JP2004337871A - Low hydrogen coated electrode for low-alloy heat-resistant steel - Google Patents

Low hydrogen coated electrode for low-alloy heat-resistant steel Download PDF

Info

Publication number
JP2004337871A
JP2004337871A JP2003134015A JP2003134015A JP2004337871A JP 2004337871 A JP2004337871 A JP 2004337871A JP 2003134015 A JP2003134015 A JP 2003134015A JP 2003134015 A JP2003134015 A JP 2003134015A JP 2004337871 A JP2004337871 A JP 2004337871A
Authority
JP
Japan
Prior art keywords
low
metal
alloy
terms
kinds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003134015A
Other languages
Japanese (ja)
Other versions
JP4309172B2 (en
Inventor
Yoshiaki Murata
義明 村田
Shigeru Matsumoto
茂 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel and Sumikin Welding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Welding Co Ltd filed Critical Nippon Steel and Sumikin Welding Co Ltd
Priority to JP2003134015A priority Critical patent/JP4309172B2/en
Publication of JP2004337871A publication Critical patent/JP2004337871A/en
Application granted granted Critical
Publication of JP4309172B2 publication Critical patent/JP4309172B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Nonmetallic Welding Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low hydrogen coated electrode for low-alloy heat-resistant steel excellent in low-temperature toughness and temper-embrittlement characteristic without impairing welding workability even during welding of high heat input. <P>SOLUTION: A Cr-Mo low-alloy steel core wire is coated with coating flux containing 0.5-2.7% one or two kinds of zirconium carbide and zirconium nitride, 40-60% metal carbonate, 15-30% metal fluoride, 1-5% zirconium oxide, 2.5-4.0% one or two kinds of metal silicon and silicon alloy in terms of Si, 2.5-4.0% one or two kinds of metal manganese and manganese alloy in terms of Mn, 0.5-3.0% one or two kinds of metal magnesium and magnesium alloy in terms of Mg, and further consisting of other alloying agent, an arc stabilizer, a slag generator, a binder and the like. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、低合金Cr−Mo−V系耐熱鋼の溶接材料に関する。さらに詳しくは、例えば350〜500℃で使用される石油精製分野の反応塔や火力発電ボイラー、あるいはさらにクリープ破断強度、耐使用中脆化および低温靱性が要求される用途において使用される1.25〜3%Cr、0.9〜1.25%Mo、0.2〜0.4%V含有の高強度型低合金耐熱鋼を溶接するに最適の共金系の低合金耐熱鋼用低水素系被覆アーク溶接棒に関する。
【0002】
【従来の技術】
石油精製や化学工業分野に使用される反応塔、および火力発電ボイラーの一部には高温高圧の水素雰囲気で使用されることから、これまで2.25Cr−1Mo鋼や3Cr−1Mo鋼が使用されてきた。近年、反応効率や発電効率の向上を目的として、さらに高温高圧化の過酷な条件で使用できる鋼材が実用化されてきており、従来の2.25Cr−1Mo鋼や3Cr−1Mo鋼に、0.25%程度のVや0.03%程度のNbを添加して、鋼材の強度と耐水素脆性を高めたV、Nb添加タイプの低合金耐熱鋼が、石油関連の大型圧力容器や火力発電ボイラーの一部に実用化されてきている。
【0003】
これらの溶接構造物は350〜500℃の高温で長時間使用されることから、その溶接部は優れた高温強度とクリープ性能が要求され、さらに使用中脆化の少ない耐焼戻し脆性や耐クリープ脆性を具備していることが必須となる。また、材質の高強度化、装置の大型構造化、あるいは使用環境の寒冷地化に伴う脆性破壊事故防止から、現在では−18〜−29℃範囲の低温靭性が要求されている。
【0004】
こうした低合金鋼を対象として、従来から、焼戻し脆化を軽減するために、鋼中のP、S、Sb、Sn、As等の不純物やSi、Mn量を抑制することは周知の事実である。従って、かかる溶接材料の構成に関しては、この種の元素量を少なくすることが一般的であった。
【0005】
さらに前記目的のために、従来から種々の低水素系被覆アーク溶接棒が提案されおり、低温靭性を同時に確保する目的で溶接金属中の酸素量を低減して、被覆剤中の脱酸合金あるいはスラグ形成剤組成を適正なものにする。あるいは、組織微細化によるアプローチで低温靭性を同時に確保しようとする手段も開示されている。
【0006】
例えば、特開昭61−232094号公報には被覆剤中に0.4〜1.8%のSiC添加により脱酸効果を高めて溶接金属中のSi量および酸素量を同時に低減する技術が開示されている。また、特開昭57−142788号公報には被覆剤中にFe−ZrをZr換算値で3〜9%脱酸元素として使用する技術が開示されている。さらに、特開昭54−104466号公報、特開昭54−104467号公報、特開昭57−139459号公報、特開昭58−58995号公報および特開昭59−215297号公報には、Ti、Al、Nの組織改善元素を積極的に添加し、溶接金属の組織改善による技術が開示されている。
【0007】
一方、Cr−Mo−V系低合金鋼の溶接では、溶接金属にVやNbの添加によって微細炭化物の分散強化により高温強度やクリープ破断強度などの改善が図られているが、その反面、常温での強度がやや過剰気味の傾向があり、こうしたことから本鋼種への前述の低水素系被覆アーク溶接棒の適用では、従来の2.25Cr−1Mo鋼や3Cr−1Mo鋼と比べて低温靱性は良くない。
【0008】
また、従来のCr−Mo系低合金鋼へ適用した場合に比べて、実質的な変態挙動が大幅に変化する。溶接金属のミクロ組織は、必然的に溶接時の冷却速度、次パスの溶接熱サイクルや溶接後の熱処理に支配されるが、従来のCr−Mo系低合金鋼の溶接金属では溶接後熱処理を行った後は、ベイナイトまたはマルテンサイト組織が支配的であった。しかしながら、Cr−Mo−V系低合金鋼の溶接金属の場合には、マトリックス中の固溶炭素量が減少することにより、連続冷却変態図でいうフェライト・ノーズが短時間側に移動し、オーステナイト化温度からの冷却速度が緩やかな場合には、これら組織中に初析フェライトが混在するようになり低温靭性の低下を招く傾向がある。
【0009】
特に、被覆アーク溶接棒は立向の溶接姿勢に適した溶接材料であるが、能率の面から40kJ/cm程度までの高入熱で溶接される時代のニーズがあり、こうした場合脱酸不足気味の現象や旧オーステナイト粒粗大化の悪影響因子も相乗して、立向溶接ではさらに低温靭性が悪くなる傾向があった。
【0010】
このようなCr−Mo−V系低合金鋼に対して、前述の技術では低温靭性を改善することは困難である。例えば、特開昭61−232094号公報記載のSiCは、Cの含有量が30%程度と高い炭化物であり、このような場合所定の脱酸効果を得るためには、必然的にCの一部が溶接金属中に歩留まって過剰な焼入れ性を付与することになり、その結果、強度増加を助長するために靭性改善の効果は得られない。
【0011】
