JP2004339112A - Method for producing high-purity acetonitrile - Google Patents

Method for producing high-purity acetonitrile Download PDF

Info

Publication number
JP2004339112A
JP2004339112A JP2003135980A JP2003135980A JP2004339112A JP 2004339112 A JP2004339112 A JP 2004339112A JP 2003135980 A JP2003135980 A JP 2003135980A JP 2003135980 A JP2003135980 A JP 2003135980A JP 2004339112 A JP2004339112 A JP 2004339112A
Authority
JP
Japan
Prior art keywords
acetonitrile
sulfuric acid
allyl alcohol
oxazole
impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003135980A
Other languages
Japanese (ja)
Inventor
Mitsuharu Hamanaka
光治 浜中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2003135980A priority Critical patent/JP2004339112A/en
Priority to CNB2004100380238A priority patent/CN100341849C/en
Priority to KR1020040033885A priority patent/KR20040098576A/en
Publication of JP2004339112A publication Critical patent/JP2004339112A/en
Pending legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F19/00Other details of constructional parts for finishing work on buildings
    • E04F19/02Borders; Finishing strips, e.g. beadings; Light coves
    • E04F19/04Borders; Finishing strips, e.g. beadings; Light coves for use between floor or ceiling and wall, e.g. skirtings
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F19/00Other details of constructional parts for finishing work on buildings
    • E04F19/02Borders; Finishing strips, e.g. beadings; Light coves
    • E04F19/04Borders; Finishing strips, e.g. beadings; Light coves for use between floor or ceiling and wall, e.g. skirtings
    • E04F2019/0404Borders; Finishing strips, e.g. beadings; Light coves for use between floor or ceiling and wall, e.g. skirtings characterised by the material
    • E04F2019/0431Borders; Finishing strips, e.g. beadings; Light coves for use between floor or ceiling and wall, e.g. skirtings characterised by the material of two or more materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing high-purity acetonitrile, with which even if crude acetonitrile contains allyl alcohol, oxazole and impurities having strong ultraviolet absorption, they are safely and rapidly removed by an industrially suitable operation. <P>SOLUTION: The method for purifying acetonitrile comprises a process for distilling acetonitrile after bringing acetonitrile into contact with sulfuric acid and a process for carrying out adsorption with an adsorbent in purifying of acetonitrile. Especially, the impurities with maximum absorbance in the vicinity of 250 nm wavelength having difficulty in complete removal by a conventional method are effectively removed by the method. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、アセトニトリルの精製方法に関し、さらに詳しくはアンモオキシデーションによりアクリロニトリルまたはメタクリロニトリルを製造する際に副生するアセトニトリル等の紫外線吸収の強い不純物を含むアセトニトリルの精製方法に関する。
【0002】
【従来の技術】
アンモオキシデーションによりアクリロニトリルまたはメタクリロニトリルを製造する際に副生するアセトニトリルを精製する方法として、従来、不純物を含む粗アセトニトリルに硫酸を加えて、含有するアリルアルコールを硫酸エステルとして高沸点化し、蒸留により分離する方法が知られている(例えば特許文献1)。また、アンモオキシデーションにより得られる粗アクリロニトリルと硫酸とを接触して、含有するオキサゾールを硫酸塩として分離する方法が知られている(例えば特許文献2)。また、粗アセトニトリルと硫酸を接触させたのち硫酸分を分離し、次いでオゾンガスと接触させた後、蒸留することにより、波長200nm〜350nmにおける紫外線吸収の無いアセトニトリルを得る方法が知られている(例えば特許文献3)。さらに、粗アセトニトリルを蒸留した後、酸性陽イオン交換樹脂を通すことにより液体クロマトグラフィー(以下HPLCと略記)溶媒用のアセトニトリルを得る方法も知られている(例えば特許文献4)。
【0003】
【特許文献1】
特開昭51−23218号公報
【特許文献2】
特開昭55−20791号公報
【特許文献3】
特開平05−32605号公報
【特許文献4】
特開平11−35542号公報
【0004】
【発明が解決しようとする課題】
プロピレン等のアンモオキシテーションによりアクリロニトリルまたはメタクリロニトリルを製造する際に副生するアセトニトリルは、有機化合物合成の出発原料や各種有機化合物の合成反応における溶媒として用いられるが、最近ではHPLC溶媒用、医薬品製造やフィルム現像用、大型液晶フィルム製造用の溶媒などとして使用され、特に最近では高純度アセトニトリルには大きな需要がある。粗アセトニトリルはアリルアルコールやオキサゾール、青酸、アクリロニトリル、水、アセトン、アクロレイン、プロピオニトリル、cis−およびtrans−クロトンニトリル、メタクリロニトリル等の不純物を含有する。このうち特にアリルアルコールは強い刺激臭を持った毒物で、1%以下の含有量であっても目や鼻を刺激するなど作業上種々の好ましからざる影響を与える。さらに、このアリルアルコールとオキサゾールは紫外線吸収が強く、UVカットオフが190nm未満であるHPLC溶媒等の用途へ使用する際には除去しなければならない。
【0005】
