WO2016068068A1 - Method for producing acetonitrile - Google Patents

Method for producing acetonitrile Download PDF

Info

Publication number
WO2016068068A1
WO2016068068A1 PCT/JP2015/080086 JP2015080086W WO2016068068A1 WO 2016068068 A1 WO2016068068 A1 WO 2016068068A1 JP 2015080086 W JP2015080086 W JP 2015080086W WO 2016068068 A1 WO2016068068 A1 WO 2016068068A1
Authority
WO
WIPO (PCT)
Prior art keywords
acetonitrile
activated carbon
mass
reaction
catalyst
Prior art date
Application number
PCT/JP2015/080086
Other languages
French (fr)
Japanese (ja)
Inventor
義和 高松
健啓 飯塚
Original Assignee
旭化成ケミカルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成ケミカルズ株式会社 filed Critical 旭化成ケミカルズ株式会社
Priority to CN201580058994.5A priority Critical patent/CN107108474B/en
Priority to JP2016556555A priority patent/JP6272498B2/en
Publication of WO2016068068A1 publication Critical patent/WO2016068068A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/22Preparation of carboxylic acid nitriles by reaction of ammonia with carboxylic acids with replacement of carboxyl groups by cyano groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/02Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms of an acyclic and saturated carbon skeleton
    • C07C255/03Mononitriles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention relates to a method for producing acetonitrile.
  • Acetonitrile is used as a solvent for chemical reaction, particularly a solvent used for synthesis and purification of pharmaceutical intermediates, a mobile phase solvent for high performance liquid chromatography, and the like. Recently, acetonitrile is also used as a solvent for DNA synthesis and a solvent for purification, a solvent for organic EL material synthesis, and a solvent for washing electronic components.
  • acetonitrile used as a solvent for high performance liquid chromatography needs to have no ultraviolet absorption at a wavelength of 200 to 400 nm so that the ultraviolet absorption does not become a background.
  • acetonitrile has been obtained by purifying crude acetonitrile.
  • acetonitrile is mainly crude acetonitrile obtained as a by-product in the production of acrylonitrile or methacrylonitrile by catalytic ammoxidation reaction of propylene or isobutene, ammonia and oxygen. , Recovered and purified.
  • Patent Document 1 in a method for producing acetonitrile by reacting acetic acid and ammonia in the gas phase in the presence of a catalyst, the reaction product gas is brought into contact with a strong acid to recover acetonitrile as an aqueous solution.
  • a method is disclosed in which ammonia forms a salt with a strong acid to prevent the formation and precipitation of ammonium carbonate. Therefore, in Patent Document 1, it is presumed that carbon dioxide and acetone by-products due to acetic acid decarboxylation reaction represented by the following formula are problematic, but there is no description of by-products produced by the reaction, and high purity. There are no problems in purifying to acetonitrile. 2CH 3 COOH ⁇ CH 3 COCH 3 + CO 2 + H 2 O
  • Patent Document 2 discloses that in a method for producing nitrile from carboxylic acid and ammonia using various zeolite catalysts, the molar ratio of ammonia / carboxylic acid is set to 1/1 to 10/1, and H-ZSM-5 is used as the catalyst. , NaY, a zeolite such as H-mordenite, SAPO-40, silica alumina, etc., a reaction temperature of 300 to 500 ° C., and a WHSV of liquid product basis of 0.4 h ⁇ 1 are disclosed. According to the example of Patent Document 2, although the yield is disclosed as 100%, the amount of catalyst is large, and it is not assumed to be industrially implemented. Moreover, there is no description about a trace by-product substance, and the problem at the time of refine
  • the present inventors produced acetonitrile by a gas phase reaction of acetic acid and ammonia by the method described in the prior art document in the presence of a solid acid catalyst having excellent reaction results and catalyst life.
  • a phenomenon that is not mentioned at all in the conventional method that is, hydrated crude acetonitrile to be produced, acetone, methyl ethyl ketone, ethylene, propylene, butene; nitrile compounds such as acrylonitrile and propionitrile; benzene, toluene, xylene, etc. It was found that aromatic compounds of the above; pyridines and the like are contained as trace by-product impurities.
  • aromatic compounds such as toluene are known to be substances that greatly affect ultraviolet absorption in the wavelength region of 200 nm.
  • toluene having a boiling point with acetonitrile and estimated to cause distillation separation from azeotropic composition formation has a wavelength of 200 nm even when only 1.0 mass ppm is present with respect to acetonitrile.
  • the absorbance of UV absorption increases at 0.3 or higher. Therefore, even if it is a very small amount, the by-product of toluene and its purification become a major issue for acetonitrile product quality.
  • Patent Document 1 has proposed a method in which an acetic acid raw material is dissolved in an aromatic hydrocarbon and supplied as a solvent.
  • acetonitrile thus obtained is a solvent for chemical reaction, particularly a solvent for synthesizing and purifying pharmaceutical intermediates, or a mobile phase solvent for high-performance liquid chromatography, a solvent for DNA synthesis, and a solvent for purification. It can be suitably used as a solvent for synthesizing organic EL materials or a cleaning solvent for electronic components.
  • the present inventors have used a predetermined catalyst in a gas phase reaction, and treating the resulting composition with activated carbon in a purification step, The present inventors have found that the above problems can be solved and have completed the present invention.
  • the present invention is as follows. [1] A gas phase reaction step in which acetic acid and ammonia are subjected to a gas phase reaction in the presence of a solid acid catalyst to obtain hydrous crude acetonitrile; An activated carbon treatment step of subjecting the hydrous crude acetonitrile and / or the purified product of the hydrous crude acetonitrile to an activated carbon treatment, A method for producing acetonitrile. [2] The method for producing acetonitrile according to [1] above, wherein the solid acid catalyst is an intermediate pore size zeolite.
  • the content of toluene in the purified product of the hydrous crude acetonitrile and / or the hydrous crude acetonitrile after the activated carbon treatment step is less than 1.0 ppm by mass with respect to 100% by mass of acetonitrile [1 ] Or the manufacturing method of acetonitrile as described in [2].
  • acetonitrile in which the amount of energy used for purification of hydrous crude acetonitrile obtained by gas phase reaction of acetic acid and ammonia using a solid acid catalyst is small, and the purification equipment and the purification process are simple.
  • acetonitrile thus obtained is a solvent for chemical reaction, particularly a solvent for synthesizing and purifying pharmaceutical intermediates, or a mobile phase solvent for high-performance liquid chromatography, a solvent for DNA synthesis, and a solvent for purification. It can be suitably used as a solvent for synthesizing organic EL materials or a cleaning solvent for electronic components.
  • the present embodiment the embodiment of the present invention (hereinafter referred to as “the present embodiment”) will be described in detail.
  • the present invention is not limited to this, and various modifications are possible without departing from the scope of the present invention. It is. Note that the expression “A to B” in a numerical range indicates a numerical range of “A or more and B or less” unless otherwise specified.
  • the method for producing acetonitrile according to the present embodiment includes a gas phase reaction step in which acetic acid and ammonia are subjected to a gas phase reaction in the presence of a solid acid catalyst to obtain hydrous crude acetonitrile, the hydrous crude acetonitrile, and / or the hydrous crude crude.
  • the gas phase reaction step is a step in which acetic acid and ammonia are reacted in the gas phase in the presence of a solid acid catalyst to obtain hydrous crude acetonitrile. Specifically, it can be carried out by bringing gas-phase contact between acetic acid, ammonia and a catalyst at a predetermined temperature in a reactor filled with a solid acid catalyst, but is not particularly limited.
  • Acetic acid and ammonia as raw materials for the gas phase reaction are not particularly limited, and those produced from various chemical synthesis methods can be used.
  • Acetic acid and ammonia are not necessarily highly pure, and may be industrial grade.
  • acetic acid aqueous solution generally used industrially can be used as acetic acid.
  • the solid acid catalyst used in the present embodiment is not particularly limited as long as it is a solid having a Bronsted acid point, and a conventionally known catalyst is used.
  • a conventionally known catalyst is used.
  • clay minerals such as kaolin; those obtained by impregnating and supporting an acid such as sulfuric acid and phosphoric acid on a carrier such as clay minerals: acidic ion exchange resins; zeolites such as intermediate pore size zeolites; activated aluminas; phosphoric acid Aluminum; mesoporous silica alumina etc. are mentioned.
  • zeolites such as a catalyst containing an intermediate pore size zeolite and activated aluminas are preferable, and a catalyst containing an intermediate pore size zeolite is more preferable.
  • Zero zeolite is a general term for crystalline porous aluminosilicates. Zeolite has (SiO 4 ) 4- and (AlO 4 ) 5- having a tetrahedral structure as basic structural units, and these are three-dimensionally connected to form crystals. Moreover, metallosilicates in which trivalent or tetravalent elements other than aluminum ions are incorporated in the silicate skeleton are also included in the zeolite.
  • Zeolite is diverse in structure and composition, so it is classified differently from various viewpoints such as structure code, formation process, mineralogy, pore size, pore dimension, aluminum concentration, other cation concentration and structural elements. (See Zeolite Science and Engineering, Yoshio Ono and Kenaki Yashima / Edition, Kodansha Scientific). Various framework type codes are defined by the International Zeolite Society (IZA).
  • the “medium pore diameter zeolite” means a pore diameter range of a small pore diameter zeolite represented by A-type zeolite and a large pore diameter zeolite represented by mordenite, X-type or Y-type zeolite.
  • the pore diameter of the medium pore diameter zeolite is preferably 5 to 6.5 mm.
  • the structure of the intermediate pore diameter zeolite is not particularly limited.
  • FTC framework type code
  • IZA International Society of Zeolite
  • AEL EUO
  • FER FER
  • HEU FER
  • MEL MFI
  • NES TON
  • WEI TON
  • an intermediate pore size zeolite having a structure represented by MFI is preferable.
  • Specific examples of the intermediate pore size zeolite having a structure represented by MFI include ZSM-5 type zeolite.
  • a metallo in which a part of aluminum (Al) atoms constituting the zeolite skeleton is substituted with an element such as gallium (Ga), iron (Fe), boron (B), chromium (Cr), etc. It is also possible to use aluminosilicates or metallosilicates in which all the aluminum atoms constituting the zeolite skeleton are substituted with the above elements.
  • the silica / alumina ratio (molar ratio, the same shall apply hereinafter) of the medium pore diameter zeolite is preferably 20 to 1000, more preferably 20 to 500, and still more preferably 20 to 300.
  • an intermediate pore size zeolite catalyst tends to be produced more stably.
  • the silica / alumina ratio of the zeolite can be determined by a known method, for example, by completely dissolving the zeolite in an alkaline aqueous solution and analyzing the resulting solution by plasma emission spectroscopy.
  • the silica / alumina ratio in the case where the intermediate pore diameter zeolite is a metalloaluminosilicate or a metallosilicate is obtained by converting the amount of aluminum atoms substituted by the above elements into the number of moles of Al 2 O 3 (alumina). Calculated.
  • a method for preparing the catalyst containing the intermediate pore size zeolite is not particularly limited, and a known method can be used.
  • the intermediate pore size zeolite can be changed in composition after hydrothermal synthesis by modification such as ion exchange, dealumination treatment, impregnation and loading.
  • the shape of the catalyst containing the intermediate pore diameter zeolite may be powdery or granular, and can be formed into a molded body that has been molded into a suitable shape according to a process such as a gas phase reaction step.
  • the method for forming the catalyst containing the intermediate pore size zeolite is not particularly limited, and a known method can be used. Specifically, a method of spray drying a catalyst precursor, a method of compression molding a catalyst component, and a method of extrusion molding of a catalyst component can be mentioned. In these molding methods, a binder or a diluent for molding (matrix) may be used.
  • the binder and the diluent for molding are not particularly limited, and examples thereof include porous refractory inorganic oxides such as alumina, silica, zirconia, titania, kaolin, diatomaceous earth, and clay. These may be used individually by 1 type, or may use 2 or more types together. Commercially available binders and diluents for molding may be used, or they may be synthesized by a conventional method.
  • the mass ratio of the intermediate pore size zeolite / is preferably 10/90 to 90/10, and more It is preferably 20/80 to 80/20.
  • activated aluminas Next, the activated alumina will be described below. Although it does not specifically limit as activated alumina, For example, commercially available activated alumina is mentioned.
  • the shape of the activated alumina may be powdery or granular, and can be made suitable according to a process such as a gas phase reaction step.
  • the reactor used in the gas phase reaction step is not particularly limited, and examples thereof include a fixed bed reactor, a fluidized bed reactor, and a moving bed reactor.
  • a reaction system either a batch system or a flow system can be used, but a flow system is preferable in consideration of productivity. Note that the description in the present specification does not preclude changes in reaction conditions that can be easily adjusted by those skilled in the art.
  • the particulate material inert to the reaction such as quartz sand and ceramic balls, is mixed with the catalyst and packed. May be.
  • the amount of granular material inert to the reaction such as quartz sand.
  • this granular material is a particle size comparable as a catalyst from a uniform mixing property with a catalyst.
  • the gas phase reaction is an endothermic reaction
  • the reaction substrate reaction raw material
  • the reaction substrate may be divided and supplied to the reactor for the purpose of dispersing the endotherm accompanying the reaction.
  • the molar ratio of ammonia / acetic acid supplied to the reactor is preferably 1.0 or more, more preferably 1.0 to 2.0, and still more preferably 1.1 to 1. 5.
  • the reaction efficiency tends to be further improved.
  • the ammonia / acetic acid molar ratio is 1.5 or less, the energy consumption for separating and removing ammonia from hydrous crude acetonitrile described later tends to be further reduced in the purification step.
  • WHSV weight space velocity
  • WHSV weight space velocity
  • the “catalyst filling weight” means the filling weight of the solid acid catalyst into the reactor in the present embodiment.
  • the binder or molding material constituting the molded body is used. It is a reactor filling weight of the whole molded object containing a diluent.
  • the above-mentioned inert particulate matter is not included in the catalyst filling weight.
  • the “raw material weight” here is the total weight of the raw materials flowing to the reactor, and the “raw material” includes acetic acid or an aqueous acetic acid solution and ammonia, which are raw materials in the present embodiment, and a diluent described later Is also included.
  • WHSV can be adjusted as appropriate in consideration of productivity, catalyst life, and reaction yield.
  • the WHSV in the vapor phase reaction step preferably 0.5 ⁇ 50h -1, more preferably 0.5 ⁇ 20h -1, more preferably from 0.5 ⁇ 10h -1.
  • the reactor can be made compact, and byproducts of undesirable by-products such as acetone and toluene can be reduced.
  • the raw material can be suppressed and the purification load on high-purity acetonitrile can be further reduced.
  • WHSV is 50 h ⁇ 1 or less, the conversion of acetic acid tends to be further improved, and the selectivity of acetonitrile tends to be further improved.
  • a diluent may be used in addition to acetic acid and ammonia.
  • the diluent is not particularly limited, and examples thereof include helium, argon, nitrogen, water, paraffinic hydrocarbon gases, and Examples thereof include gases inert to the reaction, such as a mixture thereof. Of these, nitrogen and water are preferred.
  • impurities contained in the reaction raw material may be used as they are, or a separately prepared diluent may be mixed with the reaction raw material and used.
  • the diluent may be mixed with the reaction raw material before entering the reactor, or may be supplied to the reactor separately from the reaction raw material.
  • water may be mixed with hydrous crude acetonitrile produced by a gas phase reaction of acetic acid and ammonia as a diluent for purification.
  • reaction temperature of the gas phase reaction is preferably 250 ° C. or higher, more preferably 300 ° C. or higher, and further preferably 350 ° C. or higher.
  • the reaction temperature of the gas phase reaction is preferably 600 ° C. or lower, more preferably 550 ° C. or lower, and further preferably 520 ° C. or lower.
  • reaction temperature is 250 ° C. or higher, the reaction yield tends to be further improved.
  • reaction temperature is 600 degrees C or less, it exists in the tendency which can suppress the production
  • the gas phase reaction in this embodiment is a dehydration reaction (endothermic reaction)
  • a heat source in the reactor in order to control the inside of the reactor to a desired reaction temperature.
  • a gas phase reaction is industrially carried out in a fixed bed reactor, it is conceivable to use a multi-tubular shell and tube reactor.
  • reaction pressure of the gas phase reaction is advantageously low in terms of the reaction equilibrium of the gas phase reaction of the present embodiment, but the reaction rate increases if the pressure is high. Accordingly, it is a balance between the equilibrium conversion rate and the reaction rate, preferably normal pressure to 0.3 MPaG (gauge pressure, the same shall apply hereinafter), more preferably 0.03 to 0.25 MPaG, and still more preferably 0. .05 to 0.20 MPaG.
  • the “hydrated crude acetonitrile” includes 10% by mass to 70% by mass of acetonitrile and 30% by mass to 90% by mass of water, and may contain 0% by mass to 60% by mass of impurities. It is a composition.
  • impurities include, but are not limited to, aromatic compounds such as ammonia, acetic acid, acetamide, acetone, and toluene.
  • hydrous crude acetonitrile can be obtained directly by a gas phase reaction step. It can also be obtained by adding water to the composition obtained directly by the gas phase reaction step.
  • the content of toluene in the hydrous crude acetonitrile before the activated carbon treatment step obtained by the gas phase reaction of the present embodiment is affected by the reaction conditions, and if the amount is large, the load on the activated carbon treatment step increases. Therefore, it is 1 to 500 ppm by mass, preferably 1 to 100 ppm by mass, and more preferably 1 to 50 ppm by mass with respect to 100% by mass of acetonitrile. Even if the content of toluene in the hydrous crude acetonitrile before the activated carbon treatment step is within the above range, the toluene can be sufficiently removed according to the production method of the present embodiment. In addition, content of toluene in hydrous crude acetonitrile can be measured by the method as described in an Example.
  • the hydrous crude acetonitrile contains water produced by the reaction, and water added as a diluent for raw acetic acid and ammonia. Moreover, you may adjust by mixing water as a diluent with respect to the hydrous crude acetonitrile obtained by the gas phase reaction. In this case, the content of water in the hydrous crude acetonitrile is determined by taking into account the weight of the mixed water.
  • the water content in the hydrous crude acetonitrile is 30% by mass or more and 90% by mass or less, preferably 40% by mass or more and 90% by mass or less, and more preferably 50% by mass with respect to 100% by mass of the hydrous crude acetonitrile. It is 90 mass% or less.
  • the aromatic crude compound such as toluene tends to be removed more efficiently by treating the hydrous crude acetonitrile in the activated carbon treatment step described later.
  • the method for producing acetonitrile of the present embodiment may have a purification step of purifying water-containing crude acetonitrile to obtain product acetonitrile.
  • the step included in the purification step is not particularly limited as long as it is configured to remove water, ammonia and other impurities from the hydrated crude acetonitrile, and examples thereof include a concentration step and a dehydration step.
  • the concentration step is a step in which ammonia is separated from hydrous crude acetonitrile to obtain crude acetonitrile.
  • a separation method of ammonia For example, the method of using a distillation column is mentioned.
  • “crude acetonitrile” is acetonitrile obtained by removing most of the ammonia from water-containing crude acetonitrile and concentrating, and mainly contains 50% by mass or more and less than 75% by mass of acetonitrile, and 25% by mass or more and 50% by mass. % Or less water and other impurities.
  • the dehydration step is a step in which water is separated from crude acetonitrile to obtain dehydrated acetonitrile.
  • the method for separating water is not particularly limited, and examples thereof include a method of adding alkali to crude acetonitrile and performing extraction dehydration. Although it does not specifically limit as an alkali which can be used, For example, caustic soda is mentioned.
  • the amount of alkali used can be appropriately adjusted depending on the water content in the crude acetonitrile, and is preferably 10 to 90% by mass, more preferably 30 to 60% by mass, based on the water content of the crude acetonitrile. %.
  • the extraction temperature is preferably 5 to 60 ° C, more preferably 10 to 35 ° C.
  • the extraction / dehydration method is not particularly limited, but for example, a method using a continuous countercurrent contact type is preferable.
  • the packing for the continuous countercurrent contact tower is not particularly limited, but for example, Raschig ring, Lessing ring, Pole ring, Berle saddle, Interlock saddle, Terralet packing, Dixon ring, McMahon packing are preferable, and regular packing is Although not particularly limited, for example, a mesh-structured packing is preferable.
  • Dehydrated acetonitrile is a mixture that may contain 75% by mass or more and 99% by mass or less of acetonitrile, 0% by mass or more and less than 25% by mass of water, and other impurities.
  • the purification step may have other steps such as a low boiling point removal step and a high boiling point removal step.
  • the low boiling point removal step and the high boiling point removal step are steps for removing a low boiling component below the boiling point of acetonitrile and a high boiling component above the boiling point of acetonitrile from dehydrated acetonitrile to obtain a product acetonitrile described later.
  • a low boiling point removal method and a high boiling point removal method For example, the method of using a distillation column is mentioned.
  • Hydrous crude acetonitrile is a distillation of by-product crude acetonitrile obtained as a by-product in the production of acrylonitrile or methacrylonitrile by the catalytic ammoxidation reaction of propylene or isobutene with ammonia and molecular oxygen which is already known.
  • the purification can be performed in the same manner as the purification method or following the distillation purification method.
  • the conventional techniques to be referred to are not particularly limited, and examples thereof include Japanese Patent Application Laid-Open No. 55-153757, Japanese Patent No. 3104312 and WO 2013/146609.
  • the product acetonitrile can be obtained through the above purification step.
  • Process acetonitrile refers to acetonitrile having an acetonitrile content of more than 99% by mass and an impurity content other than acetonitrile of less than 1% by mass.
  • the content of acetonitrile contained in the product acetonitrile is preferably 99.5% by mass or more and 100% by mass or less, more preferably 99.9% by mass or more and 100% by mass or less, and further preferably 99.99% by mass. It is 100 mass% or less.
  • the activated carbon treatment step is a step of subjecting water-containing crude acetonitrile and / or a purified product of water-containing crude acetonitrile to activated carbon treatment. More specifically, it may be activated carbon treatment of the hydrous crude acetonitrile discharged from the reactor outlet and / or the hydrous crude acetonitrile purified product discharged from the distillation tower outlet in the purification step. Not.
  • the “purified product of hydrous crude acetonitrile” is a comprehensive expression including crude acetonitrile after the concentration step, dehydrated acetonitrile after the dehydration step, acetonitrile after the low boiling point removal step, and acetonitrile after the high boiling point removal step. It is. That is, the activated carbon treatment process may be performed at any stage as long as it is after the gas phase reaction process, and can be performed, for example, after the gas phase reaction process and before the purification process, during the purification process, or after the purification process. More specifically, the term “during the purification step” means any of after the concentration step, after the dehydration step, and after the low boiling point removal step and before the high boiling point removal step.
  • the activated carbon treatment step can be carried out either in the gas phase or in the liquid phase, and is preferably carried out in the liquid phase, more preferably a method of treating the activated carbon in the state of an acetonitrile aqueous solution. As a result, the adsorption and removal of toluene can be effectively performed.
  • activated carbon is a carbon material having a high surface area.
  • High performance activated carbon has a high specific surface area and precise pore distribution.
  • the specific surface area of the activated carbon is usually 500 to 1000 m 2 / g. When the specific surface area is within the above range, toluene can be efficiently adsorbed and removed.
  • the activated carbon is not particularly limited, and a commercially available product can be used, and activated carbon activated in advance may be used.
  • Examples of the activated carbon activation method include a gas activation method and a chemical activation method.
  • the shape of the activated carbon is not particularly limited, but a particulate one is preferable.
  • the average particle diameter of the particulate activated carbon is preferably 0.1 to 50 mm, more preferably 3 to 30 mm, and still more preferably 2 to 15 mm. When the average particle size is 0.1 mm or more, it tends to be able to prevent the activated carbon from being dissipated from the activated carbon filling device (adsorption tower) by the liquid flow and / or the gas flow.
  • Granular activated carbon, crushed coal, and bead charcoal can be used as the granular activated carbon.
  • the activated carbon material is not particularly limited as long as it is a commonly used activated carbon material.
  • coconut husk palm coconut shell, coconut coconut shell, etc.
  • natural fiber hemp, cotton, etc.
  • synthetic fiber rayon
  • polyester and synthetic resins (polyacrylonitrile, phenol resin, polyvinylidene chloride, polycarbonate, polyvinyl alcohol, etc.).
  • the activated carbon treatment method in the present embodiment may be either a continuous type or a batch type, but a continuous type is preferable when industrial implementation is assumed.
  • a generally used activated carbon adsorption tower type that is, a fixed bed type, a moving bed type, an expanded bed type, or a fluidized bed type can be employed.
  • a form of the fixed bed continuous adsorption tower for example, “new edition activated carbon basics and application” (Kodansha Scientific edition Kodansha 1992) p. 260 describes a switching method of 2 to 3 towers and a linear velocity (LV) of 5 to 10 m / h.
  • the activated carbon treatment is preferably performed on a liquid to be treated containing 20% or more of water, more preferably performed on a liquid to be treated containing 40% or more of water, Most preferably, it is performed on the liquid to be treated containing 60% or more. That is, in the activated carbon adsorption treatment, the liquid to be treated is preferably hydrous crude acetonitrile or crude acetonitrile, and more preferably hydrous acetonitrile. Further, the liquid to be treated may be hydrous crude acetonitrile or crude acetonitrile added with water.
  • the content of toluene in the purified hydrated acetonitrile and / or purified hydrated acetonitrile after the activated carbon treatment step is preferably less than 1.0 ppm by mass, more preferably less than 1.0 ppm by mass with respect to 100% by mass of acetonitrile. It is 0.5 mass ppm or less, More preferably, it is 0.1 mass ppm or less.
  • the lower limit of the content of toluene contained in the water-containing crude acetonitrile and / or product acetonitrile after the activated carbon treatment step is not particularly limited, but is preferably the detection limit or less, more preferably 0 with respect to 100% by mass of acetonitrile. % By mass.
  • the content of toluene in the purified product of hydrous crude acetonitrile and / or hydrous crude acetonitrile after the activated carbon treatment step is within the above range, higher quality acetonitrile is obtained.
  • the absorbance of ultraviolet absorption at a wavelength of 200 nm of the hydrated crude acetonitrile and / or the purified product of the hydrated crude acetonitrile after the activated carbon treatment step is preferably 0.3 or less, more preferably 0.25 or less. Yes, more preferably 0.20 or less.
  • the lower limit of the absorbance of ultraviolet absorption at a wavelength of 200 nm of the hydrated crude acetonitrile and / or the purified product of the hydrated crude acetonitrile after the activated carbon treatment step is not particularly limited, and is preferably as low as possible and more preferably 0.
  • the absorbance of ultraviolet absorption at a wavelength of 200 nm is an indicator of the content of the aromatic compound in acetonitrile. From this viewpoint, the absorbance of ultraviolet absorption at a wavelength of 200 nm of the hydrated crude acetonitrile and / or the purified product of the hydrated crude acetonitrile after the activated carbon treatment step is within the above range, whereby a higher quality product acetonitrile is obtained. .
  • Acetonitrile of this embodiment is obtained by the above production method.
  • Acetonitrile thus obtained is a solvent for chemical reaction, particularly a pharmaceutical intermediate synthesis solvent, a purification solvent, a mobile phase solvent for high performance liquid chromatography, a DNA synthesis solvent and a purification solvent, and an organic EL material. It can be suitably used as a solvent for synthesis or as a cleaning solvent for electronic parts.
  • acetonitrile of this embodiment is synonymous with product acetonitrile.
  • H-ZSM-5 zeolite manufactured by JGC Catalysts & Chemicals Co., Ltd. Went A flow-type fixed bed reactor was used for the reaction.
  • the reaction temperature is the average temperature of the catalyst layer.
  • the reaction product gas flowing out from the reaction tube was cooled and condensed by a cooler connected to the lower part of the reaction tube to obtain a solution of hydrous crude acetonitrile.
  • the reaction was continued for 160 hours, and water-containing crude acetonitrile was sampled appropriately, and composition analysis was performed by gas chromatography.
  • the composition analysis was performed under the following conditions (the same applies hereinafter).
  • ⁇ Activated carbon treatment process 2,000 g of the above hydrous crude acetonitrile was received in a stainless steel container, and 200 g of granular white rabbit S2X manufactured by Nippon Enviro Chemicals Co., Ltd. was added and sealed, and stirred and mixed at room temperature for 15 minutes. Thereafter, only the acetonitrile solution after the activated carbon treatment step was recovered through a filter.
  • GC-MS gas chromatography mass spectrometry
  • the intermediate pore size zeolite is a suitable catalyst having high yield, high selectivity and excellent deterioration resistance.
  • by-products of toluene which is a problem in product quality, cannot be avoided with the catalyst.
  • the problematic toluene can be removed by treating the hydrous crude acetonitrile with activated carbon, high-purity acetonitrile containing no toluene is obtained by subjecting the treatment liquid to distillation purification and dehydration treatment by a known method. I can see that
  • Example 2 ⁇ Production of acetonitrile> Using activated alumina KHD-46 manufactured by Sumitomo Chemical Co., Ltd., gas phase reaction of acetic acid and ammonia was carried out, and an experiment for producing hydrous crude acetonitrile was conducted.
  • a quartz glass reaction tube having an inner diameter of 20 mm was filled with 3.13 g of the catalyst.
  • the catalyst layer height was 20 mm.
  • An acetic acid aqueous solution (80% acetic acid aqueous solution) having a water content of 20% by mass and ammonia were supplied to the reaction tube.
  • the content of toluene was separately analyzed in detail by gas chromatography. As a result, 23 mass ppm and 6 hours were observed after 2 hours with respect to 100% by mass of acetonitrile. It was 127 mass ppm after progress.
  • ⁇ Activated carbon treatment process 100 g of the above hydrous crude acetonitrile was received in a stainless steel container, and 10 g of granular white rabbit S2X manufactured by Nippon Enviro Chemicals Co., Ltd. was added and sealed, followed by stirring and mixing at room temperature for 15 minutes. Thereafter, only the acetonitrile solution after the activated carbon treatment step was recovered through a filter.
  • Example 3 ⁇ Activated carbon treatment experiment using acetonitrile / toluene / water simulated composition solution>
  • the activated carbon treatment process was performed using a simulated liquid.
  • the content of toluene is 13.5 mass ppm with respect to 100 mass% of acetonitrile
  • water is added to the acetonitrile
  • the water content in the liquid is adjusted to 0, 10, 20, 40, 60 mass%. I prepared the adjusted one.
  • the removal rate is (toluene content of the simulated liquid before the activated carbon treatment process ⁇ toluene content of the simulated liquid after the activated carbon treatment process) ⁇ 100 / (toluene content of the simulated liquid before the activated carbon treatment process) [%] It calculated in.
  • the removal of toluene by the activated carbon treatment in this embodiment can be effectively removed as the amount of water in the liquid to be treated increases.
  • the preferred timing for the activated carbon treatment is firstly the crude water-containing acetonitrile at the outlet of the reactor, the second is the crude acetonitrile at the outlet of the distillation column in the concentration step, and the third is the continuous type of the dehydration step. It turns out that it is dehydrated acetonitrile at the counter-current contact tower exit.
  • Example 4 ⁇ Activated carbon treatment experiment using acetonitrile / toluene / water simulated composition solution> Aqueous acetonitrile aqueous solution (water content 0% by mass, 60% by mass in liquid) using granular white birch S2X manufactured by Nippon Enviro Chemicals Co., Ltd. as activated carbon and having toluene content of 13.55 ppm by mass with respect to 100% by mass as acetonitrile. %) was used, and the activated carbon treatment test was performed in the same manner as in Example 3. The results are shown in FIG.
  • Example 5 ⁇ Activated carbon treatment experiment using acetonitrile / toluene / water simulated composition solution> An activated carbon treatment test was conducted in the same manner as in Example 4 except that Nippon Enviro Chemicals Co., Ltd. granular white birch G2C was used as the activated carbon. The results are shown in FIG. Although it depends on the brand and amount of the activated carbon, the results of Examples 3 to 5 show that a small amount of toluene in the water-containing acetonitrile can be effectively removed as the water content of the water-containing acetonitrile increases.
  • Example 6 Activated carbon column treatment experiment of hydrous crude acetonitrile> A stainless steel tube having an inner diameter of 30 mm and a height of 350 mm was charged with 400 g of activated carbon granular white birch S2X manufactured by Nippon Enviro Chemicals. The hydrous crude acetonitrile obtained in Example 1 was passed through the lower part of the activated carbon column at a feed rate of 32 ml / min with a pump, and the hydrous crude acetonitrile after the treatment was recovered from the upper part of the column. The residence time of the activated carbon layer of the water-containing crude acetonitrile in the column is estimated to be 30 minutes. Under such conditions, 1 kg of hydrous crude acetonitrile was treated, and the toluene content in the hydrous crude acetonitrile after treatment was analyzed by gas chromatography, but it was below the detection limit.
  • toluene can be adsorbed and removed by a commercially available activated carbon column fixed bed circulation method.
  • a solvent for chemical reaction in particular, the synthesis and purification of a pharmaceutical intermediate, or the production of high-purity acetonitrile used for mobile phase solvent of high performance liquid chromatography from acetic acid and ammonia,
  • a method for producing high-purity acetonitrile with low UV absorption at a wavelength of 200 nm because it can be stably produced in high yield and by-product aromatic compounds can be easily removed by a simple method. It has industrial applicability as a method to do this.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Disclosed is a method for producing acetonitrile, the method comprising: a gas-phase reaction step for obtaining hydrous crude acetonitrile by subjecting acetic acid and ammonia to a gas-phase reaction in the presence of a solid acid catalyst; and an activated carbon treatment step for subjecting said hydrous crude acetonitrile and/or a refined product of said hydrous crude acetonitrile to an activated carbon treatment.