また、特開昭57−142788号公報に記載の技術でも同じく所定の脱酸効果を得るためには、必然的にフェライト生成傾向の強いZrの溶接金属中の歩留り量が多くなる。こうした鋼種では、応力除去焼鈍として比較的高温度(690〜720℃)の条件で溶接後熱処理を1〜3回実施することから、最終的なミクロ組織中には旧オーステナイト粒界に沿って初析フェライト、いわゆるフェライトバンドを形成して低温靭性や使用中脆化特性にも悪影響を及ぼす。
【0012】
特開昭58−58995号公報に記載の技術では、AlおよびNによるAlNによる微細化を狙っているが、特に立向姿勢の高入熱溶接では、かかる窒化物は密度が溶融金属に比べ低い(3.26g/cm)のでその大半が溶接金属から 浮上してしまい、十分な組織改善効果が得られない。
【0013】
【引用文献】
(a)引用文献1(特開昭61−232094号公報)
(b)引用文献2(特開昭57−142788号公報)
(c)引用文献3(特開昭54−104466号公報)
(d)引用文献4(特開昭54−104467号公報)
(e)引用文献5(特開昭57−139459号公報)
(f)引用文献6(特開昭58−58995号公報)
(g)引用文献7(特開昭59−215297号公報)
(h)引用文献8(特開昭61−232094号公報)
【0014】
【発明が解決しようとする課題】
本発明は、こうした現状に鑑みて、Cr−Mo−V系低合金鋼用共金系の低水素系被覆アーク溶接棒を対象として、大入熱で溶接を行った際にも、溶接作業性を損なうことなく、低温靱性と耐焼戻し脆化特性の両面に優れた低合金耐熱鋼用低水素系被覆アーク溶接棒を提供することを目的としている。
【0015】
【課題を解決するための手段】
本発明の要旨は、質量%で、ジルコニウムカーバイトおよび窒化ジルコニウムの1種または2種の合計0.5〜2.7%、金属炭酸塩40〜60%、金属弗化物15〜30%、酸化ジルコニウム1〜5%、金属シリコンおよびシリコン合金の1種または2種以上をSi換算値で2.5〜4.0%、金属マンガンおよびマンガン合金の1種または2種以上をMn換算値で2.5〜4.0%、金属マグネシウムおよびマグネシウム合金の1種または2種以上をMg換算値で0.5〜3.0%を含有し、その他合金剤、アーク安定剤、スラグ生成剤、粘結剤および不可避的不純物からなる被覆剤をCr―Mo低合金系鋼心線に被覆したことを特徴とする低合金耐熱鋼用低水素系被覆アーク溶接棒である。
【0016】
また、上記の低合金耐熱鋼用低水素系被覆アーク溶接棒において、被覆剤にNiを0.1〜0.5%、硼化物およびボロン合金の1種または2種以上のB換算値で0.02〜0.10%含有し、前記NiとB換算値の積が0.003〜0.048であることも特徴とする。
【0017】
【発明の実施の形態】
本発明の低合金耐熱鋼用低水素系被覆アーク溶接棒の被覆剤各成分、またそれらの成分相互による作用、効果を説明する。
ジルコニウムカーバイドおよび窒化ジルコニウムの添加は本発明の中核をなすものであり、低温靭性および耐焼戻し脆性の改善に最も効果がある。ジルコニウムカーバイドおよび窒化ジルコニウムは、化学的および熱的にも非常に安定であるため、アーク熱によってのみ解離し、その場合それぞれ酸素と反応して、極めて効率的に脱酸効果を発揮する。また、密度が溶融金属に近いために凝固時あるいは溶接金属中に分散粒子としての存在比率が高く、オーステナイト粒形成の核となってフェライト形成能を抑制して粒成長を阻止して金属組織の細粒化に貢献する。また、ジルコニウムカーバイドおよび窒化ジルコニウムは、CやNの含有量が少ないので、過剰な焼入れ性を付与して常温強度を高くすることがない。
【0018】
ジルコニウムカーバイドおよび窒化ジルコニウムの1種または2種の合計が0.5質量%(以下、%という。)未満であると、低温靱性および耐焼戻し脆化の改善効果が得られず、2.7%を超えると、溶接金属中に未溶融のまま残留する量が多くなり低温靱性を劣化させる。したがって、ジルコニウムカーバイドおよび窒化ジルコニウムの1種または2種の合計は0.5〜2.7%とする。なお、ジルコニウムカーバイドはC含有量が9〜13%、窒化ジルコニウムはN含有量が10〜13%で、これらの平均粒子径は2〜10μmであることが好ましい。
【0019】
金属炭酸塩は、溶接中に炭酸塩が分解して生じるCO ガスを発生させると共に、CaOからなるスラグを生成し、溶融金属および凝固直後の溶接金属をそれぞれ大気からシールドする効果がある。CaCO 、BaCO 、MgCO 等の金属炭酸塩の1種または2種以上の合計が40%未満ではシールド効果が不十分で低温靱性が得られず、耐気孔性も劣化する。また、60%を超えるとスラグの粘性が高くなりすぎビード形状が凸状となる。したがって、金属炭酸塩は40〜60%とする。
【0020】
金属弗化物は、アーク雰囲気中の水素分圧を下げて耐気孔性を改善すると共に、スラグの粘性を適正に調整し溶接金属のなじみ性やビード形状を良好にする。CaF 、AlF 、BaF 等の金属弗化物の1種または2種以上が15%未満では、耐気孔性およびビード形状が劣化する。また、30%を超えるとスラグの粘性が下がりすぎ、特に立向き姿勢でビードが垂れやすくビード形状が劣化する。したがって、金属弗化物は15〜30%とする。
【0021】
酸化ジルコニウムは、スラグ形成剤として作用する。1%未満ではスラグの粘性を増加させる効果が不十分で特に立向姿勢でビードが垂れやすくビード形状が劣化する。また、5%を超えるとスラグの粘性が高くなりすぎスラグ巻込み欠陥の発生頻度が高くなる。したがって、酸化ジルコニウムは1〜5%とする。
【0022】
金属シリコンおよびシリコン合金は、溶接金属の脱酸と共にアーク安定化作用がある。金属シリコンおよびシリコン合金の1種または2種以上のSi換算値が2.5%未満ではアークが不安定で耐気孔性が劣化し、低温靱性も不十分であり、4.0%を超えると低温靭性および耐焼戻し脆性が悪くなる。したがって、金属シリコンおよびシリコン合金の1種または2種以上のSi換算値は2.5〜4%とする。
【0023】
金属マンガンおよびマンガン合金は、溶接金属の脱酸と共にミクロ組織を調整するためのオーステナイト生成元素として重要である。また、スラグ形成剤としてスラグ剥離性改善に効果がある。金属マンガンおよびマンガン合金の1種または2種以上のMn換算値が2.5%未満ではスラグ剥離性が劣化し低温靱性も不十分であり、4.0%を超えると低温靭性および耐焼戻し脆性が悪くなる。
【0024】
金属マグネシウムおよびマグネシウム合金は、溶接金属の脱酸と共にスラグ剥離性を改善させる効果がある。金属マグネシウムおよびマグネシウム合金の1種または2種以上のMg換算値が0.5%未満では耐気孔性が悪く低温靱性も不十分であり、3.0%を超えるとスラグの包被性が悪く低温靱性が悪くなる。
【0025】
以上が低合金耐熱鋼用低水素系被覆アーク溶接棒の基本成分であるが、本発明は、さらにNiとBを複合添加することにより、より低温の寒冷地(−29℃以下)での適用を可能とすることができる。NiとBの複合添加は、溶接金属の焼入れ性と微細化作用を高め、特に遷移温度を下げるのに効果があり、−29℃以下の低温での衝撃性能改善に有効である。
【0026】
Niを0.1〜0.5%とB や硼砂などの硼化物およびFe−B、ZrB やボロン入り鉄粉などのボロン合金の1種または2種以上のB換算値で0.02〜0.10%を両方含有させ、これらのNiとB換算値の積を0.003〜0.048としたときその効果が得られる。Niが0.1%未満、硼化物およびボロン合金の1種または2種以上のB換算値が0.02%未満およびNiとB換算値の積が0.003未満であると、溶接金属の焼入れ性と微細化作用を高めることができず、遷移温度を下げる効果は得られない。したがって、−29℃以下の低温での衝撃性能改善効果はない。一方、Niが0.5%超、硼化物およびボロン合金の1種または2種以上のB換算値が0.10%超およびNiとB換算値の積が0.048%を超えると、溶接金属の焼き入れ性が過剰になり、常温強度が高くなり低温での衝撃性能も不良で、さらに焼戻し脆性も劣化する。
【0027】
本発明の低合金耐熱鋼用低水素系被覆アーク溶接棒は、その他の成分としてアーク安定剤である珪灰石や合成マイカを良好なアーク状態を確保するために用いる。スラグ生成剤には、珪砂、長石、マグネサイトなどがあり、スラグの流動性や被包性を調整する。また、溶接金属の成分調整および機械的性質の調整のために金属Cr、Fe−Cr、Mo、Fe−Mo、V、Fe−V、Fe−Nbなどの合金を含有する。また粘結剤には、珪酸カリウムと珪酸ナトリウムなどがあり、これらの1種または2種以上の組み合わせで使用する。
【0028】
なお、本発明に用いる鋼心線は、対象とするCr−Mo系低合金鋼の成分組成であるに見合った溶接金属が得られるように、Cr:1.00〜3.25%、Mo:0.9〜1.20%、V:0.30%以下、Nb:0.03%以下、C:0.05〜0.12%、Si:0.3%以下、Mn:0.2〜0.7%、P:0.01%以下、S:0.01%以下、Ni:0.1%以下、残部がFeおよび不可避不純物からなるものである。さらに耐焼戻し脆性を改善するためには、X=(10P+5Sb+4Sn+As)×10−2(ppm)で規定されるX値が低いほど好ましく、経済性も考慮してX値は12ppm以下になるようにP、S、Sb、As含有量の少ないものを用いる。
また、本発明は2〜3Cr−1Mo−V(Nb)系耐熱鋼のみならず1.25Cr−1Mo−V系耐熱鋼への適用も可能である。
【0029】
【実施例】
以下、実施例により本発明の効果を詳細に説明する。
表1に示す化学成分の心線(直径4.0mm、長さ400mm)を用いて、表2〜表4に示す成分からなる被覆剤を被覆率28〜33%で塗布して被覆アーク溶接棒を製造した。
【0030】
【表1】