特許文献1はアリルアルコールを除去する方法である。特許文献2は粗アクリロニトリルからオキサゾールを除去する方法である。しかしながら、粗アセトニトリルからアリルアルコールとオキサゾールを充分に除去できても実際は紫外線吸収があり、HPLC用溶媒としては使用できないという問題があった。これは、粗アセトニトリル中にはアリルアルコールとオキサゾール以外にも紫外線吸収の強い不純物が存在することを意味する。
【0006】
特許文献3ではこれら不純物をオゾン処理により酸化除去する方法が提案されている。しかし、オゾン発生器は、その性能上オゾンガス濃度を10重量%以上に高めることは困難であり、残りは空気または酸素となる。本ガスをアセトニトリルに吹き込んだとき、引火・爆発の危険性があり、爆発範囲を避けるために、窒素や二酸化炭素等の不活性ガスを加えなければならず、さらに気液反応のため反応効率が悪く、大量のガスを長時間接触させる必要があり、オゾンと気化したアセトニトリルを回収する操作が必要になるなど操作が煩雑であり工業生産に向かないという問題点を持っている。
【0007】
特許文献4は酸性陽イオン交換樹脂処理によりオキサゾール等の塩基性物質を吸着除去する方法であるが、この方法では紫外線吸収の強いアリルアルコールは除去できないという問題点を持っている。
【0008】
本発明の目的は、粗アセトニトリルがアリルアルコール、オキサゾール、その他に紫外線吸収の強い不純物を含有していても、それらを安全に、素早く、工業的に適した操作で除去し、高純度アセトニトリルを製造する方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明者らは、上記課題を解決するため、鋭意研究を重ねた結果、粗アセトニトリルを、硫酸と接触処理させてからの蒸留工程、及び吸着処理工程の二工程を経ることにより、粗アセトニトリルがアリルアルコール、オキサゾール、その他に紫外線吸収の強い不純物を含有していても、それらを安全に、素早く、工業的に適した操作で除去でき、高純度アセトニトリルを製造することができることを見い出し、本発明に到達した。
【0010】
すなわち、本発明は、アセトニトリルの精製において、硫酸と接触させた後に蒸留する工程、及び吸着剤により吸着処理する工程、を含むことを特徴とするアセトニトリルの精製方法に関する。
【0011】
【発明の実施の形態】
本発明で用いられる(粗)アセトニトリルは如何なる製法によって得たものでもよいが、特にプロピレン、プロパン、イソブチレン、イソブタン等のアンモオキシデーションで副生した(粗)アセトニトリルの精製に有効である。プロピレン等のアンモオキシデーションによりアクリロニトリルまたはメタクリロニトリルを製造する際に副生する粗アセトニトリルには、アリルアルコールやオキサゾール、水、アセトン、青酸、アクリロニトリル、メタクリロニトリル、アクロレイン、プロピオニトリル、cis−およびtrans−クロトンニトリル等の不純物を含有するが、それらは本発明のプロセスの前工程で低減され、いずれも1重量%以下となっている。蒸留塔等の条件次第で不純物含量の値が変動するが、例えばアリルアルコール180ppm、オキサゾール50ppm、水500ppm、プロピオニトリル8500ppm、その他は10ppm以下である。この状態ではUVカットオフは190nmを超える。
【0012】
この粗アセトニトリルと硫酸を接触させることにより、アリルアルコールはエステル化して硫酸エステルとなり、またエーテル化してジアリルエーテルにもなる。その結果、アセトニトリルとの沸点差が拡大し、蒸留で容易に分離される。オキサゾールは硫酸塩となり、蒸留の際に釜残となる。すなわち以上の操作で紫外線吸収の強いアリルアルコールとオキサゾールを同時に除去することができる。硫酸以外の鉱酸や、メタンスルホン酸、ベンゼンスルホン酸、p−トルエンスルホン酸等の有機酸では、以上のような効果を充分に認めることはできなかった。アリルアルコール、オキサゾール以外で紫外線吸収の強い不純物(以下、不純物Aと言う。)は、波長250nm付近で吸光度の極大値を有し、吸着剤により吸着されやすい性質があることを見出した。以上によりアリルアルコールとオキサゾールのほか、紫外線吸収の強い不純物Aも除去し、UVカットオフを190nm未満とすることができる。
【0013】
本発明で使用する硫酸の濃度は任意であるが、アリルアルコールとの反応が脱水反応であり、また平衡反応であることから系内に水が多く存在することは好ましくなく、95重量%より高濃度の硫酸が好ましく、発煙硫酸も用いることができる。使用する硫酸の量はアリルアルコールとオキサゾールの合計モル数に対して0.5〜300倍モルであり、好ましくは1〜100倍モルである。反応時間は常温下であれば5〜50時間であるが、沸点付近まで加熱すれば0.01〜5時間である。反応はラインミキサー内や攪拌槽で行うが、硫酸濃度を高くしたときは反応が速いため、反応槽は使用しなくても良い。反応後、過剰の硫酸は中和してもよいが、結晶が析出することがあるため、その場合は蒸留の前に晶析分離したり、フィルターを通すことが好ましい。
【0014】
このように硫酸処理したアセトニトリルを蒸留することにより、硫酸と反応生成物をアセトニトリルから分離するが、蒸留の方法は任意である。段数を増やしたり、還流器を備えた蒸留塔で還流しながら蒸留すればアセトニトリル純度は上がる。硫酸とアセトニトリルの副反応を抑制するために減圧蒸留を行い蒸留温度を下げても良い。留出液は塔頂流、または側流を抜き出す。
【0015】
本発明の吸着処理で用いる吸着剤は、例えば活性炭、シリカゲル、ゼオライト、モレキュラーシーブ、イオン交換樹脂等が挙げられる。水分吸着のためにはゼオライト、モレキュラーシーブ。アセトニトリルの加水分解反応により生成した酢酸を吸着するには塩基性陰イオン交換樹脂が好ましい。またアリルアルコール、オキサゾール以外で強いUV吸収を示す不純物Aを吸着除去する必要性から、吸着床には酸性陽イオン交換樹脂を含むことが好ましい。弱酸性陽イオン交換樹脂であればカルボキシル基を有するもの、強酸性陽イオン交換樹脂であればスルホン基を有するものが好ましいが、より好ましくはスルホン酸基を有する強酸性陽イオン交換樹脂を使用する。この場合、Na型の樹脂を酸により再生処理して使用しても良いが、非水溶液用イオン交換樹脂でH型のものが良い。例えば市販のものでは、Rohm and Haas社のAmberlite1006F H、Amberlyst15H、またDow Chemical社のHCR−W2、モノスフィアー650Cなどが挙げられる。
【0016】
吸着処理は吸着剤を充填したカラムへの上方流でも下方流でも良いし、吸着剤を入れた攪拌槽への通液でも良いし、吸着機能を有する繊維や膜への通液でも構わない。通液温度は−10〜80℃であるが、好ましくは5〜40℃である。通液速度[L/hr]の吸着床容積[L]に対する割合である空間速度(SV)はSV=0.1〜300[1/hr]の範囲であるが、この範囲外でも良い。通常はSV=0.5〜20[1/hr]である。
【0017】
吸着剤による吸着処理は、「硫酸と接触させた後に蒸留する工程」の前、後あるいは硫酸接触と蒸留の間の何れで行ってもよいが、不純物Aの吸着効率や吸着剤寿命の観点からは、「硫酸と接触させた後に蒸留する工程」の後に行うのが特に好ましい。
【0018】
【実施例】
以下に本発明の実施例について説明するが、本発明はこれら実施例に限定されるものではない。UV吸収スペクトルと吸光度は以下の条件で測定した。
(1) 装置 : 島津製作所 自動分光光度計UV−3100型
(2) SCAN SPEED(波長送り速度) : FAST
(3) SLIT(分光器のスリット幅設定値nm) : 2.0
(4) RANGE : 0〜1.000
(5) 波長 : 190〜500nm
【0019】
実施例1
プロピレンのアンモオキシデーションによるアクリロニトリル製造において、副生物として得られるアセトニトリルを精製した結果、以下の不純物を含有するアセトニトリル(以下、粗アセトニトリルと言う。)を得た。
アリルアルコール 51ppm
オキサゾール 10ppm
プロピオニトリル 144ppm
O 164ppm
その他の不純物は1ppm以下であった。この粗アセトニトリルのUV吸収スペクトルを測定すると、吸光度(abs)のスポットデータは以下の通りであった。
abs(190nm) > 5.000
abs(250nm) = 0.301
abs(254nm) = 0.290
この粗アセトニトリルに97重量%硫酸を粗アセトニトリルに対し0.36重量%(対アリルアルコール42倍モル、対オキサゾール253倍モル)添加し還流しながら3時間反応を行った。その後、常圧で蒸留を行ったところ、その留出液からは不純物のうちアリルアルコールとオキサゾールが検出限界以下となった。また、UV吸収スペクトルを測定すると、吸光度(abs)のスポットデータは以下の通りとなり、UVカットオフを190nm未満とすることができたが、依然、波長250nm付近に吸光度の極大を有し、不純物Aが残存していることを示していた。
