JP2004339336A - Cerium abrasive and method for producing cerium abrasive - Google Patents

Cerium abrasive and method for producing cerium abrasive Download PDF

Info

Publication number
JP2004339336A
JP2004339336A JP2003136817A JP2003136817A JP2004339336A JP 2004339336 A JP2004339336 A JP 2004339336A JP 2003136817 A JP2003136817 A JP 2003136817A JP 2003136817 A JP2003136817 A JP 2003136817A JP 2004339336 A JP2004339336 A JP 2004339336A
Authority
JP
Japan
Prior art keywords
cerium
roasting
lanthanum
abrasive
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003136817A
Other languages
Japanese (ja)
Other versions
JP4128906B2 (en
Inventor
Yuki Nakajima
祐樹 中島
Hiroyuki Watanabe
広幸 渡辺
Shigeru Kuwabara
滋 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2003136817A priority Critical patent/JP4128906B2/en
Publication of JP2004339336A publication Critical patent/JP2004339336A/en
Application granted granted Critical
Publication of JP4128906B2 publication Critical patent/JP4128906B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide cerium abrasives in which a slurry state to be applied in actual polishing work is taken into consideration, and to provide a method for producing the same. <P>SOLUTION: The cerium abrasives comprise lanthanum, cerium and a fluorine component, and have a pH of 7.0-10.5 when dispersed in pure water so as to have a slurry concentration of 20 wt%. In the method for producing the cerium abrasives, condition setting for the steps of fluorination and roasting is important. Preferred conditions are as follows: during fluorination, a fluorine component is added so that the ratio of the number of fluorine atoms to that of lanthanum atoms (F/La) in a raw material is 1.2-2.3, and during roasting, roasting temperature is set at 800-1200°C, and roasting time is set so that the ratio of the number of fluorine atoms to that of lanthanum atoms (F/La) in the raw material after roasting is 1.1-2.0. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、セリウム、ランタン、フッ素を含むセリウム系研摩材及びその製造方法に関する。
【0002】
【従来の技術】
セリウム系研摩材(以下、単に研摩材と称する場合もある。)は、種々のガラス材料の研摩に用いられており、特に近年では、ハードディスク等の磁気記録媒体用ガラス、液晶ディスプレイ(LCD)のガラス基板といった電気・電子機器で用いられているガラス材料の研摩にも用いられており、その応用分野が広がっている。セリウム系研摩材がこれらの用途に広く用いられている所以としては、セリウム系研摩材は切削性に優れることから、比較的短時間で大量のガラス材料が研摩除去できる上に、高精度の研摩面を得ることができるからである。
【0003】
セリウム系研摩材の研摩機構については、セリウム系研摩材中に含まれるフッ素成分が大きな役割を果たしているとされている。即ち、セリウム系研摩材の研摩機構は、酸化セリウムを主とする研摩粒子による機械的研摩作用という研摩材に一般的に共通する作用に加え、研摩材中に含有されるフッ素成分がガラス面と反応してフッ化物を形成し、ガラス表面の侵食を促進するという化学的研摩材用を有することによるものとされている。そして、これらの機械的作用と化学的作用との双方の効果により優れた研摩特性が発揮されるといわれている。
【0004】
セリウム系研摩材の製造工程としては、セリウム、ランタン等の希土類金属又はこれらの酸化物を含む原料(バストネサイト精鉱等の天然原料の他、最近ではバストネサイト鉱や比較的安価な中国産複雑鉱を基に人工合成した酸化希土又は炭酸希土を原料とするものが多くなっている。)を前処理後焙焼し、粉砕、分級することにより製造される。そして、上述のように、セリウム系研摩材においてフッ素成分の存在は重要であるが、このフッ素成分の添加方法としては、研摩材原料の前処理時にフッ化物を添加することが通常行なわれている(フッ化処理の詳細については特許文献1〜3を参照。)。
【0005】
【特許文献1】特開平11−269455号公報
【特許文献2】特開2002−302667号公報
【特許文献3】特開2002−302668号公報
【0006】
【発明が解決しようとする課題】
ところで、セリウム系研摩材を適用して研摩を行う際には、研摩材を純水等に懸濁させて研摩材スラリーとして研摩に供するが、研摩材スラリーには分散剤、固化防止剤等の添加剤に加え、更に、酸又はアルカリを添加してスラリーのpHを調整している。スラリーのpHを調節するのは、高pHのスラリーを用いた場合、研摩作業の進行に伴い研摩パッドの目詰まりが生じるからである。
【0007】
しかし、本発明者等によると、従来のセリウム系研摩材を上記のように調整したスラリーとして用いると、場合によって研摩力、表面精度が不十分なことがある。この場合、研摩材スラリーの調整による対応を考慮しても良いが、研摩材毎にスラリーの調整方法を検討するのは煩雑であり、研摩材自体の改良により対処することが好ましいともいえる。
【0008】
本発明は、以上の事情を考慮してなされたものであり、実際の研摩作業で適用されるスラリー状態を考慮したセリウム系研摩材と共に、その製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記課題を解決すべく、本発明者らは、従来のセリウム系研摩材において、これをスラリーとした際に研摩特性に差異が生じる要因について検討した。そして、その要因として、pH調整の目的でスラリーに添加する酸、アルカリのpH調整剤と、分散剤等の添加剤との組合せの相性によるものと推察した。かかる場合、pH調整剤又は添加剤のいずれかを使用しなければ、問題は生じないともいえるが、上記のように、研摩材スラリーのpHは研摩作業の安定性を確保する上で必要であり、また、分散剤等の添加剤の添加も同様の理由から重要である。
【0010】
そこで、本発明者等は、添加剤による分散性等の確保は困難である認識の基、pHの調整に着目し、pH調整剤の添加が不要なセリウム系研摩材を適用することとし、本発明に想到した。
【0011】
本発明は、ランタン、セリウム、フッ素成分を含むセリウム系研摩材において、純水にスラリー濃度20重量%となるように懸濁させた際のpHが7.0〜10.5であることを特徴とするセリウム系研摩材である。
【0012】
pHの範囲につき、上記範囲を好ましいとする理由としては、pHが7.0未満では研摩力が低いか、研摩面に荒れが生じ易い研摩材となるおそれがあるからである。また、pH10.5を超えると、初期研摩速度が低いだけでなく、研摩時に研摩パッドに目詰まりが生じ易くなるため、研摩速度が短時間で低下し、パッドのドレッシング等のリフレッシュ処理を頻繁に行なう必要があるからである。
【0013】
ここで、本発明者等によると、セリウム系研摩材のpHは、研摩材中に含まれるセリウム以外の希土類元素、特に、ランタンの状態により影響を受ける。その理由としては、セリウム系研摩材の製造工程かにおけるその構造の変化に由来するものである。即ち、上述のようにセリウム系研摩材の製造工程は、原料のフッ化処理工程、焙焼工程を経てなる。ここで、セリウム、ランタン等の希土類酸化物又は希土類炭酸塩を含む原料をフッ化処理すると、その一部が、LnF(Lnは、セリウム、ランタン等の希土類元素(ランタノイド)を示す。また、原料中にネオジム、プラセオジム等を含む場合にはこれらも含まれる。)の形態を有するフッ化物となる(以下、このフッ化物をLnFと示す。)。このときのランタノイド(Ln)は、セリウム、ランタン等の希土類元素が固溶した固溶体を形成していると考えられている。従って、フッ化処理後の焙焼前の原料は、希土類酸化物又は希土類炭酸塩等を主相とし、これにLnF相が混合した状態となっている。