Figure 2004337871
【0031】
【表2】
Figure 2004337871
【0032】
【表3】
Figure 2004337871
【0033】
【表4】
Figure 2004337871
【0034】
表5に示す化学成分の板厚20mmの鋼板を、図1に示す開先形状にして表6に示す溶接条件で溶接し、それぞれの溶接棒について溶接作業性を評価した後、X線透過試験を行い溶接欠陥の有無を調べた。また、同一試験片を705℃×8hrの応力除去焼鈍を行ってから、板厚中央より引張試験片およびシャルピー衝撃試験片を採取した。
【0035】
引張試験は、586〜758MPaを良好(○)とした。また、衝撃試験は、吸収エネルギーの遷移曲線を求めた。低温靭性の良否は、その吸収エネルギーが55Jとなる遷移温度(℃)をvTr55として、これが−18℃以下を良好(〇)とし、さらに−29℃以下を優秀(◎)とし、−18℃超を不良(×)として区分した。
【0036】
耐焼戻し脆性は、焼戻し脆化を短時間で再現する目的で、図2に示すステップクーリングと呼ばれる加速脆化熱処理(以下、SCという。)を行い、応力除去焼鈍後のシャルピー衝撃性能との変化を基に評価し、SC後の吸収エネルギーが55Jとなる遷移温度(℃)をvTr’55とし、脆化指数=vTr55+2.5(vTr’55−vTr55)を耐焼戻し脆性の良否判定として求めた。脆化指数が10℃以下を良好(〇)とした。それらの結果を表7〜8に示す。
【0037】
【表5】
Figure 2004337871
【0038】
【表6】
Figure 2004337871
【0039】
【表7】
Figure 2004337871
【0040】
【表8】
Figure 2004337871
【0041】
表2〜表4および表7、表8中、溶接棒No.1〜10が本発明例、溶接棒No.11〜20は比較例である。
本発明例である溶接棒No.1〜10は、ジルコニウムカーバイトおよび窒化ジルコニウムの1種または2種、金属炭酸塩、金属弗化物、酸化ジルコニウム、金属シリコンおよびシリコン合金の1種または2種以上のSi換算値、金属マンガンおよびマンガン合金の1種または2種以上のMn換算値および金属マグネシウムおよびマグネシウム合金の1種または2種以上のMg換算値が適正であるので、溶接作業性が良好で、溶接欠陥の発生がなく、応力除去焼鈍後の強度およびvTr55、SC後のvTr’55が良好で、さらに脆化指数も低く満足な結果が得られた。また、溶接棒No.4、5、6、8、9およびNo.10は、Niと硼化物およびボロン合金の1種または2種以上のB換算値、さらにNiとB換 算値の積が適量であるのでvTr55が−29℃以下で極めて満足な結果が得られた。
【0042】
比較例中溶接棒No.11は、金属弗化物が多いので、スラグの粘性が低くなってビードが垂れて形状が不良となった。また、ジルコニウムカーバイトが少ないので、vTr55およびvTr’55が不良であった。
溶接棒No.12は、金属弗化物が少ないので、ビード形状が不良でブローホールも生じた。また、ジルコニウムカーバイトおよび窒化ジルコニウムの合計が多いので、vTr55が不良であった。
【0043】
溶接棒No.13は、金属炭酸塩が少ないので、ブローホールが生じvTr55も不良であった。
溶接棒No.14は、金属炭酸塩が多いので、ビード形状が不良であった。また、Niが多いので、引張強さが高くvTr55およびvTr’55も不良であった。
【0044】
溶接棒No.15は、Si換算値が少ないので、アークが不安定でブローホールも生じた。また、NiとB換算値の積が高いので、引張強さが高くvTr55およびvTr’55も不良であった。
溶接棒No.16は、酸化ジルコニウムが少ないので、ビードが垂れて形状が不良となった。また、Si換算値が多いので、vTr55およびvTr’55が不良であった。
【0045】
溶接棒No.17は、酸化ジルコニウムが多いので、スラグ巻き込み欠陥が生じた。また、Mn換算値が多いので、vTr55およびvTr’55が不良であった。
溶接棒No.18は、Mg換算値が少ないので、ブローホールが生じvTr55も不良であった。
【0046】
溶接棒No.19は、Mg換算値が多いので、スラグ包被性が不良でvTr55も不良であった。
溶接棒No.20は、Mn換算値が少ないので、スラグ剥離性が不良でvTr55も不良であった。
【0047】
【発明の効果】
以上詳述したように本発明の低合金耐熱鋼用低水素系被覆アーク溶接棒によれば、大入熱で溶接を行った際にも溶接作業性を損なうことなく、低温靱性と耐焼戻し脆化特性の両面に優れ、溶接欠陥のない溶接部を得ることができる低合金耐熱鋼用低水素系被覆アーク溶接棒を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施例に用いた試験板の開先形状を示す断面図
【図2】本発明の実施例に用いた加速脆化処理条件を示す図[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a welding material for a low-alloy Cr-Mo-V heat-resistant steel. More specifically, it is used in, for example, a reaction tower or a thermal power boiler in the field of petroleum refining used at 350 to 500 ° C., or further used in applications requiring creep rupture strength, brittleness during use, and low-temperature toughness. Low hydrogen for co-alloy low alloy heat resistant steel ideal for welding high strength low alloy heat resistant steel containing 0.3 to 3% Cr, 0.9 to 1.25% Mo, 0.2 to 0.4% V The present invention relates to a system-coated arc welding rod.
[0002]
[Prior art]
2.25 Cr-1Mo steel and 3Cr-1Mo steel have been used in the reaction tower used in the petroleum refining and chemical industries, and in part of thermal power boilers in a high-temperature, high-pressure hydrogen atmosphere. Have been. In recent years, steel materials that can be used under severe conditions of high temperature and high pressure have been put into practical use for the purpose of improving the reaction efficiency and the power generation efficiency, and 0.2% of conventional 2.25Cr-1Mo steel or 3Cr-1Mo steel has been used. V and Nb-added low-alloy heat-resisting steel with increased strength and hydrogen embrittlement resistance of steel by adding about 25% V and about 0.03% Nb to large oil-related pressure vessels and thermal power boilers Has been put to practical use.
[0003]
Since these welded structures are used at a high temperature of 350 to 500 ° C. for a long time, the welded parts are required to have excellent high-temperature strength and creep performance, and furthermore, there is little embrittlement during use, such as tempering brittleness and creep brittleness. Is essential. In addition, low temperature toughness in the range of −18 to −29 ° C. is currently required in order to increase the strength of the material, increase the size of the device, or prevent brittle fracture accidents associated with the use environment in colder regions.
[0004]
It is a well-known fact that, for such low-alloy steels, in order to reduce temper embrittlement, the amount of impurities such as P, S, Sb, Sn, As and the like, and Si and Mn in the steel are suppressed. . Therefore, with respect to the configuration of such a welding material, it has been common to reduce the amount of such elements.
[0005]
Further, for the above purpose, various low-hydrogen-based coated arc welding rods have been conventionally proposed, and in order to simultaneously secure low-temperature toughness, the amount of oxygen in the weld metal is reduced, and the deoxidized alloy or Make the slag former composition appropriate. Alternatively, means for simultaneously securing low-temperature toughness by an approach based on microstructural refinement is also disclosed.
[0006]
For example, Japanese Patent Application Laid-Open No. 61-232094 discloses a technique in which the deoxidizing effect is enhanced by adding 0.4 to 1.8% of SiC to a coating material to simultaneously reduce the amounts of Si and oxygen in a weld metal. Have been. JP-A-57-142788 discloses a technique in which Fe-Zr is used as a 3 to 9% deoxidizing element in terms of Zr in a coating material. Further, JP-A-54-104466, JP-A-54-104467, JP-A-57-139459, JP-A-58-58995 and JP-A-59-215297 disclose Ti. , Al and N are disclosed in which a structure improving element is positively added to improve the structure of a weld metal.
[0007]
On the other hand, in the welding of a Cr-Mo-V low alloy steel, the addition of V or Nb to the weld metal has improved the high-temperature strength and creep rupture strength by strengthening the dispersion of fine carbides. Therefore, the application of the low-hydrogen-based coated arc welding rod to the present steel type has a lower toughness than the conventional 2.25Cr-1Mo steel and 3Cr-1Mo steel. Is not good.
[0008]