abs(190nm) = 0.883
abs(250nm) = 0.039
abs(254nm) = 0.035
【0020】
この留出液を強酸性イオン交換樹脂Amberlyst15H wet 20.0gを充填した15mmφ×300mmのカラムをHPLC用アセトニトリルで充分に通液洗浄した後、空間速度SV=3.9で上方から通液した。通液後のアセトニトリルのUV吸収スペクトルを測定すると、吸光度(abs)のスポットデータは以下の通りとなり、UVカットオフを190nm未満とすることができ、かつ波長250nmの極大はなくなり、不純物Aを吸着除去することができた。
abs(190nm) = 0.734
abs(250nm) = 0.006
abs(254nm) = 0.005
【0021】
比較例1
実施例1で使用した粗アセトニトリルに硫酸処理をせずに、強酸性イオン交換樹脂Amberlyst15H wet 20.0gを充填した15mmφ×300mmのカラムをHPLC用アセトニトリルで充分に通液洗浄した後、空間速度SV=3.9で上方から通液した。通液後のアセトニトリルを分析すると、アリルアルコールが33ppm検出され、吸着処理だけでは除去できないことを確認した。またUV吸収スペクトルを測定すると、波長250nmの極大はなくなり、不純物Aを吸着除去することができたが、吸光度(abs)のスポットデータは以下の通りであり、UVカットオフを190nm未満とすることができなかった。
abs(190nm) = 3.151
abs(250nm) = 0.013
abs(254nm) = 0.014
【0022】
【発明の効果】
本発明によれば、副生するアセトニトリルを、硫酸と接触させた後に蒸留する工程、及び吸着剤により吸着処理する工程を含む精製を行うことにより、アリルアルコール、オキサゾール、その他の紫外線吸収の強い不純物を工業的に簡便な方法で、素早く、安全に除去し、高純度アセトニトリルを製造することができる。特に従来の方法では完全な除去が難しかった波長250nm付近に極大のある不純物の除去に効果的である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for purifying acetonitrile, and more particularly to a method for purifying acetonitrile containing impurities having a strong ultraviolet absorption such as acetonitrile by-produced when acrylonitrile or methacrylonitrile is produced by ammoxidation.
[0002]
[Prior art]
As a method for purifying acetonitrile by-produced when producing acrylonitrile or methacrylonitrile by ammoxidation, conventionally, sulfuric acid is added to crude acetonitrile containing impurities, the contained allyl alcohol is raised to a high boiling point as a sulfuric ester, and distillation is performed. There is known a method of separation by using a technique (for example, Patent Document 1). Further, a method is known in which crude acrylonitrile obtained by ammoxidation is brought into contact with sulfuric acid to separate contained oxazole as a sulfate (for example, Patent Document 2). Also, a method is known in which sulfuric acid is separated after contacting crude acetonitrile with sulfuric acid, then contacted with ozone gas, and then distilled to obtain acetonitrile free of ultraviolet absorption at a wavelength of 200 nm to 350 nm (for example, Patent Document 3). Further, a method is also known in which crude acetonitrile is distilled and then passed through an acidic cation exchange resin to obtain acetonitrile for a liquid chromatography (hereinafter abbreviated as HPLC) solvent (for example, Patent Document 4).
[0003]
[Patent Document 1]
JP-A-51-23218 [Patent Document 2]
JP-A-55-20791 [Patent Document 3]
JP 05-32605 A [Patent Document 4]
JP-A-11-35542
[Problems to be solved by the invention]
Acetonitrile by-produced when producing acrylonitrile or methacrylonitrile by ammoxidation of propylene or the like is used as a starting material for organic compound synthesis and as a solvent in various organic compound synthesis reactions. It is used as a solvent for production, film development, and large liquid crystal film production, and in particular, recently, there is a great demand for high-purity acetonitrile. Crude acetonitrile contains impurities such as allyl alcohol and oxazole, hydrocyanic acid, acrylonitrile, water, acetone, acrolein, propionitrile, cis- and trans-crotonitrile, methacrylonitrile. Among them, allyl alcohol is a poison with a strong pungent odor, and even if its content is 1% or less, it has various unfavorable effects on work such as irritating eyes and nose. In addition, the allyl alcohol and oxazole have strong ultraviolet absorption and must be removed when used in applications such as HPLC solvents having a UV cutoff of less than 190 nm.
[0005]
Patent Document 1 discloses a method for removing allyl alcohol. Patent Document 2 discloses a method for removing oxazole from crude acrylonitrile. However, even if allyl alcohol and oxazole can be sufficiently removed from crude acetonitrile, there is a problem that ultraviolet light is actually absorbed and cannot be used as a solvent for HPLC. This means that impurities other than allyl alcohol and oxazole which have strong ultraviolet absorption exist in the crude acetonitrile.
