0.3 mm, and the slit width is 0.1, although it depends on the atmosphere state after the die is discharged. It is preferably in the range of 0.3 to 0.3 mm and the length of 0.1 to 0.3 mm.
[0044]
After the spun yarn is cooled and solidified, an oil agent is applied thereto, and the spun yarn is wound around a take-up roller that rotates at a predetermined rotation speed and taken up. Subsequently, the yarn is stretched by continuously winding the yarn around a Nelson roller rotating at a high speed. In order to obtain a fiber having higher strength, it is preferable to perform two-stage or more multi-stage drawing. Further, the temperature of the final stretching roller is set to 200 ° C. or higher, stretching heat treatment is performed, and the film is wound up after being subjected to a several percent relaxation treatment with a relaxing roller arranged next to the final stretching roller. Recently, with the improvement of yarn production efficiency, a high-speed, multi-filament direct spinning / drawing method such as a winding speed of 2500 to 4500 m / min and a number of yarns of 4 to 8 yarns has been performed.
[0045]
Usually, a entanglement process is performed to impart a bundle property to the yarn before winding. The entanglement process is performed by injecting high-pressure air from a plurality of nozzle holes in a direction substantially intersecting the running yarn. The larger the number of entanglements, the more the yarns are bundled and the better the processability in warping and weaving, which is preferred. On the other hand, however, it is preferable that the entanglement imparted to the yarn is released after weaving, and the number of yarn entanglements in the fabric is substantially eliminated. If many entanglements remain in the fabric, the filament is twisted in some places, and it may be difficult to obtain the horizontality index HI specified in the present invention. The preferred number of entanglements imparted to the fibers in the present invention is 3 to 20 / m, more preferably 5 to 15 / m. Further, the number of entanglements of the fibers in the fabric is preferably 3 yarns / m or less for both the warp and the weft, and more preferably substantially zero. By setting the number of entanglements in such a range, the HI of the fabric made of the fiber can be sufficiently increased without impairing the processability in the warping and weaving, and as a result, the air permeability is low and the wrapping is flexible. An excellent fabric of the present invention can be obtained with high productivity.
[0046]
Next, the obtained fiber is warped and woven. Although a water jet loom is often used as a loom, it is not limited to a rapier room or an air jet loom. Also, the woven structure of the fabric is usually plain weave, but may be any structure such as twill weave.
[0047]
The warping and weaving steps are performed while controlling the warp tension and the weft driving tension to be appropriate so that the flat cross-section filaments according to the present invention are arranged in the horizontal direction of the fabric. An appropriate range of the warp tension for keeping the levelness index (HI) in the range of 0.85 to 1.0 described above is 0.2 to 0.6 cN / dtex. When the warp tension at the time of weaving is less than 0.2 cN / dtex, the horizontality index (HI) representing the arrangement of the flat cross-section filaments in the cross-section of the fabric, which is an important requirement of the present invention, is not sufficiently increased, It becomes impossible to obtain a fabric having low air permeability and excellent flexibility and storability. Conversely, even when the warp tension exceeds 0.6 cN / dtex, the horizontality index (HI) is rather lowered, and the characteristics of the fabric of the present invention may not be obtained. On the other hand, if the warp tension during weaving is too high, breakage of single yarns and breakage of all yarns occurs, causing a stoppage of the weaving machine, lowering the quality of the fabric and lowering the production efficiency.
[0048]
On the other hand, since the weft has no warping step and is directly driven in the weaving step, sufficient consideration was given to release the entanglement imparted to the original yarn and arrange the long axis of the flat cross-section yarn in the horizontal direction of the fabric. Tension control is required. Normally, tension is applied so that the yarn is released from the raw yarn cheese and the entanglement of the weft is almost completely eliminated up to the position on the length measuring drum immediately before driving the weft. Its tension range is 0.2-0.6 cN / dtex.