In addition, the substantial transformation behavior significantly changes as compared with the case where the present invention is applied to a conventional Cr-Mo low alloy steel. The microstructure of the weld metal is inevitably governed by the cooling rate during welding, the welding heat cycle of the next pass, and the heat treatment after welding.However, in the conventional Cr-Mo low alloy steel weld metal, post-weld heat treatment is performed. After going, the bainite or martensite structure was dominant. However, in the case of a Cr-Mo-V low alloy steel weld metal, the amount of solute carbon in the matrix decreases, so that the ferrite nose in the continuous cooling transformation diagram moves to the shorter time side and the austenite When the cooling rate from the formation temperature is slow, proeutectoid ferrite is mixed in these structures, and the low-temperature toughness tends to be reduced.
[0009]
In particular, the coated arc welding rod is a welding material suitable for a vertical welding position, but there is a need in the era of welding with a high heat input of about 40 kJ / cm in terms of efficiency. In addition, the low temperature toughness tended to be further deteriorated in the vertical welding, due to the synergistic effect of the phenomenon described above and the adverse effect of coarsening of the prior austenite grains.
[0010]
It is difficult to improve the low-temperature toughness of such a Cr-Mo-V-based low alloy steel by the above-described technique. For example, SiC described in JP-A-61-232094 is a carbide having a high C content of about 30%. In such a case, in order to obtain a predetermined deoxidizing effect, SiC is inevitably required. The part yields in the weld metal and imparts excessive hardenability. As a result, the effect of improving the toughness cannot be obtained because the increase in strength is promoted.
[0011]
Also, in the technique described in Japanese Patent Application Laid-Open No. 57-142788, in order to obtain a predetermined deoxidizing effect, the yield in the Zr weld metal, which has a strong tendency to form ferrite, necessarily increases. In such a steel type, post-weld heat treatment is performed once to three times at a relatively high temperature (690 to 720 ° C.) as a stress relief annealing, so that the final microstructure is initially formed along the old austenite grain boundaries. It forms a precipitated ferrite, a so-called ferrite band, and adversely affects low-temperature toughness and embrittlement characteristics during use.
[0012]
The technique described in Japanese Patent Application Laid-Open No. 58-58995 aims at miniaturization by AlN with Al and N. However, particularly in high heat input welding in a vertical position, such nitride has a lower density than molten metal. (3.26 g / cm 3 ), most of it floats from the weld metal, and a sufficient structure improving effect cannot be obtained.
[0013]
[References]
(A) Reference 1 (Japanese Patent Application Laid-Open No. 61-232094)
(B) Reference 2 (Japanese Patent Application Laid-Open No. 57-142788)
(C) Reference 3 (Japanese Patent Application Laid-Open No. 54-104466)
(D) Reference 4 (JP-A-54-104467)
(E) Reference 5 (Japanese Patent Laid-Open No. 57-139459)
(F) Reference 6 (JP-A-58-58995)
(G) Reference 7 (JP-A-59-215297)
(H) Reference 8 (Japanese Patent Application Laid-Open No. 61-232094)
[0014]
[Problems to be solved by the invention]
In view of the above situation, the present invention aims to improve the welding workability even when welding with a large heat input to a common metal-based low hydrogen-based coated arc welding rod for Cr-Mo-V-based low alloy steel. It is an object of the present invention to provide a low-hydrogen-based coated arc welding rod for low-alloy heat-resistant steel, which is excellent in both low-temperature toughness and temper embrittlement resistance, without impairing the properties.
[0015]
[Means for Solving the Problems]
The gist of the present invention is that, in terms of mass%, one or two kinds of zirconium carbide and zirconium nitride total 0.5 to 2.7%, metal carbonate 40 to 60%, metal fluoride 15 to 30%, oxidation 1-5% of zirconium, 2.5-4.0% of one or more kinds of metallic silicon and silicon alloy in terms of Si, and 2 or more of one or more kinds of metallic manganese and manganese alloy in terms of Mn. 0.5 to 4.0%, containing one or more of magnesium metal and magnesium alloy in an amount of 0.5 to 3.0% in terms of Mg, and other alloying agents, arc stabilizers, slag forming agents, A low hydrogen coated arc welding rod for low alloy heat resistant steel, characterized in that a coating agent comprising a binder and inevitable impurities is coated on a Cr-Mo low alloy steel core wire.
[0016]
In the low-hydrogen coated arc welding rod for low-alloy heat-resistant steel described above, 0.1 to 0.5% of Ni is used as a coating agent, and 0 or more in terms of a B value of one or more of borides and boron alloys. 0.02 to 0.10%, and the product of Ni and the B-converted value is 0.003 to 0.048.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
The components of the coating agent of the low-hydrogen-based coated arc welding rod for low-alloy heat-resistant steel of the present invention, and the actions and effects of the mutual components will be described.
The addition of zirconium carbide and zirconium nitride forms the core of the present invention and is most effective in improving low-temperature toughness and temper embrittlement resistance. Since zirconium carbide and zirconium nitride are very stable chemically and thermally, they are dissociated only by arc heat, in which case they react with oxygen, respectively, and exhibit an extremely efficient deoxidizing effect. In addition, since the density is close to that of the molten metal, the abundance as dispersed particles in solidification or in the weld metal is high. Contributes to refinement. Further, since zirconium carbide and zirconium nitride have small contents of C and N, they do not impart excessive hardenability and increase the strength at normal temperature.
[0018]
If the total of one or two of zirconium carbide and zirconium nitride is less than 0.5% by mass (hereinafter referred to as%), the effect of improving low-temperature toughness and temper embrittlement resistance cannot be obtained, and 2.7% If it exceeds, the amount remaining unmelted in the weld metal increases, deteriorating low-temperature toughness. Therefore, the total of one or two of zirconium carbide and zirconium nitride is set to 0.5 to 2.7%. Preferably, zirconium carbide has a C content of 9 to 13%, zirconium nitride has a N content of 10 to 13%, and their average particle size is preferably 2 to 10 μm.
