JP2004338986A - Method of producing substrate with heat ray shielding film, and method of producing article including electrically conductive oxide - Google Patents

Method of producing substrate with heat ray shielding film, and method of producing article including electrically conductive oxide Download PDF

Info

Publication number
JP2004338986A
JP2004338986A JP2003136058A JP2003136058A JP2004338986A JP 2004338986 A JP2004338986 A JP 2004338986A JP 2003136058 A JP2003136058 A JP 2003136058A JP 2003136058 A JP2003136058 A JP 2003136058A JP 2004338986 A JP2004338986 A JP 2004338986A
Authority
JP
Japan
Prior art keywords
conductive oxide
substrate
heat ray
film
shielding film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003136058A
Other languages
Japanese (ja)
Inventor
Mizuho Matsuda
瑞穂 松田
Toshifumi Tsujino
敏文 辻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2003136058A priority Critical patent/JP2004338986A/en
Publication of JP2004338986A publication Critical patent/JP2004338986A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Surface Treatment Of Glass (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of producing a substrate with a heat ray shielding film in which at least heat ray shielding capability by electrically conductive oxide is not deteriorated by heat treatment without requiring special apparatuses for controlling an atmosphere. <P>SOLUTION: In a substrate with a heat ray shielding film comprising a glass plate 1 as a substrate and an electrically conductive oxide-containing film 5 formed thereon, the film is heated in a state where the electrically conductive oxide is coated with an oxidation prevention material including silicon oxide and alkali metal oxide, so that at least one selected from insolation transmissivity and light transmissivity at a wavelength of 1,500 nm is reduced compared with the case before the heating. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、熱線遮蔽膜付き基体、例えば車両や建築物の窓に適した特性を有する熱線遮蔽膜付きガラス板の製造方法に関する。本発明は、さらに、導電性酸化物を含む物品の製造方法に関する。
【0002】
【従来の技術】
錫含有酸化インジウム(ITO)、アンチモン含有酸化錫(ATO)などの導電性酸化物を含む被膜は、導電膜として、さらには赤外線を選択的に遮蔽する熱線遮蔽膜として用いられている。これら酸化物には、ITOのようにその導電性に酸化物中の酸素欠陥が寄与しているものがある。これを考慮し、ITO粉末の製造工程において、ITO粉末の原料を加圧不活性ガス中で熱処理することにより、得られるITO粉末を低抵抗化することが提案されている(特許文献1)。
【0003】
【特許文献1】
特開平7−21831号公報
【0004】
【発明が解決しようとする課題】
しかし、特許文献1が提案するような不活性ガス中での熱処理には、雰囲気を調整するための特別な装置が必要とされる。
【0005】
また、導電性酸化物を含む被膜の用途には、例えば車両用窓ガラスのように、被膜を形成してから基体(ガラス板)の加工、具体的には曲げおよび/または強化のために、基体の熱処理を要するものも含まれる。この場合、特許文献1が開示する方法により製造した導電性酸化物には、製造時および基体加工時に重複して熱処理が行われることになる。
【0006】
本発明は、雰囲気を調整するための特別の装置を必要としない熱処理により、導電性酸化物に由来する熱線遮蔽能を少なくとも劣化させない、熱線遮蔽膜付き基体の製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、基体と、この基体上に形成された導電性酸化物を含む被膜とを含む熱線遮蔽膜付き基体の製造方法であって、上記導電性酸化物が珪素酸化物およびアルカリ金属酸化物を含む酸化防止材料に被覆された状態で上記被膜を加熱することにより、加熱前と比較して、日射透過率および波長1500nmにおける光線透過率から選ばれる少なくとも一方を低下させることを特徴とする熱線遮蔽膜付き基体の製造方法を提供する。
【0008】
日射透過率などの低下は、導電性酸化物の導電性の向上に伴う赤外線遮蔽能(熱線遮蔽能)の改善によるものである。本発明は、別の側面から、導電性酸化物を含む物品の製造方法であって、この導電性酸化物が珪素酸化物およびアルカリ金属酸化物を含む酸化防止材料により被覆された状態で上記導電性酸化物を加熱することにより、加熱前と比較して、上記導電性酸化物の赤外線遮蔽能を向上させることを特徴とする導電性酸化物を含む物品の製造方法を提供する。
【0009】
【発明の実施の形態】
酸素含有雰囲気に曝された状態で高温に加熱されると、ITOなどの導電性酸化物は、酸素欠陥の減少により赤外線遮蔽能が低下する。しかし、珪素酸化物およびアルカリ金属酸化物を含む酸化防止材料により被覆した状態で加熱すると、赤外線遮蔽能の低下が抑制されるばかりでなく、驚くべきことに、赤外線遮蔽能を改善できることが確認できた。赤外線遮蔽能の向上の程度は、加熱前の導電性酸化物の状態にも依存するが、本発明は、少なくとも、その導電性酸化物が本来潜在的に有する特性を回復させ、発揮させる方法として有効である。本発明の方法は、熱線遮蔽膜付き基体に限らず、導電性酸化物の導電性または赤外線遮蔽能を利用する各種物品に適用できる。