Description

アセトニトリルの製造方法Acetonitrile production method
 本発明は、アセトニトリルの製造方法に関する。 The present invention relates to a method for producing acetonitrile.
 アセトニトリルは、化学反応用の溶媒、特には医薬中間体の合成や精製に用いられる溶媒や、高速液体クロマトグラフィーの移動相溶媒などに用いられる。また、最近はDNA合成用溶媒及び精製用溶媒、有機EL材料合成用溶媒、電子部品の洗浄用溶剤としてもアセトニトリルが用いられるようになっている。 Acetonitrile is used as a solvent for chemical reaction, particularly a solvent used for synthesis and purification of pharmaceutical intermediates, a mobile phase solvent for high performance liquid chromatography, and the like. Recently, acetonitrile is also used as a solvent for DNA synthesis and a solvent for purification, a solvent for organic EL material synthesis, and a solvent for washing electronic components.
 特に、高速液体クロマトグラフィーの溶媒に用いられるアセトニトリルは、その紫外線吸収がバックグラウンドにならぬよう、波長200~400nmにおける紫外線吸収のないものであることが必要である。従来、このようなアセトニトリルは、粗アセトニトリルを精製することで得られている。 Particularly, acetonitrile used as a solvent for high performance liquid chromatography needs to have no ultraviolet absorption at a wavelength of 200 to 400 nm so that the ultraviolet absorption does not become a background. Conventionally, such acetonitrile has been obtained by purifying crude acetonitrile.
 さて現在、一般に市販されているアセトニトリルは、主に、プロピレン又はイソブテンと、アンモニアと、酸素との接触的アンモ酸化反応によってアクリロニトリル又はメタクリロニトリルを製造する際に副生成物として得られる粗アセトニトリルを、回収及び精製して得られるものである。 At present, commercially available acetonitrile is mainly crude acetonitrile obtained as a by-product in the production of acrylonitrile or methacrylonitrile by catalytic ammoxidation reaction of propylene or isobutene, ammonia and oxygen. , Recovered and purified.
 一方、アセトニトリルを直接製造する方法として、酢酸とアンモニアとを触媒の存在下に気相反応させてアセトニトリルを製造する方法も公知であり、上記の粗アセトニトリルを副生させる方法に替わる粗アセトニトリル製造方法として注目されている(例えば、特許文献1、2参照)。この製造方法の反応式は次のとおりである。この反応によって得られた粗アセトニトリルは、生成したアセトニトリル、未反応の酢酸やアンモニア、生成した水が含まれ得る。
   CHCOOH+NH→CHCN+2H
On the other hand, as a method for directly producing acetonitrile, a method for producing acetonitrile by reacting acetic acid and ammonia in the gas phase in the presence of a catalyst is also known, and a method for producing crude acetonitrile, which replaces the above-mentioned method for producing crude acetonitrile as a by-product, is also known. (See, for example, Patent Documents 1 and 2). The reaction formula of this production method is as follows. The crude acetonitrile obtained by this reaction may include produced acetonitrile, unreacted acetic acid and ammonia, and produced water.
CH 3 COOH + NH 3 → CH 3 CN + 2H 2 O
 例えば、特許文献1には、酢酸とアンモニアとを触媒の存在下に気相反応させてアセトニトリルを製造する方法に於いて、反応生成ガスを強酸と接触させてアセトニトリルを水溶液として回収することで、アンモニアが強酸との塩を形成し、炭酸アンモニウムの生成・析出を抑止する方法が開示されている。ゆえに、特許文献1では、下式に示す酢酸の脱炭酸反応による二酸化炭素、アセトンの副生が問題となっていることが推察されるが、反応により生成する副生物に関する記載は無く、高純度アセトニトリルに精製する際の問題点が示されていない。
   2CHCOOH→CHCOCH+CO+H
For example, in Patent Document 1, in a method for producing acetonitrile by reacting acetic acid and ammonia in the gas phase in the presence of a catalyst, the reaction product gas is brought into contact with a strong acid to recover acetonitrile as an aqueous solution. A method is disclosed in which ammonia forms a salt with a strong acid to prevent the formation and precipitation of ammonium carbonate. Therefore, in Patent Document 1, it is presumed that carbon dioxide and acetone by-products due to acetic acid decarboxylation reaction represented by the following formula are problematic, but there is no description of by-products produced by the reaction, and high purity. There are no problems in purifying to acetonitrile.
2CH 3 COOH → CH 3 COCH 3 + CO 2 + H 2 O
 また、特許文献2には、各種ゼオライト触媒を用いてカルボン酸とアンモニアからニトリルを製造する方法において、アンモニア/カルボン酸のモル比を1/1~10/1とし、触媒としてH-ZSM-5、NaY、H-モルデナイト等のゼオライト、SAPO-40、シリカアルミナ等を用い、反応温度を300~500℃とし、液体生成物基準のWHSVを0.4h-1とする方法が開示されている。特許文献2の実施例によれば、収率は100%と開示されているものの、触媒量が多く工業的に実施することを想定されたものではない。また、微量副生物質に関する記載は無く、高純度アセトニトリルに精製する際の問題点が示されていない。 Patent Document 2 discloses that in a method for producing nitrile from carboxylic acid and ammonia using various zeolite catalysts, the molar ratio of ammonia / carboxylic acid is set to 1/1 to 10/1, and H-ZSM-5 is used as the catalyst. , NaY, a zeolite such as H-mordenite, SAPO-40, silica alumina, etc., a reaction temperature of 300 to 500 ° C., and a WHSV of liquid product basis of 0.4 h −1 are disclosed. According to the example of Patent Document 2, although the yield is disclosed as 100%, the amount of catalyst is large, and it is not assumed to be industrially implemented. Moreover, there is no description about a trace by-product substance, and the problem at the time of refine | purifying to highly purified acetonitrile is not shown.
特許第5173897号公報Japanese Patent No. 51733897 インド特許187529号公報Indian Patent No. 187529
 本発明者らは、反応成績、触媒寿命に優れる固体酸触媒の存在下、先行技術文献に記載の方法で酢酸とアンモニアの気相反応によりアセトニトリルを製造した。その結果、かかる従来方法には全く触れられていない現象、すなわち製造される含水粗アセトニトリル中にアセトン、メチルエチルケトン、エチレン、プロピレン、ブテン;アクリロニトリルやプロピオニトリル等のニトリル化合物;ベンゼン、トルエン、キシレン等の芳香族化合物類;ピリジン類等が微量副生不純物として含有されることが、判明した。 The present inventors produced acetonitrile by a gas phase reaction of acetic acid and ammonia by the method described in the prior art document in the presence of a solid acid catalyst having excellent reaction results and catalyst life. As a result, a phenomenon that is not mentioned at all in the conventional method, that is, hydrated crude acetonitrile to be produced, acetone, methyl ethyl ketone, ethylene, propylene, butene; nitrile compounds such as acrylonitrile and propionitrile; benzene, toluene, xylene, etc. It was found that aromatic compounds of the above; pyridines and the like are contained as trace by-product impurities.
 これら不純物の中でもトルエン等の芳香族化合物類は、波長200nm領域の紫外線吸収に多大な影響を及ぼす物質であることが知られている。また、芳香族化合物類の中でアセトニトリルとの沸点、共沸組成形成から蒸留分離が問題となることが推定されるトルエンは、アセトニトリルに対してわずか1.0質量ppm存在した場合でも、波長200nmでの紫外線吸収の吸光度は0.3以上にまで上昇してしまう。従って、極微量であっても、トルエンの副生とその精製は、アセトニトリル製品品質への大きな課題となる。 Among these impurities, aromatic compounds such as toluene are known to be substances that greatly affect ultraviolet absorption in the wavelength region of 200 nm. Further, among aromatic compounds, toluene having a boiling point with acetonitrile and estimated to cause distillation separation from azeotropic composition formation has a wavelength of 200 nm even when only 1.0 mass ppm is present with respect to acetonitrile. In this case, the absorbance of UV absorption increases at 0.3 or higher. Therefore, even if it is a very small amount, the by-product of toluene and its purification become a major issue for acetonitrile product quality.
 しかしながら、特許文献1、2に記載の方法には、微量副生不純物に関する検討が全く為されておらず、かかる課題の提起がない。例えば、特許文献1では、酢酸原料の溶媒として芳香族炭化水素に溶解させて供給する方法を提案している程である。 However, the methods described in Patent Documents 1 and 2 have not been studied at all with respect to trace by-product impurities and do not pose such a problem. For example, Patent Document 1 has proposed a method in which an acetic acid raw material is dissolved in an aromatic hydrocarbon and supplied as a solvent.
 本発明は、上記課題に鑑みてなされたものであり、固体酸触媒を用いて酢酸とアンモニアとの気相反応により得られる含水粗アセトニトリルの精製に用いられるエネルギー消費量が少なく、精製設備及び精製工程も簡易であるアセトニトリルの製造方法を提供することを目的とする。また、このようにして得られるアセトニトリルは、化学反応用の溶媒、特には医薬中間体の合成用溶媒及び精製用溶媒、或いは、高速液体クロマトグラフィーの移動相溶媒、DNA合成用溶媒及び精製用溶媒、有機EL材料合成用溶媒、或いは、電子部品の洗浄溶剤として好適に用いることができる。 The present invention has been made in view of the above-mentioned problems, and the energy consumption used for the purification of hydrous crude acetonitrile obtained by the gas phase reaction of acetic acid and ammonia using a solid acid catalyst is small, and the purification equipment and purification It aims at providing the manufacturing method of acetonitrile which a process is also simple. In addition, acetonitrile thus obtained is a solvent for chemical reaction, particularly a solvent for synthesizing and purifying pharmaceutical intermediates, or a mobile phase solvent for high-performance liquid chromatography, a solvent for DNA synthesis, and a solvent for purification. It can be suitably used as a solvent for synthesizing organic EL materials or a cleaning solvent for electronic components.
 本発明者らは、前記課題を解決するために鋭意、検討を重ねた結果、気相反応において、所定の触媒を用い、かつ、得られた組成物を精製工程において活性炭で処理することにより、上記課題を解決できることを見出し、本発明を完成するに至った。 As a result of intensive investigations to solve the above problems, the present inventors have used a predetermined catalyst in a gas phase reaction, and treating the resulting composition with activated carbon in a purification step, The present inventors have found that the above problems can be solved and have completed the present invention.
 すなわち、本発明は以下の通りである。
〔1〕
 酢酸とアンモニアとを固体酸触媒の存在下に気相反応させて含水粗アセトニトリルを得る気相反応工程と、
 前記含水粗アセトニトリル、及び/又は、前記含水粗アセトニトリルの精製物を、活性炭処理する活性炭処理工程と、を有する、
 アセトニトリルの製造方法。
〔2〕
 前記固体酸触媒が、中間細孔径ゼオライトである、前項〔1〕に記載のアセトニトリルの製造方法。
〔3〕
 前記活性炭処理工程後の、前記含水粗アセトニトリル、及び/又は前記含水粗アセトニトリルの精製物中のトルエンの含有量が、アセトニトリル100質量%に対して、1.0質量ppm未満である、前項〔1〕又は〔2〕に記載のアセトニトリルの製造方法。
〔4〕
 前記活性炭処理工程において、前記含水租アセトニトリルを活性炭処理する、前項〔1〕~〔3〕のいずれか1項に記載のアセトニトリルの製造方法。
〔5〕
 前記気相反応工程において、WHSVが、0.5~20h-1である、前項〔1〕~〔4〕のいずれか1項に記載のアセトニトリルの製造方法。
〔6〕
 前記中間細孔径ゼオライトが、ZSM-5型ゼオライトを含む、前項〔1〕~〔5〕のいずれか1項に記載のアセトニトリルの製造方法。
〔7〕
 前項〔1〕~〔6〕のいずれか1項に記載のアセトニトリルの製造方法により製造された、アセトニトリル。
That is, the present invention is as follows.
[1]
A gas phase reaction step in which acetic acid and ammonia are subjected to a gas phase reaction in the presence of a solid acid catalyst to obtain hydrous crude acetonitrile;
An activated carbon treatment step of subjecting the hydrous crude acetonitrile and / or the purified product of the hydrous crude acetonitrile to an activated carbon treatment,
A method for producing acetonitrile.
[2]
The method for producing acetonitrile according to [1] above, wherein the solid acid catalyst is an intermediate pore size zeolite.
[3]
The content of toluene in the purified product of the hydrous crude acetonitrile and / or the hydrous crude acetonitrile after the activated carbon treatment step is less than 1.0 ppm by mass with respect to 100% by mass of acetonitrile [1 ] Or the manufacturing method of acetonitrile as described in [2].
[4]
The method for producing acetonitrile according to any one of [1] to [3] above, wherein in the activated carbon treatment step, the hydrated acetonitrile is activated carbon.
[5]
The method for producing acetonitrile according to any one of [1] to [4] above, wherein, in the gas phase reaction step, WHSV is 0.5 to 20 h −1 .
[6]
The method for producing acetonitrile according to any one of items [1] to [5], wherein the intermediate pore size zeolite comprises ZSM-5 type zeolite.
[7]
Acetonitrile produced by the method for producing acetonitrile according to any one of [1] to [6] above.
 本発明によれば、固体酸触媒を用いて酢酸とアンモニアの気相反応により得られる含水粗アセトニトリルの精製に用いられるエネルギー消費量が少なく、精製設備及び精製工程も簡易であるアセトニトリルの製造方法を提供することができる。また、このようにして得られるアセトニトリルは、化学反応用の溶媒、特には医薬中間体の合成用溶媒及び精製用溶媒、或いは、高速液体クロマトグラフィーの移動相溶媒、DNA合成用溶媒及び精製用溶媒、有機EL材料合成用溶媒、或いは、電子部品の洗浄溶剤として好適に用いることができる。 According to the present invention, there is provided a method for producing acetonitrile in which the amount of energy used for purification of hydrous crude acetonitrile obtained by gas phase reaction of acetic acid and ammonia using a solid acid catalyst is small, and the purification equipment and the purification process are simple. Can be provided. In addition, acetonitrile thus obtained is a solvent for chemical reaction, particularly a solvent for synthesizing and purifying pharmaceutical intermediates, or a mobile phase solvent for high-performance liquid chromatography, a solvent for DNA synthesis, and a solvent for purification. It can be suitably used as a solvent for synthesizing organic EL materials or a cleaning solvent for electronic components.
活性炭を用いたアセトニトリル中のトルエンの吸着試験の結果の一例を示す図である。It is a figure which shows an example of the result of the adsorption test of toluene in acetonitrile using activated carbon. 活性炭を用いたアセトニトリル中のトルエンの吸着試験の結果の別の一例を示す図である。It is a figure which shows another example of the result of the adsorption test of toluene in acetonitrile using activated carbon. 活性炭を用いたアセトニトリル中のトルエンの吸着試験の結果のさらに別の一例を示す図である。It is a figure which shows another example of the result of the adsorption test of toluene in acetonitrile using activated carbon.
 以下、本発明の実施の形態(以下、「本実施形態」という。)について詳細に説明するが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。なお、数値範囲における「A~B」の表現は、特に記載がない限り「A以上B以下」の数値範囲を示すものとする。 Hereinafter, the embodiment of the present invention (hereinafter referred to as “the present embodiment”) will be described in detail. However, the present invention is not limited to this, and various modifications are possible without departing from the scope of the present invention. It is. Note that the expression “A to B” in a numerical range indicates a numerical range of “A or more and B or less” unless otherwise specified.
〔アセトニトリルの製造方法〕
 本実施形態のアセトニトリルの製造方法は、酢酸とアンモニアとを固体酸触媒の存在下に気相反応させて含水粗アセトニトリルを得る気相反応工程と、前記含水粗アセトニトリル、及び/又は、前記含水粗アセトニトリルの精製物を、活性炭処理する活性炭処理工程と、を有する。
[Method for producing acetonitrile]
The method for producing acetonitrile according to the present embodiment includes a gas phase reaction step in which acetic acid and ammonia are subjected to a gas phase reaction in the presence of a solid acid catalyst to obtain hydrous crude acetonitrile, the hydrous crude acetonitrile, and / or the hydrous crude crude. An activated carbon treatment step of treating a purified product of acetonitrile with activated carbon.
 本実施形態によれば、固体酸触媒を用いることにより、高活性、高収率でかつ、長期に安定に気相反応を行うことができる。また、該触媒を用いる系において問題となる副生物であるトルエンを、活性炭処理工程で簡便に除去することができるため、高純度なアセトニトリルを、少ないエネルギー消費量で、簡易な精製設備及び精製工程により得ることができる。 According to this embodiment, by using a solid acid catalyst, it is possible to perform a gas phase reaction with high activity and high yield and stably over a long period of time. In addition, since toluene, which is a by-product in the system using the catalyst, can be easily removed in the activated carbon treatment process, high-purity acetonitrile can be obtained with a small amount of energy consumption and simple purification equipment and purification process. Can be obtained.
〔気相反応工程〕