[0019]
The metal carbonate generates CO 2 gas generated by decomposition of the carbonate during welding, generates slag made of CaO, and has an effect of shielding the molten metal and the weld metal immediately after solidification from the atmosphere. If the total of one or more of the metal carbonates such as CaCO 3 , BaCO 3 , and MgCO 3 is less than 40%, the shielding effect is insufficient, the low-temperature toughness cannot be obtained, and the porosity is also deteriorated. On the other hand, if it exceeds 60%, the viscosity of the slag becomes too high, and the bead shape becomes convex. Therefore, the content of the metal carbonate is set to 40 to 60%.
[0020]
The metal fluoride lowers the hydrogen partial pressure in the arc atmosphere to improve the porosity resistance, and appropriately adjusts the viscosity of the slag to improve the conformability and bead shape of the weld metal. If one or more of the metal fluorides such as CaF 2 , AlF 3 , and BaF 2 is less than 15%, the porosity resistance and the bead shape deteriorate. On the other hand, if it exceeds 30%, the viscosity of the slag is too low, and the bead is easily drooped, particularly in a vertical position, and the bead shape is deteriorated. Therefore, the content of metal fluoride is set to 15 to 30%.
[0021]
Zirconium oxide acts as a slag former. If it is less than 1%, the effect of increasing the viscosity of the slag is insufficient, and the bead is apt to hang down, especially in a vertical position, and the bead shape is deteriorated. On the other hand, if it exceeds 5%, the viscosity of the slag becomes too high, and the frequency of slag entrainment defects increases. Therefore, zirconium oxide is set to 1 to 5%.
[0022]
Metallic silicon and silicon alloys have an arc stabilizing action together with deoxidation of the weld metal. If the Si equivalent value of one or more of metal silicon and silicon alloy is less than 2.5%, the arc is unstable, the porosity is deteriorated, and the low-temperature toughness is insufficient. Low-temperature toughness and tempering brittleness deteriorate. Therefore, the Si equivalent value of one or more of metal silicon and a silicon alloy is set to 2.5 to 4%.
[0023]
Metal manganese and manganese alloys are important as austenite-forming elements for adjusting the microstructure together with the deoxidation of the weld metal. Further, it is effective as a slag forming agent in improving slag removability. If the manganese conversion value of one or more of the metal manganese and the manganese alloy is less than 2.5%, the slag removability deteriorates and the low-temperature toughness is insufficient. Gets worse.
[0024]
Metallic magnesium and magnesium alloys have the effect of improving the slag removability together with the deoxidation of the weld metal. If one or more of the metallic magnesium and the magnesium alloy has a Mg conversion value of less than 0.5%, the porosity is poor and the low-temperature toughness is insufficient, and if it exceeds 3.0%, the slag encapsulation is poor. Poor low temperature toughness.
[0025]
The above are the basic components of the low-hydrogen coated arc welding rod for low-alloy heat-resistant steel. However, the present invention can be applied in a colder cold region (-29 ° C. or lower) by further adding Ni and B in combination. Can be made possible. The combined addition of Ni and B enhances the hardenability and refining action of the weld metal, and is particularly effective in lowering the transition temperature, and is effective in improving impact performance at low temperatures of -29 ° C or lower.
[0026]
Borides and Fe-B, such as 0.1% to 0.5% of Ni and B 2 O 3 and borax, at least one of B converted value boron alloy such as ZrB 2 or boron containing iron powder 0 0.02 to 0.10% are contained, and the effect is obtained when the product of these Ni and B conversion values is 0.003 to 0.048. If the Ni content is less than 0.1%, the B value of one or more of borides and boron alloys is less than 0.02%, and the product of Ni and the B value is less than 0.003, The hardenability and the refining action cannot be enhanced, and the effect of lowering the transition temperature cannot be obtained. Therefore, there is no effect of improving the impact performance at a low temperature of -29 ° C or lower. On the other hand, if the Ni content exceeds 0.5%, the B-converted value of one or more of borides and boron alloys exceeds 0.10%, and the product of Ni and the B-converted value exceeds 0.048%, the welding is performed. The hardenability of the metal becomes excessive, the room temperature strength increases, the impact performance at low temperatures is poor, and the temper brittleness is also deteriorated.
[0027]
The low hydrogen coated arc welding rod for low alloy heat resistant steel of the present invention uses wollastonite or synthetic mica as an arc stabilizer as other components to secure a favorable arc state. Slag forming agents include silica sand, feldspar, magnesite and the like, and adjust the fluidity and encapsulation of the slag. In addition, alloys such as metal Cr, Fe-Cr, Mo, Fe-Mo, V, Fe-V, and Fe-Nb are contained for adjusting the components and mechanical properties of the weld metal. Examples of the binder include potassium silicate and sodium silicate, and these are used alone or in combination of two or more.
[0028]
The steel core wire used in the present invention has Cr: 1.00 to 3.25% and Mo: so that a weld metal corresponding to the component composition of the target Cr-Mo low alloy steel can be obtained. 0.9-1.20%, V: 0.30% or less, Nb: 0.03% or less, C: 0.05-0.12%, Si: 0.3% or less, Mn: 0.2- 0.7%, P: 0.01% or less, S: 0.01% or less, Ni: 0.1% or less, with the balance being Fe and unavoidable impurities. In order to further improve the tempering embrittlement resistance, the X value defined by X = (10P + 5Sb + 4Sn + As) × 10 −2 (ppm) is preferably as low as possible. In consideration of economy, the X value is set to 12 ppm or less. , S, Sb, and As are used.