In particular, the range of 0.3 to 0.5 cN / dtex is preferable. And the tension at the time of weft driving is also in the range of 0.2 to 0.6 cN / dtex. In the case of a recent high-speed weaving water jet loom, the driving tension of the weft is relatively high, so the long axis of each filament of the weft is in the horizontal direction of the fabric during weaving even if the entanglement has not been eliminated just before the driving of the weft. However, when weaving with a rapier loom or an air jet loom, since the weft driving tension is low, it is necessary to remove the entanglement of the original yarn by applying tension before the weft driving.
[0049]
Thus, both the warp and the weft are fabrics in which the long axes of the respective flat cross-section filaments are arranged in the horizontal direction of the fabric, and the flat yarn base fabric of the present invention is obtained.
[0050]
In addition, in order to reliably and stably express the effects of the present invention, and to further demonstrate the performance of the conventional flat yarn base fabric, the obtained fabric may be subjected to a heat-pressing process, a so-called calendering process. preferable.
[0051]
The calendering machine may be a normal calendering machine. The calendering temperature is preferably 180 to 220 ° C., the pressure is preferably 50 to 150 tons, and the speed is preferably 4 to 50 m / min. If the calendering is performed on at least one side, sufficient performance can be obtained.
[0052]
Note that scouring may or may not be performed prior to calendering. Usually, scouring is not performed when weaving with a water jet loom, and scouring is often performed when weaving with a rapier or air jet loom.
[0053]
Although the embodiments of the present invention have been described in detail above, in the present invention, a fiber having a specified flat cross-sectional shape and a fabric having a specific structure are designed, that is, the cross-sectional shape of a filament is used for both the warp and the weft. Uses a flat cross-section yarn having a flatness of 1.5 to 8, and each of the filaments of the warp and the weft are arranged neatly in the horizontal direction of the fabric, so that low air permeability, flexibility and A fabric having both storability can be obtained.
[0054]
In addition, the flat cross-section yarn and the fabric can be obtained with high productivity (production efficiency and high yield) and are extremely practical.
[0055]
【Example】
Hereinafter, the present invention will be described specifically with reference to Examples and Comparative Examples.
[0056]
The methods for measuring physical properties shown in the detailed description of the invention and the examples are as follows.
Yarn properties
[Flatness]:
The fiber was cut and its cross section was photographed at 200 × with an optical microscope and baked. The lengths of the long axis (a) and the short axis (b) of the single yarn were measured on the photograph, and the ratio was defined as the oblateness. Ten single yarns were measured and the average value was shown.
[0057]
Flatness = a / b
[Total fineness]:
The positive fineness was measured by the method of JIS L-1013.
[Single yarn fineness]:
It was calculated by dividing the total fineness by the number of filaments.
[Strength, elongation]:
The sample which had been left in the shape of a cassette in a temperature and humidity control room at 20 ° C.-65% for 24 hours or more was measured by the method of JIS L-1013 under the conditions of a test length of 25 cm and a tensile speed of 30 cm / min.
[Boiling water shrinkage]:
The raw yarn is sampled in a scallop shape, adjusted for at least 24 hours in a temperature and humidity control room at 20 ° C. and 65% RH, and a load equivalent to 1 cN / dex is applied to the sample to obtain a length L.0Was measured. Next, this sample was immersed in boiling water for 30 minutes without tension, then air-dried for 4 hours in the greenhouse temperature control chamber, and a load equivalent to 1 cN / dex was again applied to the sample to obtain a length L.1Was measured. Each length L0And L1Then, the boiling water shrinkage was determined by the following equation.
[0058]
Boiling water shrinkage = [(L0-L1) / L0] X 100 (%)
[Confound Number]:
The number of entangled portions having a length of 1 mm or more was measured by a water immersion method, and converted to the number per 1 m. Ten yarns were measured and the average value was shown.
[0059]
The water immersion bath used had a length of 70 cm, a width of 15 cm, a depth of 5 cm, and provided a partition plate at a position 10 cm from both ends in the longitudinal direction. The bath was filled with pure water, the yarn sample was immersed in water, and the number of entangled portions was measured. In addition, pure water was exchanged for each measurement in order to eliminate the influence of impurities such as oils.