 気相反応工程は、酢酸とアンモニアとを固体酸触媒の存在下に気相反応させて含水粗アセトニトリルを得る工程である。具体的には、固体酸触媒を充填した反応器内で、所定の温度にて、酢酸とアンモニアと触媒とを気相接触させることにより、実施することができるが、特に限定されない。
[Gas phase reaction process]
The gas phase reaction step is a step in which acetic acid and ammonia are reacted in the gas phase in the presence of a solid acid catalyst to obtain hydrous crude acetonitrile. Specifically, it can be carried out by bringing gas-phase contact between acetic acid, ammonia and a catalyst at a predetermined temperature in a reactor filled with a solid acid catalyst, but is not particularly limited.
(原料)
 気相反応の原料となる酢酸及びアンモニアとしては、特に限定されず、各種化学合成法などから製造されたものを用いることができる。酢酸及びアンモニアは、必ずしも高純度である必要はなく、工業グレードのものでよい。例えば、酢酸としては、一般に工業的に用いられる酢酸水溶液を用いることができる。
(material)
Acetic acid and ammonia as raw materials for the gas phase reaction are not particularly limited, and those produced from various chemical synthesis methods can be used. Acetic acid and ammonia are not necessarily highly pure, and may be industrial grade. For example, acetic acid aqueous solution generally used industrially can be used as acetic acid.
(固体酸触媒)
 本実施形態で用いる固体酸触媒は、ブレンステッド酸点を有する固体状のものであれば特に限定されず、従来公知の触媒が用いられる。例えば、カオリン等の粘土鉱物;粘土鉱物等の担体に硫酸、リン酸等の酸を含浸・担持させたもの:酸性型イオン交換樹脂;中間細孔径ゼオライト等のゼオライト類;活性アルミナ類;リン酸アルミニウム類;メソポーラスシリカアルミナ等が挙げられる。
(Solid acid catalyst)
The solid acid catalyst used in the present embodiment is not particularly limited as long as it is a solid having a Bronsted acid point, and a conventionally known catalyst is used. For example, clay minerals such as kaolin; those obtained by impregnating and supporting an acid such as sulfuric acid and phosphoric acid on a carrier such as clay minerals: acidic ion exchange resins; zeolites such as intermediate pore size zeolites; activated aluminas; phosphoric acid Aluminum; mesoporous silica alumina etc. are mentioned.
 これら固体酸触媒のうちでも、中間細孔径ゼオライトを含有する触媒等のゼオライト類、活性アルミナ類が好ましく、中間細孔径ゼオライトを含有する触媒がより好ましい。このような固体酸触媒を用いることにより、本実施形態の効果をより有効に発揮させることができる。 Among these solid acid catalysts, zeolites such as a catalyst containing an intermediate pore size zeolite and activated aluminas are preferable, and a catalyst containing an intermediate pore size zeolite is more preferable. By using such a solid acid catalyst, the effect of this embodiment can be exhibited more effectively.
(中間細孔径ゼオライトを含有する触媒)
 中間細孔径ゼオライトを含有する触媒について以下説明する。「ゼオライト」とは一般的に結晶性の多孔質アルミノシリケートの総称である。ゼオライトは、四面体構造である(SiO4-と(AlO5-とを基本構造単位として有し、これらが三次元的に連結することで結晶が形成される。また、アルミニウムイオン以外の3価あるいは4価の元素をシリケート骨格に組み込んだメタロシリケートもゼオライトに含まれる。ゼオライトは構造及び組成が多様であるため、構造コード、生成過程、鉱物学、細孔径、細孔の次元、アルミニウム濃度、他のカチオン濃度及び構造元素などのさまざまな観点から異なる分類がなされている(ゼオライトの科学と工学、小野嘉夫・八嶋建明/編、講談社サイエンティフィック参照)。また、国際ゼオライト学会(IZA)により多様なフレームワーク型コードが規定されている。
(Catalyst containing medium pore size zeolite)
The catalyst containing the intermediate pore size zeolite will be described below. “Zeolite” is a general term for crystalline porous aluminosilicates. Zeolite has (SiO 4 ) 4- and (AlO 4 ) 5- having a tetrahedral structure as basic structural units, and these are three-dimensionally connected to form crystals. Moreover, metallosilicates in which trivalent or tetravalent elements other than aluminum ions are incorporated in the silicate skeleton are also included in the zeolite. Zeolite is diverse in structure and composition, so it is classified differently from various viewpoints such as structure code, formation process, mineralogy, pore size, pore dimension, aluminum concentration, other cation concentration and structural elements. (See Zeolite Science and Engineering, Yoshio Ono and Kenaki Yashima / Edition, Kodansha Scientific). Various framework type codes are defined by the International Zeolite Society (IZA).
(中間細孔径ゼオライト)
 ここで、「中間細孔径ゼオライト」とは、細孔径の範囲が、A型ゼオライトに代表される小細孔径ゼオライトの細孔径と、モルデナイトやX型やY型ゼオライトに代表される大細孔径ゼオライトの細孔径との中間にある細孔径を有するゼオライトを意味し、その結晶構造中に、例えば酸素10員環を有するゼオライトを意味する。中間細孔径ゼオライトの有する細孔径は、好ましくは5~6.5Åである。
(Intermediate pore size zeolite)
Here, the “medium pore diameter zeolite” means a pore diameter range of a small pore diameter zeolite represented by A-type zeolite and a large pore diameter zeolite represented by mordenite, X-type or Y-type zeolite. Means a zeolite having a pore diameter in the middle of the above-mentioned pore diameter, and means, for example, a zeolite having a 10-membered oxygen ring in its crystal structure. The pore diameter of the medium pore diameter zeolite is preferably 5 to 6.5 mm.
(中間細孔径ゼオライトの構造)
 中間細孔径ゼオライトの構造としては、特に限定されないが、例えば、国際ゼオライト学会(IZA)が規定するフレームワーク型コード(FTC)において、AEL、EUO、FER、HEU、MEL、MFI、NES、TON、及びWEI等で示される構造が挙げられる。このなかでも、MFIで示される構造を有する中間細孔径ゼオライトが好ましい。MFIで示される構造を有する中間細孔径ゼオライトとしては、具体的にはZSM-5型ゼオライトが挙げられる。このような中間細孔径ゼオライトを用いることにより、活性、選択性、触媒寿命がより向上する傾向にある。
(Structure of intermediate pore size zeolite)
The structure of the intermediate pore diameter zeolite is not particularly limited. For example, in the framework type code (FTC) defined by the International Society of Zeolite (IZA), AEL, EUO, FER, HEU, MEL, MFI, NES, TON, And a structure represented by WEI or the like. Among these, an intermediate pore size zeolite having a structure represented by MFI is preferable. Specific examples of the intermediate pore size zeolite having a structure represented by MFI include ZSM-5 type zeolite. By using such an intermediate pore size zeolite, the activity, selectivity, and catalyst life tend to be further improved.
 また、中間細孔径ゼオライトとしては、ゼオライト骨格を構成するアルミニウム(Al)原子の一部がガリウム(Ga)、鉄(Fe)、ホウ素(B)、クロム(Cr)などの元素で置換されたメタロアルミノシリケートや、ゼオライト骨格を構成するアルミニウム原子が全て上記の元素で置換されたメタロシリケートを用いることもできる。 In addition, as an intermediate pore size zeolite, a metallo in which a part of aluminum (Al) atoms constituting the zeolite skeleton is substituted with an element such as gallium (Ga), iron (Fe), boron (B), chromium (Cr), etc. It is also possible to use aluminosilicates or metallosilicates in which all the aluminum atoms constituting the zeolite skeleton are substituted with the above elements.
(シリカ/アルミナ比)
 中間細孔径ゼオライトのシリカ/アルミナ比(モル比、以下同様。)は、好ましくは20~1000であり、より好ましくは20~500であり、さらに好ましくは20~300である。シリカ/アルミナ比が20以上であることにより中間細孔径ゼオライト触媒をより安定に製造できる傾向にある。また、シリカ/アルミナ比が1000以下であることにより活性がより向上する傾向にある。ゼオライトのシリカ/アルミナ比は、公知の方法、例えばゼオライトをアルカリ水溶液に完全に溶解し、得られる溶液をプラズマ発光分光分析法により分析することで求めることができる。なお、中間細孔径ゼオライトがメタロアルミノシリケート又はメタロシリケートである場合のシリカ/アルミナ比は、上記元素に置換されたアルミニウム原子の量をAl(アルミナ)のモル数に換算した上で、算出される。
(Silica / alumina ratio)
The silica / alumina ratio (molar ratio, the same shall apply hereinafter) of the medium pore diameter zeolite is preferably 20 to 1000, more preferably 20 to 500, and still more preferably 20 to 300. When the silica / alumina ratio is 20 or more, an intermediate pore size zeolite catalyst tends to be produced more stably. Moreover, it exists in the tendency for activity to improve more because silica / alumina ratio is 1000 or less. The silica / alumina ratio of the zeolite can be determined by a known method, for example, by completely dissolving the zeolite in an alkaline aqueous solution and analyzing the resulting solution by plasma emission spectroscopy. The silica / alumina ratio in the case where the intermediate pore diameter zeolite is a metalloaluminosilicate or a metallosilicate is obtained by converting the amount of aluminum atoms substituted by the above elements into the number of moles of Al 2 O 3 (alumina). Calculated.
(中間細孔径ゼオライトを含有する触媒の調製方法)
 中間細孔径ゼオライトを含有する触媒の調製方法としては、特に限定されず、公知の方法を用いることが可能である。なお、中間細孔径ゼオライトは、水熱合成後にイオン交換、脱アルミニウム処理、含侵や担持などの修飾により組成を変えることが可能である。本実施の形態においては、中間細孔径ゼオライトのイオン交換サイトの少なくとも一部が、プロトンで交換されていることが好ましい。このような中間細孔径ゼオライトを含有する触媒を用いることにより、活性がより向上する傾向にある。
(Method for preparing catalyst containing intermediate pore size zeolite)
A method for preparing the catalyst containing the intermediate pore size zeolite is not particularly limited, and a known method can be used. The intermediate pore size zeolite can be changed in composition after hydrothermal synthesis by modification such as ion exchange, dealumination treatment, impregnation and loading. In the present embodiment, it is preferable that at least a part of the ion exchange site of the intermediate pore size zeolite is exchanged with protons. By using a catalyst containing such an intermediate pore size zeolite, the activity tends to be further improved.
(中間細孔径ゼオライトを含有する触媒の成形方法)
 中間細孔径ゼオライトを含有する触媒の形状は、粉状でも粒状でもよく、気相反応工程等のプロセスに応じて適した形状に成型加工した成形体とすることができる。中間細孔径ゼオライトを含有する触媒の成形方法としては、特に限定されず、公知の方法を用いることが可能である。具体的には、触媒の前駆体を噴霧乾燥する方法、触媒成分を圧縮成型する方法、触媒成分を押出成型する方法が挙げられる。これら成形方法においては、バインダーや成形用希釈剤(マトリックス)を用いてもよい。バインダー及び成形用希釈剤としては、特に限定されないが、アルミナ、シリカ、ジルコニア、チタニア、カオリン、ケイソウ土、粘土等の多孔性耐火性無機酸化物が挙げられる。これらは、一種単独で用いても、二種以上を併用してもよい。これらのバインダー及び成形用希釈剤は、市販のものを用いてもよく、常法により合成してもよい。中間細孔径ゼオライトを含有する触媒をバインダーを用いて成型加工する場合における、中間細孔径ゼオライト/(バインダー及び成形用希釈剤)の質量比率は、好ましくは10/90~90/10であり、より好ましくは20/80~80/20である。
(Method of forming catalyst containing intermediate pore size zeolite)
The shape of the catalyst containing the intermediate pore diameter zeolite may be powdery or granular, and can be formed into a molded body that has been molded into a suitable shape according to a process such as a gas phase reaction step. The method for forming the catalyst containing the intermediate pore size zeolite is not particularly limited, and a known method can be used. Specifically, a method of spray drying a catalyst precursor, a method of compression molding a catalyst component, and a method of extrusion molding of a catalyst component can be mentioned. In these molding methods, a binder or a diluent for molding (matrix) may be used. The binder and the diluent for molding are not particularly limited, and examples thereof include porous refractory inorganic oxides such as alumina, silica, zirconia, titania, kaolin, diatomaceous earth, and clay. These may be used individually by 1 type, or may use 2 or more types together. Commercially available binders and diluents for molding may be used, or they may be synthesized by a conventional method. When the catalyst containing the intermediate pore size zeolite is molded using a binder, the mass ratio of the intermediate pore size zeolite / (binder and diluent for molding) is preferably 10/90 to 90/10, and more It is preferably 20/80 to 80/20.
(活性アルミナ類)
 次いで、活性アルミナ類について以下説明する。活性アルミナ類としては、特に限定されないが、例えば、市販の活性アルミナが挙げられる。活性アルミナ類の形状は、粉状でも粒状でもよく、気相反応工程等のプロセスに応じて適したものとすることができる。
(Activated aluminas)
Next, the activated alumina will be described below. Although it does not specifically limit as activated alumina, For example, commercially available activated alumina is mentioned. The shape of the activated alumina may be powdery or granular, and can be made suitable according to a process such as a gas phase reaction step.
(反応器)
 気相反応工程において用いられる反応器としては、特に限定されないが、例えば、固定床式反応器、流動床式反応器、移動床式反応器等が挙げられる。反応方式としては、バッチ式及び流通式のいずれもが使用可能であるが、生産性を考慮すれば、流通式が好ましい。なお、本明細書の記載は当業者が容易に調節しうる程度の反応条件の変更を妨げるものではない。
(Reactor)
The reactor used in the gas phase reaction step is not particularly limited, and examples thereof include a fixed bed reactor, a fluidized bed reactor, and a moving bed reactor. As the reaction system, either a batch system or a flow system can be used, but a flow system is preferable in consideration of productivity. Note that the description in the present specification does not preclude changes in reaction conditions that can be easily adjusted by those skilled in the art.
 なお、反応器に固体酸触媒を含有する触媒を充填する場合、触媒層の温度分布を小さく抑えるために、石英砂やセラミックボール等の反応に不活性な粒状物を、触媒と混合して充填してもよい。この場合、石英砂等の反応に不活性な粒状物の使用量は特に限定はない。なお、この粒状物は、触媒との均一混合性の観点から、触媒と同程度の粒径であることが好ましい。 When filling the reactor with a catalyst containing a solid acid catalyst, in order to suppress the temperature distribution of the catalyst layer to a small level, the particulate material inert to the reaction, such as quartz sand and ceramic balls, is mixed with the catalyst and packed. May be. In this case, there is no particular limitation on the amount of granular material inert to the reaction such as quartz sand. In addition, it is preferable that this granular material is a particle size comparable as a catalyst from a uniform mixing property with a catalyst.
 また、気相反応は吸熱反応であるため、所望反応温度に制御するには、熱供給機構を備えることが好ましい。例えば、工業的に固定床で実施する場合には、多管式シェル&チューブ方式反応器を採用することが考えられる。また、反応器には、反応に伴う吸熱を分散させることを目的に、反応基質(反応原料)を分割して供給してもよい。 In addition, since the gas phase reaction is an endothermic reaction, it is preferable to provide a heat supply mechanism in order to control the desired reaction temperature. For example, when it is industrially carried out on a fixed bed, it is conceivable to employ a multi-tubular shell and tube reactor. Further, the reaction substrate (reaction raw material) may be divided and supplied to the reactor for the purpose of dispersing the endotherm accompanying the reaction.
(アンモニア/酢酸のモル比)
 気相反応工程において、反応器に供給するアンモニア/酢酸のモル比は、好ましくは1.0以上であり、より好ましくは1.0~2.0であり、さらに好ましくは1.1~1.5である。アンモニア/酢酸のモル比が1.0以上であることにより、反応効率がより向上する傾向にある。また、アンモニア/酢酸のモル比が1.5以下であることにより、精製工程において、後述する含水粗アセトニトリルからアンモニアを分離除去するためのエネルギー消費量をより低減できる傾向にある。
(Molar ratio of ammonia / acetic acid)
In the gas phase reaction step, the molar ratio of ammonia / acetic acid supplied to the reactor is preferably 1.0 or more, more preferably 1.0 to 2.0, and still more preferably 1.1 to 1. 5. When the ammonia / acetic acid molar ratio is 1.0 or more, the reaction efficiency tends to be further improved. Further, when the ammonia / acetic acid molar ratio is 1.5 or less, the energy consumption for separating and removing ammonia from hydrous crude acetonitrile described later tends to be further reduced in the purification step.
(WHSV(重量空間速度))
 WHSV(重量空間速度)は、反応器への触媒充填重量に対する、1時間あたりに流れる原料重量であり、下式にて求めることができる。
 WHSV[h-1]=1時間あたりに流れる原料重量[g/h]/触媒充填重量[g]
(WHSV (weight space velocity))
WHSV (weight space velocity) is the weight of the raw material flowing per hour with respect to the weight of the catalyst charged in the reactor, and can be determined by the following equation.
WHSV [h −1 ] = feed weight per hour [g / h] / catalyst filling weight [g]