Further, the present invention is applicable not only to 2-3Cr-1Mo-V (Nb) heat-resistant steel but also to 1.25Cr-1Mo-V heat-resistant steel.
[0029]
【Example】
Hereinafter, the effects of the present invention will be described in detail with reference to examples.
Using a core wire (diameter 4.0 mm, length 400 mm) of the chemical components shown in Table 1, a coating agent consisting of the components shown in Tables 2 to 4 was applied at a coverage of 28 to 33%, and the coated arc welding rod was used. Was manufactured.
[0030]
[Table 1]
Figure 2004337871
[0031]
[Table 2]
Figure 2004337871
[0032]
[Table 3]
Figure 2004337871
[0033]
[Table 4]
Figure 2004337871
[0034]
A steel plate having a thickness of 20 mm having the chemical composition shown in Table 5 was welded under the welding conditions shown in Table 6 in a groove shape shown in FIG. 1 and the welding workability was evaluated for each welding rod. And the presence or absence of welding defects was examined. Further, the same test piece was subjected to stress relieving annealing at 705 ° C. × 8 hours, and then a tensile test piece and a Charpy impact test piece were taken from the center of the plate thickness.
[0035]
In the tensile test, 586 to 758 MPa was regarded as good (○). In the impact test, a transition curve of absorbed energy was obtained. The transition temperature (° C.) at which the absorbed energy becomes 55 J is defined as vTr55, which is -18 ° C. or less as good (〇), and -29 ° C. or less as excellent (◎), and -18 ° C. Was classified as defective (x).
[0036]
Temper embrittlement resistance is measured by performing an accelerated embrittlement heat treatment (hereinafter, referred to as SC) called step cooling shown in FIG. 2 for the purpose of reproducing temper embrittlement in a short period of time, and changes in the Charpy impact performance after stress relief annealing. The transition temperature (° C.) at which the absorbed energy after the SC becomes 55 J was defined as vTr′55, and the embrittlement index = vTr55 + 2.5 (vTr′55−vTr55) was determined as the quality judgment of the temper embrittlement resistance. . An embrittlement index of 10 ° C. or less was regarded as good (〇). Tables 7 and 8 show the results.
[0037]
[Table 5]
Figure 2004337871
[0038]
[Table 6]
Figure 2004337871
[0039]
[Table 7]
Figure 2004337871
[0040]
[Table 8]
Figure 2004337871
[0041]
In Tables 2 to 4 and Tables 7 and 8, welding rod No. 1 to 10 are examples of the present invention; 11 to 20 are comparative examples.
The welding rod Nos. 1 to 10 are one or two kinds of zirconium carbide and zirconium nitride, one or two or more kinds of metal carbonates, metal fluorides, zirconium oxide, metal silicon and silicon alloys, Si-converted values, metal manganese and manganese Since one or more Mn-converted values of one or more alloys and one or two or more Mg-converted values of metallic magnesium and magnesium alloys are appropriate, welding workability is good, welding defects are not generated, and stress is not generated. The strength after removal annealing, vTr55 and vTr'55 after SC were good, and the brittleness index was low, and satisfactory results were obtained. In addition, welding rod No. Nos. 4, 5, 6, 8, 9 and Nos. No. 10 has an appropriate B-converted value of one or more of Ni, a boride and a boron alloy, and a product of Ni and the B-converted value, so that a very satisfactory result can be obtained when vTr55 is −29 ° C. or less. Was.
[0042]
The welding rod No. in the comparative example. Sample No. 11 had a large amount of metal fluoride, so that the viscosity of the slag was low and the bead dripped, resulting in a poor shape. In addition, since the amount of zirconium carbide was small, vTr55 and vTr'55 were defective.
Welding rod No. In No. 12, since the amount of metal fluoride was small, the bead shape was poor and blow holes were also generated. Further, since the total of zirconium carbide and zirconium nitride was large, vTr55 was defective.
[0043]
Welding rod No. In Sample No. 13, since the amount of metal carbonate was small, blowholes occurred and vTr55 was also defective.
Welding rod No. No. 14 had a poor bead shape because of a large amount of metal carbonate. In addition, since Ni was large, the tensile strength was high and vTr55 and vTr'55 were also defective.
[0044]
Welding rod No. In No. 15, since the Si-converted value was small, the arc was unstable and blowholes also occurred. Further, since the product of Ni and the B-converted value was high, the tensile strength was high and vTr55 and vTr'55 were also defective.
Welding rod No. In No. 16, since the zirconium oxide was small, the bead dripped and the shape was poor. Further, since the Si-converted value was large, vTr55 and vTr'55 were defective.
[0045]
Welding rod No. In No. 17, a slag entrainment defect occurred because of a large amount of zirconium oxide. In addition, since the Mn conversion value was large, vTr55 and vTr'55 were defective.
Welding rod No. Sample No. 18 had a small Mg conversion value, so blowholes were generated and vTr55 was also defective.
[0046]
Welding rod No. No. 19 had a large value in terms of Mg, so the slag encapsulation was poor and vTr55 was also poor.
Welding rod No. Sample No. 20 had a small Mn conversion value, and thus had poor slag releasability and poor vTr55.
[0047]
【The invention's effect】
As described above in detail, according to the low-hydrogen-based coated arc welding rod for low-alloy heat-resistant steel of the present invention, low-temperature toughness and tempering resistance can be achieved without impairing the welding workability even when welding is performed with a large heat input. The present invention can provide a low hydrogen-based coated arc welding rod for low alloy heat-resistant steel, which is capable of obtaining a welded portion excellent in both surface properties and having no welding defects.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a groove shape of a test plate used in an example of the present invention. FIG. 2 is a view showing accelerated embrittlement treatment conditions used in an example of the present invention.