【0010】
本発明の製造方法では、導電性酸化物を含む被膜が、上記酸化防止材料を含むマトリックスと、このマトリックス中に分散した、導電性酸化物としての導電性酸化物微粒子とを含んでいてもよい。この被膜は、導電性酸化物微粒子および水ガラスを含む液組成物から形成することが好ましい。
【0011】
本発明の製造方法では、導電性酸化物を含む被膜を形成し、この被膜上に上記酸化防止材料からなる酸化防止膜を形成することにより導電性酸化物を酸化防止材料により被覆してもよい。この被膜は、スパッタリング法などの物理的成膜法、または導電性酸化物微粒子を含む液組成物から、形成するとよい。酸化防止膜は、水ガラスを含む液組成物から形成することが好ましい。
【0012】
加熱温度は、導電性が向上する限り制限はないが、400℃以上が好適であり、保護膜が膜としての形態を保ちうる温度以下、例えば700℃以下、が好ましい。加熱の際の雰囲気にも特に制限はなく、大気中などの酸素含有雰囲気中で加熱処理してもよい。
【0013】
本発明の製造方法では、基体がガラス板である場合には、被膜の加熱処理に伴って加熱されたガラス板に、曲げ加工処理および強化処理から選ばれる少なくとも一方の処理を施すとよい。この好ましい例によれば、1回の熱処理により、導電性酸化物の特性改善とガラス板の曲げおよび/または(風冷)強化とを行うことができる。この処理のために、ガラス板は、好ましくは550〜700℃にまで加熱される。
【0014】
酸化防止材料は、珪素酸化物がいわゆるガラス骨格(ガラス網目構造)を形成するガラス質材料であってもよい。この材料では、アルカリ金属酸化物がガラス骨格を修飾している。
【0015】
本発明によれば、70%以上の可視光透過率(Ya)を保ちながら、日射透過率(Tg)を60%以下、好ましくは50%以下、波長1500nmにおける光線透過率(T1500)を25%以下、好ましくは20%以下にまで低減することもできる。本発明の好ましい実施形態では、同時に、自動車の課金システムに用いられる波長850nmにおける光線透過率を30%以上に保持することも可能である。さらに、ヘイズ率を1%以下に抑制することもできる。
【0016】
図1は、本発明により得られる熱線遮蔽膜付き基体の一例を示す断面図である。基体であるガラス板1の一主面上に、導電性酸化物および酸化防止材料を含む被膜5が形成されている。この被膜5では、導電性酸化物微粒子が酸化防止材料からなるマトリックスに分散していてもよい。図2に示す熱線遮蔽膜付き基体のように、導電性酸化物を含む被膜2上に、酸化防止材料からなる保護膜(酸化防止膜)3を形成することにより、導電性酸化物への酸素の供給を遮断してもよい。図3に示したように、ガラス板1を曲げ加工しても構わない。
【0017】
基体としては、透明性を有する基板、特にガラス板、例えばソーダライムガラス板(色などに限定はない)、が適しているが、これに限らず、例えば金属板などを用いてもよい。
【0018】
導電性酸化物としては、ITO、ATOなどを用いればよいが、ITOが好適である。導電性酸化物を含む被膜の形成方法としては、導電性酸化物微粒子の分散液を塗布し、乾燥させる方法(微粒子法)、スパッタリング法に代表される物理的成膜法、有機酸塩または無機酸塩である金属化合物を原料とするゾル−ゲル法、を例示できる。
【0019】
酸化防止材料は、質量%で表して、珪素酸化物30〜85%、アルカリ金属酸化物5〜30%、を含有することが好ましい。珪素酸化物の含有率が低すぎると材料の強度が低下し、逆に高すぎると成形性が低下する。珪素酸化物の含有率が高すぎてアルカリ金属酸化物が十分に含まれていないと、酸化防止膜の熱膨張係数が小さくなり、例えば基体として一般的なソーダライムガラスを用いる場合には基体との熱膨張係数との差が大きくなる。アルカリ金属酸化物の含有率が30%を超えると、酸化防止材料の熱膨張係数が高くなりすぎる。熱膨張係数の相違が大きすぎると、加熱に伴い、膜にクラックなどが発生しやすくなる。
【0020】
アルカリ金属酸化物は、2以上のアルカリ金属を含むことが好ましい。単一のアルカリ金属を含む場合と比較して、膜の耐湿性、耐薬品性、耐久性が向上し、膜の形成時の均一性、焼成時の膜安定性などにおいても改善が見られるため、膜として形成しやすくなる。アルカリ金属としては、ナトリウムと、カリウムおよびリチウムから選ばれる少なくとも1種とを含むとよい。
【0021】
酸化防止材料中に導電性酸化物微粒子を分散させる場合、微粒子の含有量は1質量%以上60質量%以下が好ましい。微粒子の量が少なすぎると赤外線遮蔽能が得られず、逆に多すぎると被膜の強度が低下する場合がある。
【0022】
酸化防止材料は、微粒子を分散させるマトリックスとする場合、酸化防止膜として形成する場合のいずれにおいても、水ガラスを含む液組成物から形成することが好ましい。水ガラスとは、アルカリ珪酸塩の濃厚水溶液をいい、アルカリ金属としては通常ナトリウムが含まれている。代表的な水ガラスは、NaO・nSiO(n:正の任意の数、例えば2〜4)により示すことができる。水ガラスは、アルカリ金属酸化物および珪素酸化物の双方を供給する原料であるが、液組成物には、必要に応じ、さらにアルカリ珪酸塩、珪素酸化物を適量加えるとよい。
【0023】
酸化防止材料では、珪素酸化物が、珪素酸化物微粒子として含まれていてもよい。珪素酸化物微粒子を含ませると膜強度が向上する。珪素酸化物は、コロイダルシリカから供給することが好ましい。
【0024】
【実施例】
本実施例では、以下に従い、熱線遮蔽膜付きガラス板の特性を評価した。なお、本実施例では、乾燥、焼成のための加熱はすべて大気中で行った。
【0025】
透明性は、ヘイズメーター(濁度計、スガ試験機製、HGM−2DP)を用いたヘイズ率の測定により評価した。光学特性は、分光光度計(島津製作所製、UV−3000PC)を用いて測定し、波長1500nmにおける透過率(T1500nm)、波長850nmにおける透過率(T850nm)、ならびにJISR3106に従って算出した可視光透過率(Ya)および日射透過率(Tg)により評価した。熱線遮蔽膜の膜厚は、表面形状測定装置(TENCOR INSTRUMENTS製、ALPHA−STEP 200)を用いて測定した。
【0026】
(実施例1)
本実施例では、酸化防止材料のマトリックス中にITO微粒子が分散した熱線遮蔽膜を形成した。
【0027】
珪酸ナトリウム水溶液(水ガラス3号、キシダ化学製)、珪酸カリウム水溶液(スノーテックスK、日産化学工業製)、水分散コロイダルシリカ(KE−W10、粒径110nm、日本触媒製)、ITO微粒子の水分散液(粒径50nm、シーアイ化成製)を秤量し撹拌することで、熱線遮蔽膜形成用液組成物を得た。この液組成物中の各成分の量と各成分から生成する酸化物の割合(質量%)を(表1)に示す。
【0028】
洗浄したフロートガラス板(100×100mm;厚み3.4mm)上に、上記液組成物をスピンコーターにより塗布した。スピンコートの条件は16.6回転毎秒(=1000rpm)で10秒間とした。得られた熱線遮蔽膜付きガラス基板を室温で乾燥させ、さらに250℃の乾燥炉内にて10分間加熱した。こうしてガラス板の一主面上にITO微粒子が分散した熱線遮蔽膜を形成した。
【0029】
この熱線遮蔽膜付きガラス板を、焼成炉内でガラス表面の温度が650℃に到達するまで加熱した。こうして焼成した熱線遮蔽膜付きガラス板の特性を(表1)に示す。