 ここで、「触媒充填重量」とは、本実施形態における固体酸触媒の反応器への充填重量を意味し、固体酸触媒が成形体である場合は、該成形体を構成するバインダーや成形用希釈剤を含む成形体全体の反応器充填重量である。なお、上述の不活性な粒状物は触媒充填重量には含まれない。また、ここで「原料重量」とは、反応器へ流れる原料の合計重量であり、「原料」には、本実施形態における原料である、酢酸又は酢酸水溶液、及びアンモニアの他、後述する希釈剤も含まれる。 Here, the “catalyst filling weight” means the filling weight of the solid acid catalyst into the reactor in the present embodiment. When the solid acid catalyst is a molded body, the binder or molding material constituting the molded body is used. It is a reactor filling weight of the whole molded object containing a diluent. In addition, the above-mentioned inert particulate matter is not included in the catalyst filling weight. In addition, the “raw material weight” here is the total weight of the raw materials flowing to the reactor, and the “raw material” includes acetic acid or an aqueous acetic acid solution and ammonia, which are raw materials in the present embodiment, and a diluent described later Is also included.
 WHSVは、生産性と触媒寿命、反応収率との兼ね合いで適宜調整することができる。例えば、気相反応工程におけるWHSVは、好ましくは0.5~50h-1であり、より好ましくは0.5~20h-1であり、さらに好ましくは0.5~10h-1である。WHSVが0.5h-1以上であることにより、一定の生産量を得るのに必要な触媒量を低減でき、反応器をコンパクトにすることができ、アセトンやトルエン等の好ましくない副生物の副生を抑制でき、高純度アセトニトリルへの精製負荷をより小さくできる傾向にある。また、WHSVが50h-1以下であることにより、酢酸の転化率がより向上し、また、アセトニトリルの選択率がより向上する傾向にある。 WHSV can be adjusted as appropriate in consideration of productivity, catalyst life, and reaction yield. For example, the WHSV in the vapor phase reaction step, preferably 0.5 ~ 50h -1, more preferably 0.5 ~ 20h -1, more preferably from 0.5 ~ 10h -1. When WHSV is 0.5 h −1 or more, the amount of catalyst necessary to obtain a constant production amount can be reduced, the reactor can be made compact, and byproducts of undesirable by-products such as acetone and toluene can be reduced. There is a tendency that the raw material can be suppressed and the purification load on high-purity acetonitrile can be further reduced. Further, when WHSV is 50 h −1 or less, the conversion of acetic acid tends to be further improved, and the selectivity of acetonitrile tends to be further improved.
(希釈剤)
 気相反応工程においては、酢酸及びアンモニアの他に、希釈剤を用いてもよい、希釈剤としては、特に限定されないが、例えば、ヘリウム、アルゴン、窒素、水、パラフィン系炭化水素ガス類、及びそれらの混合物など、反応に不活性な気体が挙げられる。このなかでも、窒素及び水が好ましい。希釈剤は、反応原料に含まれている不純物をそのまま使用してもよいし、別途調製した希釈剤を反応原料と混合して用いてもよい。また、希釈剤は反応器に入れる前に反応原料と混合してもよいし、反応原料とは別に反応器に供給してもよい。また、後述する含水粗アセトニトリルの水分量を調整する目的で、酢酸とアンモニアとの気相反応により生成する含水粗アセトニトリルに、水を希釈剤として混合して精製に供してもよい。
(Diluent)
In the gas phase reaction step, a diluent may be used in addition to acetic acid and ammonia. The diluent is not particularly limited, and examples thereof include helium, argon, nitrogen, water, paraffinic hydrocarbon gases, and Examples thereof include gases inert to the reaction, such as a mixture thereof. Of these, nitrogen and water are preferred. As the diluent, impurities contained in the reaction raw material may be used as they are, or a separately prepared diluent may be mixed with the reaction raw material and used. The diluent may be mixed with the reaction raw material before entering the reactor, or may be supplied to the reactor separately from the reaction raw material. In addition, for the purpose of adjusting the water content of hydrous crude acetonitrile described later, water may be mixed with hydrous crude acetonitrile produced by a gas phase reaction of acetic acid and ammonia as a diluent for purification.
(反応温度)
 気相反応の反応温度は、好ましくは250℃以上であり、より好ましくは300℃以上であり、さらに好ましくは350℃以上である。また、気相反応の反応温度は、好ましくは600℃以下であり、より好ましくは550℃以下であり、さらに好ましくは520℃以下である。反応温度が250℃以上であることにより、反応収率がより向上する傾向にある。また、反応温度が600℃以下であることにより、副生物の生成をより抑制でき、触媒の劣化も抑制できる傾向にある。尚、本実施形態における気相反応は脱水反応(吸熱反応)であるので、反応器内を所望の反応温度に制御するためには、反応器に熱源を設置することが好ましい。例えば、固定床反応器で工業的に気相反応を実施する場合には、多管式シェル&チューブ方式反応器を用いることが考えられる。
(Reaction temperature)
The reaction temperature of the gas phase reaction is preferably 250 ° C. or higher, more preferably 300 ° C. or higher, and further preferably 350 ° C. or higher. The reaction temperature of the gas phase reaction is preferably 600 ° C. or lower, more preferably 550 ° C. or lower, and further preferably 520 ° C. or lower. When the reaction temperature is 250 ° C. or higher, the reaction yield tends to be further improved. Moreover, when reaction temperature is 600 degrees C or less, it exists in the tendency which can suppress the production | generation of a by-product more and can also suppress deterioration of a catalyst. In addition, since the gas phase reaction in this embodiment is a dehydration reaction (endothermic reaction), it is preferable to install a heat source in the reactor in order to control the inside of the reactor to a desired reaction temperature. For example, when a gas phase reaction is industrially carried out in a fixed bed reactor, it is conceivable to use a multi-tubular shell and tube reactor.
(反応圧力)
 気相反応の反応圧力は、本実施形態の気相反応の反応平衡上は、低圧が有利であるが、圧力が高いと反応速度は向上する。従って、平衡転化率と反応速度の兼ね合いであり、好ましくは常圧~0.3MPaG(ゲージ圧、以下同様。)であり、より好ましくは0.03~0.25MPaGであり、さらに好ましくは、0.05~0.20MPaGである。
(Reaction pressure)
The reaction pressure of the gas phase reaction is advantageously low in terms of the reaction equilibrium of the gas phase reaction of the present embodiment, but the reaction rate increases if the pressure is high. Accordingly, it is a balance between the equilibrium conversion rate and the reaction rate, preferably normal pressure to 0.3 MPaG (gauge pressure, the same shall apply hereinafter), more preferably 0.03 to 0.25 MPaG, and still more preferably 0. .05 to 0.20 MPaG.
(含水粗アセトニトリル)
 「含水粗アセトニトリル」とは、10質量%以上70質量%以下のアセトニトリルと、30質量%以上90質量%以下の水と、を含み、その他に0質量%以上60質量%以下の不純物を含み得る組成物である。該不純物としては、特に限定されないが、例えば、アンモニア、酢酸、アセトアミド、アセトン、トルエン等の芳香族化合物、が挙げられる。
(Hydrous crude acetonitrile)
The “hydrated crude acetonitrile” includes 10% by mass to 70% by mass of acetonitrile and 30% by mass to 90% by mass of water, and may contain 0% by mass to 60% by mass of impurities. It is a composition. Examples of the impurities include, but are not limited to, aromatic compounds such as ammonia, acetic acid, acetamide, acetone, and toluene.
 本実施形態において、含水粗アセトニトリルは気相反応工程により直接得ることができる。また、気相反応工程により直接得られた組成物に水を加えることで得ることもできる。 In this embodiment, hydrous crude acetonitrile can be obtained directly by a gas phase reaction step. It can also be obtained by adding water to the composition obtained directly by the gas phase reaction step.
 本実施形態の気相反応により得られる活性炭処理工程前の含水粗アセトニトリル中のトルエンの含有量は、反応条件により影響されるものであり、その存在量が多いと活性炭処理工程の負荷が大きくなるので、アセトニトリル100質量%に対して、1~500質量ppmであり、好ましくは1~100質量ppmであり、さらに好ましくは1~50質量ppmである。活性炭処理工程前の含水粗アセトニトリル中のトルエンの含有量が上記範囲内であっても、本実施形態の製造方法によれば、トルエンを十分に除去することができる。なお、含水粗アセトニトリル中のトルエンの含有量は、実施例に記載の方法により測定することができる。 The content of toluene in the hydrous crude acetonitrile before the activated carbon treatment step obtained by the gas phase reaction of the present embodiment is affected by the reaction conditions, and if the amount is large, the load on the activated carbon treatment step increases. Therefore, it is 1 to 500 ppm by mass, preferably 1 to 100 ppm by mass, and more preferably 1 to 50 ppm by mass with respect to 100% by mass of acetonitrile. Even if the content of toluene in the hydrous crude acetonitrile before the activated carbon treatment step is within the above range, the toluene can be sufficiently removed according to the production method of the present embodiment. In addition, content of toluene in hydrous crude acetonitrile can be measured by the method as described in an Example.
 含水粗アセトニトリル中には、反応により生成する水、及び、原料酢酸、アンモニアの希釈剤として添加された水分も含有する。また、気相反応により得られた含水粗アセトニトリルに対して、水を希釈剤として混合することにより調整してもよい。この場合、含水粗アセトニトリル中の水の含有量は、混合した水の重量も加味して求める。 The hydrous crude acetonitrile contains water produced by the reaction, and water added as a diluent for raw acetic acid and ammonia. Moreover, you may adjust by mixing water as a diluent with respect to the hydrous crude acetonitrile obtained by the gas phase reaction. In this case, the content of water in the hydrous crude acetonitrile is determined by taking into account the weight of the mixed water.
 含水粗アセトニトリル中の水の含有量は、含水粗アセトニトリル100質量%に対して30質量%以上90質量%以下であり、好ましくは40質量%以上90質量%以下であり、より好ましくは50質量%以上90質量%以下である。含水粗アセトニトリル中の水の含有量が高いと後述する活性炭処理工程において、該含水粗アセトニトリルを処理することで、トルエン等の芳香族化合物をより効率よく除去できる傾向にある。一方、含水粗アセトニトリル中の水の含有量が90質量%を超えると後述する精製工程において、含水粗アセトニトリル又は粗アセトニトリル中の水を除去せしめる効率の悪化に繋がる。 The water content in the hydrous crude acetonitrile is 30% by mass or more and 90% by mass or less, preferably 40% by mass or more and 90% by mass or less, and more preferably 50% by mass with respect to 100% by mass of the hydrous crude acetonitrile. It is 90 mass% or less. When the water content in the hydrous crude acetonitrile is high, the aromatic crude compound such as toluene tends to be removed more efficiently by treating the hydrous crude acetonitrile in the activated carbon treatment step described later. On the other hand, when the content of water in the hydrous crude acetonitrile exceeds 90% by mass, the purification step described later leads to deterioration in efficiency of removing the hydrous crude acetonitrile or water in the crude acetonitrile.
〔精製工程〕
 本実施形態のアセトニトリルの製造方法は、含水粗アセトニトリルを精製して、製品アセトニトリルを得る精製工程を有していてもよい。精製工程に含まれる工程としては、含水粗アセトニトリルから水、アンモニア及びその他不純物を除去するように構成されていれば特に限定されないが、例えば、濃縮工程及び脱水工程などが挙げられる。
[Purification process]
The method for producing acetonitrile of the present embodiment may have a purification step of purifying water-containing crude acetonitrile to obtain product acetonitrile. The step included in the purification step is not particularly limited as long as it is configured to remove water, ammonia and other impurities from the hydrated crude acetonitrile, and examples thereof include a concentration step and a dehydration step.
(濃縮工程)
 濃縮工程は、含水粗アセトニトリルからアンモニアを分離し、粗アセトニトリルを得る工程である。アンモニアの分離方法としては、特に限定されないが、例えば、蒸留塔を用いる方法が挙げられる。ここで、「粗アセトニトリル」とは、含水粗アセトニトリルから、大部分のアンモニアが除かれて濃縮されたアセトニトリルであり、主に50質量%以上75質量%未満のアセトニトリルと、25質量%以上50質量%以下の水と、その他不純物と、を含み得る混合物である。
(Concentration process)
The concentration step is a step in which ammonia is separated from hydrous crude acetonitrile to obtain crude acetonitrile. Although it does not specifically limit as a separation method of ammonia, For example, the method of using a distillation column is mentioned. Here, “crude acetonitrile” is acetonitrile obtained by removing most of the ammonia from water-containing crude acetonitrile and concentrating, and mainly contains 50% by mass or more and less than 75% by mass of acetonitrile, and 25% by mass or more and 50% by mass. % Or less water and other impurities.
(脱水工程)
 脱水工程は、粗アセトニトリルから水を分離し、脱水アセトニトリルを得る工程である。水の分離方法としては、特に限定されないが、例えば、粗アセトニトリルにアルカリを添加し、抽出脱水を行う方法が挙げられる。用い得るアルカリとしては、特に限定されないが、例えば、苛性ソーダが挙げられる。また、アルカリの使用量は、粗アセトニトリル中の水分含有量によって適宜調整することができ、粗アセトニトリルの水分含有量に対して、好ましくは10~90質量%であり、より好ましくは30~60質量%である。抽出温度は、好ましくは5~60℃であり、より好ましくは10~35℃である。
(Dehydration process)
The dehydration step is a step in which water is separated from crude acetonitrile to obtain dehydrated acetonitrile. The method for separating water is not particularly limited, and examples thereof include a method of adding alkali to crude acetonitrile and performing extraction dehydration. Although it does not specifically limit as an alkali which can be used, For example, caustic soda is mentioned. The amount of alkali used can be appropriately adjusted depending on the water content in the crude acetonitrile, and is preferably 10 to 90% by mass, more preferably 30 to 60% by mass, based on the water content of the crude acetonitrile. %. The extraction temperature is preferably 5 to 60 ° C, more preferably 10 to 35 ° C.
 抽出脱水方法としては、特に限定されないが、例えば、連続式向流接触型を用いる方法が好ましい。連続式向流接触塔の充填物としては、特に限定されないが、例えば、ラシヒリング、レッシングリング、ポールリング、ベルルサドル、インターロックサドル、テラレットパッキング、ディクソンリング、マクマホンパッキングが好ましく、規則充填物としては、特に限定されないが、例えば、網目構造の充填物が好ましい。 The extraction / dehydration method is not particularly limited, but for example, a method using a continuous countercurrent contact type is preferable. The packing for the continuous countercurrent contact tower is not particularly limited, but for example, Raschig ring, Lessing ring, Pole ring, Berle saddle, Interlock saddle, Terralet packing, Dixon ring, McMahon packing are preferable, and regular packing is Although not particularly limited, for example, a mesh-structured packing is preferable.
(脱水アセトニトリル)
 ここで、「脱水アセトニトリル」とは、75質量%以上99質量%以下のアセトニトリルと、0質量%以上25質量%未満の水と、その他不純物と、を含み得る混合物である。
(Dehydrated acetonitrile)
Here, “dehydrated acetonitrile” is a mixture that may contain 75% by mass or more and 99% by mass or less of acetonitrile, 0% by mass or more and less than 25% by mass of water, and other impurities.
(その他の工程)
 精製工程は、その他の工程、例えば低沸分除去工程及び高沸分除去工程を有していてもよい。低沸分除去工程及び高沸分除去工程は、脱水アセトニトリルからアセトニトリルの沸点未満の低沸成分と、アセトニトリルの沸点超過の高沸成分と、を除去し、後述する製品アセトニトリルを得る工程である。低沸分除去方法及び高沸分除去方法としては、特に限定されないが、例えば、蒸留塔を用いる方法が挙げられる。
また、含水粗アセトニトリルは、既に公知であるプロピレン又はイソブテンとアンモニア及び分子状酸素との接触的アンモ酸化反応によってアクリロニトリル又はメタクリロニトリルを製造する際に副生成物として得られる副生粗アセトニトリルの蒸留精製方法と同様に、或いは、該蒸留精製方法に倣って精製することもできる。参考となる従来技術としては、特に限定されないが、例えば、特開昭55-153757号公報、特許第3104312号公報、WO2013/146609号パンフレット等を挙げることができる。
(Other processes)
The purification step may have other steps such as a low boiling point removal step and a high boiling point removal step. The low boiling point removal step and the high boiling point removal step are steps for removing a low boiling component below the boiling point of acetonitrile and a high boiling component above the boiling point of acetonitrile from dehydrated acetonitrile to obtain a product acetonitrile described later. Although it does not specifically limit as a low boiling point removal method and a high boiling point removal method, For example, the method of using a distillation column is mentioned.
Hydrous crude acetonitrile is a distillation of by-product crude acetonitrile obtained as a by-product in the production of acrylonitrile or methacrylonitrile by the catalytic ammoxidation reaction of propylene or isobutene with ammonia and molecular oxygen which is already known. The purification can be performed in the same manner as the purification method or following the distillation purification method. The conventional techniques to be referred to are not particularly limited, and examples thereof include Japanese Patent Application Laid-Open No. 55-153757, Japanese Patent No. 3104312 and WO 2013/146609.