[0006]
Patent Document 3 proposes a method of oxidizing and removing these impurities by ozone treatment. However, it is difficult for the ozone generator to increase the ozone gas concentration to 10% by weight or more due to its performance, and the rest is air or oxygen. When this gas is blown into acetonitrile, there is a danger of ignition or explosion.To avoid the explosion, an inert gas such as nitrogen or carbon dioxide must be added. It is bad and requires a large amount of gas to come into contact for a long period of time, so that the operation is complicated, such as the need to recover ozone and vaporized acetonitrile.
[0007]
Patent Document 4 discloses a method of adsorbing and removing a basic substance such as oxazole by treatment with an acidic cation exchange resin. However, this method has a problem that allyl alcohol having strong ultraviolet absorption cannot be removed.
[0008]
It is an object of the present invention to produce high-purity acetonitrile by removing acetonitrile safely, quickly and industrially suitable even if crude acetonitrile contains allyl alcohol, oxazole, and other impurities having strong ultraviolet absorption. It is to provide a way to do it.
[0009]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above problems, and as a result, crude acetonitrile was subjected to a distillation step after being subjected to contact treatment with sulfuric acid, and an adsorption treatment step, whereby crude acetonitrile was obtained. The present invention has been found to be capable of producing high-purity acetonitrile safely even if it contains allyl alcohol, oxazole and other impurities having strong ultraviolet absorption, which can be safely, quickly and industrially suitable. Reached.
[0010]
That is, the present invention relates to a method for purifying acetonitrile, which comprises a step of purifying acetonitrile after contacting with sulfuric acid and then a step of performing an adsorption treatment with an adsorbent.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
The (crude) acetonitrile used in the present invention may be obtained by any production method, and is particularly effective for purifying (crude) acetonitrile by-produced by ammoxidation of propylene, propane, isobutylene, isobutane and the like. Crude acetonitrile by-produced when producing acrylonitrile or methacrylonitrile by ammoxidation of propylene or the like includes allyl alcohol, oxazole, water, acetone, hydrocyanic acid, acrylonitrile, methacrylonitrile, acrolein, propionitrile, cis- And impurities such as trans-crotonnitrile, which are reduced in the previous step of the process of the present invention, and are all 1% by weight or less. The value of the impurity content varies depending on the conditions of the distillation column and the like. For example, allyl alcohol is 180 ppm, oxazole is 50 ppm, water is 500 ppm, propionitrile is 8500 ppm, and others are 10 ppm or less. In this state, the UV cutoff exceeds 190 nm.
[0012]
By contacting the crude acetonitrile with sulfuric acid, allyl alcohol is esterified to form a sulfate, and etherified to diallyl ether. As a result, the difference in boiling point from acetonitrile is increased, and it is easily separated by distillation. Oxazole turns into sulfate and remains in the bottom during distillation. That is, allyl alcohol and oxazole having strong ultraviolet absorption can be simultaneously removed by the above operation. Mineral acids other than sulfuric acid and organic acids such as methanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, and the like, could not sufficiently exhibit the above effects. It has been found that impurities other than allyl alcohol and oxazole that have strong ultraviolet absorption (hereinafter referred to as impurity A) have a maximum value of absorbance near a wavelength of 250 nm and have a property of being easily adsorbed by an adsorbent. As described above, in addition to allyl alcohol and oxazole, impurity A having strong ultraviolet absorption is also removed, and the UV cutoff can be reduced to less than 190 nm.