【0030】
(参照例1)
焼成炉内での焼成を省略した以外は、実施例1と同様にして熱線遮蔽膜付きガラス板を得た。この熱線遮蔽膜付きガラス板について測定した特性を(表1)に示す。
【0031】
(実施例2)
珪酸カリウム水溶液に代えて珪酸リチウム水溶液(LSS35、日産化学工業製)を用いて(表1)の配合比とした以外は、実施例1と同様にして熱線遮蔽膜付きガラス板を得た。この熱線遮蔽膜付きガラス板について測定した特性を(表1)に示す。
【0032】
(参照例2)
焼成炉内での焼成を省略した以外は、実施例2と同様にして熱線遮蔽膜付きガラス板を得た。この熱線遮蔽膜付きガラス板について測定した特性を(表1)に示す。
【0033】

Figure 2004338986
【0034】
T1500nmおよびTgはいずれも低下した。これは、ガラス質のマトリックスで覆った状態で焼成することにより、ITO微粒子の赤外線遮蔽能が向上したためである。
【0035】
(実施例3)
本実施例では、熱線遮蔽膜上に酸化防止膜を形成した。
【0036】
珪酸ナトリウム水溶液(水ガラス3号、キシダ化学製)、珪酸カリウム水溶液(スノーテックスK、日産化学工業製)、水分散コロイダルシリカ(KE−W10、粒径110nm、日本触媒製)、水を秤量し撹拌することで、液組成物を得た。この液組成物中の各成分の量を(表2)に示す。
【0037】
洗浄したフロートガラス板(100×100mm;厚み3.4mm)上に、ITO微粒子水分散液(粒径50nm、三菱マテリアル製市販品、ITO20質量%)をスピンコーターにより塗布した。スピンコートの条件は16.6回転毎秒(=1000rpm)で10秒間とした。得られた熱線遮蔽膜付きガラス板を室温で乾燥させ、さらに250℃の乾燥炉内で10分間加熱した。こうしてガラス板の一主面上にITO微粒子が分散した熱線遮蔽膜を形成した。
【0038】
引き続き、熱線遮蔽膜上に、上記液組成物を上記と同様の条件でスピンコーターにより塗布した。このガラス板を室温で乾燥させ、さらに250℃の乾燥炉内で10分間加熱した。こうして熱線遮蔽膜上に酸化防止膜を形成した。
【0039】
この2層構成の被膜付きガラス板を、焼成炉内でガラス表面の温度が650℃に到達するまで加熱した。こうして焼成した熱線遮蔽膜付きガラス板の特性を(表3)に示す。
【0040】
(参照例3)
焼成炉内での焼成を省略した以外は、実施例3と同様にして熱線遮蔽膜付きガラス板を得た。この熱線遮蔽膜付きガラス板について測定した特性を(表3)に示す。
【0041】
(実施例4)
ガラス板の厚みを1.5mmに変更し、熱線遮蔽膜をスパッタリング法により形成した以外は、実施例3と同様にして熱線遮蔽膜付きガラス板を得た。この熱線遮蔽膜付きガラス板について測定した特性を(表3)に示す。
【0042】
(参照例4)
焼成炉内での焼成を省略した以外は、実施例4と同様にして熱線遮蔽膜付きガラス板を得た。この熱線遮蔽膜付きガラス板について測定した特性を(表3)に示す。
【0043】
Figure 2004338986
【0044】
Figure 2004338986
【0045】
T1500nmおよびTgはいずれも低下するか、同じ値を保った。これは、ガラス質の酸化防止膜で覆った状態で焼成することにより、ITO微粒子またはITO薄膜の赤外線遮蔽能が向上したためである。
【0046】
(比較例1)
酸化防止膜を形成しない以外は、実施例3と同様にして熱線遮蔽膜付きガラス板を得た。この熱線遮蔽膜付きガラス板について焼成炉内での焼成前後で測定した特性を(表4)に示す。
【0047】
(比較例2)
珪酸ナトリウム水溶液、珪酸カリウム水溶液を加えない液組成物(膜形成成分としてはコロイダルシリカのみ)から酸化防止膜を形成した以外は、実施例3と同様にして熱線遮蔽膜付きガラス板を得た。この熱線遮蔽膜付きガラス板について焼成炉内での焼成前後で測定した特性を(表4)に示す。
Figure 2004338986
【0048】
酸化防止材料で被覆しない場合(比較例1)、アルカリ金属酸化物を含まない膜で被覆した場合(比較例2)とも、酸素含有雰囲気中、高温で加熱すると、Tg、T1500nmはともに上昇した。アルカリ金属酸化物を含まない被膜は、膜の緻密さが足りないため、酸化防止膜として機能しない。
【0049】
【発明の効果】
以上説明したとおり、本発明によれば、雰囲気を調整するための装置を必要とせずに導電性酸化物を含む物品、例えば熱線遮蔽膜付き基板の特性を向上させることができる。本発明によれば、加熱を伴う製品の加工時に導電性酸化物の特性を向上させることもできるため、導電性酸化物を含む物品の製造効率の改善にも効果がある。
【図面の簡単な説明】
【図1】本発明の熱線遮蔽膜付き基板の一例を示す断面図である。
【図2】本発明の熱線遮蔽膜付き基板の別の一例を示す断面図である。
【図3】本発明の熱線遮蔽膜付き基板のまた別の一例を示す断面図である。
【符号の説明】
1 ガラス板
2 熱線遮蔽膜
3 酸化防止膜
5 酸化防止材料を含む熱線遮蔽膜[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a substrate with a heat ray shielding film, for example, a glass sheet with a heat ray shielding film having characteristics suitable for windows of vehicles and buildings. The invention further relates to a method for producing an article comprising a conductive oxide.
[0002]
[Prior art]
A coating containing a conductive oxide such as tin-containing indium oxide (ITO) and antimony-containing tin oxide (ATO) is used as a conductive film and further as a heat ray shielding film for selectively shielding infrared rays. Among these oxides, there are those such as ITO in which oxygen vacancies in the oxide contribute to its conductivity. Taking this into consideration, it has been proposed to reduce the resistance of the obtained ITO powder by heat-treating the raw material of the ITO powder in a pressurized inert gas in the process of producing the ITO powder (Patent Document 1).
[0003]
[Patent Document 1]
JP-A-7-21831
[Problems to be solved by the invention]
However, a heat treatment in an inert gas as proposed in Patent Document 1 requires a special device for adjusting the atmosphere.