 上記精製工程を経ることにより、製品アセトニトリルを得ることができる。 The product acetonitrile can be obtained through the above purification step.
(製品アセトニトリル)
 「製品アセトニトリル」とは、アセトニトリルの含有量が99質量%超であり、アセトニトリル以外の不純物の含有量が1質量%未満のアセトニトリルをいう。製品アセトニトリルに含まれるアセトニトリルの含有量は、好ましくは99.5質量%以上100質量%以下であり、より好ましくは99.9質量%以上100質量%以下であり、さらに好ましくは99.99質量%以上100質量%以下である。
(Product acetonitrile)
“Product acetonitrile” refers to acetonitrile having an acetonitrile content of more than 99% by mass and an impurity content other than acetonitrile of less than 1% by mass. The content of acetonitrile contained in the product acetonitrile is preferably 99.5% by mass or more and 100% by mass or less, more preferably 99.9% by mass or more and 100% by mass or less, and further preferably 99.99% by mass. It is 100 mass% or less.
〔活性炭処理工程〕
 活性炭処理工程は、含水粗アセトニトリル、及び/又は、含水粗アセトニトリルの精製物を、活性炭処理する工程である。より具体的には、反応器出口から排出される含水粗アセトニトリル、及び/又は、上記精製工程における蒸留塔出口から排出される含水粗アセトニトリルの精製物を活性炭処理することが挙げられるが、特に限定されない。ここで、「含水粗アセトニトリルの精製物」とは、濃縮工程後の粗アセトニトリル、脱水工程後の脱水アセトニトリル、低沸分除去工程後のアセトニトリル、及び高沸分除去工程後のアセトニトリルを含む包括表現である。すなわち、活性炭処理工程は、気相反応工程後であれば、どの段階で行ってもよく、例えば、気相反応工程後かつ精製工程前、精製工程中又は精製工程後に行うことができる。より具体的に、精製工程中とは、濃縮工程後、脱水工程後、及び低沸分除去工程後のいずれかであって高沸分除去工程前を意味する。
[Activated carbon treatment process]
The activated carbon treatment step is a step of subjecting water-containing crude acetonitrile and / or a purified product of water-containing crude acetonitrile to activated carbon treatment. More specifically, it may be activated carbon treatment of the hydrous crude acetonitrile discharged from the reactor outlet and / or the hydrous crude acetonitrile purified product discharged from the distillation tower outlet in the purification step. Not. Here, the “purified product of hydrous crude acetonitrile” is a comprehensive expression including crude acetonitrile after the concentration step, dehydrated acetonitrile after the dehydration step, acetonitrile after the low boiling point removal step, and acetonitrile after the high boiling point removal step. It is. That is, the activated carbon treatment process may be performed at any stage as long as it is after the gas phase reaction process, and can be performed, for example, after the gas phase reaction process and before the purification process, during the purification process, or after the purification process. More specifically, the term “during the purification step” means any of after the concentration step, after the dehydration step, and after the low boiling point removal step and before the high boiling point removal step.
 活性炭処理工程は、気相でも液相でも実施することができ、液相で処理することが好ましく、より好ましくはアセトニトリル水溶液の状態で活性炭処理する方法である。これにより効果的にトルエンの吸着除去が可能となる。 The activated carbon treatment step can be carried out either in the gas phase or in the liquid phase, and is preferably carried out in the liquid phase, more preferably a method of treating the activated carbon in the state of an acetonitrile aqueous solution. As a result, the adsorption and removal of toluene can be effectively performed.
 一般に活性炭は、高い表面積を持つ炭素材料である。高性能の活性炭は、比表面積が高く、精密な細孔分布を持つ。活性炭の比表面積は、通常は、500~1000m/gである。比表面積が上記範囲内であることにより、トルエンを効率的に吸着除去することが可能である。 In general, activated carbon is a carbon material having a high surface area. High performance activated carbon has a high specific surface area and precise pore distribution. The specific surface area of the activated carbon is usually 500 to 1000 m 2 / g. When the specific surface area is within the above range, toluene can be efficiently adsorbed and removed.
 活性炭としては、特に限定されず、市販品を用いることができ、あらかじめ賦活された活性炭であってもよい。活性炭の賦活方法としては、ガス賦活法、薬品賦活法が挙げられる。 The activated carbon is not particularly limited, and a commercially available product can be used, and activated carbon activated in advance may be used. Examples of the activated carbon activation method include a gas activation method and a chemical activation method.
 活性炭の形状は、特に限定されないが、粒子状のものが好ましい。粒子状の活性炭の平均粒径は、好ましくは0.1~50mmであり、より好ましくは3~30mmであり、さらに好ましくは2~15mmである。平均粒径が0.1mm以上であることにより、液流及び/又はガス流により活性炭充填装置(吸着塔)から活性炭が散逸することを抑止できる傾向にある。また、粒状活性炭としては、造粒炭成型炭、破砕炭、ビーズ炭を用いることができる。 The shape of the activated carbon is not particularly limited, but a particulate one is preferable. The average particle diameter of the particulate activated carbon is preferably 0.1 to 50 mm, more preferably 3 to 30 mm, and still more preferably 2 to 15 mm. When the average particle size is 0.1 mm or more, it tends to be able to prevent the activated carbon from being dissipated from the activated carbon filling device (adsorption tower) by the liquid flow and / or the gas flow. Granular activated carbon, crushed coal, and bead charcoal can be used as the granular activated carbon.
 活性炭の原料としては、一般的に用いられる活性炭の原料であれば特に限定されず、例えば、やし殻(パームヤシ殻、ココナッツヤシ殻など)、天然繊維(麻、綿など)、合成繊維(レーヨン、ポリエステルなど)、合成樹脂(ポリアクリロニトリル、フェノール樹脂、ポリ塩化ビニリデン、ポリカーボネート、ポリビニルアルコールなど)が挙げられる。 The activated carbon material is not particularly limited as long as it is a commonly used activated carbon material. For example, coconut husk (palm coconut shell, coconut coconut shell, etc.), natural fiber (hemp, cotton, etc.), synthetic fiber (rayon). And polyester) and synthetic resins (polyacrylonitrile, phenol resin, polyvinylidene chloride, polycarbonate, polyvinyl alcohol, etc.).
 本実施の形態における活性炭処理方法は、連続式、バッチ式いずれでも構わないが、工業的な実施を想定する場合には、連続式が好ましい。また、活性炭処理においては、一般に用いられる活性炭吸着塔形式である固定層式、移動層式、膨張層式、流動層式を採用することができる。固定床連続式吸着塔の形式としては、例えば「新版 活性炭 基礎と応用」(講談社サイエンティフィク編 講談社1992年)のp.260には、2~3塔の切替方式、線速度(LV)は5~10m/h、と記載されている。 The activated carbon treatment method in the present embodiment may be either a continuous type or a batch type, but a continuous type is preferable when industrial implementation is assumed. Further, in the activated carbon treatment, a generally used activated carbon adsorption tower type, that is, a fixed bed type, a moving bed type, an expanded bed type, or a fluidized bed type can be employed. As a form of the fixed bed continuous adsorption tower, for example, “new edition activated carbon basics and application” (Kodansha Scientific edition Kodansha 1992) p. 260 describes a switching method of 2 to 3 towers and a linear velocity (LV) of 5 to 10 m / h.
 活性炭処理は、トルエン除去率の観点から、水を20%以上含む被処理液に対して行われることが好ましく、水を40%以上含む被処理液に対して行われることがより好ましく、水を60%以上含む被処理液に対して行われることが最も好ましい。即ち、活性炭吸着処理は、被処理液を含水粗アセトニトリル、粗アセトニトリルとすることが好ましく、より好ましくは、含水租アセトニトリルとすることである。また被処理液を含水粗アセトニトリルまたは粗アセトニトリルに水を加えたものとしてもよい。 From the viewpoint of toluene removal rate, the activated carbon treatment is preferably performed on a liquid to be treated containing 20% or more of water, more preferably performed on a liquid to be treated containing 40% or more of water, Most preferably, it is performed on the liquid to be treated containing 60% or more. That is, in the activated carbon adsorption treatment, the liquid to be treated is preferably hydrous crude acetonitrile or crude acetonitrile, and more preferably hydrous acetonitrile. Further, the liquid to be treated may be hydrous crude acetonitrile or crude acetonitrile added with water.
(活性炭処理工程後のトルエンの含有量)
 活性炭処理工程後の、前記含水粗アセトニトリル及び/又は前記含水粗アセトニトリルの精製物中のトルエンの含有量は、アセトニトリル100質量%に対して、好ましくは1.0質量ppm未満であり、より好ましくは0.5質量ppm以下であり、さらに好ましくは0.1質量ppm以下である。活性炭処理工程後の、含水粗アセトニトリル及び/又は製品アセトニトリルに含まれるトルエンの含有量の下限は、特に限定されないが、好ましくは検出限界量以下であり、より好ましくはアセトニトリル100質量%に対して0質量%である。活性炭処理工程後の、含水粗アセトニトリル及び/又は含水粗アセトニトリルの精製物中のトルエンの含有量が上記範囲内であることにより、より高品質なアセトニトリルとなる。
(Toluene content after activated carbon treatment process)
The content of toluene in the purified hydrated acetonitrile and / or purified hydrated acetonitrile after the activated carbon treatment step is preferably less than 1.0 ppm by mass, more preferably less than 1.0 ppm by mass with respect to 100% by mass of acetonitrile. It is 0.5 mass ppm or less, More preferably, it is 0.1 mass ppm or less. The lower limit of the content of toluene contained in the water-containing crude acetonitrile and / or product acetonitrile after the activated carbon treatment step is not particularly limited, but is preferably the detection limit or less, more preferably 0 with respect to 100% by mass of acetonitrile. % By mass. When the content of toluene in the purified product of hydrous crude acetonitrile and / or hydrous crude acetonitrile after the activated carbon treatment step is within the above range, higher quality acetonitrile is obtained.
 また、活性炭処理工程後の、前記含水粗アセトニトリル及び/又は前記含水粗アセトニトリルの精製物の波長200nmでの紫外線吸収の吸光度は、好ましくは0.3以下であり、より好ましくは0.25以下であり、さらに好ましくは0.20以下である。また、活性炭処理工程後の、前記含水粗アセトニトリル及び/又は前記含水粗アセトニトリルの精製物の波長200nmでの紫外線吸収の吸光度の下限は特に制限されず、低いほど好ましく、より好ましくは0である。波長200nmでの紫外線吸収の吸光度は、アセトニトリル中の芳香族化合物の含有量の指標となる。この観点から、活性炭処理工程後の、前記含水粗アセトニトリル及び/又は前記含水粗アセトニトリルの精製物の波長200nmでの紫外線吸収の吸光度が上記範囲内であることにより、より高品質な製品アセトニトリルとなる。 Further, the absorbance of ultraviolet absorption at a wavelength of 200 nm of the hydrated crude acetonitrile and / or the purified product of the hydrated crude acetonitrile after the activated carbon treatment step is preferably 0.3 or less, more preferably 0.25 or less. Yes, more preferably 0.20 or less. Moreover, the lower limit of the absorbance of ultraviolet absorption at a wavelength of 200 nm of the hydrated crude acetonitrile and / or the purified product of the hydrated crude acetonitrile after the activated carbon treatment step is not particularly limited, and is preferably as low as possible and more preferably 0. The absorbance of ultraviolet absorption at a wavelength of 200 nm is an indicator of the content of the aromatic compound in acetonitrile. From this viewpoint, the absorbance of ultraviolet absorption at a wavelength of 200 nm of the hydrated crude acetonitrile and / or the purified product of the hydrated crude acetonitrile after the activated carbon treatment step is within the above range, whereby a higher quality product acetonitrile is obtained. .
〔アセトニトリル〕
 本実施形態のアセトニトリルは、上記製造方法により得られる。このようにして得られるアセトニトリルは、化学反応用の溶媒、特には医薬中間体の合成用溶媒、精製用溶媒、高速液体クロマトグラフィーの移動相溶媒、DNA合成用溶媒及び精製用溶媒、有機EL材料合成用溶媒、或いは、電子部品の洗浄溶剤として好適に用いることができる。なお、本実施形態のアセトニトリルは、製品アセトニトリルと同義である。
[Acetonitrile]
The acetonitrile of this embodiment is obtained by the above production method. Acetonitrile thus obtained is a solvent for chemical reaction, particularly a pharmaceutical intermediate synthesis solvent, a purification solvent, a mobile phase solvent for high performance liquid chromatography, a DNA synthesis solvent and a purification solvent, and an organic EL material. It can be suitably used as a solvent for synthesis or as a cleaning solvent for electronic parts. In addition, acetonitrile of this embodiment is synonymous with product acetonitrile.
 以下、本実施の形態を実施例によりさらに具体的に説明するが、本実施の形態はこれらの実施例のみに限定されるものではない。 Hereinafter, the present embodiment will be described more specifically by way of examples. However, the present embodiment is not limited to only these examples.
〔実施例1〕
<アセトニトリルの製造>
 日揮触媒化成株式会社製H-ZSM-5ゼオライトの押出成型触媒(MFI-30/Al=80/20)を用いて、酢酸とアンモニアの気相反応を行い、含水粗アセトニトリルの製造実験を行った。反応には、流通式固定床反応装置を用いた。内径21.2mmのSUS製反応管に、上記触媒73.3gを充填した。触媒層高さは340mmであった。この反応管に水分量20質量%の酢酸水溶液(80%酢酸水溶液)及びアンモニアを供給した。
[Example 1]
<Production of acetonitrile>
Production experiment of hydrous crude acetonitrile by gas phase reaction of acetic acid and ammonia using extrusion catalyst (MFI-30 / Al 2 O 3 = 80/20) of H-ZSM-5 zeolite manufactured by JGC Catalysts & Chemicals Co., Ltd. Went. A flow-type fixed bed reactor was used for the reaction. A SUS reaction tube having an inner diameter of 21.2 mm was charged with 73.3 g of the catalyst. The catalyst layer height was 340 mm. An acetic acid aqueous solution (80% acetic acid aqueous solution) having a water content of 20% by mass and ammonia were supplied to the reaction tube.
 原料組成はアンモニア/酢酸=1.2(モル比)とし、WHSVは3.88h-1、反応温度は445℃、反応圧力は0.11MPaGとした。なお、反応温度は触媒層の平均温度である。反応管から流出する反応生成ガスは、反応管下部に接続した冷却器で冷却凝縮させ、含水粗アセトニトリルの溶液を得た。反応は160時間継続し、含水粗アセトニトリルを適宜サンプリングし、ガスクロマトグラフィーによって組成分析を行った。
 なお、組成分析は以下の条件で実施した(以下同様)。
 ・装置:株式会社島津製作所製「GC2010」
 ・カラム:アジレント・テクノロジー株式会社製「HP-INNOWAX」
 ・検出器:TCD
 ・カラム温度:60℃(1分保持)→100℃(昇温速度10℃/分)→180℃(昇温速度20℃/分)
 ・インジェクション温度:200℃
 ・検出器温度:200℃
 ・キャリアガス:ヘリウム
上記条件での経過時間80h、及び160h後の含水粗アセトニトリルを分析した結果は以下の通りであった。得られた含水粗アセトニトリル中の水分量は51~52質量%であった。
  経過時間      (h)      80    160
  アセトニトリル収率 (モル%)   97.4  97.3
  (含水粗アセトニトリル組成)
   アンモニア    (質量%)    5.5   5.5
   アセトニトリル  (質量%)   41.6  42.0
   酢酸       (質量%)    1.0   1.0
   アセトン     (質量%)    0.2   0.2
   アセトアミド   (質量%)    0.2   0.2
The raw material composition was ammonia / acetic acid = 1.2 (molar ratio), WHSV was 3.88 h −1 , the reaction temperature was 445 ° C., and the reaction pressure was 0.11 MPaG. The reaction temperature is the average temperature of the catalyst layer. The reaction product gas flowing out from the reaction tube was cooled and condensed by a cooler connected to the lower part of the reaction tube to obtain a solution of hydrous crude acetonitrile. The reaction was continued for 160 hours, and water-containing crude acetonitrile was sampled appropriately, and composition analysis was performed by gas chromatography.
The composition analysis was performed under the following conditions (the same applies hereinafter).
・ Equipment: “GC2010” manufactured by Shimadzu Corporation
・ Column: “HP-INNOWAX” manufactured by Agilent Technologies
・ Detector: TCD
Column temperature: 60 ° C. (1 minute hold) → 100 ° C. (temperature increase rate 10 ° C./min)→180° C. (temperature increase rate 20 ° C./min)
・ Injection temperature: 200 ℃
-Detector temperature: 200 ° C
Carrier gas: helium The analysis results of water-containing crude acetonitrile after 80 hours and 160 hours under the above conditions were as follows. The water content in the obtained hydrous crude acetonitrile was 51 to 52% by mass.
Elapsed time (h) 80 160
Acetonitrile yield (mol%) 97.4 97.3
(Hydrous crude acetonitrile composition)
Ammonia (mass%) 5.5 5.5
Acetonitrile (mass%) 41.6 42.0
Acetic acid (mass%) 1.0 1.0
Acetone (mass%) 0.2 0.2
Acetamide (mass%) 0.2 0.2