【0014】
フッ化処理後の原料の焙焼工程では、LnF相中のLaFが主相中の希土類酸化物又は希土類炭酸塩と反応してオキシフッ化ランタン(LaOF)へと変化する。一方、LnF相中のCeFは、主相中の希土類酸化物又は希土類炭酸塩と反応してオキシフッ化ランタンを生成させると共にセリウムを酸化セリウムの形で放出させる。そして、この酸化セリウムは、希土類酸化物相に固溶するが、これらのCeFに関する一連の反応の結果、CeFの一部のフッ素は揮発するようになっている。セリウムとランタンでかかる挙動の相違が生じるのは、各元素のフッ素保持能力の相違による。従って、焙焼過程における原料の状態は、LnF、LaOF、希土類酸化物(原料として炭酸塩を用いた場合には炭酸塩から次第に希土類酸化物となる)よりなる。また、原料中に、ネオジム、プラセオジムが含まれている場合、これらの元素はフッ素保持能力がセリウムより高いことから、基本的にランタンと同様の挙動を示し、焙焼の進行に伴いオキシフッ化物を形成する(以下、LaOFを含めてランタン等のオキシフッ化物をLnOFとする。)。これらの配分は焙焼の進行度合いにより変化し、その配分は焙焼後の工程を経てセリウム系研摩材なった状態においてもほぼ維持される。
【0015】
ここで、上記焙焼工程において焙焼が過度に進行すると、LnOFの分解が生じ、ランタンは酸化ランタン(La3)へと変化し、そのまま研摩材中に残留することとなる。本発明者等によれば、焙焼を過度に行った場合に生じる酸化ランタンは、研摩材をスラリーとしたとき、分散媒である水と反応し水酸化ランタン(La(OH))となりスラリーのpHを上昇させることとなる。
【0016】
また、逆に焙焼の進行が不十分であると、LnOFの生成が進行せず、F/La原子比が非常に大きい場合を除いて、酸化ランタンが残留することとなる。この酸化ランタンは希土類酸化物相中でセリウムと固溶状態のランタン同様に水和能力が高いためスラリー中で水和してスラリーのpHを上げる傾向がある。
【0017】
以上の検討結果より、本発明者等は、研摩材のpHは、研摩材中のランタンの状態により影響を受けると考えた。そして、pHが好ましい範囲にある研摩材としては、酸化ランタンが存在せず、かつ、LnFの残留がないものと考えた。このことは、LnOFが適正な状態で発生していることを示す。
【0018】
このLnOFの状態につき、本発明者等は研摩材のX線回折における相対強度により判断する。これは、好ましいLnOFの状態とは、研摩材のpHのみならずその他の研摩特性(傷発生の可能性等)を考慮すれば、その量だけではなく結晶状態も含まれると考えられるからであり、その評価方法としてX線回折が適当と考えたからである。そして、本発明者等は、本発明において好ましいLnOFの状態として、X線回折を少なくとも回折角(2θ)20°〜30°の範囲で測定した際に、酸化セリウムのメインピーク強度に対する、オキシフッ化ランタノイド(LnOF)のメインピーク強度の比(LnOF/CeO)が、0.1〜0.5の範囲内とする。
【0019】
このLnOFの回折強度につき上記範囲を適正とする理由としては、0.1未満では研摩力に乏しい研摩材となるからであり、0.5を超えると、研摩傷の発生が懸念され、仕上げ用の研摩材としては不適格な場合があるからである。そして、研摩力と面精度のバランスをより厳密に考慮すれば、特に好ましい範囲は、0.2〜0.4である。
【0020】
セリウム系研摩材についてのX線回折については、通常行なわれる方法により行なうものとする。即ち、採取したセリウム系研摩材に単色X線を入射し、散乱X線の強度を測定することにより行なわれ、X線ディフラクトメーターにより行なう。ここで、X線回折の際のターゲットとしては、Cu、Mo、Fe、Co、W、Ag等が使用でき、これらターゲットによるKα線、Lα線を適用することができるが、銅ターゲットによるCuKα線又はCuKα線によって得られる回折X線を適用するのが好ましい。Fe等のX線による回折ピーク強度は低く、算出される回折強度比の精度に影響を与えるおそれがあるからである。
【0021】
尚、セリウム系研摩材のX線回折分析において、CuKα線又はCuKα線を用いた場合は、LnOFのメインピークは、26.5°±0.5°付近で観察され、酸化セリウムのメインピークは、28.1°±1.0°付近で観察される。本発明に係るセリウム系研摩材は、これらの角度で観察される回折ピークの強度の比で評価するのが好ましい。尚、本発明において、X線回折に関する「酸化セリウムのピーク」とは、希土類元素としてセリウムを主成分とする希土類酸化物のピークであり、純粋な酸化セリウムのピークのみを意味するものではない。
【0022】
ところで、本発明においては、ランタンの量及びフッ素成分の量も規定することが好ましい。これらは原料段階或いはフッ化処理段階で調整されるものであるが、これらの成分の量が適正範囲外となると、pHに影響を与え研摩特性を悪化させるおそれがある。具体的には、ランタンの含有量については、ランタンを酸化物に換算した際の全希土酸化物含有量(TREO)との重量比(La/TREO)が5〜40%の範囲内となるものが好ましい。上述の通り、ランタンは研摩材pHに影響を与える酸化ランタンと研摩力向上の要因となるLnOFを生成させる。ここで、ランタン含有量を適正範囲とすることで、フッ素の添加により比較的低温での焙焼が可能となる。そして、低温での焙焼により、LnOFの分解、酸化セリウム粒子及びLnOF粒子の粗大化を生じさせることなくLnOFを生成させることができるため、酸化ランタンの生成を抑制しつつ好ましい状態のLnOFを生成することができる。また、低温での焙焼は酸化セリウムの異常粒成長も抑制することができ、研摩傷発生の危険も回避することができる。
【0023】
また、フッ素の含有量については、フッ素とランタンとの原子比(F/La)が1.1〜2.0の範囲内とするのが好ましい。フッ素成分はセリウム系研摩材の研摩力を確保する上で必要な成分であるが、例えば、F/La原子比が3以上となる場合のようにフッ素含有量が多すぎると、焙焼工程でLnFが残留しやすくなるため、研摩材のpHを低下させることとなる。また、LnFを消失させるためには高温又は長時間の焙焼が必要となり酸化ランタンの発生、酸化セリウム粒子及びLnOFの粗大化、異常粒成長を抑制することが極めて困難となる。一方、フッ素成分含有量が少なすぎると、研摩力の問題に加えて、酸化セリウム相中に固溶している酸化ランタンの量が多くなり、スラリー時に加水分解して水酸化ランタンとなりpHを上昇させることとなる。そこで、LnFの残留を考慮してランタン含有量に対するフッ素成分量として上記範囲を適正とする。尚、より好ましいフッ素含有量は、F/Laが1.3〜1.8の範囲である。
【0024】
以上説明した本発明に係るセリウム系研摩材によれば、スラリー化する際にpH調整剤の添加がなくてもスラリーのpHを適性範囲とすることができる。そして、これにより安定した研摩特性を備える研摩材スラリーを得ることができる。
【0025】
尚、本発明に係るセリウム系研摩材は、純水にスラリー濃度20重量%となるように懸濁させた際の導電率が1mS/cm以下となるようなものが更に好ましい。スラリーとしたときの導電率が高いということは、研摩材粒子から種々のイオンが溶出し易い状態であることを示すが、この場合研摩力が低いと考えられるからである。また、導電率は0.1mS/cm以上が好ましい。0.1mS/cm未満となる傷の生じ易い研摩材となるからである。
【0026】
また、本発明に係る研摩材は、プラセオジム成分又はネオジム成分の少なくともいずれかの成分を含有していても良い。尚、ネオジム、プラセオジムについては、ランタンと同様の挙動を示すものの、ランタンよりも塩基性が高くないためこれらの元素の研摩材のpHへの影響は少ないと考えられる。
【0027】
次に、本発明に係るセリウム系研摩材の製造方法について説明する。本発明にかかる研摩材は、pHの調整された研摩材である。このpHの調整については、フッ化処理工程及び焙焼工程における改良によって達成される。つまり、上述のように、研摩材のpHを適正範囲とするためには、焙焼後の研摩材原料中のフッ化酸素ランタンが適正な状態にあること。言い換えれば、酸化ランタンが存在せず、かつ、フッ化物の残留がないことが必要である。焙焼後の研摩材原料をかかる状態とするためには、焙焼前の原料の組成を調整し、焙焼条件を適正な範囲内とすることが必要となる。
【0028】
本発明者等は、フッ化処理条件及び焙焼条件につき検討を行ったところ、フッ化処理条件としては、原料中のフッ素原子数とランタン原子数との比(F/La)が1.2〜2.3となるようにフッ素成分を添加することとし、更に、焙焼条件としては、焙焼温度を800〜1200℃としつつ、焙焼時間を焙焼後の原料中のフッ素原子数とランタン原子数との比(F/La)が1.1〜2.0となるような時間を焙焼時間として焙焼することが必要であることを見出した。
【0029】
フッ化処理条件として上記範囲とするのは、F/Laが2.3を超えると、焙焼後の原料中にフッ化物が残留することとなり、研摩材のpHが適正範囲未満となるからである。また、フッ素成分の添加量が過大となると、焙焼中に揮発するフッ素成分により焙焼炉の構成材料を痛めたり、焙焼ガスの排ガス処理の負担が大きくなる。一方、F/Laが1.2以上とするのは、研摩力の確保のためである。そして、研摩力の確保とフッ化物の残留抑制の観点から、フッ素成分添加量としてより好ましい範囲は、1.5〜2.0である。