[Number of entangled fabric yarns]:
The cloth was disassembled, and the warp and the weft were sampled 10 by 10 to obtain a measurement sample. The sample was measured by the same water immersion method as the number of entanglements described above, and the average value of ten warp yarns and weft yarns was shown.
Fabric properties
[Cover Factor]:
Total fineness of warp D1(Dtex), weave density N1(Book / 2.54 cm), total fineness D of weft2(Dtex), weave density N2(Book / 2.54 cm) and was calculated by the following equation.
[0060]
Cover factor = (D1× 0.9)1/2× N1+ (D2× 0.9)1/2× N2
[Levelness index HI]:
The cloth was cut in the warp cross section and the weft cross section direction, and the cross section of the cloth was photographed with a scanning electron microscope (SEM). For each of the warp cross section and the weft cross section on the photograph, the angle (θ) formed by the long axis of the flat cross section filament and the horizontal direction of the fabric was measured for each filament. The cosine value (hi) of the measured angle was determined, and the average of the sum was defined as the horizontality index (HI).
[0061]
Horizontalness index HI = (Σhi) / f
hi = cos θ
θ: Angle between the long axis direction of each filament and the horizontal direction of the fabric
f: Number of filaments
Unless otherwise noted, one warp and one weft were selected and measured for all the filaments.
[Tensile strength]:
It was measured by the method of JIS L1096 (6.12.1A method).
[Tear strength]:
It was measured by the method of JIS L1096 (6.15.2A-2 method), and the average value in the meridian direction and the latitude direction was obtained.
[Air permeability (A)]:
It measured according to the method of JIS L1096 (6.27.1A method).
[0062]
The details are as follows. In a fabric sample having a length of 20 cm and a width of 15 cm, the amount of air (cc) passed when air adjusted to a pressure of 124 Pa was flowed through a circular portion having a diameter of 10 cm using a laminar flow tube air permeability meter. / Cm2/ Sec).
[Air permeability (B)]:
In a fabric sample of 20 cm in length and 15 cm in width, the amount of air (cc / cm) that passes when air adjusted to a pressure of 19.6 KPa is passed through a circular portion having a diameter of 10 cm using a laminar flow tube air permeability measurement device.2/ Sec).
[Fabric thickness]:
It was measured by the method of JIS L1096 (6.5).
[Flexibility]:
The measurement was carried out according to JIS L1096 (6.19.1A method).
[Thickness of airbag (bag storage capacity)]:
Using the produced fabric, an airbag having a capacity of 60 liters described later is woven and folded into a bellows four times from the left and right directions so as to have an area of 150 × 150 mm, and then four times from the up and down directions. Then, a load of 4000 g was applied to the folded bag, and the thickness of the bag at that time was measured.
[Examples 1 to 8, Comparative Examples 1 to 5]
An extruder type nylon 66 chip having a relative viscosity of sulfuric acid (measured at 25 ° C. using 98% sulfuric acid) of 3.7, containing 70 ppm of copper acetate as copper, and containing 0.1% by weight of potassium iodide and 0.1% by weight of potassium bromide. It was melted using a spinning machine, and the molten polymer was measured by a metering pump and then supplied to a spin pack. The molten polymer was filtered through a spin pack and then spun through a spinneret. The temperature of the extruder and the spin block (spin beam) were adjusted so that the spinning temperature (polymer temperature at the entrance of the spin pack) was 295 ° C. The spinneret is designed in consideration of the number of holes, hole shape, hole size, etc. in order to obtain yarns with different total fineness, number of filaments, single yarn fineness, flatness etc. for flat cross-section yarn and circular cross-section yarn. Was prepared and applied.