 なお、気相反応においては、下記反応式に示した酢酸2モルからアセトンと二酸化炭素が等モル量生成する副反応が起きる。本実施例では、含水粗アセトニトリルのみをガスクロマトグラフィーで分析しており、含水粗アセトニトリルに溶解しない二酸化炭素は分析できない。そのため、分析によって検出されたアセトンの生成量から二酸化炭素の生成量を推定し、酢酸基準アセトニトリル収率(モル%)を求めた。
   2CHCOOH→CHCOCH+CO+H
In the gas phase reaction, a side reaction in which equimolar amounts of acetone and carbon dioxide are generated from 2 mol of acetic acid shown in the following reaction formula occurs. In this example, only hydrous crude acetonitrile is analyzed by gas chromatography, and carbon dioxide that does not dissolve in hydrous crude acetonitrile cannot be analyzed. Therefore, the production amount of carbon dioxide was estimated from the production amount of acetone detected by analysis, and the acetic acid-based acetonitrile yield (mol%) was obtained.
2CH 3 COOH → CH 3 COCH 3 + CO 2 + H 2 O
 また、得られた含水粗アセトニトリル中に含まれる不純物のうち、トルエンの含有量を別途、ガスクロマトグラフィーによって詳細分析したところ、アセトニトリル100質量%に対して44質量ppmであった。なお、トルエン含有量の詳細分析は以下の条件で実施した(以下同様)。
 ・装置:株式会社島津製作所製「GC-17A」
 ・カラム:アジレント・テクノロジー株式会社製「HP-5」
 ・検出器:FID
 ・カラム温度:50℃(3分保持)→200℃(昇温速度10℃/分)
 ・インジェクション温度:250℃
 ・検出器温度:250℃
 ・キャリアガス:窒素
Further, among the impurities contained in the obtained hydrous crude acetonitrile, the content of toluene was separately analyzed in detail by gas chromatography and found to be 44 ppm by mass with respect to 100% by mass of acetonitrile. In addition, the detailed analysis of toluene content was implemented on condition of the following (same below).
・ Device: “GC-17A” manufactured by Shimadzu Corporation
・ Column: “HP-5” manufactured by Agilent Technologies, Inc.
・ Detector: FID
Column temperature: 50 ° C. (3 minutes hold) → 200 ° C. (temperature increase rate 10 ° C./min)
・ Injection temperature: 250 ℃
-Detector temperature: 250 ° C
・ Carrier gas: Nitrogen
<活性炭処理工程>
 上記含水粗アセトニトリル2,000gをステンレス製容器に受け入れ、そこへ、日本エンバイロケミカルズ株式会社製粒状白鷺S2Xを200g添加して密閉し、室温下、15分間攪拌混合した。しかる後、フィルターを介して活性炭処理工程後のアセトニトリル液のみを回収した。
<Activated carbon treatment process>
2,000 g of the above hydrous crude acetonitrile was received in a stainless steel container, and 200 g of granular white rabbit S2X manufactured by Nippon Enviro Chemicals Co., Ltd. was added and sealed, and stirred and mixed at room temperature for 15 minutes. Thereafter, only the acetonitrile solution after the activated carbon treatment step was recovered through a filter.
 得られた、アセトニトリル液中のトルエンの含有量を上記のガスクロマトグラフィー詳細分析、及び、ガスクロマトグラフィー質量分析法(GC-MS)で分析したが、ともに、トルエンは検出できなかった。なお、GC-MSは以下の条件で分析した。
 ・装置:アジレント・テクノロジー株式会社製「HP-6890/5973N」
 ・カラム:アジレント・テクノロジー株式会社製「HP-INNOWAX」
 ・オーブン温度:40℃(5分保持)→200℃(昇温速度10℃/分)
 ・インジェクション温度:200℃
 ・インターフェース温度:240℃
 ・キャリアガス:ヘリウム
The content of toluene in the obtained acetonitrile solution was analyzed by the above detailed gas chromatography analysis and gas chromatography mass spectrometry (GC-MS), but toluene was not detected in both cases. GC-MS was analyzed under the following conditions.
・ Apparatus: “HP-6890 / 5973N” manufactured by Agilent Technologies, Inc.
・ Column: “HP-INNOWAX” manufactured by Agilent Technologies
Oven temperature: 40 ° C. (5 minutes hold) → 200 ° C. (temperature increase rate 10 ° C./min)
・ Injection temperature: 200 ℃
・ Interface temperature: 240 ℃
Carrier gas: helium
 本実施例から、酢酸とアンモニアからアセトニトリルを製造する方法において、中間細孔径ゼオライトは、高収率、高選択率でかつ、耐劣化性にも優れる好適な触媒であることが分かった。一方で、該触媒では、製品品質上問題となるトルエンの副生が避けられないことも分かった。しかしながら、含水粗アセトニトリルを活性炭で処理せしめることにより、問題となるトルエンを除去できるので、該処理液を公知の方法で、蒸留精製、脱水処理を行うことにより、トルエンを含まない高純度アセトニトリルを得ることができることが判る。 From this example, it was found that in the method for producing acetonitrile from acetic acid and ammonia, the intermediate pore size zeolite is a suitable catalyst having high yield, high selectivity and excellent deterioration resistance. On the other hand, it was also found that by-products of toluene, which is a problem in product quality, cannot be avoided with the catalyst. However, since the problematic toluene can be removed by treating the hydrous crude acetonitrile with activated carbon, high-purity acetonitrile containing no toluene is obtained by subjecting the treatment liquid to distillation purification and dehydration treatment by a known method. I can see that
〔実施例2〕
<アセトニトリルの製造>
 住友化学製活性アルミナKHD-46を用いて、酢酸とアンモニアの気相反応を行い、含水粗アセトニトリルの製造実験を行った。内径20mmの石英ガラス製反応管に、上記触媒3.13gを充填した。触媒層高さは20mmであった。この反応管に水分量20質量%の酢酸水溶液(80%酢酸水溶液)及びアンモニアを供給した。
[Example 2]
<Production of acetonitrile>
Using activated alumina KHD-46 manufactured by Sumitomo Chemical Co., Ltd., gas phase reaction of acetic acid and ammonia was carried out, and an experiment for producing hydrous crude acetonitrile was conducted. A quartz glass reaction tube having an inner diameter of 20 mm was filled with 3.13 g of the catalyst. The catalyst layer height was 20 mm. An acetic acid aqueous solution (80% acetic acid aqueous solution) having a water content of 20% by mass and ammonia were supplied to the reaction tube.
 原料組成はアンモニア/酢酸=1.3(モル比)とし、WHSVは6.4h-1、反応温度は424~467℃、反応圧力は常圧とした以外は、実施例1と同様に反応を行い、含水粗アセトニトリルを組成分析した。結果は以下の通りであった。得られた含水粗アセトニトリル中の水分量は38.4~43.1質量%であった。
  経過時間      (h)        2     6
  反応温度      (℃)      424   467
  アセトニトリル収率 (モル%)   51.8  69.3
  (含水粗アセトニトリル組成)
   アンモニア    (質量%)   15.6  15.7
   アセトニトリル  (質量%)   20.9  28.4
   酢酸       (質量%)   16.0   5.9
   アセトン     (質量%)    2.9   5.3
   アセトアミド   (質量%)    6.2   1.6
The reaction was conducted in the same manner as in Example 1 except that the raw material composition was ammonia / acetic acid = 1.3 (molar ratio), WHSV was 6.4 h −1 , the reaction temperature was 424 to 467 ° C., and the reaction pressure was normal pressure. This was followed by compositional analysis of hydrous crude acetonitrile. The results were as follows. The water content in the obtained hydrous crude acetonitrile was 38.4 to 43.1% by mass.
Elapsed time (h) 2 6
Reaction temperature (° C) 424 467
Acetonitrile yield (mol%) 51.8 69.3
(Hydrous crude acetonitrile composition)
Ammonia (mass%) 15.6 15.7
Acetonitrile (mass%) 20.9 28.4
Acetic acid (mass%) 16.0 5.9
Acetone (mass%) 2.9 5.3
Acetamide (mass%) 6.2 1.6
 また、得られた含水粗アセトニトリル中に含まれる不純物のうち、トルエンの含有量を別途、ガスクロマトグラフィーによって詳細分析したところ、アセトニトリル100質量%に対して2時間経過後が23質量ppm、6時間経過後が127質量ppmであった。 Further, among the impurities contained in the obtained water-containing crude acetonitrile, the content of toluene was separately analyzed in detail by gas chromatography. As a result, 23 mass ppm and 6 hours were observed after 2 hours with respect to 100% by mass of acetonitrile. It was 127 mass ppm after progress.
<活性炭処理工程>
 上記含水粗アセトニトリル100gをステンレス製容器に受け入れ、そこへ、日本エンバイロケミカルズ株式会社製粒状白鷺S2Xを10g添加して密閉し、室温下、15分間攪拌混合した。しかる後、フィルターを介して活性炭処理工程後のアセトニトリル液のみを回収した。
<Activated carbon treatment process>
100 g of the above hydrous crude acetonitrile was received in a stainless steel container, and 10 g of granular white rabbit S2X manufactured by Nippon Enviro Chemicals Co., Ltd. was added and sealed, followed by stirring and mixing at room temperature for 15 minutes. Thereafter, only the acetonitrile solution after the activated carbon treatment step was recovered through a filter.
 得られた、アセトニトリル液中のトルエンの含有量を上記のガスクロマトグラフィー詳細分析、及び、GC-MSで分析したが、ともに、トルエンは検出できなかった。 The content of toluene in the obtained acetonitrile solution was analyzed by the above detailed gas chromatography analysis and GC-MS, but toluene could not be detected in both cases.
〔実施例3〕
<アセトニトリル/トルエン/水 模擬組成液を用いた活性炭処理実験>
 活性炭処理工程におけるトルエンの除去効率に対する被処理液の水分含有量の影響をみるため、模擬液を用いて活性炭処理工程を行った。模擬液としては、トルエンの含有量をアセトニトリル100質量%に対して13.5質量ppmとし、該アセトニトリルに水を添加し、液中水分含有量を0,10,20,40,60質量%に調整したものを用意した。
Example 3
<Activated carbon treatment experiment using acetonitrile / toluene / water simulated composition solution>
In order to examine the influence of the water content of the liquid to be treated on the removal efficiency of toluene in the activated carbon treatment process, the activated carbon treatment process was performed using a simulated liquid. As a simulation liquid, the content of toluene is 13.5 mass ppm with respect to 100 mass% of acetonitrile, water is added to the acetonitrile, and the water content in the liquid is adjusted to 0, 10, 20, 40, 60 mass%. I prepared the adjusted one.
 それぞれ水分含有量の異なる模擬液を密閉容器にアセトニトリル20g相当ずつを投入し、カルゴンカーボンジャパン株式会社製液相用破砕炭MO10活性炭1gを添加し、室温下10分攪拌した。その後、それぞれ活性炭処理工程後の模擬液中に含まれるトルエンの含有量を詳細分析して、除去率を求めた。結果を図1に示す。なお、除去率は、(活性炭処理工程前の模擬液のトルエン含有量-活性炭処理工程後の模擬液のトルエン含有量)×100/(活性炭処理工程前の模擬液のトルエン含有量)[%]にて算出した。 Each of the simulated liquids each having a different water content was charged into an airtight container in an amount equivalent to 20 g of acetonitrile, 1 g of liquid phase crushed coal MO10 activated carbon produced by Calgon Carbon Japan Co., Ltd. was added, and the mixture was stirred at room temperature for 10 minutes. Then, the removal rate was calculated | required by analyzing in detail the content of toluene contained in the simulated liquid after each activated carbon treatment step. The results are shown in FIG. The removal rate is (toluene content of the simulated liquid before the activated carbon treatment process−toluene content of the simulated liquid after the activated carbon treatment process) × 100 / (toluene content of the simulated liquid before the activated carbon treatment process) [%] It calculated in.
 本実施例から、本実施の形態における活性炭処理によるトルエンの除去は、被処理液の水分量が多いほど効果的に除去できることが判る。従って、活性炭処理するのに好ましいタイミングは、第1には反応器出口の含水粗アセトニトリルであり、第2には濃縮工程の蒸留塔出口の粗アセトニトリルであり、第3には脱水工程の連続式向流接触塔出口の脱水アセトニトリルであることが判る。 From this example, it can be seen that the removal of toluene by the activated carbon treatment in this embodiment can be effectively removed as the amount of water in the liquid to be treated increases. Accordingly, the preferred timing for the activated carbon treatment is firstly the crude water-containing acetonitrile at the outlet of the reactor, the second is the crude acetonitrile at the outlet of the distillation column in the concentration step, and the third is the continuous type of the dehydration step. It turns out that it is dehydrated acetonitrile at the counter-current contact tower exit.
〔実施例4〕
<アセトニトリル/トルエン/水 模擬組成液を用いた活性炭処理実験>
 活性炭として日本エンバイロケミカルズ株式会社製粒状白鷺S2Xを用い、模擬液としてトルエンの含有量をアセトニトリル100質量%に対して13.55質量ppmとしたアセトニトリル水溶液(液中水分含有量0質量%、60質量%)を用いたこと以外は、実施例3と同様に活性炭処理試験を行った。結果を図2に示す。
Example 4
<Activated carbon treatment experiment using acetonitrile / toluene / water simulated composition solution>
Aqueous acetonitrile aqueous solution (water content 0% by mass, 60% by mass in liquid) using granular white birch S2X manufactured by Nippon Enviro Chemicals Co., Ltd. as activated carbon and having toluene content of 13.55 ppm by mass with respect to 100% by mass as acetonitrile. %) Was used, and the activated carbon treatment test was performed in the same manner as in Example 3. The results are shown in FIG.
〔実施例5〕
<アセトニトリル/トルエン/水 模擬組成液を用いた活性炭処理実験>
 活性炭として日本エンバイロケミカルズ株式会社製粒状白鷺G2Cを用いたこと以外は、実施例4と同様に活性炭処理試験を行った。結果を図3に示す。活性炭の銘柄や使用量により前後はするが、実施例3~5の結果から、含水アセトニトリル中の微量のトルエンは、該含水アセトニトリルの水分量が多いほど効果的に除去できることがわかる。
Example 5
<Activated carbon treatment experiment using acetonitrile / toluene / water simulated composition solution>
An activated carbon treatment test was conducted in the same manner as in Example 4 except that Nippon Enviro Chemicals Co., Ltd. granular white birch G2C was used as the activated carbon. The results are shown in FIG. Although it depends on the brand and amount of the activated carbon, the results of Examples 3 to 5 show that a small amount of toluene in the water-containing acetonitrile can be effectively removed as the water content of the water-containing acetonitrile increases.
〔実施例6〕
<含水粗アセトニトリルの活性炭カラム処理実験>
 内径30mmで高さ350mmのステンレス管に日本エンバイロケミカルズ株式会社製活性炭粒状白鷺S2Xを400g充填した。実施例1で得られた含水粗アセトニトリルをポンプにて32ml/分の供給速度で該活性炭カラム下部より通液し、カラム上部から処理後の含水粗アセトニトリルを回収した。カラムでの該含水粗アセトニトリルの活性炭層滞留時間は30分と見積もられる。該条件にて1kgの含水粗アセトニトリルを処理し、処理後の含水粗アセトニトリル中のトルエン含有量をガスクロマトグラフィーで分析したが、検出限界以下であった。
Example 6
<Activated carbon column treatment experiment of hydrous crude acetonitrile>
A stainless steel tube having an inner diameter of 30 mm and a height of 350 mm was charged with 400 g of activated carbon granular white birch S2X manufactured by Nippon Enviro Chemicals. The hydrous crude acetonitrile obtained in Example 1 was passed through the lower part of the activated carbon column at a feed rate of 32 ml / min with a pump, and the hydrous crude acetonitrile after the treatment was recovered from the upper part of the column. The residence time of the activated carbon layer of the water-containing crude acetonitrile in the column is estimated to be 30 minutes. Under such conditions, 1 kg of hydrous crude acetonitrile was treated, and the toluene content in the hydrous crude acetonitrile after treatment was analyzed by gas chromatography, but it was below the detection limit.
 本実施例から、工業的に実施可能な活性炭カラム固定層流通方式にて、トルエンを吸着除去できることが判る。 From this example, it can be seen that toluene can be adsorbed and removed by a commercially available activated carbon column fixed bed circulation method.
 本出願は、2014年10月31日に日本国特許庁へ出願された日本特許出願(特願2014-223446)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application (Japanese Patent Application No. 2014-223446) filed with the Japan Patent Office on October 31, 2014, the contents of which are incorporated herein by reference.
 本発明によれば、化学反応用の溶媒や、特には医薬中間体の合成、精製に、或いは、高速液体クロマトグラフィーの移動相溶媒などに用いられる高純度アセトニトリルを酢酸とアンモニアから製造するに当たり、高収率で安定に製造でき、かつ、副生する芳香族化合物を簡便な方法で容易に除去することができるので、波長200nmでの紫外線吸収の吸光度の低い高純度なアセトニトリルの製造方法を提供する方法として産業上の利用可能性を有する。 According to the present invention, a solvent for chemical reaction, in particular, the synthesis and purification of a pharmaceutical intermediate, or the production of high-purity acetonitrile used for mobile phase solvent of high performance liquid chromatography from acetic acid and ammonia, Providing a method for producing high-purity acetonitrile with low UV absorption at a wavelength of 200 nm because it can be stably produced in high yield and by-product aromatic compounds can be easily removed by a simple method. It has industrial applicability as a method to do this.