Claims (2)

質量%で、ジルコニウムカーバイトおよび窒化ジルコニウムの1種または2種の合計0.5〜2.7%、金属炭酸塩40〜60%、金属弗化物15〜30%、酸化ジルコニウム1〜5%、金属シリコンおよびシリコン合金の1種または2種以上をSi換算値で2.5〜4.0%、金属マンガンおよびマンガン合金の1種または2種以上をMn換算値で2.5〜4.0%、金属マグネシウムおよびマグネシウム合金の1種または2種以上をMg換算値で0.5〜3.0%を含有し、その他合金剤、アーク安定剤、スラグ生成剤、粘結剤および不可避的不純物からなる被覆剤をCr―Mo系低合金鋼心線に被覆したことを特徴とする低合金耐熱鋼用低水素系被覆アーク溶接棒。In mass%, one or two of zirconium carbide and zirconium nitride in total 0.5-2.7%, metal carbonate 40-60%, metal fluoride 15-30%, zirconium oxide 1-5%, One or more kinds of metallic silicon and silicon alloys are 2.5 to 4.0% in terms of Si, and one or more kinds of metallic manganese and manganese alloys are 2.5 to 4.0 in terms of Mn. %, Containing one or more of magnesium metal and magnesium alloy in an amount of 0.5 to 3.0% in terms of Mg, and other alloying agents, arc stabilizers, slag forming agents, binders and unavoidable impurities A low hydrogen coated arc welding rod for low alloy heat resistant steel, wherein a coating agent made of Cr-Mo based low alloy steel core wire is coated with a coating agent comprising: 被覆剤にNiを0.1〜0.5%、硼化物およびボロン合金の1種または2種以上のB換算値で0.02〜0.10%含有し、前記NiとB換算値の積が0.003〜0.048であることを特徴とする請求項1記載の低合金耐熱鋼用低水素系被覆アーク溶接棒。The coating agent contains 0.1 to 0.5% of Ni, and 0.02 to 0.10% of one or two or more borides and boron alloys in terms of a B value. The low hydrogen coated arc welding rod for low alloy heat resistant steel according to claim 1, wherein is 0.003 to 0.048.
JP2003134015A 2003-05-13 2003-05-13 Low hydrogen coated arc welding rod for low alloy heat resistant steel Expired - Fee Related JP4309172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003134015A JP4309172B2 (en) 2003-05-13 2003-05-13 Low hydrogen coated arc welding rod for low alloy heat resistant steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003134015A JP4309172B2 (en) 2003-05-13 2003-05-13 Low hydrogen coated arc welding rod for low alloy heat resistant steel