[0005]
In addition, for the use of a coating containing a conductive oxide, for example, like a window glass for a vehicle, after forming a coating, processing of a substrate (glass plate), specifically for bending and / or strengthening, Those requiring heat treatment of the substrate are also included. In this case, the conductive oxide manufactured by the method disclosed in Patent Literature 1 is subjected to heat treatment at the time of manufacturing and at the time of processing the substrate.
[0006]
An object of the present invention is to provide a method for manufacturing a substrate with a heat ray shielding film, which does not deteriorate at least the heat ray shielding ability derived from a conductive oxide by a heat treatment that does not require a special device for adjusting the atmosphere. I do.
[0007]
[Means for Solving the Problems]
The present invention is a method for producing a substrate with a heat ray shielding film, comprising a substrate and a coating containing a conductive oxide formed on the substrate, wherein the conductive oxide is a silicon oxide or an alkali metal oxide. Heating the coating in a state where the coating is coated with an antioxidant material containing at least one of: a heat ray characterized by lowering at least one selected from the solar transmittance and the light transmittance at a wavelength of 1500 nm, as compared to before heating. Provided is a method for manufacturing a substrate with a shielding film.
[0008]
The decrease in the solar radiation transmittance and the like is due to the improvement of the infrared shielding ability (heat ray shielding ability) accompanying the improvement of the conductivity of the conductive oxide. According to another aspect of the present invention, there is provided a method of manufacturing an article containing a conductive oxide, wherein the conductive oxide is coated with an antioxidant material containing a silicon oxide and an alkali metal oxide. A method for producing an article containing a conductive oxide, characterized by improving the infrared shielding ability of the conductive oxide by heating the conductive oxide as compared to before heating.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
When heated to a high temperature in a state where the conductive oxide is exposed to an oxygen-containing atmosphere, the conductive oxide such as ITO has a reduced infrared shielding capability due to a reduction in oxygen defects. However, when heated in a state of being coated with an antioxidant material containing a silicon oxide and an alkali metal oxide, it can be confirmed that not only a decrease in infrared shielding ability is suppressed, but also the infrared shielding ability can be surprisingly improved. Was. The degree of improvement in infrared shielding ability also depends on the state of the conductive oxide before heating, but the present invention at least restores the properties inherently possessed by the conductive oxide, as a method for exhibiting it. It is valid. The method of the present invention can be applied not only to a substrate with a heat ray shielding film but also to various articles utilizing the conductivity of a conductive oxide or infrared ray shielding ability.
[0010]
In the manufacturing method of the present invention, the coating containing the conductive oxide may include a matrix containing the antioxidant material and conductive oxide fine particles dispersed as a conductive oxide in the matrix. . This coating is preferably formed from a liquid composition containing conductive oxide fine particles and water glass.
[0011]
In the production method of the present invention, a conductive oxide may be coated with an antioxidant material by forming a film containing a conductive oxide and forming an antioxidant film made of the antioxidant material on the film. . This film is preferably formed by a physical film forming method such as a sputtering method or a liquid composition containing conductive oxide fine particles. The antioxidant film is preferably formed from a liquid composition containing water glass.
[0012]
The heating temperature is not limited as long as the conductivity is improved, but is preferably 400 ° C. or higher, and is preferably lower than the temperature at which the protective film can maintain its form as a film, for example, 700 ° C. or lower. There is no particular limitation on the atmosphere for the heating, and the heat treatment may be performed in an oxygen-containing atmosphere such as the air.
[0013]
In the production method of the present invention, when the substrate is a glass plate, at least one of a bending process and a strengthening process may be performed on the glass plate heated with the heat treatment of the coating. According to this preferred example, improvement of the properties of the conductive oxide and bending and / or (air cooling) strengthening of the glass sheet can be performed by one heat treatment. For this treatment, the glass sheet is heated, preferably to 550-700 ° C.
[0014]
The antioxidant material may be a vitreous material in which silicon oxide forms a so-called glass skeleton (glass network structure). In this material, the alkali metal oxide modifies the glass skeleton.
[0015]
According to the present invention, while maintaining the visible light transmittance (Ya) of 70% or more, the solar transmittance (Tg) is 60% or less, preferably 50% or less, and the light transmittance (T1500) at a wavelength of 1500 nm is 25%. Or less, preferably to 20% or less. In the preferred embodiment of the present invention, it is also possible to maintain the light transmittance at a wavelength of 850 nm used in an automobile billing system at 30% or more. Further, the haze ratio can be suppressed to 1% or less.
[0016]
FIG. 1 is a cross-sectional view showing an example of a substrate with a heat ray shielding film obtained by the present invention. A coating 5 containing a conductive oxide and an antioxidant material is formed on one main surface of a glass plate 1 serving as a base. In the coating 5, conductive oxide fine particles may be dispersed in a matrix made of an antioxidant material. As shown in FIG. 2, a protective film (antioxidant film) 3 made of an antioxidant material is formed on a coating 2 containing an electrically conductive oxide, as in the case of a substrate with a heat ray shielding film. May be shut off. As shown in FIG. 3, the glass plate 1 may be bent.
[0017]
As the substrate, a substrate having transparency, particularly a glass plate, for example, a soda lime glass plate (the color is not limited) is suitable, but not limited thereto, and a metal plate, for example, may be used.
[0018]
As the conductive oxide, ITO, ATO, or the like may be used, but ITO is preferable. As a method for forming a film containing a conductive oxide, a method of applying and drying a dispersion of conductive oxide fine particles (a fine particle method), a physical film forming method represented by a sputtering method, an organic acid salt or an inorganic salt Sol-gel method using a metal compound as an acid salt as a raw material.
[0019]
The antioxidant material preferably contains 30 to 85% of a silicon oxide and 5 to 30% of an alkali metal oxide in mass%. If the silicon oxide content is too low, the strength of the material will decrease, and if it is too high, the moldability will decrease. When the content of the silicon oxide is too high and the alkali metal oxide is not sufficiently contained, the thermal expansion coefficient of the antioxidant film becomes small, and for example, when a general soda lime glass is used as the substrate, Is larger than the thermal expansion coefficient. When the content of the alkali metal oxide exceeds 30%, the thermal expansion coefficient of the antioxidant material becomes too high. If the difference in thermal expansion coefficient is too large, cracks and the like are likely to occur in the film due to heating.
[0020]
The alkali metal oxide preferably contains two or more alkali metals. Compared to the case containing a single alkali metal, the moisture resistance, chemical resistance and durability of the film are improved, and the uniformity during film formation and the film stability during firing are also improved. , It is easy to form as a film. The alkali metal preferably contains sodium and at least one selected from potassium and lithium.
[0021]
When the conductive oxide fine particles are dispersed in the antioxidant material, the content of the fine particles is preferably from 1% by mass to 60% by mass. If the amount of the fine particles is too small, the infrared shielding ability cannot be obtained, and if the amount is too large, the strength of the coating may be reduced.
[0022]
Regardless of whether the antioxidant material is used as a matrix in which fine particles are dispersed or when the antioxidant material is formed as an antioxidant film, the antioxidant material is preferably formed from a liquid composition containing water glass. Water glass refers to a concentrated aqueous solution of an alkali silicate, and usually contains sodium as an alkali metal. A typical water glass can be represented by Na 2 O · nSiO 2 (n: any positive number, for example, 2 to 4). Water glass is a raw material that supplies both alkali metal oxides and silicon oxides, and it is preferable to add alkali silicates and silicon oxides to the liquid composition as needed.
[0023]
In the antioxidant material, silicon oxide may be included as silicon oxide fine particles. When silicon oxide fine particles are included, the film strength is improved. The silicon oxide is preferably supplied from colloidal silica.
[0024]
【Example】
In this example, the characteristics of the glass sheet with the heat ray shielding film were evaluated as follows. In this example, the heating for drying and firing was all performed in the air.
[0025]
The transparency was evaluated by measuring the haze ratio using a haze meter (turbidity meter, manufactured by Suga Test Instruments, HGM-2DP). The optical characteristics were measured using a spectrophotometer (UV-3000PC, manufactured by Shimadzu Corporation), and the transmittance at a wavelength of 1500 nm (T1500 nm), the transmittance at a wavelength of 850 nm (T850 nm), and the visible light transmittance calculated according to JISR3106 ( Ya) and the solar transmittance (Tg). The film thickness of the heat ray shielding film was measured using a surface shape measuring device (ALPHA-STEP 200, manufactured by TENCOR INSTRUMENTS).
[0026]
(Example 1)
In this example, a heat ray shielding film in which ITO fine particles were dispersed in a matrix of an antioxidant material was formed.
[0027]
Sodium silicate aqueous solution (water glass No. 3, manufactured by Kishida Chemical), potassium silicate aqueous solution (Snowtex K, manufactured by Nissan Chemical Industries), water-dispersed colloidal silica (KE-W10, particle size 110 nm, manufactured by Nippon Shokubai), water of ITO fine particles A liquid composition for forming a heat ray shielding film was obtained by weighing and stirring the dispersion liquid (particle size: 50 nm, manufactured by C-I-Kasei). The amount of each component in this liquid composition and the ratio (% by mass) of the oxide generated from each component are shown in (Table 1).
[0028]
The above liquid composition was applied on a washed float glass plate (100 × 100 mm; thickness 3.4 mm) by a spin coater. The spin coating condition was 16.6 revolutions per second (= 1000 rpm) for 10 seconds. The obtained glass substrate with a heat ray shielding film was dried at room temperature, and further heated in a drying oven at 250 ° C. for 10 minutes. Thus, a heat ray shielding film in which ITO fine particles were dispersed was formed on one main surface of the glass plate.
[0029]
This glass plate with a heat ray shielding film was heated in a firing furnace until the temperature of the glass surface reached 650 ° C. The properties of the glass plate with the heat ray shielding film thus fired are shown in (Table 1).
[0030]
(Reference example 1)
A glass plate with a heat ray shielding film was obtained in the same manner as in Example 1 except that the firing in the firing furnace was omitted. The properties measured for this heat-shielding glass sheet are shown in Table 1.
[0031]
(Example 2)
A glass plate with a heat ray shielding film was obtained in the same manner as in Example 1 except that the mixing ratio of (Table 1) was changed using an aqueous solution of lithium silicate (LSS35, manufactured by Nissan Chemical Industries, Ltd.) instead of the aqueous solution of potassium silicate. The properties measured for this heat-shielding glass sheet are shown in Table 1.
[0032]
(Reference Example 2)
A glass plate with a heat ray shielding film was obtained in the same manner as in Example 2 except that the firing in the firing furnace was omitted. The properties measured for this heat-shielding glass sheet are shown in Table 1.
[0033]
Figure 2004338986
[0034]
Both T1500 nm and Tg decreased. This is because the baking in a state covered with the vitreous matrix improved the infrared shielding ability of the ITO fine particles.
[0035]
(Example 3)
In this embodiment, an antioxidant film was formed on the heat ray shielding film.
[0036]
An aqueous solution of sodium silicate (water glass No. 3, manufactured by Kishida Chemical), an aqueous solution of potassium silicate (Snowtex K, manufactured by Nissan Chemical Industries), water-dispersed colloidal silica (KE-W10, particle size 110 nm, manufactured by Nippon Shokubai) and water are weighed. The liquid composition was obtained by stirring. The amount of each component in this liquid composition is shown in (Table 2).
[0037]
On a washed float glass plate (100 × 100 mm; thickness 3.4 mm), an aqueous dispersion of ITO fine particles (particle size: 50 nm, commercially available from Mitsubishi Materials, ITO 20% by mass) was applied by a spin coater. The spin coating condition was 16.6 revolutions per second (= 1000 rpm) for 10 seconds. The obtained glass plate with a heat ray shielding film was dried at room temperature, and further heated in a drying oven at 250 ° C. for 10 minutes. Thus, a heat ray shielding film in which ITO fine particles were dispersed was formed on one main surface of the glass plate.
[0038]
Subsequently, the liquid composition was applied on the heat ray shielding film by a spin coater under the same conditions as above. The glass plate was dried at room temperature, and further heated in a drying oven at 250 ° C. for 10 minutes. Thus, an antioxidant film was formed on the heat ray shielding film.
[0039]
The two-layered coated glass sheet was heated in a firing furnace until the temperature of the glass surface reached 650 ° C. The properties of the glass plate with the heat ray shielding film thus fired are shown in (Table 3).
[0040]
(Reference example 3)
A glass plate with a heat ray shielding film was obtained in the same manner as in Example 3, except that the firing in the firing furnace was omitted. The properties measured for this glass plate with a heat ray shielding film are shown in (Table 3).
[0041]
(Example 4)
A glass plate with a heat ray shielding film was obtained in the same manner as in Example 3 except that the thickness of the glass sheet was changed to 1.5 mm and the heat ray shielding film was formed by a sputtering method. The properties measured for this glass plate with a heat ray shielding film are shown in (Table 3).
[0042]
(Reference Example 4)
A glass plate with a heat ray shielding film was obtained in the same manner as in Example 4, except that the firing in the firing furnace was omitted. The properties measured for this glass plate with a heat ray shielding film are shown in (Table 3).