Claims (7)

  1.  酢酸とアンモニアとを固体酸触媒を含有する触媒の存在下に気相反応させて含水粗アセトニトリルを得る気相反応工程と、
     前記含水粗アセトニトリル、及び/又は、前記含水粗アセトニトリルの精製物を、活性炭処理する活性炭処理工程と、を有する、
     アセトニトリルの製造方法。
    A gas phase reaction step in which acetic acid and ammonia are subjected to a gas phase reaction in the presence of a catalyst containing a solid acid catalyst to obtain hydrous crude acetonitrile;
    An activated carbon treatment step of subjecting the hydrous crude acetonitrile and / or the purified product of the hydrous crude acetonitrile to an activated carbon treatment,
    A method for producing acetonitrile.
  2.  前記固体酸触媒が中間細孔径ゼオライトである、請求項1に記載のアセトニトリルの製造方法。 The method for producing acetonitrile according to claim 1, wherein the solid acid catalyst is an intermediate pore size zeolite.
  3.  前記活性炭処理工程後の、前記含水粗アセトニトリル及び/又は前記含水粗アセトニトリルの精製物中のトルエンの含有量が、アセトニトリル100質量%に対して、1.0質量ppm未満である、請求項1又は2に記載のアセトニトリルの製造方法。 The content of toluene in the purified product of the hydrous crude acetonitrile and / or the hydrous crude acetonitrile after the activated carbon treatment step is less than 1.0 ppm by mass with respect to 100% by mass of acetonitrile. 2. The method for producing acetonitrile according to 2.
  4.  前記活性炭処理工程において、前記含水租アセトニトリルを活性炭処理する、請求項1~3のいずれか1項に記載のアセトニトリルの製造方法。 The method for producing acetonitrile according to any one of claims 1 to 3, wherein in the activated carbon treatment step, the hydrated acetonitrile is treated with activated carbon.
  5.  前記気相反応工程において、WHSVが、0.5~20h-1である、請求項1~4のいずれか1項に記載のアセトニトリルの製造方法。 The method for producing acetonitrile according to any one of claims 1 to 4, wherein in the gas phase reaction step, WHSV is 0.5 to 20 h- 1 .
  6.  前記中間細孔径ゼオライトが、ZSM-5型ゼオライトを含む、請求項2~5のいずれか1項に記載のアセトニトリルの製造方法。 The method for producing acetonitrile according to any one of claims 2 to 5, wherein the intermediate pore size zeolite comprises ZSM-5 type zeolite.
  7.  請求項1~6のいずれか1項に記載のアセトニトリルの製造方法により製造された、アセトニトリル。 Acetonitrile produced by the method for producing acetonitrile according to any one of claims 1 to 6.
PCT/JP2015/080086 2014-10-31 2015-10-26 Method for producing acetonitrile WO2016068068A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580058994.5A CN107108474B (en) 2014-10-31 2015-10-26 The manufacturing method of acetonitrile
JP2016556555A JP6272498B2 (en) 2014-10-31 2015-10-26 Acetonitrile production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-223446 2014-10-31
JP2014223446 2014-10-31