[0063]
A heating cylinder heated to 300 ° C. and having a length of 250 mm was provided directly below the spinneret. The spun yarn was once passed through the heated air atmosphere at 300 ° C. and then cooled and solidified by blowing cold air at 20 ° C. . Next, an aqueous emulsion oil agent was applied to the yarn, and the yarn was wound around a spinning take-off roller and taken off. The take-up yarn was continuously supplied to the drawing / heat treatment zone without being wound once, and then subjected to a relaxation treatment after two-stage drawing to obtain a nylon 66 fiber.
[0064]
First, a 3% stretch is applied between the take-up roller and the yarn feeding roller, then the first-stage stretching is performed between the yarn feeding roller and the first stretching roller, and the stretching is performed between the first stretching roller and the second stretching roller. Step stretching was performed. Subsequently, a 7% relaxation heat treatment was applied between the second stretching roller and the relaxation roller, and the yarn was entangled by the entanglement imparting device, and then wound up by a winder. The surface temperature of each roller was set such that the take-up roller was at room temperature, the yarn supply roller was at 40 ° C., the first stretching roller and the second stretching roller were at 140 ° C. and 230 ° C., respectively, and the relaxation roller was at 150 ° C. The peripheral speed of each roller is constant at 3200 m / min for the first stretching roller and 4000 m / min for the second stretching roller, and the speeds of the take-up roller and the yarn feeding roller are changed in the single yarn fineness and the cross-sectional shape of the single yarn. , Respectively, depending on the stretching ratio. The confounding treatment was performed by injecting high-pressure air in a direction substantially perpendicular to the running yarn in the confounding device. The pressure of the air to be injected was changed in the range of 0.05 to 0.4 MPa, and the number of entangled yarns was changed.
[0065]
Table 1 shows the properties of the obtained nylon 66 fiber.
[0066]
Next, various obtained nylon 66 fibers were warped at a speed of 300 m / min, and then the weaving density was adjusted using a water jet loom (ZW303) manufactured by Tsudakoma, and weaving was performed at a rotation speed of 1000 rpm to obtain a greige machine. At that time, weaving was performed by changing the warping tension of the warp, the warp tension at the time of weaving, the tension between the length measuring drums, the weft driving tension, and the like from the release of the weft.
[0067]
Some greige fabrics were passed through a heat treatment apparatus as they were, passed through a drying zone at 100 ° C., and then heat-treated at 180 ° C. for 1 minute to obtain a fabric.
[0068]
In addition, some greige machines were subjected to calendering processing. The processing machine consisted of a torque motor type multi-stage metal roll set, which was set at a metal surface temperature of 150 ° C. at a pressure of 50 tons for 1 minute, and then set at 180 ° C. at a pressure of 90 tons for 1.5 minutes. Table 1 also shows the fabric production conditions and fabric properties.
[0069]
Next, using the obtained fabric, a base fabric for an airbag was produced.
[0070]
First, two circular cloths having a diameter of 725 mm are cut by a punching method, and three circular reinforcing cloths each having a diameter of 200 mm made of the same cloth are laminated at the center of one circular cloth. The sewing machine was sewn on a circumference of 175 mm with a sewing thread made of nylon 66 composed of 470 dtex / 1 × 3 by lockstitch. In addition, a hole having a diameter of 90 mm was provided in the cloth to serve as a mounting port for an inflator. Then, a circular reinforcing cloth made of the same cloth and having a diameter of 75 mm is applied oppositely to a position of 225 mm in the bias direction from the center portion, and a circumference of 50 mm and 60 mm is made of 470 dtex / 1 × 3 nylon. A sewing machine was sewn with a lockstitch using a sewing thread of 66, a hole having a diameter of 40 mm was provided, and two vent holes were formed. Finally, the reinforcing cloth side of the present circular cloth is set outside, and the other circular cloth is overlapped with the other circular cloth shifted by 45 degrees, and the circumference of 700 mm diameter and 710 mm is made of nylon 66 composed of 1400 dtex / 1. The sewing machine was sewn with double stitching using the sewing thread described above, and the bag body was turned over to produce an airbag having a capacity of 60 liters.