[0013]
Although the concentration of sulfuric acid used in the present invention is arbitrary, it is not preferable that a large amount of water is present in the system because the reaction with allyl alcohol is a dehydration reaction and an equilibrium reaction, and it is higher than 95% by weight. Sulfuric acid at a concentration is preferred, and fuming sulfuric acid can also be used. The amount of sulfuric acid used is 0.5 to 300 moles, preferably 1 to 100 moles, based on the total moles of allyl alcohol and oxazole. The reaction time is 5 to 50 hours at normal temperature, but is 0.01 to 5 hours when heated to near the boiling point. The reaction is carried out in a line mixer or a stirring tank. When the concentration of sulfuric acid is increased, the reaction is fast, and the reaction tank may not be used. After the reaction, the excess sulfuric acid may be neutralized, but crystals may be precipitated. In such a case, it is preferable to separate by crystallization or pass through a filter before distillation.
[0014]
By distilling the acetonitrile thus treated with sulfuric acid, sulfuric acid and a reaction product are separated from acetonitrile, and the distillation method is optional. The purity of acetonitrile can be increased by increasing the number of stages or performing distillation while refluxing in a distillation column equipped with a reflux condenser. In order to suppress a side reaction between sulfuric acid and acetonitrile, distillation under reduced pressure may be performed to lower the distillation temperature. The distillate is withdrawn from the top stream or side stream.
[0015]
Examples of the adsorbent used in the adsorption treatment of the present invention include activated carbon, silica gel, zeolite, molecular sieve, and ion exchange resin. Zeolite and molecular sieve for moisture adsorption. A basic anion exchange resin is preferred for adsorbing acetic acid generated by a hydrolysis reaction of acetonitrile. In addition, it is preferable that the adsorption bed contains an acidic cation exchange resin because it is necessary to adsorb and remove impurities A exhibiting strong UV absorption other than allyl alcohol and oxazole. If it is a weakly acidic cation exchange resin, one having a carboxyl group, and if it is a strongly acidic cation exchange resin, one having a sulfone group is preferable, and more preferably, a strongly acidic cation exchange resin having a sulfonic acid group is used. . In this case, the Na + type resin may be used after being subjected to a regeneration treatment with an acid, but an H + type non-aqueous solution ion exchange resin is preferable. For example, commercially available products include Amberlite 1006F H and Amberlyst 15H manufactured by Rohm and Haas, and HCR-W2 and Monosphere 650C manufactured by Dow Chemical.
[0016]
The adsorption treatment may be an upward flow or a downward flow to a column filled with the adsorbent, a flow through a stirring tank containing the adsorbent, or a flow through a fiber or a membrane having an adsorption function. The passing temperature is -10 to 80C, preferably 5 to 40C. The space velocity (SV), which is the ratio of the flow rate [L / hr] to the adsorption bed volume [L], is in the range of SV = 0.1 to 300 [1 / hr], but may be outside this range. Usually, SV is 0.5 to 20 [1 / hr].
[0017]
The adsorption treatment with the adsorbent may be performed before or after the “step of distillation after contacting with sulfuric acid” or between the contact with sulfuric acid and distillation, but from the viewpoint of the adsorption efficiency of impurity A and the life of the adsorbent. Is particularly preferably performed after the “distillation step after contacting with sulfuric acid”.
[0018]
【Example】
Hereinafter, examples of the present invention will be described, but the present invention is not limited to these examples. UV absorption spectrum and absorbance were measured under the following conditions.
(1) Apparatus: Shimadzu Automatic Spectrophotometer UV-3100 (2) SCAN SPEED (wavelength feed rate): FAST
(3) SLIT (spectroscope slit width set value nm): 2.0
(4) RANGE: 0 to 1.000
(5) Wavelength: 190 to 500 nm
[0019]
Example 1
In the production of acrylonitrile by ammoxidation of propylene, acetonitrile obtained as a by-product was purified, and as a result, acetonitrile containing the following impurities (hereinafter, referred to as crude acetonitrile) was obtained.
Allyl alcohol 51ppm
Oxazole 10ppm
144 ppm of propionitrile
H 2 O 164 ppm
Other impurities were 1 ppm or less. When the UV absorption spectrum of this crude acetonitrile was measured, the spot data of the absorbance (abs) were as follows.
abs (190 nm)> 5.000
abs (250 nm) = 0.301
abs (254 nm) = 0.290
97% by weight of sulfuric acid was added to the crude acetonitrile in an amount of 0.36% by weight (vs. allyl alcohol: 42 times mol, oxazole: 253 times mol) based on the crude acetonitrile, and the mixture was reacted under reflux for 3 hours. Thereafter, distillation was carried out at normal pressure. As a result, allyl alcohol and oxazole in the distillate were lower than the detection limit. When the UV absorption spectrum was measured, the spot data of the absorbance (abs) was as follows, and the UV cutoff could be made less than 190 nm. This indicated that A remained.
abs (190 nm) = 0.883
abs (250 nm) = 0.039
abs (254 nm) = 0.035
[0020]
The distillate was sufficiently washed with a 15 mmφ × 300 mm column packed with 20.0 g of strongly acidic ion exchange resin Amberlyst 15H wet with acetonitrile for HPLC, and then passed from above at a space velocity SV = 3.9. When the UV absorption spectrum of acetonitrile after passing through the solution is measured, the spot data of the absorbance (abs) are as follows, the UV cutoff can be set to less than 190 nm, the maximum of 250 nm is eliminated, and the impurity A is adsorbed. Could be removed.
abs (190 nm) = 0.734
abs (250 nm) = 0.006
abs (254 nm) = 0.005
[0021]
Comparative Example 1
After the crude acetonitrile used in Example 1 was not subjected to sulfuric acid treatment, a 15 mmφ × 300 mm column packed with 20.0 g of strongly acidic ion exchange resin Amberlyst 15H wet was sufficiently washed with acetonitrile for HPLC, and then the space velocity SV was increased. = 3.9 and the liquid was passed from above. When the acetonitrile after the passage was analyzed, 33 ppm of allyl alcohol was detected, and it was confirmed that allyl alcohol could not be removed only by the adsorption treatment. In addition, when the UV absorption spectrum was measured, the maximum at the wavelength of 250 nm disappeared, and the impurity A was able to be adsorbed and removed. Could not.
abs (190 nm) = 3.151
abs (250 nm) = 0.013
abs (254 nm) = 0.014
[0022]
【The invention's effect】
According to the present invention, by-producing acetonitrile, a step of distillation after contacting with sulfuric acid, and a purification including a step of adsorption treatment with an adsorbent, allyl alcohol, oxazole, and other impurities having strong ultraviolet absorption Can be quickly and safely removed by an industrially simple method to produce high-purity acetonitrile. In particular, it is effective in removing impurities having a maximum around a wavelength of 250 nm, which is difficult to completely remove by the conventional method.