Publications (1)

Publication Number Publication Date
WO2016068068A1 true WO2016068068A1 (en) 2016-05-06

Family

ID=55857407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080086 WO2016068068A1 (en) 2014-10-31 2015-10-26 Method for producing acetonitrile

Country Status (3)

Country Link
JP (1) JP6272498B2 (en)
CN (1) CN107108474B (en)
WO (1) WO2016068068A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019053293A (en) * 2017-09-13 2019-04-04 住友化学株式会社 Manufacturing method for polarizer film
CN113620836A (en) * 2021-08-13 2021-11-09 山东达民化工股份有限公司 Preparation method of acetonitrile
CN113956179A (en) * 2021-12-20 2022-01-21 潍坊中汇化工有限公司 Acetonitrile refining method and application thereof
WO2022231697A1 (en) * 2016-02-19 2022-11-03 Alliance For Sustainable Energy, Llc Systems and methods for producing nitriles

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109085260B (en) * 2018-07-16 2021-08-20 广东工业大学 Method for purifying pesticide residue grade acetonitrile
CN114133342A (en) * 2021-12-20 2022-03-04 潍坊中汇化工有限公司 Acetonitrile working solution for preparing chromatograph and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004339112A (en) * 2003-05-14 2004-12-02 Mitsubishi Rayon Co Ltd Method for producing high-purity acetonitrile
JP2010209010A (en) * 2009-03-11 2010-09-24 Koei Chem Co Ltd Method for producing acetonitrile
JP2010241726A (en) * 2009-04-06 2010-10-28 Sozo Kagaku Kenkyusho:Kk Method and apparatus for producing acetonitrile
CN101891648A (en) * 2009-05-22 2010-11-24 于景东 Method for preparing high-purity acetonitrile from acetic acid and ammonia by two steps

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004339112A (en) * 2003-05-14 2004-12-02 Mitsubishi Rayon Co Ltd Method for producing high-purity acetonitrile
JP2010209010A (en) * 2009-03-11 2010-09-24 Koei Chem Co Ltd Method for producing acetonitrile
JP2010241726A (en) * 2009-04-06 2010-10-28 Sozo Kagaku Kenkyusho:Kk Method and apparatus for producing acetonitrile
CN101891648A (en) * 2009-05-22 2010-11-24 于景东 Method for preparing high-purity acetonitrile from acetic acid and ammonia by two steps

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERIC L. TOLLEFSON ET AL.: "Development of a Process for Production of Acetonitrile from Acetic Acid and Ammonia", THE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, vol. 48, no. 2, 1970, pages 219 - 23, XP055277877 *
K. NAGAIAH ET AL.: "Preparation of nitriles from carboxylic acids over zeolite catalysts", INDIAN JOURNAL OF CHEMICAL TECHNOLOGY, pages 356 - 8, XP055277876 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022231697A1 (en) * 2016-02-19 2022-11-03 Alliance For Sustainable Energy, Llc Systems and methods for producing nitriles
JP2019053293A (en) * 2017-09-13 2019-04-04 住友化学株式会社 Manufacturing method for polarizer film
CN113620836A (en) * 2021-08-13 2021-11-09 山东达民化工股份有限公司 Preparation method of acetonitrile
CN113956179A (en) * 2021-12-20 2022-01-21 潍坊中汇化工有限公司 Acetonitrile refining method and application thereof

Also Published As

Publication number Publication date
JP6272498B2 (en) 2018-01-31
CN107108474A (en) 2017-08-29
JPWO2016068068A1 (en) 2017-07-20
CN107108474B (en) 2019-08-06

Similar Documents

Publication Publication Date Title
JP6272498B2 (en) Acetonitrile production method
KR101430798B1 (en) Purification of alcohols prior to their use in the presence of an acid catalyst
RU2658820C2 (en) Carbonylation method
DK2328852T3 (en) PROCESS OF ALKYLING THE BENZEN WITH ISOPROPANOL OR MIXTURES OF ISOPROPANOL AND PROPYLENE
KR101227221B1 (en) Process to make olefins from ethanol
KR101579360B1 (en) Process for producing phenol
JP6391703B2 (en) Acetonitrile production method
RU2656599C2 (en) Process for carbonylation of dimethyl ether
JP2002284784A5 (en)
RU2014127190A (en) Preparation of xylenes by methylation of aromatic compounds
KR101579359B1 (en) Method for producing phenol and/or cyclohexanone
JP6251821B2 (en) Acetonitrile production method
KR20040023639A (en) Method for Selectively Synthesising Triethylenediamine
KR20120044880A (en) Method for manufacturing cyclohexanone oxime
JP2017530150A (en) Method for synthesizing 2,5-dichlorophenol
JP4337815B2 (en) Method for producing ω-cyanoaldehyde compound
JP6638364B2 (en) Method for producing piperazine and triethylenediamine
JP6451311B2 (en) Method for producing piperazine and triethylenediamine
ES2206066B1 (en) BECKMANN TRANSPOSITION OF THE OXYM OF THE CYCLODODECANONE WITH SOLID CATALYSTS
EP2935183A1 (en) Process for making phenol and/or cyclohexanone
CN103664474A (en) Method for synthesizing p-diethylbenzene employing ethylbenzene-ethanol alkylation reaction
JP2015107921A (en) Production method of piperazine and tri-ethylene diamine
CN103664473A (en) Method for synthesizing p-diethylbenzene by ethylbenzene and ethylene
WO2016160092A1 (en) Process for making cyclohexanone and/or phenol
KR20140001929A (en) Process for producing cumene

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15855270

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016556555

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15855270

Country of ref document: EP

Kind code of ref document: A1