【0030】
また、フッ化処理時に添加するフッ素成分としては、フッ化水素酸又は水溶性を有するフッ化水素酸塩を用いることが好ましい。フッ化水素酸塩としては、例えば、フッ化アンモニウム、フッ化水素アンモニウム等のフッ素含有化合物又はこれらの水溶液が適用できる。
【0031】
本発明に係るセリウム系研摩材の製造方法においては、焙焼条件の設定も重要である。焙焼が不十分であると(焙焼温度が低い、又は、焙焼時間が短い)、フッ化物の残留が生じることに加え、オキシフッ化ランタノイドの生成及びセリウムの酸化が進行せず研摩力に乏しい研摩材が製造される。また、焙焼が過度になされると(焙焼温度が高い、又は、焙焼時間が長い)、フッ化物の残留の可能性は低くなるが、オキシフッ化物が分解して酸化ランタンの生成が懸念されることに加え、オキシフッ化ランタノイドや酸化セリウムの異常粒成長が生じるために研摩傷の発生し易い研摩材が製造される。
【0032】
かかる観点から、本発明者等は、焙焼温度としては、800〜1200℃の範囲が必要であるとする。800℃未満では焙焼が不十分となり、オキシフッ化ランタノイドの生成及びセリウムの酸化を促進できないからであり、1200℃を超えるとオキシフッ化ランタンが分解して酸化ランタンが生成しやすいことに加え、オキシフッ化ランタノイドや酸化セリウムの異常粒成長が生じるからである。
【0033】
一方、焙焼時間については、上記温度範囲内で焙焼後の原料中のフッ素原子数とランタン原子数との比(F/La)が1.1〜2.0となるまで焙焼を行なうこととする。このように焙焼時間について焙焼後のフッ素含有量の目標値を基準とするのは、焙焼温度、焙焼装置により好適な焙焼時間が異なるために時間を直接基準とするのは好ましくないからである。そして、F/Laの範囲を1.1〜2.0とするのは、F/Laが2.0を超えるようなフッ素揮発量の少ない短時間の焙焼では、焙焼が十分ではないためフッ化物の残留が多くなるからである。また、F/Laが1.1未満となるまで長時間焙焼すると、オキシフッ化ランタノイドの成長、異常粒成長が生じるからである。尚、更に好ましいF/Laの範囲としては、1.3〜1.8である。
【0034】
この焙焼時間の具体的な設定例としては、例えば、電気式静置炉を用いて焙焼する場合、焙焼温度を800℃とする場合には焙焼温度を12時間以上確保する必要があるが、1000℃では8時間程度、1200℃では4時間程度の焙焼時間が設定される。これに対し、電気式回転炉や流動炉、外熱式回転炉のように焙焼中の原料が常時高温ガスと接触可能な形式の焙焼炉にて焙焼を行う場合、焙焼時間は前記静置炉の1/6〜2/3程度とすることができる。
【0035】
尚、この焙焼工程においては、初めに焙焼温度を低温に設定し、途中でpH測定、X線回折分析を行い、焙焼の進行度を確認し、再度焙焼を行っても良い。
【0036】
また、本発明の好適な例としては、原料として酸化ランタン含有量(La2O3/TREO)30重量%、酸化セリウム含有量(CeO2/TERO)60%の希土原料を用いた場合、フッ化処理工程においてフッ素成分の添加量(F/TREO)が5.25〜7.0重量%とし、焙焼後の原料中のフッ素量(F/TREO)が4.55〜6.3重量%となるように焙焼温度と時間を設定すると好ましい研摩材が得られる。
【0037】
本発明においては、フッ化処理時のフッ素成分添加量を規定すると共に、焙焼条件を規定する点において特徴を有する。従って、それ以外の製造工程においては特に制限されるものではない。つまり、セリウム系研摩材の製造工程においては、原料の粉砕工程、フッ化処理工程、焙焼工程、焙焼物の解砕、粉砕工程、分級工程からなることが多いが、フッ化処理工程、焙焼工程以外の工程については、従来の方法により行うことは何ら問題ない。
【0038】
また、既に述べたようにセリウム系研摩材の原料としては、バストネサイト精鉱という天然原料を用いたものと、酸化希土、炭酸希土という人工原料を用いたものとがあるが、本発明に係る研摩材及びその製造方法ではいずれの原料も適用し得る。但し、天然原料であるバストネサイト精鉱にはもともとフッ素が含有されていることから、必要があれば、当初のフッ素含有量に応じてフッ素成分を添加、或いはフッ素を含んでいない酸化希土等を添加してフッ素濃度を希釈して調整する。また、人工原料である酸化希土、炭酸希土については原料状態ではフッ素が含まれていないことから、焙焼工程前に目的濃度となるようにフッ素成分を添加することとなる。
【0039】
【発明の実施の形態】
以下、本発明の好適な実施形態を比較例と共に説明する。本実施形態では、基本的に共通する原料を用いて、フッ化処理工程のフッ素成分添加量、焙焼条件を種々変更して複数の研摩材を製造し、それらの特性を検討した。
【0040】
本実施形態で適用するセリウム系研摩材の製造工程は、以下の通りとした。まず、原料としては、混合軽希土炭酸塩(TREO:50重量%、酸化セリウム含有量(CeO/TERO):70重量%、ランタン含有量(La/TREO):30重量%、強熱原料:50%、F/TREO:<0.1重量%)を用いた(ランタン含有量による比較を行う際を除く)。そして、予め原料と水とを混合してスラリーとし、このスラリーを湿式ボールミルにて粉砕し、平均粒径(マイクロトラック法D50(累積50%粒径))が1.5μmとなるように粉砕し、これをフッ化処理した。フッ化処理はスラリーに5mol/lのフッ化水素酸水溶液を添加した。
【0041】
フッ化処理後の複数の原料スラリーは濾過し、静置炉にて焙焼条件を変化させつつ焙焼した。そして、焙焼後の原料は乾式粉砕し、更に分級処理を行い、5μm以上の粒子を除去してセリウム系研摩材を得た。
【0042】
製造したセリウム系研摩材は、X線回折分析、pH測定、導電率測定を行った後、研摩試験を行い各研摩材の研摩特性を評価した。X線回折は、製造したセリウム系研摩材を適量採取して試料ホルダに試料面がホルダ面と一致するように均一に充填し、これをX線ディフラクトメータに設置してX線回折パターンを得た。この際の入射X線はCuKα線であり、回折X線はCuKα線によるものを基準とした。得られたX線回折パターンは各種希土類化合物の標準ピークと比較し、各ピークの示す化合物を同定し、LnOF/CeOピーク強度比を計算した。また、pH測定、導電率測定は、研摩材を純水中にスラリー濃度20重量%となるまで分散し、1時間混合後のスラリーのpH、導電率を測定した。
【0043】
研摩試験は、各実施形態及び比較例で得られたセリウム系研摩材について、研摩試験機(台東精機(株)社製:HSP−21型)を用いて研摩を行った。研摩試験では、まず、研摩材と純水とを混合して研摩材の濃度が15質量%の研摩材スラリーを調製した。そして、この研摩材スラリーとポリウレタン製の研摩パッドとを用いて、平面ガラス(φ65mm)の表面を、研摩圧力9.8kPa(100g/cm)、研摩機の回転数100rpm、研摩材スラリーの循環量5L/分で10分間研摩し、研摩前後のガラス質量の減少量に基づき研摩値を求めた。研摩値の評価は、後述する試料No.1の研摩材により研摩自他ときの減少量を100として各研摩材の研磨値を相対的に評価した。具体的には、表2、表4、表6、表8中、「◎」は、200以上、「○」は150以上200未満、「△」は120以上150未満、「×」は、120未満である。
【0044】
そして、研摩終了後、純水で洗浄し、無塵状態で乾燥させた研摩面について傷評価を行った。傷評価は、30万ルクスのハロゲンランプを光源として用いる反射法でガラス表面を観察し、大きな傷および微細な傷の数を点数化し、100点を満点として減点評価する方式で行った。この傷評価では、ハードディスク用あるいはLCD用のガラス基板の仕上げ研摩で要求される研摩精度を判断基準とした。具体的には、表2、表4、表6、表8中、「◎」は、98点以上(HD用・LCD用ガラス基板の仕上げ研摩に非常に好適)であることを、「○」は、98点未満95点以上(HD用・LCD用ガラス基板の仕上げ研摩に好適)であることを、「△」は、95点未満90点以上(HD用・LCD用ガラス基板の仕上げ研摩に使用可能)であることを、そして「×」は、90点未満(HD用・LCD用ガラス基板の仕上げ研摩に使用不可)であることを示す。
【0045】
また、研摩材の洗浄性についても試験を行った。洗浄性評価では、まず、洗浄・乾燥された光学顕微鏡観察用のスライドグラスを、研摩材スラリー中に浸漬すると共に引き上げて50℃で一旦乾燥させ、その後、純水入りの容器に浸漬させて超音波洗浄を5分間行い、超音波洗浄後、容器から取り出したスライドグラスを純水で流水洗して観察対象のスライドグラスを得た。その後、スライドグラス表面に残存する研摩材粒子の残存量を光学顕微鏡で観察することで洗浄性を評価した。具体的には、表2、表4、表6、表8中、「○」は、研摩材の残存がないことを、「△」は研摩材の残存がわずかにあることを、「×」は、研摩材の残存が非常に多いことを示す。従って、「×」を示す研摩材は、HD用・LCD用ガラス基板の仕上げ研摩に使用困難である。
【0046】
以上の製造工程、評価方法を基準とし、製造条件を変更してセリウム系研摩材を製造した。
【0047】
フッ化処理条件による比較:まず、フッ化処理時のフッ素成分添加量を変化させて製造される研摩材の特性を比較した。フッ化処理条件はフッ素成分を0重量%(TREO基準)、3重量%(F/La原子比で0.86)、5重量%(F/La原子比で1.43)、6.5重量%(F/La原子比で1.86)、8重量%(F/La原子比で2.29)、10重量%(F/La原子比で2.86)、15重量%(F/La原子比で4.29)とした。フッ化処理条件のF/TREO、F/Laの値は、フッ化水素由来のフッ素のみを基に算出している。また、焙焼条件は焙焼温度900℃、焙焼時間を10時間とした。製造された研摩材の特性を表1に示す。
【0048】
【表1】

Figure 2004339336
【0049】
そして、これらの研摩材の研摩試験結果を表2に示す。
【0050】
【表2】
Figure 2004339336
【0051】
以上の結果から、フッ素処理条件と研摩材の特性との関係を見ると、フッ化処理条件としてF/Laを1.43(No.3)〜2.29(No.5)とした場合において、研摩材のF/La原子比及びLnOF/CeOピーク強度比、並びに、スラリー状態のpHが適正範囲となることがわかった。
【0052】
また、研摩特性との関係においては、研摩材のF/La原子比及びLnOF/CeOピーク強度比、並びに、スラリー状態のpHが適正範囲にある研摩材は研摩試験、洗浄試験共に良好な結果を示すことが確認された。
【0053】
焙焼条件による比較:次に、焙焼条件を変更して複数の研摩材を製造した。まず、焙焼時間を10時間に固定して、焙焼温度を700℃〜1250℃とし7種類の研摩材を製造した。製造された研摩材の特性を表3に示す。このときのフッ化処理は、フッ素濃度(F/La原子比)が1.86となるように行った。
【0054】
【表3】
Figure 2004339336
【0055】
そして、これらの研摩材の研摩試験結果を表4に示す。
【0056】
【表4】
Figure 2004339336
【0057】
次に、焙焼温度を950℃に固定し、焙焼時間を0.5〜72時間に変化させて8種類の研摩材を製造した。製造された研摩材の特性を表5に示す。ここでのフッ化処理条件は、F/La原子比を1.86としている。
【0058】
【表5】
Figure 2004339336
【0059】
そして、これらの研摩材の研摩試験結果を表6に示す。
【0060】
【表6】
Figure 2004339336
【0061】
以上の結果から、焙焼条件と研摩材の特性との関係を見ると、研摩材のF/La原子比及びLnOF/CeOピーク強度比、並びに、スラリー状態のpHを適正範囲とするためには、焙焼温度としては800〜1050℃が特に好ましいことが確認された。また、焙焼時間については、あまりに長時間の焙焼(48時間を超える焙焼)は、研摩材スラリーのpHを適正範囲より高いものとすることが確認された。
【0062】
また、研摩特性との関係においては、研摩材のF/La原子比及びLnOF/CeOピーク強度比、並びに、スラリー状態のpHが適正範囲にある研摩材は研摩試験、洗浄試験共に良好な結果を示すことが確認された。
【0063】
ランタン含有量による比較:ここでは、原料を変更し、ランタンの含有量が異なる希土原料を調整し、それらから研摩材を製造し特性の比較を行った。原料の調整は、塩化ランタンと塩化セリウムの混合水溶液から炭酸アンモニウムにて沈殿させたものを原料とした。ランタン含有量の調整は、混合水溶液の濃度を変化させることにより行った。また、研摩材の製造工程は上記実施形態と同様であるが、焙焼条件を1000℃、10時間とした。製造した研摩材の特性を表7に示す。
【0064】
【表7】
Figure 2004339336
【0065】
そして、これらの研摩材の研摩試験結果を表8に示す。
【0066】
【表8】
Figure 2004339336
【0067】
以上の結果から、原料組成と研摩材の特性との関係を見ると、フッ化処理条件にもよるが、原料中のランタン濃度は10〜40重量%(TREO基準)が好ましく、かかる原料により研摩材としたときのF/La原子比及びLnOF/CeOピーク強度比、並びに、スラリー状態のpHを適正範囲とするこおができることが確認された。
【0068】
また、研摩特性との関係においては、このように研摩材のF/La原子比及びLnOF/CeOピーク強度比、並びに、スラリー状態のpHが適正範囲にある研摩材は研摩試験、洗浄試験共に良好な結果を示すことが確認された。
【0069】
【発明の効果】
以上説明した本発明に係るセリウム系研摩材は、pHが予め好ましい範囲に調整されたものであり、pH調整剤を添加しなくても安定した研摩特性を有する研摩材スラリーを得ることができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a cerium-based abrasive containing cerium, lanthanum, and fluorine, and a method for producing the same.
[0002]
[Prior art]
Cerium-based abrasives (hereinafter sometimes simply referred to as abrasives) have been used for polishing various glass materials. Particularly in recent years, glass for magnetic recording media such as hard disks and liquid crystal displays (LCDs) have recently been used. It is also used for polishing glass materials used in electric and electronic devices such as glass substrates, and its application fields are expanding. The reason that cerium-based abrasives are widely used in these applications is that cerium-based abrasives are excellent in machinability, so that a large amount of glass material can be polished and removed in a relatively short time and high-precision polishing This is because a surface can be obtained.
[0003]
Regarding the polishing mechanism of the cerium-based abrasive, it is said that the fluorine component contained in the cerium-based abrasive plays a large role. In other words, the polishing mechanism of cerium-based abrasives is such that, in addition to the mechanical polishing action of abrasive particles mainly composed of cerium oxide, which is a common action common to abrasives, the fluorine component contained in the abrasives and the glass surface. It is believed to have chemical abrasives that react to form fluorides and promote erosion of the glass surface. It is said that excellent polishing characteristics are exhibited by both the mechanical action and the chemical action.
[0004]
The production process of cerium-based abrasives includes raw materials containing rare earth metals such as cerium and lanthanum or oxides of these (natural raw materials such as bastnaesite concentrate, recently bastnaesite ore, relatively inexpensive China). In many cases, rare earth oxides or rare earth carbonates artificially synthesized based on complex ores are used as raw materials, and then roasted, pulverized, and classified. As described above, the presence of a fluorine component in a cerium-based abrasive is important. As a method of adding the fluorine component, it is common practice to add a fluoride during pretreatment of the abrasive raw material. (Refer to Patent Documents 1 to 3 for details of the fluorination treatment.)
[0005]
[Patent Document 1] JP-A-11-269455
[Patent Document 2] JP-A-2002-302667
[Patent Document 3] JP-A-2002-302668
[0006]
[Problems to be solved by the invention]
By the way, when performing polishing by applying a cerium-based abrasive, the abrasive is suspended in pure water or the like and is provided as an abrasive slurry. The abrasive slurry contains a dispersant, an anti-solidification agent, and the like. In addition to the additives, the pH of the slurry is adjusted by adding an acid or an alkali. The reason for adjusting the pH of the slurry is that when a slurry having a high pH is used, the polishing pad is clogged as the polishing operation proceeds.
[0007]
However, according to the present inventors, when a conventional cerium-based abrasive is used as the slurry adjusted as described above, the abrasive power and surface accuracy may be insufficient in some cases. In this case, the measures by adjusting the abrasive slurry may be considered, but it is complicated to study the method of adjusting the slurry for each abrasive, and it can be said that it is preferable to improve the abrasive itself.
[0008]
The present invention has been made in view of the above circumstances, and has as its object to provide a cerium-based abrasive in consideration of a slurry state applied in an actual polishing operation, and a method of manufacturing the same.
[0009]
[Means for Solving the Problems]
In order to solve the above problems, the present inventors have studied the factors that cause a difference in polishing characteristics when a conventional cerium-based abrasive is used as a slurry. And it was guessed that the factor was due to the compatibility of a combination of an acid or alkali pH adjuster added to the slurry for the purpose of pH adjustment and an additive such as a dispersant. In such a case, it can be said that no problem occurs unless either the pH adjuster or the additive is used, but as described above, the pH of the abrasive slurry is necessary to ensure the stability of the polishing operation. Also, the addition of additives such as dispersants is important for the same reason.
[0010]
Therefore, the present inventors have focused on pH adjustment based on the recognition that it is difficult to ensure dispersibility and the like with additives, and decided to apply a cerium-based abrasive that does not require the addition of a pH adjuster. Invented the invention.
[0011]
The present invention is characterized in that a cerium-based abrasive containing lanthanum, cerium and fluorine components has a pH of 7.0 to 10.5 when suspended in pure water so as to have a slurry concentration of 20% by weight. Is a cerium-based abrasive.
[0012]
Regarding the pH range, the reason why the above range is preferable is that if the pH is less than 7.0, there is a possibility that the polishing power is low or the polishing material tends to be roughened on the polished surface. On the other hand, when the pH exceeds 10.5, not only the initial polishing rate is low, but also the polishing pad is liable to be clogged at the time of polishing, so that the polishing rate is reduced in a short time and the refreshing process such as dressing of the pad is frequently performed. It is necessary to do it.
[0013]
Here, according to the present inventors, the pH of the cerium-based abrasive is affected by the state of rare-earth elements other than cerium, particularly lanthanum, contained in the abrasive. The reason is derived from a change in the structure of the cerium-based abrasive in the manufacturing process. That is, as described above, the manufacturing process of the cerium-based abrasive is performed through the fluorination process of the raw material and the roasting process. Here, when a raw material containing a rare earth oxide or a rare earth carbonate such as cerium or lanthanum is fluorinated, a part thereof becomes LnF 3 (Ln represents a rare earth element (lanthanoid) such as cerium or lanthanum. In addition, when the raw material contains neodymium, praseodymium, etc., these are also included.) LnF 3 Is shown. ). At this time, the lanthanoid (Ln) is considered to form a solid solution in which rare earth elements such as cerium and lanthanum are dissolved. Therefore, the raw material after the fluorination treatment and before the roasting is mainly composed of rare earth oxides or rare earth carbonates, and LnF 3 The phases are in a mixed state.
[0014]
In the roasting step of the raw material after the fluorination treatment, LnF 3 LaF in phase 3 Reacts with the rare earth oxide or rare earth carbonate in the main phase to change to lanthanum oxyfluoride (LaOF). On the other hand, LnF 3 CeF in phase 3 Reacts with rare earth oxides or carbonates in the main phase to form lanthanum oxyfluoride and releases cerium in the form of cerium oxide. This cerium oxide forms a solid solution with the rare earth oxide phase. 3 Of a series of reactions involving CeF 3 Some of the fluorine is volatilized. The difference in behavior between cerium and lanthanum occurs due to the difference in the ability of each element to retain fluorine. Therefore, the state of the raw material in the roasting process is LnF 3 , LaOF, and rare earth oxides (when carbonates are used as the raw material, the carbonates gradually become rare earth oxides). In addition, when neodymium and praseodymium are contained in the raw materials, since these elements have a higher fluorine retention ability than cerium, they basically exhibit the same behavior as lanthanum, and as the roasting progresses, oxyfluoride is produced. (Hereinafter, oxyfluorides such as lanthanum including LaOF are referred to as LnOF). These distributions vary depending on the degree of progress of the roasting, and the distributions are substantially maintained even in the state of the cerium-based abrasive after the roasting process.
[0015]
Here, if the roasting proceeds excessively in the roasting step, LnOF is decomposed, and lanthanum is converted into lanthanum oxide (La). 2 O 3 3) and remains in the abrasive as it is. According to the present inventors, lanthanum oxide produced when excessively roasted reacts with water as a dispersion medium when slurry is used as an abrasive, and lanthanum hydroxide (La (OH) 3 ) To raise the pH of the slurry.
[0016]
Conversely, if the progress of the roasting is insufficient, the production of LnOF does not proceed, and lanthanum oxide remains except when the F / La atomic ratio is very large. This lanthanum oxide has a high hydration ability like lanthanum in a solid solution state with cerium in the rare earth oxide phase, and therefore tends to hydrate in the slurry to increase the pH of the slurry.
[0017]
From the above examination results, the present inventors considered that the pH of the abrasive was affected by the state of lanthanum in the abrasive. As an abrasive having a pH in a preferable range, lanthanum oxide does not exist and LnF 3 It was thought that there was no residue. This indicates that LnOF is occurring in an appropriate state.
[0018]
The present inventors judge the state of LnOF based on the relative intensity of the abrasive in X-ray diffraction. This is because the preferable LnOF state is considered to include not only the amount but also the crystalline state in consideration of not only the pH of the abrasive but also other polishing characteristics (possibility of generation of scratches). This is because X-ray diffraction was considered to be appropriate as the evaluation method. As a preferable LnOF state in the present invention, the present inventors have found that when X-ray diffraction is measured at least at a diffraction angle (2θ) in the range of 20 ° to 30 °, the oxyfluoride relative to the main peak intensity of cerium oxide is determined. Lanternoid (LnOF) main peak intensity ratio (LnOF / CeO) 2 ) Is in the range of 0.1 to 0.5.
[0019]
The reason why the above-mentioned range is appropriate for the diffraction intensity of LnOF is that if it is less than 0.1, an abrasive having poor abrasive power is obtained. This is because there is a case where the polishing material is not suitable. If the balance between the polishing force and the surface accuracy is more strictly considered, a particularly preferable range is 0.2 to 0.4.
[0020]
X-ray diffraction of a cerium-based abrasive is performed by a commonly used method. That is, the measurement is performed by applying monochromatic X-rays to the collected cerium-based abrasive and measuring the intensity of the scattered X-rays, using an X-ray diffractometer. Here, as targets for X-ray diffraction, Cu, Mo, Fe, Co, W, Ag and the like can be used. 1 Line, Lα 1 Wire can be applied, but CuKα line or CuKα with copper target 1 It is preferable to apply the diffracted X-rays obtained by the rays. This is because the diffraction peak intensity due to X-rays such as Fe is low, which may affect the accuracy of the calculated diffraction intensity ratio.
[0021]
In the X-ray diffraction analysis of the cerium-based abrasive, CuKα ray or CuKα 1 When a line is used, the main peak of LnOF is observed at around 26.5 ° ± 0.5 °, and the main peak of cerium oxide is observed at around 28.1 ° ± 1.0 °. The cerium-based abrasive according to the present invention is preferably evaluated by the ratio of the intensity of diffraction peaks observed at these angles. In the present invention, the “peak of cerium oxide” related to X-ray diffraction is a peak of a rare earth oxide mainly containing cerium as a rare earth element, and does not mean only a peak of pure cerium oxide.
[0022]
Incidentally, in the present invention, it is preferable to define the amount of lanthanum and the amount of fluorine component. These are adjusted in the raw material stage or the fluorination treatment stage. However, if the amounts of these components are out of the appropriate ranges, they may affect the pH and deteriorate the polishing characteristics. Specifically, the content of lanthanum is expressed by a weight ratio (La) to the total rare earth oxide content (TREO) when lanthanum is converted to oxide. 2 O 3 / TREO) is preferably in the range of 5 to 40%. As described above, lanthanum produces lanthanum oxide, which affects the pH of the abrasive, and LnOF, which is a factor in improving the abrasive power. Here, by setting the lanthanum content in an appropriate range, roasting at a relatively low temperature becomes possible by adding fluorine. Then, by roasting at a low temperature, LnOF can be generated without causing decomposition of LnOF and coarsening of cerium oxide particles and LnOF particles, so that LnOF in a preferable state can be generated while suppressing generation of lanthanum oxide. can do. Further, roasting at a low temperature can also suppress abnormal grain growth of cerium oxide, and can avoid the risk of generation of abrasive flaws.
[0023]
Further, the content of fluorine is preferably set so that the atomic ratio (F / La) of fluorine to lanthanum is in the range of 1.1 to 2.0. The fluorine component is a component necessary for securing the polishing power of the cerium-based abrasive. For example, if the fluorine content is too large, as in the case where the F / La atomic ratio is 3 or more, the roasting step LnF 3 Is likely to remain, which lowers the pH of the abrasive. Also, LnF 3 It is necessary to roast at a high temperature or for a long time in order to eliminate the chromium, and it is extremely difficult to suppress the generation of lanthanum oxide, the coarsening of cerium oxide particles and LnOF, and the abnormal grain growth. On the other hand, if the content of the fluorine component is too small, in addition to the problem of the polishing force, the amount of lanthanum oxide dissolved in the cerium oxide phase increases, and the slurry is hydrolyzed to lanthanum hydroxide to raise the pH during slurrying. Will be done. Therefore, LnF 3 The above-mentioned range is determined to be appropriate as the amount of the fluorine component with respect to the lanthanum content in consideration of the residual amount of lanthanum. In addition, more preferable fluorine content is F / La in the range of 1.3 to 1.8.
[0024]
According to the cerium-based abrasive according to the present invention described above, the pH of the slurry can be adjusted to an appropriate range without adding a pH adjuster when the slurry is formed. As a result, an abrasive slurry having stable polishing characteristics can be obtained.
[0025]
It is more preferable that the cerium-based abrasive according to the present invention has a conductivity of 1 mS / cm or less when suspended in pure water so as to have a slurry concentration of 20% by weight. The high electrical conductivity of the slurry indicates that various ions are easily eluted from the abrasive particles, but this is because the polishing power is considered to be low in this case. Further, the conductivity is preferably 0.1 mS / cm or more. This is because the abrasive is less likely to be scratched and less than 0.1 mS / cm.
[0026]
Further, the abrasive according to the present invention may contain at least one of a praseodymium component and a neodymium component. It should be noted that neodymium and praseodymium exhibit the same behavior as lanthanum, but are not more basic than lanthanum, so it is considered that these elements have little effect on the pH of the abrasive.
[0027]
Next, a method for producing a cerium-based abrasive according to the present invention will be described. The abrasive according to the present invention is an abrasive whose pH has been adjusted. This pH adjustment is achieved by improvements in the fluoridation step and the roasting step. That is, as described above, in order to keep the pH of the abrasive in an appropriate range, the lanthanum fluoride oxygen in the roasted abrasive raw material must be in an appropriate state. In other words, it is necessary that lanthanum oxide does not exist and that no fluoride remains. In order to bring the abrasive material after roasting into such a state, it is necessary to adjust the composition of the raw material before roasting and to set the roasting conditions within an appropriate range.
[0028]
The present inventors have examined the fluoridation conditions and the roasting conditions. As the fluorination conditions, the ratio (F / La) of the number of fluorine atoms to the number of lanthanum atoms in the raw material was 1.2. The roasting condition is 800 to 1200 ° C., and the roasting time is set to the number of fluorine atoms in the raw material after roasting while the roasting temperature is set to 800 to 1200 ° C. It has been found that it is necessary to perform roasting with a time such that the ratio (F / La) to the number of lanthanum atoms is 1.1 to 2.0 as the roasting time.
[0029]
The reason for setting the fluoridation treatment conditions to the above range is that if F / La exceeds 2.3, fluoride will remain in the raw material after roasting, and the pH of the abrasive will be below the appropriate range. is there. Further, when the addition amount of the fluorine component is excessive, the constituent material of the roasting furnace is damaged by the fluorine component volatilized during the roasting, and the burden of the exhaust gas treatment of the roasting gas increases. On the other hand, the reason why the value of F / La is 1.2 or more is to secure the polishing force. Then, from the viewpoint of securing the polishing force and suppressing the residual of the fluoride, a more preferable range as the addition amount of the fluorine component is 1.5 to 2.0.
[0030]
Further, as the fluorine component added at the time of the fluorination treatment, it is preferable to use hydrofluoric acid or water-soluble hydrofluoric acid. As the hydrofluoride, for example, a fluorine-containing compound such as ammonium fluoride and ammonium hydrogen fluoride or an aqueous solution thereof can be used.
[0031]
In the method for producing a cerium-based abrasive according to the present invention, setting of roasting conditions is also important. If the roasting is insufficient (the roasting temperature is low or the roasting time is short), in addition to the fluoride remaining, the generation of lanthanide oxyfluoride and the oxidation of cerium do not progress and the polishing power is reduced. Poor abrasives are produced. Also, if the roasting is performed excessively (the roasting temperature is high or the roasting time is long), the possibility of fluoride remaining is low, but oxyfluoride is decomposed and lanthanum oxide may be generated. In addition to the above, an abrasive which is liable to produce abrasive scratches due to abnormal grain growth of lanthanum oxyfluoride and cerium oxide is produced.
[0032]
From such a viewpoint, the present inventors assume that the roasting temperature needs to be in the range of 800 to 1200 ° C. If the temperature is lower than 800 ° C., the roasting becomes insufficient, and the generation of lanthanum oxyfluoride and the oxidation of cerium cannot be promoted. If the temperature exceeds 1200 ° C., lanthanum oxyfluoride is easily decomposed and lanthanum oxide is easily generated. This is because abnormal grain growth of lanthanide halide and cerium oxide occurs.
[0033]
On the other hand, regarding the roasting time, the roasting is performed within the above temperature range until the ratio (F / La) of the number of fluorine atoms and the number of lanthanum atoms in the raw material after roasting becomes 1.1 to 2.0. It shall be. As described above, the roasting time is based on the target value of the fluorine content after roasting, and the roasting temperature is preferably directly based on the time because the roasting time varies depending on the roasting device. Because there is no. The reason for setting the range of F / La to 1.1 to 2.0 is that roasting is not sufficient in short-time roasting with a small amount of fluorine volatilization such that F / La exceeds 2.0. This is because the amount of fluoride remaining increases. Further, if roasting is performed for a long time until F / La becomes less than 1.1, the growth of lanthanum oxyfluoride and abnormal grain growth occur. In addition, a more preferable range of F / La is 1.3 to 1.8.
[0034]
As a specific setting example of the roasting time, for example, when roasting is performed using an electric stationary furnace, when the roasting temperature is set to 800 ° C., it is necessary to secure the roasting temperature for 12 hours or more. However, a roasting time of about 8 hours at 1000 ° C. and about 4 hours at 1200 ° C. is set. On the other hand, when performing roasting in a roasting furnace such as an electric rotary furnace, a fluidized-bed furnace, or an externally heated rotary furnace, in which the raw material being roasted can always contact the high-temperature gas, the roasting time is It can be about 1/6 to 2/3 of the stationary furnace.
[0035]
In the roasting step, the roasting temperature may be set to a low temperature first, pH may be measured and X-ray diffraction analysis may be performed on the way to confirm the progress of the roasting, and the roasting may be performed again.
[0036]
Further, as a preferred example of the present invention, when a rare earth raw material having a lanthanum oxide content (La2O3 / TREO) of 30% by weight and a cerium oxide content (CeO2 / TERO) of 60% is used as a raw material, In this case, the amount of fluorine component added (F / TREO) is 5.25 to 7.0% by weight, and the amount of fluorine (F / TREO) in the roasted raw material is 4.55 to 6.3% by weight. When the roasting temperature and time are set, a preferable abrasive can be obtained.
[0037]
The present invention is characterized in that the amount of the fluorine component added during the fluorination treatment is specified and the roasting conditions are specified. Therefore, the other manufacturing steps are not particularly limited. In other words, the production process of cerium-based abrasives often comprises a raw material pulverization step, a fluoridation step, a roasting step, a pulverization of the roasted material, a pulverization step, and a classification step. Regarding the steps other than the baking step, there is no problem to perform the steps by a conventional method.
[0038]