[0043]
Figure 2004338986
[0044]
Figure 2004338986
[0045]
Both T1500 nm and Tg decreased or remained the same. This is because the infrared shielding ability of the ITO fine particles or the ITO thin film was improved by baking in a state covered with the glassy antioxidant film.
[0046]
(Comparative Example 1)
A glass plate with a heat ray shielding film was obtained in the same manner as in Example 3 except that the antioxidant film was not formed. The properties of the glass sheet with the heat ray shielding film measured before and after firing in a firing furnace are shown in (Table 4).
[0047]
(Comparative Example 2)
A glass plate with a heat ray shielding film was obtained in the same manner as in Example 3, except that an antioxidant film was formed from a liquid composition to which no aqueous sodium silicate solution or potassium silicate aqueous solution was added (only colloidal silica was used as a film forming component). The properties of the glass sheet with the heat ray shielding film measured before and after firing in a firing furnace are shown in (Table 4).
Figure 2004338986
[0048]
In both cases of not coating with an antioxidant material (Comparative Example 1) and coating with a film containing no alkali metal oxide (Comparative Example 2), when heated at a high temperature in an oxygen-containing atmosphere, both Tg and T1500 nm increased. A film containing no alkali metal oxide does not function as an antioxidant film because the film is not dense enough.
[0049]
【The invention's effect】
As described above, according to the present invention, it is possible to improve the characteristics of an article containing a conductive oxide, for example, a substrate with a heat ray shielding film, without the need for a device for adjusting the atmosphere. ADVANTAGE OF THE INVENTION According to this invention, since the characteristic of a conductive oxide can also be improved at the time of processing of the product which requires heating, it is effective also in the improvement of the manufacturing efficiency of the articles | goods containing a conductive oxide.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing one example of a substrate with a heat ray shielding film of the present invention.
FIG. 2 is a sectional view showing another example of the substrate with a heat ray shielding film of the present invention.
FIG. 3 is a cross-sectional view showing another example of the substrate with a heat ray shielding film of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Glass plate 2 Heat ray shielding film 3 Antioxidant film 5 Heat ray shielding film containing antioxidant material

Claims (10)

基体と、前記基体上に形成された導電性酸化物を含む被膜とを含む熱線遮蔽膜付き基体の製造方法であって、前記導電性酸化物が珪素酸化物およびアルカリ金属酸化物を含む酸化防止材料に被覆された状態で前記被膜を加熱することにより、加熱前と比較して、日射透過率および波長1500nmにおける光線透過率から選ばれる少なくとも一方を低下させることを特徴とする熱線遮蔽膜付き基体の製造方法。A method for manufacturing a substrate with a heat ray shielding film, comprising: a substrate; and a coating containing a conductive oxide formed on the substrate, wherein the conductive oxide comprises a silicon oxide and an alkali metal oxide. A substrate with a heat-shielding film, characterized in that at least one selected from a solar transmittance and a light transmittance at a wavelength of 1500 nm is reduced by heating the coating in a state of being coated with the material, as compared to before heating. Manufacturing method. 前記被膜が、前記酸化防止材料を含むマトリックスと、前記マトリックス中に分散した、前記導電性酸化物としての導電性酸化物微粒子とを含む請求項1に記載の熱線遮蔽膜付き基体の製造方法。The method for producing a substrate with a heat ray shielding film according to claim 1, wherein the coating includes a matrix containing the antioxidant material and conductive oxide fine particles as the conductive oxide dispersed in the matrix. 前記被膜を、前記導電性酸化物微粒子および水ガラスを含む液組成物から形成する請求項2に記載の熱線遮蔽膜付き基体の製造方法。The method for producing a substrate with a heat ray shielding film according to claim 2, wherein the coating is formed from a liquid composition containing the conductive oxide fine particles and water glass. 前記被膜を形成し、前記被膜上に前記酸化防止材料からなる酸化防止膜を形成することにより前記導電性酸化物を前記酸化防止材料により被覆する請求項1に記載の熱線遮蔽膜付き基体の製造方法。The manufacturing of the substrate with a heat ray shielding film according to claim 1, wherein the conductive oxide is coated with the antioxidant material by forming the film and forming an antioxidant film made of the antioxidant material on the film. Method. 前記被膜を、スパッタリング法により、または導電性酸化物微粒子を含む液組成物から、形成する請求項4に記載の熱線遮蔽膜付き基体の製造方法。The method for producing a substrate with a heat ray shielding film according to claim 4, wherein the film is formed by a sputtering method or from a liquid composition containing conductive oxide fine particles. 前記酸化防止膜を、水ガラスを含む液組成物から形成する請求項4または5に記載の熱線遮蔽膜付き基体の製造方法。The method according to claim 4, wherein the antioxidant film is formed from a liquid composition containing water glass. 前記被膜を400℃以上で加熱する請求項1〜6のいずれかに記載の熱線遮蔽膜付き基体の製造方法。The method according to claim 1, wherein the coating is heated at 400 ° C. or higher. 前記被膜を、酸素含有雰囲気中で加熱する請求項1〜7のいずれかに記載の熱線遮蔽膜付き基体の製造方法。The method according to claim 1, wherein the coating is heated in an oxygen-containing atmosphere. 前記基体がガラス板であり、前記被膜の加熱に伴って加熱された前記ガラス板に、曲げ加工処理および強化処理から選ばれる少なくとも一方の処理を施す請求項1〜8のいずれかに記載の熱線遮蔽膜付き基体の製造方法。The heat ray according to any one of claims 1 to 8, wherein the substrate is a glass plate, and the glass plate heated with the heating of the coating film is subjected to at least one treatment selected from a bending process and a strengthening process. A method for producing a substrate with a shielding film. 導電性酸化物を含む物品の製造方法であって、前記導電性酸化物が珪素酸化物およびアルカリ金属酸化物を含む酸化防止材料により被覆された状態で前記導電性酸化物を加熱することにより、加熱前と比較して、前記導電性酸化物の赤外線遮蔽能を向上させることを特徴とする導電性酸化物を含む物品の製造方法。A method for producing an article containing a conductive oxide, by heating the conductive oxide in a state where the conductive oxide is coated with an antioxidant material including a silicon oxide and an alkali metal oxide, A method for producing an article containing a conductive oxide, wherein the infrared shielding ability of the conductive oxide is improved as compared to before heating.