[0071]
Table 1 also shows the thickness (bag storage capacity) of the obtained bag airbag.
[0072]
[Table 1]
Figure 2004156166
[0073]
[Table 2]
Figure 2004156166
[0074]
As is clear from the results of Tables 1 and 2, in the fabric using the flat cross-section yarn of the present invention, both the warp cross-section and the weft cross-section of the fabric have the long axis direction of the flat yarn arranged neatly in the horizontal direction of the fabric. The resulting fabric was extremely dense, and as a result, had extremely low air permeability, and at the same time, had excellent flexibility, storage properties, and mechanical properties. Further, the fabric having the above characteristics can be suitably used particularly as a fabric for an airbag from the viewpoint of reliability for safety and storability.
[0075]
On the other hand, the fabrics of Comparative Examples 1 to 4, in which the cross-sectional shape of the raw yarn and the structure of the fabric are out of the range of the present invention, cannot sufficiently reduce the air permeability, and the products of the present invention also have flexibility and storability. Was inferior to Further, in Comparative Example 5 in which the flatness of the cross section of a single yarn was designed to be 9, the yarn breakage frequently occurred and nylon 66 fiber could not be obtained.
[0076]
【The invention's effect】
The fabric of the present invention has low air permeability and excellent storability, that is, compactness, and also has good mechanical properties and heat resistance. Suitable for applications such as tarpaulins and umbrellas.
[0077]
In particular, the above-mentioned properties of the fabric of the present invention can be optimally used as various airbag fabrics that require safety, installation in a narrow space, and cost reduction.
[Brief description of the drawings]
FIG. 1 is an example of a cross section of a single yarn of a fiber used for a fabric of the present invention.
FIG. 2 is an example of a shape of a nozzle discharge hole for obtaining a fiber having a single yarn cross section used in the fabric of the present invention.
[Explanation of symbols]
a: Long axis
b: short axis
c: Cap short axis
d: Long axis of base

Claims (7)

断面形状が扁平率(長軸と短軸の長さの比)1.5〜8の範囲内にある扁平断面フィラメント糸条を経糸および緯糸として用いた布帛であって、該布帛の断面において、該布帛を構成する該経糸および緯糸フィラメントの長軸方向が該布帛の水平方向とのなす角度(θ)の余弦(hi)の総和平均で表した水平度指数(HI)が0.85〜1.0となるように、該フィラメントの扁平断面の長軸が布帛の水平方向に配列していることを特徴とする布帛。A cloth using a flat cross-section filament yarn having a cross-sectional shape in a range of 1.5 to 8 in a flatness ratio (a ratio of a long axis to a short axis) as a warp and a weft, and in the cross section of the cloth, A horizontality index (HI) expressed as a sum average of cosine (hi) of an angle (θ) formed between a major axis direction of the warp and the weft filaments constituting the fabric and a horizontal direction of the fabric is 0.85 to 1; 2.0, wherein the long axes of the flat cross sections of the filaments are arranged in the horizontal direction of the fabric so as to be 0.0. 前記布帛が、下記(1)〜(5)の特性を有することを特徴とする請求項1に記載の布帛。
(1)カバーファクター:1700〜2400
(2)引張り強力≧500N/cm
(3)引裂き強力≧150N
(4)124Paの圧力下での通気度(A)≦0.1cc/cm/sec
(5)19.6KPaの圧力下での通気度(B)≦10cc/cm/sec
(6)布帛の厚み:0.15〜0.30mm
The cloth according to claim 1, wherein the cloth has the following characteristics (1) to (5).