Also, as already mentioned, the raw materials for cerium-based abrasives include those using natural raw materials such as bastnaesite concentrate and those using artificial raw materials such as rare earth oxides and rare earth carbonates. In the abrasive according to the invention and the method for producing the same, any of the raw materials can be applied. However, since bastnasite concentrate, which is a natural raw material, originally contains fluorine, if necessary, a fluorine component is added according to the initial fluorine content, or rare-earth oxide containing no fluorine. And adjust the concentration of fluorine by diluting it. In addition, since the rare earth oxide and the rare earth carbonate, which are artificial raw materials, do not contain fluorine in the raw material state, a fluorine component is added to the target concentration before the roasting step.
[0039]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described together with comparative examples. In the present embodiment, a plurality of abrasives were manufactured by basically changing the amount of the fluorine component added in the fluorination treatment step and the roasting conditions using the same common raw material, and examined the characteristics thereof.
[0040]
The manufacturing process of the cerium-based abrasive applied in the present embodiment was as follows. First, as a raw material, mixed light rare earth carbonate (TREO: 50% by weight, cerium oxide content (CeO 2 / TERO): 70% by weight, lanthanum content (La) 2 O 3 / TREO): 30% by weight, ignition raw material: 50%, F / TREO: <0.1% by weight (except when comparing by lanthanum content). Then, the raw material and water are mixed in advance to form a slurry, and the slurry is pulverized by a wet ball mill, and pulverized so that the average particle size (microtrack method D50 (cumulative 50% particle size)) becomes 1.5 μm. This was fluorinated. In the fluorination treatment, a 5 mol / l aqueous solution of hydrofluoric acid was added to the slurry.
[0041]
The raw material slurries after the fluoridation treatment were filtered and roasted in a standing furnace while changing the roasting conditions. Then, the roasted raw material was dry-pulverized, further subjected to a classification treatment, and particles having a size of 5 μm or more were removed to obtain a cerium-based abrasive.
[0042]
The manufactured cerium-based abrasive was subjected to X-ray diffraction analysis, pH measurement, and conductivity measurement, and then subjected to an abrasive test to evaluate the abrasive characteristics of each abrasive. In X-ray diffraction, an appropriate amount of the produced cerium-based abrasive is sampled and uniformly filled in a sample holder so that the sample surface coincides with the holder surface, and this is set in an X-ray diffractometer to obtain an X-ray diffraction pattern. Obtained. The incident X-ray at this time is CuKα ray, and the diffracted X-ray is CuKα. 1 Based on the line. The obtained X-ray diffraction pattern was compared with standard peaks of various rare earth compounds, and the compound indicated by each peak was identified. LnOF / CeO 2 The peak intensity ratio was calculated. In the pH measurement and the conductivity measurement, the abrasive was dispersed in pure water until the slurry concentration became 20% by weight, and the pH and the conductivity of the slurry after mixing for 1 hour were measured.
[0043]
In the polishing test, the cerium-based abrasive obtained in each of the embodiments and the comparative examples was polished using a polishing tester (HSP-21, manufactured by Taito Seiki Co., Ltd.). In the polishing test, first, an abrasive and pure water were mixed to prepare an abrasive slurry having an abrasive concentration of 15% by mass. Then, using the polishing slurry and the polishing pad made of polyurethane, the surface of the flat glass (φ65 mm) is polished at a polishing pressure of 9.8 kPa (100 g / cm). 2 ), Polishing was performed for 10 minutes at a rotation speed of the polishing machine of 100 rpm and a circulation rate of the polishing slurry of 5 L / min, and a polishing value was determined based on a decrease in glass mass before and after polishing. The evaluation of the polishing value was performed according to Sample No. The polishing value of each abrasive was relatively evaluated by setting the reduction amount of the first abrasive to that of the polishing itself and others as 100. Specifically, in Table 2, Table 4, Table 6, and Table 8, “◎” is 200 or more, “150” is 150 or more and less than 200, “△” is 120 or more and less than 150, and “×” is 120 or more. Is less than.
[0044]
After the polishing was completed, the polished surface washed with pure water and dried in a dust-free state was evaluated for scratches. The flaw evaluation was carried out by observing the glass surface by a reflection method using a halogen lamp of 300,000 lux as a light source, scoring the number of large flaws and fine flaws, and evaluating the points as 100 points as a perfect score. In this flaw evaluation, the polishing accuracy required for finish polishing of a glass substrate for a hard disk or an LCD was used as a criterion. Specifically, in Table 2, Table 4, Table 6, and Table 8, “◎” means that 98 points or more (very suitable for finish polishing of glass substrates for HD and LCD) are indicated by “○”. Is less than 98 points and 95 points or more (suitable for finish polishing of HD / LCD glass substrates), and “△” is less than 95 points of 90 points or more (for finish polishing of HD / LCD glass substrates). "Possible") and "x" indicate less than 90 points (cannot be used for finish polishing of HD / LCD glass substrates).
[0045]
Further, a test was also conducted on the cleaning properties of the abrasive. In the cleaning property evaluation, first, the washed and dried slide glass for observation with an optical microscope is dipped in an abrasive slurry, pulled up and dried once at 50 ° C., and then dipped in a container containing pure water to obtain an ultra-fine glass. Ultrasonic cleaning was performed for 5 minutes, and after ultrasonic cleaning, the slide glass taken out of the container was washed with running pure water to obtain a slide glass to be observed. Thereafter, the cleaning ability was evaluated by observing the amount of abrasive particles remaining on the surface of the slide glass with an optical microscope. Specifically, in Table 2, Table 4, Table 6, and Table 8, “、” indicates that there was no abrasive remaining, “△” indicates that there was little abrasive remaining, and “×” Indicates that the abrasive remains very much. Therefore, it is difficult to use abrasives showing "x" for finish polishing of glass substrates for HD and LCD.
[0046]
A cerium-based abrasive was manufactured by changing the manufacturing conditions based on the above manufacturing process and evaluation method.
[0047]
Comparison by fluoridation conditions : First, the characteristics of abrasives produced by changing the amount of fluorine component added during the fluorination treatment were compared. The fluorination conditions were as follows: 0% by weight (based on TREO), 3% by weight (0.86 by F / La atomic ratio), 5% by weight (1.43 by F / La atomic ratio), 6.5% by weight of the fluorine component. % (1.86 by F / La atomic ratio), 8% by weight (F / La atomic ratio: 2.29), 10% by weight (F / La atomic ratio: 2.86), 15% by weight (F / La atomic ratio) The atomic ratio was 4.29). The values of F / TREO and F / La under the fluoridation treatment conditions are calculated based on only fluorine derived from hydrogen fluoride. The roasting conditions were a roasting temperature of 900 ° C. and a roasting time of 10 hours. Table 1 shows the properties of the produced abrasives.
[0048]
[Table 1]
Figure 2004339336
[0049]
Table 2 shows the polishing test results of these abrasives.
[0050]
[Table 2]
Figure 2004339336
[0051]
From the above results, looking at the relationship between the fluoridation conditions and the properties of the abrasive, it was found that the F / La was 1.43 (No. 3) to 2.29 (No. 5) as the fluorination conditions. , F / La atomic ratio of abrasive and LnOF / CeO 2 It was found that the peak intensity ratio and the pH in the slurry state were within appropriate ranges.
[0052]
Further, in relation to the polishing characteristics, the F / La atomic ratio and the LnOF / CeO 2 It was confirmed that the abrasive having a peak intensity ratio and a pH in a slurry state within an appropriate range showed good results in both the polishing test and the cleaning test.
[0053]
Comparison by roasting conditions : Next, a plurality of abrasives were manufactured by changing the roasting conditions. First, the roasting time was fixed at 10 hours, the roasting temperature was set at 700 ° C. to 1250 ° C., and seven types of abrasives were produced. Table 3 shows the properties of the produced abrasives. The fluorination treatment at this time was performed such that the fluorine concentration (F / La atomic ratio) was 1.86.
[0054]
[Table 3]
Figure 2004339336
[0055]
Table 4 shows the polishing test results of these abrasives.
[0056]
[Table 4]
Figure 2004339336
[0057]
Next, the roasting temperature was fixed at 950 ° C., and the roasting time was changed from 0.5 to 72 hours to produce eight types of abrasives. Table 5 shows the properties of the produced abrasives. The conditions for the fluorination treatment here are such that the F / La atomic ratio is 1.86.
[0058]
[Table 5]
Figure 2004339336
[0059]
Table 6 shows the polishing test results of these abrasives.
[0060]
[Table 6]
Figure 2004339336
[0061]
From the above results, looking at the relationship between the roasting conditions and the properties of the abrasive, the F / La atomic ratio and the LnOF / CeO 2 It has been confirmed that the roasting temperature is particularly preferably 800 to 1050 ° C. in order to keep the peak intensity ratio and the pH of the slurry in an appropriate range. Regarding the roasting time, it was confirmed that the roasting for an excessively long time (roasting for more than 48 hours) would make the pH of the abrasive slurry higher than an appropriate range.
[0062]
Further, in relation to the polishing characteristics, the F / La atomic ratio and the LnOF / CeO 2 It was confirmed that the abrasive having a peak intensity ratio and a pH in a slurry state within an appropriate range showed good results in both the polishing test and the cleaning test.
[0063]
Comparison by lanthanum content : Here, the raw materials were changed, rare earth raw materials having different lanthanum contents were adjusted, abrasives were manufactured therefrom, and the properties were compared. The raw material was prepared by using an aqueous solution of lanthanum chloride and cerium chloride precipitated with ammonium carbonate as the raw material. The lanthanum content was adjusted by changing the concentration of the mixed aqueous solution. The production process of the abrasive was the same as in the above embodiment, but the roasting conditions were 1000 ° C. for 10 hours. Table 7 shows the properties of the produced abrasives.
[0064]
[Table 7]
Figure 2004339336
[0065]
Table 8 shows the polishing test results of these abrasives.
[0066]
[Table 8]
Figure 2004339336
[0067]
From the above results, looking at the relationship between the raw material composition and the properties of the abrasive, the lanthanum concentration in the raw material is preferably 10 to 40% by weight (TREO standard), depending on the fluorination treatment conditions. F / La atomic ratio and LnOF / CeO 2 It was confirmed that the peak intensity ratio and the pH in the slurry state could be adjusted to appropriate ranges.
[0068]
Further, in relation to the polishing characteristics, the F / La atomic ratio and the LnOF / CeO 2 It was confirmed that the abrasive having a peak intensity ratio and a pH in a slurry state within an appropriate range showed good results in both the polishing test and the cleaning test.
[0069]
【The invention's effect】
The cerium-based abrasive according to the present invention described above has a pH adjusted to a preferable range in advance, and an abrasive slurry having stable polishing characteristics can be obtained without adding a pH adjuster.

Claims (7)

ランタン、セリウム、フッ素成分を含むセリウム系研摩材において、純水にスラリー濃度20重量%となるように懸濁させた際のpHが7.0〜10.5であることを特徴とするセリウム系研摩材。A cerium-based abrasive containing lanthanum, cerium and fluorine components, wherein the pH of the cerium-based abrasive when suspended in pure water to a slurry concentration of 20% by weight is 7.0 to 10.5. Abrasives. 銅ターゲットを用い、CuKα線又はCuKα線により回折X線を少なくとも回折角(2θ)20°〜30°の範囲で測定した際に、酸化セリウムのメインピーク強度に対する、オキシフッ化ランタノイド(LnOF)のメインピーク強度の比(LnOF/CeO)が、0.1〜0.5である請求項1記載のセリウム系研摩材。When using a copper target and measuring the X-ray diffraction with CuKα ray or CuKα 1 ray at least in the diffraction angle (2θ) range of 20 ° to 30 °, the lanthanoid oxyfluoride (LnOF) with respect to the main peak intensity of cerium oxide the ratio of the main peak intensity (LnOF / CeO 2) is cerium-based abrasive material according to claim 1, wherein 0.1 to 0.5. ランタンを酸化物に換算した際の全希土酸化物含有量(TREO)との重量比(La/TREO)が5〜40%であり、かつ、フッ素とランタンとの原子比(F/La)が1.1〜2.0である請求項1又は請求項2記載のセリウム系研摩材。The weight ratio (La 2 O 3 / TREO) to the total rare earth oxide content (TREO) when lanthanum is converted to oxide is 5 to 40%, and the atomic ratio (F) of fluorine to lanthanum is The cerium-based abrasive according to claim 1 or 2, wherein / La) is from 1.1 to 2.0. 純水にスラリー濃度20重量%となるように懸濁させた際の導電率が1mS/cm以下である請求項1〜請求項3記載のセリウム系研摩材。The cerium-based abrasive according to any one of claims 1 to 3, wherein the cerium-based abrasive has a conductivity of 1 mS / cm or less when suspended in pure water to a slurry concentration of 20% by weight. セリウムを主成分としランタンを含有する原料をフッ化処理する工程と、フッ化処理後の原料を焙焼する工程とを含むセリウム系研摩材の製造方法において、
フッ化処理時に、原料中のフッ素原子数とランタン原子数との比(F/La)が1.2〜2.3となるようにフッ素成分を添加し、
焙焼温度を800〜1200℃として、焙焼後の原料中のフッ素原子数とランタン原子数との比(F/La)が1.1〜2.0となるように焙焼時間を設定して焙焼することを特徴とするセリウム系研摩材の製造方法。
In a method for producing a cerium-based abrasive including a step of fluorinating a raw material containing lanthanum containing cerium as a main component and a step of roasting the raw material after the fluorination treatment,
During the fluorination treatment, a fluorine component is added so that the ratio (F / La) of the number of fluorine atoms to the number of lanthanum atoms in the raw material is 1.2 to 2.3,
The roasting temperature was set to 800 to 1200 ° C., and the roasting time was set so that the ratio (F / La) of the number of fluorine atoms to the number of lanthanum atoms in the raw material after roasting was 1.1 to 2.0. A method for producing a cerium-based abrasive, characterized by roasting.
フッ化処理時に、原料中のフッ素原子数とランタン原子数との比(F/La)が1.5〜2.0となるようにフッ素成分を添加する請求項5記載のセリウム系研摩材の製造方法。The cerium-based abrasive according to claim 5, wherein during the fluorination treatment, the fluorine component is added such that the ratio (F / La) of the number of fluorine atoms to the number of lanthanum atoms in the raw material is 1.5 to 2.0. Production method. フッ化処理時に添加するフッ素成分としてフッ化水素酸又は水溶性を有するフッ化水素酸塩を用いる請求項5又は請求項6記載のセリウム系研摩材の製造方法。The method for producing a cerium-based abrasive according to claim 5 or 6, wherein hydrofluoric acid or water-soluble hydrofluoride is used as the fluorine component added during the fluorination treatment.
JP2003136817A 2003-05-15 2003-05-15 Cerium-based abrasive and method for producing cerium-based abrasive Expired - Lifetime JP4128906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003136817A JP4128906B2 (en) 2003-05-15 2003-05-15 Cerium-based abrasive and method for producing cerium-based abrasive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003136817A JP4128906B2 (en) 2003-05-15 2003-05-15 Cerium-based abrasive and method for producing cerium-based abrasive

Publications (2)

Publication Number Publication Date
JP2004339336A true JP2004339336A (en) 2004-12-02
JP4128906B2 JP4128906B2 (en) 2008-07-30

Family

ID=33526632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003136817A Expired - Lifetime JP4128906B2 (en) 2003-05-15 2003-05-15 Cerium-based abrasive and method for producing cerium-based abrasive

Country Status (1)

Country Link
JP (1) JP4128906B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006315160A (en) * 2005-05-16 2006-11-24 Fuji Electric Holdings Co Ltd Finish polishing method for glass substrate of magnetic disk
JP2013056826A (en) * 2012-10-29 2013-03-28 Tokyo Univ Of Science METHOD FOR PRODUCING FINE PARTICLE DISPERSION SOLUTION, AND METHOD FOR PRODUCING LnOX-LnX3 COMPLEX PARTICLE
JP2013531598A (en) * 2010-05-12 2013-08-08 スペクトラム ファーマシューティカルズ インコーポレイテッド Lanthanum carbonate hydroxide, lanthanum oxycarbonate and method for producing and using the same
JP2015110844A (en) * 2015-03-03 2015-06-18 信越化学工業株式会社 Powder thermal spray material of rare-earth element oxyfluoride, and thermal spray member of rare-earth element oxyfluoride
US9511091B2 (en) 2002-05-24 2016-12-06 Spectrum Pharmaceuticals, Inc. Rare earth metal compounds, methods of making, and methods of using the same
CN115231605A (en) * 2022-07-26 2022-10-25 宣城市晶和环保新材料科技有限公司 Preparation method of high-purity nano lanthanum oxyfluoride
CN115340824A (en) * 2021-05-14 2022-11-15 河北雄安稀土功能材料创新中心有限公司 Preparation method of cerium series grinding and polishing material
CN115676870A (en) * 2022-09-05 2023-02-03 内蒙古科学技术研究院 Preparation method of LaOF nano powder suitable for industrial production

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9511091B2 (en) 2002-05-24 2016-12-06 Spectrum Pharmaceuticals, Inc. Rare earth metal compounds, methods of making, and methods of using the same
JP2006315160A (en) * 2005-05-16 2006-11-24 Fuji Electric Holdings Co Ltd Finish polishing method for glass substrate of magnetic disk
US11406663B2 (en) 2010-05-12 2022-08-09 Unicycive Therapeutics, Inc. Lanthanum carbonate hydroxide, lanthanum oxycarbonate and methods of their manufacture and use
JP2013531598A (en) * 2010-05-12 2013-08-08 スペクトラム ファーマシューティカルズ インコーポレイテッド Lanthanum carbonate hydroxide, lanthanum oxycarbonate and method for producing and using the same
US10350240B2 (en) 2010-05-12 2019-07-16 Spectrum Pharmaceuticals, Inc. Lanthanum carbonate hydroxide, lanthanum oxycarbonate and methods of their manufacture and use
JP2013056826A (en) * 2012-10-29 2013-03-28 Tokyo Univ Of Science METHOD FOR PRODUCING FINE PARTICLE DISPERSION SOLUTION, AND METHOD FOR PRODUCING LnOX-LnX3 COMPLEX PARTICLE
JP2015110844A (en) * 2015-03-03 2015-06-18 信越化学工業株式会社 Powder thermal spray material of rare-earth element oxyfluoride, and thermal spray member of rare-earth element oxyfluoride
CN115340824A (en) * 2021-05-14 2022-11-15 河北雄安稀土功能材料创新中心有限公司 Preparation method of cerium series grinding and polishing material
CN115340824B (en) * 2021-05-14 2024-02-06 河北雄安稀土功能材料创新中心有限公司 Preparation method of cerium-based grinding and polishing material
CN115231605A (en) * 2022-07-26 2022-10-25 宣城市晶和环保新材料科技有限公司 Preparation method of high-purity nano lanthanum oxyfluoride
CN115231605B (en) * 2022-07-26 2024-02-06 宣城市晶和环保新材料科技有限公司 Preparation method of high-purity nano lanthanum oxyfluoride
CN115676870A (en) * 2022-09-05 2023-02-03 内蒙古科学技术研究院 Preparation method of LaOF nano powder suitable for industrial production
CN115676870B (en) * 2022-09-05 2024-02-27 内蒙古科学技术研究院 Preparation method of LaOF nano powder suitable for industrial production

Also Published As

Publication number Publication date
JP4128906B2 (en) 2008-07-30

Similar Documents

Publication Publication Date Title
US6893477B2 (en) Cerium-based abrasive material slurry and method for producing cerium-based abrasive material slurry
JPWO2002048280A1 (en) Cerium-based abrasive and method for evaluating cerium-based abrasive
KR102090494B1 (en) Cerium abrasive and manufacturing method
JP4401353B2 (en) Cerium-based abrasive
JP4128906B2 (en) Cerium-based abrasive and method for producing cerium-based abrasive
JP2002348563A (en) Method for producing cerium abrasive material
TWI332981B (en) Method for producing cerium oxide abrasives and cerium oxide abrasives obtained by the method
JP4450424B2 (en) Cerium-based abrasive and its raw materials
TWI410479B (en) Lanthanum abrasive
JP4463134B2 (en) Cerium-based abrasives and intermediates thereof, and production methods thereof
JP3392398B2 (en) Cerium-based abrasive, its quality inspection method and manufacturing method
JP2007106890A (en) Cerium-based abrasive material
TW201917191A (en) Manufacturing method for starting material for cerium-based abrasive agent, and manufacturing method for cerium-based abrasive agent
JP3875668B2 (en) Cerium-based abrasive containing fluorine and method for producing the same
JP4434869B2 (en) Method for producing cerium oxide abrasive and cerium oxide abrasive obtained
JP4756996B2 (en) Cerium-based abrasive
JP4070180B2 (en) Method for producing cerium-based abrasive
JP2010132834A (en) Cerium-based abrasive material containing fluorine and sulfur
JP4237957B2 (en) Quality evaluation method for cerium-based abrasive materials
JP3392399B2 (en) Cerium-based abrasive, its quality inspection method and manufacturing method
JP6424818B2 (en) Method of manufacturing abrasive
JP4540611B2 (en) Cerium-based abrasive and method for producing cerium-based abrasive
WO2002024827A1 (en) Cerium based abrasive material, method of quality examination therefor and method for production thereof
WO2024014425A1 (en) Cerium-based abrasive material, polishing liquid, polishing liquid production method, and glass polishing method
JP3986424B2 (en) Cerium-based abrasive, method for producing cerium-based abrasive, and quality evaluation method for cerium-based abrasive

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080501

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080515

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4128906

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term