Claims (2)

アセトニトリルの精製において、硫酸と接触させた後に蒸留する工程、及び吸着剤により吸着処理する工程、を含むことを特徴とするアセトニトリルの精製方法。A method for purifying acetonitrile, comprising a step of distilling after contacting with sulfuric acid and a step of performing an adsorption treatment with an adsorbent in the purification of acetonitrile. 吸着剤が、カルボキシル基またはスルホン酸基を有する酸性陽イオン交換樹脂を含むことを特徴とする請求項1に記載のアセトニトリルの精製方法。The method for purifying acetonitrile according to claim 1, wherein the adsorbent contains an acidic cation exchange resin having a carboxyl group or a sulfonic acid group.
JP2003135980A 2003-05-14 2003-05-14 Method for producing high-purity acetonitrile Pending JP2004339112A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003135980A JP2004339112A (en) 2003-05-14 2003-05-14 Method for producing high-purity acetonitrile
CNB2004100380238A CN100341849C (en) 2003-05-14 2004-05-12 Method for preparing high-purity acetonitrile
KR1020040033885A KR20040098576A (en) 2003-05-14 2004-05-13 Process for the preparation of acetonitrile with high purity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003135980A JP2004339112A (en) 2003-05-14 2003-05-14 Method for producing high-purity acetonitrile

Publications (1)

Publication Number Publication Date
JP2004339112A true JP2004339112A (en) 2004-12-02

Family

ID=33526092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003135980A Pending JP2004339112A (en) 2003-05-14 2003-05-14 Method for producing high-purity acetonitrile

Country Status (3)

Country Link
JP (1) JP2004339112A (en)
KR (1) KR20040098576A (en)
CN (1) CN100341849C (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010209010A (en) * 2009-03-11 2010-09-24 Koei Chem Co Ltd Method for producing acetonitrile
CN102993046A (en) * 2011-09-15 2013-03-27 上海安谱科学仪器有限公司 Purification method of HPLC-grade acetonitrile for LC-MS
WO2015126713A1 (en) 2014-02-24 2015-08-27 Honeywell International Inc. Methods and systems for purifying an acetonitrile waste stream and methods for synthesizing oligonucleotides using purified acetonitrile waste streams
WO2016068068A1 (en) * 2014-10-31 2016-05-06 旭化成ケミカルズ株式会社 Method for producing acetonitrile
WO2022173933A1 (en) * 2021-02-11 2022-08-18 Ascend Performance Materials Operations Llc Acetonitrile separation process

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101570498B (en) * 2009-05-27 2013-07-17 安徽时联特种溶剂股份有限公司 Method for producing HPLC acetonitrile by multistage reaction-fractionating method
CN101665451B (en) * 2009-09-14 2013-04-24 郑州正力聚合物科技有限公司 Acrylonitrile purifying unit
CN112587950A (en) * 2014-09-29 2021-04-02 英尼奥斯欧洲股份公司 Vaporization system for process streams
CN107108475B (en) * 2014-10-31 2019-07-09 旭化成株式会社 The manufacturing method of acetonitrile
WO2016068062A1 (en) * 2014-10-31 2016-05-06 旭化成ケミカルズ株式会社 Method for producing acetonitrile
CN109704990B (en) * 2017-10-26 2022-02-01 中国石油化工股份有限公司 Refining method of high-purity acetonitrile
CN111960966B (en) * 2020-09-14 2022-03-08 永华化学股份有限公司 Preparation method of chromatographic grade acetonitrile

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3001020B2 (en) * 1991-08-01 2000-01-17 旭化成工業株式会社 Acetonitrile purification method
CN1105099C (en) * 1997-08-05 2003-04-09 标准石油公司 Purification of acetonitrile by distillative recovery/ion exchange resin treatment process

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010209010A (en) * 2009-03-11 2010-09-24 Koei Chem Co Ltd Method for producing acetonitrile
CN102993046A (en) * 2011-09-15 2013-03-27 上海安谱科学仪器有限公司 Purification method of HPLC-grade acetonitrile for LC-MS
WO2015126713A1 (en) 2014-02-24 2015-08-27 Honeywell International Inc. Methods and systems for purifying an acetonitrile waste stream and methods for synthesizing oligonucleotides using purified acetonitrile waste streams
EP3110790A4 (en) * 2014-02-24 2017-09-27 Honeywell International Inc. Methods and systems for purifying an acetonitrile waste stream and methods for synthesizing oligonucleotides using purified acetonitrile waste streams
US10336690B2 (en) 2014-02-24 2019-07-02 Honeywell International Inc. Methods and systems for processing an acetonitrile waste stream
WO2016068068A1 (en) * 2014-10-31 2016-05-06 旭化成ケミカルズ株式会社 Method for producing acetonitrile
JPWO2016068068A1 (en) * 2014-10-31 2017-07-20 旭化成株式会社 Acetonitrile production method
WO2022173933A1 (en) * 2021-02-11 2022-08-18 Ascend Performance Materials Operations Llc Acetonitrile separation process

Also Published As

Publication number Publication date
CN1550492A (en) 2004-12-01
KR20040098576A (en) 2004-11-20
CN100341849C (en) 2007-10-10

Similar Documents

Publication Publication Date Title
RU2102379C1 (en) Method of preparing acetic acid
JP5153335B2 (en) Method for producing high purity acetonitrile
ES2294268T3 (en) OXIDATION TREATMENT OF A RECYCLING CURRENT IN THE PRODUCTION OF ACETIC ACID BY CARBONILATION OF METHANOL.
JP2004339112A (en) Method for producing high-purity acetonitrile
JP4800955B2 (en) Purification of tertiary butyl alcohol
JPH0725813A (en) Production of highly pure acetic acid
JP3104312B2 (en) Acetonitrile purification method
JP2989477B2 (en) Purification method of ultra-high purity acetonitrile and crude acetonitrile
WO2001056970A1 (en) PROCESS FOR PRODUCTION OF HIGH-PURITY BIS-β-HYDROXYETHYL TEREPHTHALATE
JP3001020B2 (en) Acetonitrile purification method
JP3244351B2 (en) Method for producing high-purity acetic acid
EP1501818B8 (en) Alkylene carbonate purification method
JP3175872B2 (en) Purification method of crude acetonitrile
US5629443A (en) Highly purified acetonitrile and process for purifying crude acetonitrile
WO1994026698A1 (en) High-purity acetonitrile and purification of crude acetonitrile
JP2000256265A (en) Production of methyl methacrylate
JP2002316967A (en) High purity butyl acetate and method for producing the same
JPH05140070A (en) Purification of acetonitrile
JPS647064B2 (en)
JPH1135542A (en) Purification of acetonitrile by distilling recovery by distillation and ion exchange resin treatment process
RU2149867C1 (en) Acetonitrile purification process
JP2010059098A (en) Method for producing 9,9-biscresol fluorene
JP2004339111A (en) Method for removing allyl alcohol from acetonitrile
KR0171245B1 (en) High-purity acetonitrile and purification of crude acetonitrile
JPH0733761A (en) Method for purifying trioxane

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070904