(1) Cover factor: 1700-2400
(2) Tensile strength ≧ 500 N / cm
(3) Tear strength ≧ 150N
(4) Air permeability under a pressure of 124 Pa (A) ≦ 0.1 cc / cm 2 / sec
(5) Air permeability under a pressure of 19.6 KPa (B) ≦ 10 cc / cm 2 / sec
(6) Fabric thickness: 0.15 to 0.30 mm
エアバッグ用布帛であることを特徴とする請求項1または2に記載の布帛。3. The fabric according to claim 1, wherein the fabric is an airbag fabric. 前記扁平断面フィラメント糸条が、ポリアミド繊維からなることを特徴とする請求項1〜3のいずれか1項に記載の布帛。The fabric according to any one of claims 1 to 3, wherein the flat cross-section filament yarn is made of a polyamide fiber. 断面形状が扁平率1.5〜8の扁平断面フィラメントを経糸および緯糸として用いて布帛を製造する方法において、製織時の経糸および緯糸にそれぞれ0.2〜0.6cN/dtexの張力をかけて製織し、布帛の断面の該布帛を構成する該経糸および緯糸フィラメントの長軸方向が該布帛の水平方向とのなす角度(θ)の余弦(hi)の総和平均で表した水平度指数(HI)が0.85〜1.0となるように製造することを特徴とする布帛の製造方法。In a method of manufacturing a fabric using a flat cross-section filament having a flatness of 1.5 to 8 as a warp and a weft, a tension of 0.2 to 0.6 cN / dtex is applied to the warp and the weft at the time of weaving. Horizontality index (HI) expressed as the sum average of the cosine (hi) of the angle (θ) between the major axis direction of the warp and the weft filaments constituting the fabric of the cross section of the fabric and the horizontal direction of the fabric. ) Is 0.85 to 1.0. 前記製織して得られた布帛に加熱加圧加工を施すこと特徴とする請求項5記載の布帛の製造方法。The method for producing a fabric according to claim 5, wherein the fabric obtained by weaving is subjected to heat and pressure processing. 扁平断面糸の交絡数が3〜20個/mであり、布帛中での該扁平断面糸の交絡数が3個/m以下となるように製織することを特徴とする請求項5または6に記載の布帛の製造方法。The weaving is performed so that the number of entangled flat cross-section yarns is 3 to 20 yarns / m and the number of entangled flat cross-section yarns in the fabric is 3 yarns / m or less. A method for producing the fabric described in the above.
JP2002322167A 2002-11-06 2002-11-06 Fabric and method for producing the same Withdrawn JP2004156166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002322167A JP2004156166A (en) 2002-11-06 2002-11-06 Fabric and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002322167A JP2004156166A (en) 2002-11-06 2002-11-06 Fabric and method for producing the same

Publications (1)

Publication Number Publication Date
JP2004156166A true JP2004156166A (en) 2004-06-03

Family

ID=32802430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002322167A Withdrawn JP2004156166A (en) 2002-11-06 2002-11-06 Fabric and method for producing the same

Country Status (1)

Country Link
JP (1) JP2004156166A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006124859A (en) * 2004-10-28 2006-05-18 Toray Ind Inc Stock yarn package for air bag, and substrate cloth for air bag by using the same
JP2007284826A (en) * 2006-04-18 2007-11-01 Toray Ind Inc Method for producing base fabric for airbag
JP2008509031A (en) * 2004-08-09 2008-03-27 ベイラー ベヒアー ビー.ブイ. Longitudinal fiber web forming method and forming apparatus, transverse fiber web forming method and forming apparatus, crossed fiber web forming method and forming apparatus, and airbag forming method and forming apparatus
WO2015022954A1 (en) * 2013-08-13 2015-02-19 旭化成せんい株式会社 Woven fabric
CN104471129A (en) * 2012-07-25 2015-03-25 奥托立夫开发公司 A fabric for an air-bag
JP5859697B1 (en) * 2015-04-13 2016-02-10 栗田煙草苗育布製造株式会社 Method for producing a plain weave or leno weave woven fabric
CN112746337A (en) * 2020-12-22 2021-05-04 神马博列麦(平顶山)气囊丝制造有限公司 Nylon 66 high-air-tightness air bag yarn and preparation method thereof
US11214895B2 (en) 2015-11-06 2022-01-04 Inv Performance Materials, Llc Low permeability and high strength fabric and methods of making the same
US11634841B2 (en) 2017-05-02 2023-04-25 Inv Performance Materials, Llc Low permeability and high strength woven fabric and methods of making the same
US11708045B2 (en) 2017-09-29 2023-07-25 Inv Performance Materials, Llc Airbags and methods for production of airbags

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008509031A (en) * 2004-08-09 2008-03-27 ベイラー ベヒアー ビー.ブイ. Longitudinal fiber web forming method and forming apparatus, transverse fiber web forming method and forming apparatus, crossed fiber web forming method and forming apparatus, and airbag forming method and forming apparatus
JP2006124859A (en) * 2004-10-28 2006-05-18 Toray Ind Inc Stock yarn package for air bag, and substrate cloth for air bag by using the same
JP2007284826A (en) * 2006-04-18 2007-11-01 Toray Ind Inc Method for producing base fabric for airbag
CN104471129A (en) * 2012-07-25 2015-03-25 奥托立夫开发公司 A fabric for an air-bag
US10385482B2 (en) 2013-08-13 2019-08-20 Asahi Kasei Kabushiki Kaisha Woven fabric
JP5848855B2 (en) * 2013-08-13 2016-01-27 旭化成せんい株式会社 Woven fabric and manufacturing method thereof
CN105452552A (en) * 2013-08-13 2016-03-30 旭化成纤维株式会社 Woven fabric
KR101902660B1 (en) * 2013-08-13 2018-10-01 아사히 가세이 가부시키가이샤 Woven fabric
WO2015022954A1 (en) * 2013-08-13 2015-02-19 旭化成せんい株式会社 Woven fabric
JP5859697B1 (en) * 2015-04-13 2016-02-10 栗田煙草苗育布製造株式会社 Method for producing a plain weave or leno weave woven fabric
US11214895B2 (en) 2015-11-06 2022-01-04 Inv Performance Materials, Llc Low permeability and high strength fabric and methods of making the same
US11634841B2 (en) 2017-05-02 2023-04-25 Inv Performance Materials, Llc Low permeability and high strength woven fabric and methods of making the same
US11708045B2 (en) 2017-09-29 2023-07-25 Inv Performance Materials, Llc Airbags and methods for production of airbags
CN112746337A (en) * 2020-12-22 2021-05-04 神马博列麦(平顶山)气囊丝制造有限公司 Nylon 66 high-air-tightness air bag yarn and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3855775B2 (en) Coat airbag base fabric
EP3524718B1 (en) Raw yarn for air bag, and method for produce of the raw yarn
JP3284735B2 (en) Base fabric for airbag
JP2012502194A (en) Airbag fabric and method for producing the same
JP2007162187A (en) Non-coated woven fabric for airbag, coated woven fabric, method for producing the same and inflatable curtain airbag
JP2004156166A (en) Fabric and method for producing the same
JP2004176221A (en) Ground fabric for coated air bag and method for producing the same
US10549711B2 (en) Airbag-use woven fabric and airbag
JPH0790746A (en) Base fabric for air bag
JPH06306728A (en) Base cloth for air bag
JP4538967B2 (en) Airbag fabric
JP4306392B2 (en) Non-coated airbag base fabric and its manufacturing method
JP2003293243A (en) Fabric and air bag
JP3171441B2 (en) Base fabric for airbag
JP4306391B2 (en) Airbag base fabric and manufacturing method thereof
JP2003293241A (en) Base fabric for air bag
JP2011058132A (en) Base cloth for air bag and method for producing the same
JP2002266161A (en) Raw yarn for airbag and fabric for airbag
JP2003213540A (en) Fabric and air bag
JPH1178747A (en) Foundation cloth for airbag and airbag
JP3859135B2 (en) Airbag base fabric
JPH08158153A (en) Polyester filament yarn for air bag base fabric
KR100575380B1 (en) Polyamide fabrics for noncoated airbag
JP2003013336A (en) Fabric for side air bag
BRPI0910390B1 (en) AIR BAG TISSUE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051107

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070530