JP2003136058A 2003-05-14 2003-05-14 Method of producing substrate with heat ray shielding film, and method of producing article including electrically conductive oxide Withdrawn JP2004338986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003136058A JP2004338986A (en) 2003-05-14 2003-05-14 Method of producing substrate with heat ray shielding film, and method of producing article including electrically conductive oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003136058A JP2004338986A (en) 2003-05-14 2003-05-14 Method of producing substrate with heat ray shielding film, and method of producing article including electrically conductive oxide

Publications (1)

Publication Number Publication Date
JP2004338986A true JP2004338986A (en) 2004-12-02

Family

ID=33526146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003136058A Withdrawn JP2004338986A (en) 2003-05-14 2003-05-14 Method of producing substrate with heat ray shielding film, and method of producing article including electrically conductive oxide

Country Status (1)

Country Link
JP (1) JP2004338986A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007081045A1 (en) * 2006-01-16 2007-07-19 Nippon Sheet Glass Company, Limited Glass plate for thin-film formation
JP2011187495A (en) * 2010-03-04 2011-09-22 Hitachi Ltd Solar battery module
US8558106B2 (en) 2009-10-20 2013-10-15 Industrial Technology Research Institute Solar cell device and method for fabricating the same
JP2015106140A (en) * 2013-12-03 2015-06-08 三菱マテリアル株式会社 Composition for forming low refractive index film with infrared blocking capability, method of forming low refractive index film using the same, and low refractive index film
WO2022107717A1 (en) * 2020-11-18 2022-05-27 Agc株式会社 Glass substrate with thermal barrier film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007081045A1 (en) * 2006-01-16 2007-07-19 Nippon Sheet Glass Company, Limited Glass plate for thin-film formation
US8558106B2 (en) 2009-10-20 2013-10-15 Industrial Technology Research Institute Solar cell device and method for fabricating the same
JP2011187495A (en) * 2010-03-04 2011-09-22 Hitachi Ltd Solar battery module
JP2015106140A (en) * 2013-12-03 2015-06-08 三菱マテリアル株式会社 Composition for forming low refractive index film with infrared blocking capability, method of forming low refractive index film using the same, and low refractive index film
WO2022107717A1 (en) * 2020-11-18 2022-05-27 Agc株式会社 Glass substrate with thermal barrier film

Similar Documents

Publication Publication Date Title
JP3384284B2 (en) Hydrophilic coating, hydrophilic substrate provided with the same, and methods for producing them
EP2078706B1 (en) Methods of making silica-titania coatings, and products containing the same
US4485146A (en) Glass body provided with an alkali diffusion-preventing silicon oxide layer
JP2001254072A (en) Preparation process of anti-fogging composition, anti- fogging coating agent and anti-fogging coated film- forming base material
CN101309759A (en) Process for producing base material for forming heat shielding film
JP2017132644A (en) Chemically strengthened glass sheet with functional film, manufacturing method, and article thereof
US20120021185A1 (en) Glass sheet
JP2006528059A (en) Preparation of photocatalytic coatings incorporated in glazing heat treatment
JP2018135260A (en) Coated protective window
US6602607B2 (en) Titanium doxide photocatalyst carrier and process for its production
TW201606356A (en) Anti-glare-layer substrate and article
WO2016163199A1 (en) Glass sheet and method for manufacturing same
JP2004338986A (en) Method of producing substrate with heat ray shielding film, and method of producing article including electrically conductive oxide
JP2013507322A (en) Method for producing glass plate containing antimony oxide
JP2004338985A (en) Substrate with heat ray shielding film, and its production method
WO2003045866A1 (en) Glass substrate with colored film, particle-containing solution for forming colored film and method for producing glass substrate with colored film
JP2009242128A (en) Transparent conductive glass substrate and method for manufacturing the same
JPH09227157A (en) Non-fogging film-forming base material, non-fogging film using the same and its production
JP2000276941A (en) Coating liquid for forming transparent conductive film, substrate with transparent conductive film and display device
JP2004338987A (en) Base body with vitreous film
JP3286071B2 (en) Production method of hydrophobic antimony-containing tin oxide fine particles, heat ray shielding coating liquid and its production method, and heat ray shielding glass and its production method
JP2000233946A (en) Heat ray reflecting glass and laminated glass using the same
JP5187990B2 (en) Coating liquid for forming transparent conductive film, substrate with transparent conductive film and display device
JP3094852B2 (en) Heat ray shielding glass for vehicles
JPWO2004046057A1 (en) Thermal shielding plate, method for producing the same, and liquid composition used therefor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060801