Publications (2)

Publication Number Publication Date
JP2004337871A true JP2004337871A (en) 2004-12-02
JP4309172B2 JP4309172B2 (en) 2009-08-05

Family

ID=33524679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003134015A Expired - Fee Related JP4309172B2 (en) 2003-05-13 2003-05-13 Low hydrogen coated arc welding rod for low alloy heat resistant steel

Country Status (1)

Country Link
JP (1) JP4309172B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101898284A (en) * 2010-07-14 2010-12-01 中国船舶重工集团公司第七二五研究所 Surfacing electrode for repairing hot forged mould
CN101367161B (en) * 2007-08-18 2011-07-20 中国船舶重工集团公司第七二五研究所 Low-hydrogen super diphasic stainless steel electrode
CN104117788A (en) * 2014-08-06 2014-10-29 武汉铁锚焊接材料股份有限公司 Low hydrogen type super-critical ferrite heat resistant steel electrode
CN104551455A (en) * 2015-01-06 2015-04-29 湖北船王特种焊材有限公司 -70 degrees centigrade low-temperature steel welding bar
CN105234593A (en) * 2015-11-20 2016-01-13 四川大西洋焊接材料股份有限公司 All-position-operation low alloy steel manual electric welding rod applied to chrome-molybdenum critical hydrogen steel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102699578A (en) * 2012-06-11 2012-10-03 天津大桥龙兴焊接材料有限公司 High-toughness high-strength steel welding rod for 50-kilogram grade all-position welding

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61212499A (en) * 1985-03-19 1986-09-20 Nippon Steel Corp Low hydrogen type coated electrode
JPH0994695A (en) * 1995-09-29 1997-04-08 Kobe Steel Ltd Flux cored wire for self-shielded arc welding
JPH09122979A (en) * 1995-11-01 1997-05-13 Nippon Steel Weld Prod & Eng Co Ltd High-chromium iron flux cored wire for submerged arc welding for hard facing
JPH09168891A (en) * 1995-10-18 1997-06-30 Kobe Steel Ltd Low hydrogen covered electrode for high strength cr-mo steel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61212499A (en) * 1985-03-19 1986-09-20 Nippon Steel Corp Low hydrogen type coated electrode
JPH0994695A (en) * 1995-09-29 1997-04-08 Kobe Steel Ltd Flux cored wire for self-shielded arc welding
JPH09168891A (en) * 1995-10-18 1997-06-30 Kobe Steel Ltd Low hydrogen covered electrode for high strength cr-mo steel
JPH09122979A (en) * 1995-11-01 1997-05-13 Nippon Steel Weld Prod & Eng Co Ltd High-chromium iron flux cored wire for submerged arc welding for hard facing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101367161B (en) * 2007-08-18 2011-07-20 中国船舶重工集团公司第七二五研究所 Low-hydrogen super diphasic stainless steel electrode
CN101898284A (en) * 2010-07-14 2010-12-01 中国船舶重工集团公司第七二五研究所 Surfacing electrode for repairing hot forged mould
CN104117788A (en) * 2014-08-06 2014-10-29 武汉铁锚焊接材料股份有限公司 Low hydrogen type super-critical ferrite heat resistant steel electrode
CN104551455A (en) * 2015-01-06 2015-04-29 湖北船王特种焊材有限公司 -70 degrees centigrade low-temperature steel welding bar
CN105234593A (en) * 2015-11-20 2016-01-13 四川大西洋焊接材料股份有限公司 All-position-operation low alloy steel manual electric welding rod applied to chrome-molybdenum critical hydrogen steel

Also Published As

Publication number Publication date
JP4309172B2 (en) 2009-08-05

Similar Documents

Publication Publication Date Title
JP5792050B2 (en) Submerged arc welding method for low temperature steel
US20080099455A1 (en) Flux-cored wire for gas shielded arc welding for creep-resisting steels
JP2004058086A (en) Flux-cored wire for gas shielded metal arc welding for low-alloy heat resisting steel
JP5097499B2 (en) Flux-cored wire for gas shielded arc welding for low alloy heat resistant steel
JP2013237064A (en) Ni-based alloy weld metal, strip electrode and welding method
WO2018051823A1 (en) Wire for electroslag welding, flux for electroslag welding and welded joint
JP6177177B2 (en) Low hydrogen coated arc welding rod
JP2016052667A (en) Flux-cored wire for gas shield arc welding
KR20090012045A (en) Weld metal and titania-based flux cored wire
JP2016203253A (en) Low hydrogen type coated arc welding rod
JP5450260B2 (en) Weld metal with excellent hot crack resistance
JP2007136547A (en) Method for producing metallic flux cored wire with little slag and welded joint having high fatigue strength
JP2004042116A (en) WELDING WIRE FOR HIGH Cr FERRITIC HEAT RESISTANT STEEL
JP5899007B2 (en) Flux-cored wire for hardfacing arc welding
JP2015139807A (en) stainless steel welding flux cored wire
JP2014198344A (en) Submerged arc welding method for high strength steel
JP2017047472A (en) Wire for submerged arc welding
KR102197134B1 (en) Ni based alloy flux cored wire
JP4309172B2 (en) Low hydrogen coated arc welding rod for low alloy heat resistant steel
JP2005230906A (en) Gas shielded arc welding method
JP6832830B2 (en) Flux-filled wire for submerged arc welding and materials for submerged arc welding
JP5244035B2 (en) Weld metal
JP5726017B2 (en) Bond flux and welding method for submerged arc welding
JPH08108296A (en) Flux cored wire for welding cr-mo low-alloy heat resistant steel
JPH07100688A (en) Tig welding wire for high-strength cr-mo steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090507

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees