JP2004336321A - High frequency signal transmission line substrate - Google Patents

High frequency signal transmission line substrate Download PDF

Info

Publication number
JP2004336321A
JP2004336321A JP2003128680A JP2003128680A JP2004336321A JP 2004336321 A JP2004336321 A JP 2004336321A JP 2003128680 A JP2003128680 A JP 2003128680A JP 2003128680 A JP2003128680 A JP 2003128680A JP 2004336321 A JP2004336321 A JP 2004336321A
Authority
JP
Japan
Prior art keywords
line
transmission line
frequency signal
substrate
characteristic impedance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003128680A
Other languages
Japanese (ja)
Other versions
JP4201257B2 (en
Inventor
Noboru Kubo
昇 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal SMI Electronics Device Inc
Original Assignee
Sumitomo Metal SMI Electronics Device Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal SMI Electronics Device Inc filed Critical Sumitomo Metal SMI Electronics Device Inc
Priority to JP2003128680A priority Critical patent/JP4201257B2/en
Publication of JP2004336321A publication Critical patent/JP2004336321A/en
Application granted granted Critical
Publication of JP4201257B2 publication Critical patent/JP4201257B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Waveguides (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high frequency signal transmission line substrate which propagates high frequency signals, provided with a chip resistor mounting area for sufficient isolation, and has stable transmission characteristics. <P>SOLUTION: In the high frequency signal transmission line substrate 10 having a Wilkinson type circuit on which a transmission line 12 extended from an input terminal 14 formed on a dielectric substrate 11 is divided into two transmission lines at a branch point 15, and a chip resistor 18 is joined with the transmission line 12 extended from the branch point 15 to an output terminal 17, a connecting pad 19 having the length of wavelength/4 is attached to the transmission line 12; a first intermediate line 21 is connected between the connecting pad 19 and an output side line 20 to match characteristic impedance; and a second intermediate line 23 is connected between a branch line 16 formed between the connecting pad 19 and the branch line 15, and an input side line 22 to match characteristic impedance. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明が属する技術分野】
本発明は、伝送線路に高周波用の信号を通過させるための高周波信号伝送線路基板に関し、より詳細には、ウイルキンソン型の回路で構成される伝送線路を有する高周波信号伝送線路基板に関する。
【0002】
【従来の技術】
近年のモジュールの高周波化に伴い、半導体素子を搭載して高周波の信号を伝播させるための高周波信号伝送線路基板には、単なる電気的接続では、例えば、信号線を伝播する信号の反射、クロストーク等の伝送線路としての電磁波的挙動が顕著になるため、反射ノイズや、不要電磁放射(EMI)等の様々なノイズの対策が必要となっている。この高周波用伝送線路基板は、セラミックやプラスチックからなる誘電体基板に高速動作に対応でき、ノイズの発生要因を減少するような電気的設計の考慮を行いながら導体金属で信号線や、グランド等を形成して作製されている。
【0003】
通常、高周波信号伝送線路基板を用いて高出力の増幅を行う場合には、アンプの耐電力等の理由から1つのアンプではなく、複数のアンプを高周波信号伝送線路基板に搭載させることが行われる。この場合、複数のアンプへ信号を入力させるためには、アンプへの入力側の伝送線路を分岐する必要があるが、高周波信号においては、ただ単に伝送線路を分岐するのではなく、特性インピーダンスの整合を行う必要がある。この整合方法には、例えば、特性インピーダンスをZとした時に、分岐前に特性インピーダンス1/21/2・Zの波長/4線路を設けたり、あるいは、分岐後に特性インピーダンス21/2・Zの波長/4線路を有する変成器を設けることで行われている。なお、図4に示すように、この特性インピーダンスの算出は、特性インピーダンスZの伝送線路51と特性インピーダンスZの伝送線路52を整合させて接続するには、中間に特性インピーダンスZ=(Z・Z1/2の波長/4の長さの伝送線路53を設ければよいことの原理から算出されている。
【0004】
また、分岐後の2つの伝送線路間には、充分なアイソレーションが要求される場合があるので、ウイルキンソン型の回路を有する伝送線路が用いられている。図5を参照しながら、このウイルキンソン型の伝送線路を用いた伝送線路を模式的に説明する。ポート1から入力された信号は、例えば、分岐点61で2方向に分かれてポート2と、ポート3へ反射を発生させることなく通過するように、前記の波長/4変成器62を使用することで整合が取られている。また、例えば、ポート2で発生したノイズがポート3に伝達しないようにするためには、位置Aから位置Bまでの長さを波長/4とし、位置Bから位置Aを通って位置Cまでの長さを波長/2としている。更に、位置Bから抵抗63を通って位置Cに到達する長さが波長/2と比較して小さい場合には、ポート2で発生したノイズが位置Aを通って位置Cに到達する時のノイズの位相と、抵抗63を通って位置Cに直接到達するノイズの位相とが180度異なっている。そこで、抵抗63の抵抗値RをR=2・Zとすることにより、位置Cに到達するノイズの絶対値が等しくなり、ノイズが互いに打ち消されてポート3にノイズが到達しなくなるようにしている。このウイルキンソン型の回路で構成される伝送線路では、最適化した大きさの抵抗63を設置することにより、分岐後の2つの伝送線路間のアイソレーションを維持できるようにしている。
【0005】
従来の高周波信号伝送線路基板には、例えば、入力側ストリップ線路及び出力側ストリップ線路を誘電体基板上で50Ωの特性インピーダンスとなる線路幅で作成し、入力されたマイクロ波帯の信号を分岐点で分岐し、後段に接続される同じ特性インピーダンスを有する回路等に電力を伝送するものが提案されている。そして、この高周波信号伝送線路基板に形成された波長/4の変成器は、電力分配比に見合った異なる幅に設定され、異なる線路幅による接続段差が入力側ストリップ線路の中心線から入力側ストリップ線路の片側線路幅の範囲で出力側ストリップ線路側へずれて設定されているものが提案されている(例えば、特許文献1参照)。
【0006】
【特許文献1】
特開2002−135015号公報
【0007】
【発明が解決しようとする課題】
しかしながら、前述したような従来の高周波信号伝送線路基板は、次のような問題がある。
(1)高周波信号伝送線路基板がアルミナ(Al)からなる誘電体基板で、周波数が、例えば、20GHz程度以上の高周波の信号が流れる伝送線路基板の場合には、マイクロストリップ線路構造において、表面波の発生を低減するために基板の厚みを薄く、例えば、0.25mm以下等にし、伝送線路幅も特性インピーダンス設計のために基板厚みに合わせてより細く、例えば、0.25mm以下等にする必要がある。また、グランデットコプレナ線路構造においても、共振をより高周波側へシフトさせるために、伝送線路幅をより細く、例えば、0.2mm以下等にする必要がある。このような伝送線路幅の構造においては、チップ抵抗を実装するための実装用パッドの幅が不足するので、実装を行うことが難しくなる。
【0008】
(2)誘電体基板上に抵抗体を厚膜や薄膜で設置した場合には、コストが高くなるので、チップ抵抗を実装させることが望まれる。図6に示すように、チップ抵抗64を実装するための実装用パッド65は、充分な実装領域、例えば、幅0.4mm、長さ0.5mm等の領域が必要となるが、実装用パッド65の領域を大きくすると、実装用パッド65の特性インピーダンスが入力側の伝送線路66や出力側の伝送線路67より小さい特性インピーダンスの不整合箇所として、伝送特性を大きく悪化させている。
【0009】
(3)実装用パッドの特性インピーダンスが入力側や出力側の伝送線路より小さい特性インピーダンスの不整合箇所として、伝送特性を大きく悪化させるのを防止するために、積層体からなる伝送線路基板の下層のグランドパターンを部分的に実装用パッド直下周辺のみを削除することによって、容量を低減し、入力側や出力側の特性インピーダンスを、例えば、50Ωに近づける構造が考えられるが、削除した箇所が共振する問題が発生する。また、例え共振しなくても、セラミックグリーンシートの積層ずれや、配線パターンの印刷ずれによって、特性が安定しない問題がある。
【0010】
(4)分岐した伝送線路の幅を変化させて特性インピーダンスを整合させるだけの方法においては、分岐後の2つの伝送線路間に充分なアイソレーションを必要とする場合に、充分なアイソレーションを得ることができない。
本発明は、かかる事情に鑑みてなされたものであって、高周波の信号が伝播でき、充分なアイソレーション用のチップ抵抗の実装領域を備え、安定した伝送特性を有する高周波信号伝送線路基板を提供することを目的とする。
【0011】
【課題を解決するための手段】
前記目的に沿う本発明に係る高周波信号伝送線路基板は、誘電体基板に形成される高周波信号用の入力端子から延設される伝送線路が分岐点で2分配され、分岐点から出力端子へ延設される伝送線路間にチップ抵抗が接合されて形成されるウイルキンソン型の回路を有する高周波信号伝送線路基板であって、伝送線路にチップ抵抗を搭載するための長さが波長/4からなる接続用パッドが設けられると共に、接続用パッドと、出力側線路との間に第1の中間線路が設けられて、接続用パッドと出力側線路の特性インピーダンスの整合が計られ、しかも、接続用パッドと分岐点の間に設けられる分岐線路と、入力側線路との間に第2の中間線路が設けられて、接続用パッドと分岐線路及び入力側線路の特性インピーダンスの整合が計られる。これにより、チップ抵抗を搭載させるための接続用パッドは、幅を確保しながら長さを波長/4とし、接続用パッドと、出力側線路との間に特性インピーダンスを整合する第1の中間線路を設け、接続用パッドと、入力側線路との間にも特性インピーダンスを整合する第2の中間線路を設けているので、容易にチップ抵抗を接続用パッドに搭載できると共に、特性インピーダンスの不整合箇所がなく、共振や、積層ずれや、印刷ずれ等の影響が少ない安定した伝送特性を有する高周波信号伝送線路基板とすることができる。また、分岐後の2つの伝送線路間には、抵抗を設けているので、伝送線路間のアイソレーションを計ることができると共に、分岐後の2つの伝送線路間に設ける抵抗がチップ抵抗であるので、安価な高周波信号伝送線路基板とすることができる。
【0012】
ここで、高周波信号伝送線路基板は、第1の中間線路の長さが、接続用パッドと出力側線路のそれぞれの特性インピーダンスをZ、Zとする時に、(Z・Z1/2の特性インピーダンスの波長/4からなり、第2の中間線路の長さが、分岐線路と入力側線路のそれぞれの特性インピーダンスをZ、Zとする時に、(0.5・Z ・Z/Z1/2の特性インピーダンスの波長/4からなるのがよい。これにより、チップ抵抗搭載用の接続用パッドを挟んで入力側と出力側の伝送線路の特性インピーダンスの不整合箇所をなくすことができる。
【0013】
【発明の実施の形態】
続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態について説明し、本発明の理解に供する。
ここに、図1(A)、(B)はそれぞれ本発明の一実施の形態に係る高周波信号伝送線路基板の斜視図、分岐部拡大平面図、図2(A)、(B)はそれぞれ同高周波信号伝送線路基板の変形例の分岐部拡大平面図、図3(A)〜(C)はそれぞれ本発明及び従来の高周波信号伝送線路基板の伝送特性のシミュレーション結果のグラフである。
【0014】
図1(A)、(B)に示すように、本発明の一実施の形態に係る高周波信号伝送線路基板10は、複数枚を重ね合わせて積層して形成するセラミックや、プラスチック等の積層体からなる誘電体基板11の一方の主面に高周波の信号を通過させるための信号線用の金属導体からなる伝送線路12と、半導体素子を搭載させるための半導体素子搭載用パッド13、及び半導体素子搭載用パッド13の周辺にワイヤボンディングパッド(図示せず)を有している。また、誘電体基板11の一方の主面の直下の中間層には、伝送線路12の金属導体と実質的に同じ金属導体を用いたべたパターンや、島状パターン等からなるグランド用の金属導体パターン(図示せず)を有している。また、誘電体基板11の一方の主面、及び所定の中間層には、半導体素子と電気的な導通を取るために、配線パターン(図示せず)や、上層と下層の配線パターを接続するためのビア(図示せず)を有している。
【0015】
この高周波信号伝送線路基板10には、入力端子14から延設する伝送線路12が分岐点15で、Ω字型や、O字型等に分岐する長さが波長/4からなる分岐線路16を介してT字型に2分配され、延設される途中に半導体素子搭載用パッド13を挟んで出力端子17へ延設されて設けられている。そして、この高周波信号伝送線路基板10は、2つの出力側の伝送線路12の間に、抵抗が設けられて構成されるウイルキンソン型の回路からなっている。この抵抗には、半田等で後付の実装が可能なチップ抵抗18が用いられている。このチップ抵抗18を搭載させるために、出力側の伝送線路12には、長さが波長/4からなる接続用パッド19が設けられている。この接続用パッド19と共に、出力側の伝送線路12には、接続用パッド19と、出力端子17に延設する出力側線路20との間に第1の中間線路21が設けられている。この第1の中間線路21によって、高周波信号伝送線路基板10は、接続用パッド19と出力側線路20の特性インピーダンスの整合が計られるようになっている。
【0016】
また、高周波信号伝送線路基板10には、接続用パッド19と分岐点15の間に設けられる長さが波長/4からなる分岐線路16と、入力端子14に延設する入力側線路22との間に第2の中間線路23が設けられている。この第2の中間線路23によって、高周波信号伝送線路基板10は、接続用パッド19と、分岐線路16及び入力側線路22の特性インピーダンスの整合が計られるようになっている。
【0017】
図2(A)、(B)を参照しながら、本発明の一実施の形態に係る高周波信号伝送線路基板10の変形例を説明する。この変形例の一つは、図2(A)に示すように、入力側線路22と第2の中間線路23の伝送線路12が分岐点15でU字型に分岐する分岐線路16aを介してT字型に2分配されている。そして、接続用パッド19aは、入力側線路22と第2の中間線路23に対して2つが互いに外側に開くように角度を持って折り曲がって設けられ、第1の中間線路21及び出力側線路20に入力側線路22と第2の中間線路23に対して直角にになるように接続されて形成されている。また、変形例の他の一つは、図2(B)に示すように、入力側線路22と第2の中間線路23の伝送線路12が分岐点15でY字型に分岐する分岐線路16bを介してT字型に2分配されている。そして、接続用パッド19bは、上記の接続用パッド19aと同様に折り曲がって設けられ、第1の中間線路21及び出力側線路20に入力側線路22と第2の中間線路23に対して直角にになるように接続されて形成されている。特に、これらの形状からなる高周波信号伝送線路基板10は、分岐線路16a、16b間に間隔A、Bを設けることで、電流の漏れの発生が少なくでき、また、接続用パッド19a、19bにスタブの発生を防止することができるので、信号をスムースに送ることができると同時に、ノイズの発生を防止することができる。
【0018】
高周波信号伝送線路基板10の第1の中間線路21の長さは、接続用パッド19、19a、19bの特性インピーダンスをZ、出力側線路20の特性インピーダンスをZとする時に、(Z・Z1/2の特性インピーダンスの波長/4からなるのがよい。また、第2の中間線路23の長さは、分岐線路16、16a、16bの特性インピーダンスをZ、入力側線路22の特性インピーダンスをZとする時に、(0.5・Z ・Z/Z1/2の特性インピーダンスの波長/4からなるのがよい。この第1の中間線路21及び第2の中間線路23によって、入力端子14からの高周波の信号は、特性インピーダンスの不整合を発生させることなく、2つの出力端子17へ分配することができる。
【0019】
【実施例】
それぞれの基板厚みが0.20mmのものを3層積層し、外形が40mm×40mmのアルミナ(Al)基板からなり、伝送線路をタングステンからなる導体金属を用い、分岐点でU字型に2分配し、チップ抵抗が載置される接続用パッドの長さが波長/4からなり、接続用パッドにスタブが発生しにくい構造とし、接続用パッドを挟んで第1と第2の中間線路を設け、入、出力側線路の幅を0.20mmとした実施例を作製した。併せて、比較例として、実施例と同寸法、同基板、同金属導体で、伝送線路の分岐点でΩ字形状に2分配し、チップ抵抗の載置部の領域を0.4mm×0.5mmとし、第1と第2の中間線路を設けないで、0.20mm幅の入力側線路を分岐点で接続し、0.4mm×0.5mmのチップ抵抗の載置部の領域から直接0.20mm幅の出力側線路を設けたものを作製した。実施例と、比較例について、SパラメータのS11である反射係数、S21である通過係数、S32であるアイソレーション係数をシミュレーションして調査した。
【0020】
図3(A)〜(C)に示すように、Sパラメータシミュレーションを行った結果は、周波数が25GHz付近の高周波領域では、実施例の反射係数S11が−25dB以下で良好な結果であり、比較例に比べて格段によい結果を示している(図3(A)参照)。また、実施例の通過係数S21は、−4dB以上で良好な結果であり、比較例に比べてよい結果を示している(図3(B)参照)。更に、実施例のアイソレーション係数S32は、−20dB以下で良好な結果であり、比較例に比べて遜色ない結果を示している(図3(C)参照)。実施例は、従来例より優れた伝送特性を有していることが分かった。
【0021】
【発明の効果】
請求項1及びこれに従属する請求項2記載の高周波信号伝送線路基板は、誘電体基板に形成される高周波信号用の入力端子から延設される伝送線路が分岐点で2分配され、分岐点から出力端子へ延設される伝送線路間にチップ抵抗が接合されて形成されるウイルキンソン型の回路を有する高周波信号伝送線路基板であって、伝送線路にチップ抵抗を搭載するための長さが波長/4からなる接続用パッドが設けられると共に、接続用パッドと、出力側線路との間に第1の中間線路が設けられ、しかも、接続用パッドと分岐点の間に設けられる分岐線路と、入力側線路との間に第2の中間線路が設けられるので、接続用パッドに容易にチップ抵抗を搭載できると共に、特性インピーダンスの不整合箇所がなく、共振や、積層ずれや、印刷ずれ等の少ない安定した伝送特性を有する高周波信号伝送線路基板とすることができる。また、分岐後の2つの伝送線路間には、抵抗を設けて、伝送線路間のアイソレーションを計ると共に、分岐後の2つの伝送線路間に設ける抵抗がチップ抵抗であるので、高周波信号伝送線路基板を安価にすることができる。
【0022】
特に、請求項2記載の高周波信号伝送線路基板は、第1の中間線路の長さが、接続用パッドと出力側線路のそれぞれの特性インピーダンスをZ、Zとする時に、(Z・Z1/2の特性インピーダンスの波長/4からなり、第2の中間線路の長さが、分岐線路と入力側線路のそれぞれの特性インピーダンスをZ、Zとする時に、(0.5・Z ・Z/Z1/2の特性インピーダンスの波長/4からなるので、チップ抵抗搭載用の接続用パッドを挟んで入力側と出力側の伝送線路の特性インピーダンスの不整合箇所をなくして、2つの出力端子へ高周波の信号を分配することができる。
【図面の簡単な説明】
【図1】(A)、(B)はそれぞれ本発明の一実施の形態に係る高周波信号伝送線路基板の斜視図、分岐部拡大平面図である。
【図2】(A)、(B)はそれぞれ同高周波信号伝送線路基板の変形例の分岐部拡大平面図である。
【図3】(A)〜(C)はそれぞれ本発明及び従来の高周波信号伝送線路基板の伝送特性のシミュレーション結果のグラフである。
【図4】従来からの特性インピーダンスの算出方法の説明図である。
【図5】従来からのウイルキンソン型の回路を有する伝送線路の説明図である。
【図6】従来の高周波信号伝送線路基板である比較例の分岐部拡大平面図である。
【符号の説明】
10:高周波信号伝送線路基板、11:誘電体基板、12:伝送線路、13、:半導体素子搭載用パッド、14:入力端子、15:分岐点、16、16a、16b:分岐線路、17:出力端子、18:チップ抵抗、19、19a、19b:接続用パッド、20:出力側線路、21:第1の中間線路、22:入力側線路、23:第2の中間線路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-frequency signal transmission line substrate for passing a high-frequency signal through a transmission line, and more particularly, to a high-frequency signal transmission line substrate having a transmission line formed of a Wilkinson-type circuit.
[0002]
[Prior art]
With the recent increase in the frequency of modules, a high-frequency signal transmission line substrate for mounting a semiconductor element and transmitting a high-frequency signal requires only simple electrical connection, for example, reflection of a signal transmitted through a signal line, crosstalk, and the like. Since the electromagnetic wave behavior as a transmission line such as the above becomes remarkable, it is necessary to take measures against various noises such as reflection noise and unnecessary electromagnetic radiation (EMI). This high-frequency transmission line substrate can respond to high-speed operation on a dielectric substrate made of ceramic or plastic, and can be used to conduct signal lines, grounds, etc. with conductive metal while taking into account electrical design to reduce noise generation factors. It is formed and manufactured.
[0003]
Normally, when performing high-output amplification using a high-frequency signal transmission line substrate, a plurality of amplifiers, rather than one amplifier, are mounted on the high-frequency signal transmission line substrate for reasons such as withstand power of the amplifier. . In this case, in order to input a signal to a plurality of amplifiers, it is necessary to branch the transmission line on the input side to the amplifier. Alignment needs to be done. The alignment method, for example, the characteristic impedance when the Z 0, may be provided a wavelength / 4 line characteristic impedance 1/2 1/2 · Z 0 before branching, or characteristic impedance 2 1/2 after the branch - it has been made by providing a transformer having a wavelength / 4 line of Z 0. As shown in FIG. 4, the calculation of the characteristic impedance to connect the transmission line 52 of the transmission line 51 and the characteristic impedance Z 2 of the characteristic impedance Z 1 in alignment is = intermediate characteristic impedance Z M ( Z 1 · Z 2) are calculated from the principles of the may be provided a transmission line 53 of the length of the wavelength / 4 1/2.
[0004]
Since sufficient isolation may be required between the two transmission lines after branching, a transmission line having a Wilkinson-type circuit is used. With reference to FIG. 5, a transmission line using this Wilkinson transmission line will be schematically described. For example, the wavelength / 4 transformer 62 is used so that the signal input from the port 1 is split in two directions at the branch point 61 and passes through the port 2 and the port 3 without causing reflection. Is consistent. Further, for example, in order to prevent the noise generated at the port 2 from transmitting to the port 3, the length from the position A to the position B is set to a wavelength / 4, and the length from the position B to the position C through the position A is set. The length is wavelength / 2. Further, when the length from the position B to the position C through the resistor 63 is smaller than the wavelength / 2, the noise generated at the port 2 is the noise at the time of reaching the position C through the position A. And the phase of the noise that reaches the position C directly through the resistor 63 is different by 180 degrees. Therefore, by setting the resistance value R of the resistor 63 to R = 2 · Z 0 , the absolute values of the noise reaching the position C become equal, and the noises cancel each other out so that the noise does not reach the port 3. I have. In the transmission line constituted by this Wilkinson-type circuit, the isolation between the two transmission lines after branching can be maintained by installing the resistor 63 having an optimized size.
[0005]
In a conventional high-frequency signal transmission line substrate, for example, an input side strip line and an output side strip line are formed with a line width having a characteristic impedance of 50Ω on a dielectric substrate, and a signal in a microwave band is inputted to a branch point. There is proposed a device which branches at a point and transmits power to a circuit having the same characteristic impedance connected to the subsequent stage. The wavelength / 4 transformer formed on the high-frequency signal transmission line substrate is set to have different widths corresponding to the power distribution ratio, and the connection step due to the different line widths is shifted from the center line of the input side strip line to the input side strip line. There has been proposed a line which is set to be shifted toward the output side strip line within the range of the line width of one side of the line (for example, see Patent Document 1).
[0006]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2002-135015
[Problems to be solved by the invention]
However, the conventional high-frequency signal transmission line board as described above has the following problems.
(1) When the high-frequency signal transmission line substrate is a dielectric substrate made of alumina (Al 2 O 3 ) and the transmission line substrate has a frequency of, for example, about 20 GHz or higher, a high-frequency signal transmission line substrate has a microstrip line structure. In order to reduce the generation of surface waves, the thickness of the substrate is reduced to, for example, 0.25 mm or less, and the transmission line width is also reduced to match the substrate thickness for the characteristic impedance design, for example, 0.25 mm or less. Need to be Also in the grounded coplanar line structure, the transmission line width needs to be narrower, for example, 0.2 mm or less, in order to shift the resonance to a higher frequency side. In such a transmission line width structure, the mounting pad for mounting the chip resistor is insufficient in width, so that it becomes difficult to mount the chip.
[0008]
(2) When a resistor is provided as a thick film or a thin film on a dielectric substrate, the cost increases. Therefore, it is desired to mount a chip resistor. As shown in FIG. 6, the mounting pad 65 for mounting the chip resistor 64 needs a sufficient mounting area, for example, an area having a width of 0.4 mm and a length of 0.5 mm. When the area of 65 is increased, the characteristic impedance of the mounting pad 65 is smaller than the transmission line 66 on the input side or the transmission line 67 on the output side as a mismatching point of the characteristic impedance, and the transmission characteristic is greatly deteriorated.
[0009]
(3) The lower layer of the transmission line substrate made of a laminated body in order to prevent the characteristic impedance of the mounting pad from being lower than the transmission line on the input side or the output side as a mismatching point of the characteristic impedance and to prevent the transmission characteristics from being greatly deteriorated. It is possible to reduce the capacitance by partially removing only the area immediately below the mounting pad from the ground pattern, and make the characteristic impedance on the input and output sides close to, for example, 50Ω. Problem occurs. Further, even if resonance does not occur, there is a problem that characteristics are not stable due to misalignment of the ceramic green sheets and misalignment of the printed wiring pattern.
[0010]
(4) In the method of simply matching the characteristic impedance by changing the width of the branched transmission line, if sufficient isolation is required between the two transmission lines after branching, sufficient isolation is obtained. I can't.
The present invention has been made in view of the above circumstances, and provides a high-frequency signal transmission line substrate that can transmit a high-frequency signal, has a sufficient mounting area for a chip resistor for isolation, and has stable transmission characteristics. The purpose is to do.
[0011]
[Means for Solving the Problems]
According to the high frequency signal transmission line substrate of the present invention, the transmission line extending from the high frequency signal input terminal formed on the dielectric substrate is divided into two at the branch point and extended from the branch point to the output terminal. A high-frequency signal transmission line substrate having a Wilkinson-type circuit formed by joining a chip resistor between transmission lines provided, wherein a connection for mounting the chip resistor on the transmission line has a length of wavelength / 4. And a first intermediate line is provided between the connection pad and the output line to match the characteristic impedance between the connection pad and the output line. A second intermediate line is provided between the input-side line and a branch line provided between the input line and the branch line, and matching of characteristic impedances of the connection pad, the branch line, and the input-side line is measured. Thus, the connection pad for mounting the chip resistor has a length of / 4 while securing the width, and the first intermediate line that matches the characteristic impedance between the connection pad and the output line. Is provided, and the second intermediate line for matching the characteristic impedance is provided between the connection pad and the input-side line, so that the chip resistor can be easily mounted on the connection pad and the characteristic impedance mismatch. It is possible to provide a high-frequency signal transmission line substrate having stable transmission characteristics, which has no portions, is less affected by resonance, lamination shift, printing shift, and the like. In addition, since a resistor is provided between the two transmission lines after branching, isolation between the transmission lines can be measured, and a resistor provided between the two transmission lines after branching is a chip resistor. Thus, an inexpensive high-frequency signal transmission line substrate can be obtained.
[0012]
Here, the high-frequency signal transmission line substrate, when the length of the first intermediate line is, the respective characteristic impedance of the connection pads and the output line Z p, and Z 0, (Z 0 · Z p) 1 When the characteristic impedance of the branch line and the input side line is Z m and Z 0 , respectively, the length of the second intermediate line is (0.5 · Z m). 2 · Z 0 / Z p ) It is preferable to have a wavelength of / 4 having a characteristic impedance of 1/2 . As a result, it is possible to eliminate a mismatching point between the characteristic impedances of the input-side and output-side transmission lines with the connection pad for mounting the chip resistor therebetween.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention.
Here, FIGS. 1A and 1B are a perspective view and a magnified plan view of a branch portion of a high-frequency signal transmission line substrate according to an embodiment of the present invention, respectively, and FIGS. 2A and 2B are the same. FIGS. 3A to 3C are graphs showing simulation results of transmission characteristics of a high-frequency signal transmission line substrate according to the present invention and a conventional high-frequency signal transmission line substrate, respectively.
[0014]
As shown in FIGS. 1A and 1B, a high-frequency signal transmission line substrate 10 according to an embodiment of the present invention is a laminate of ceramic, plastic, or the like formed by laminating and laminating a plurality of substrates. Transmission line 12 made of a metal conductor for a signal line for passing a high-frequency signal through one main surface of a dielectric substrate 11 made of a semiconductor device, a semiconductor element mounting pad 13 for mounting a semiconductor element, and a semiconductor element A wire bonding pad (not shown) is provided around the mounting pad 13. In the intermediate layer immediately below one main surface of the dielectric substrate 11, a ground metal conductor made of a solid pattern or an island-like pattern using substantially the same metal conductor as the metal conductor of the transmission line 12 is used. It has a pattern (not shown). Further, a wiring pattern (not shown) and upper and lower wiring patterns are connected to one main surface of the dielectric substrate 11 and a predetermined intermediate layer in order to establish electrical conduction with the semiconductor element. (Not shown).
[0015]
In the high-frequency signal transmission line substrate 10, a transmission line 12 extending from an input terminal 14 is branched at a branch point 15 into a Ω-shaped or O-shaped branch line 16 having a wavelength of / 4. It is divided into two in a T-shape, and is provided to extend to the output terminal 17 with the semiconductor element mounting pad 13 interposed therebetween while being extended. The high-frequency signal transmission line substrate 10 is a Wilkinson-type circuit in which a resistor is provided between the two transmission lines 12 on the output side. For this resistor, a chip resistor 18 that can be mounted later with solder or the like is used. In order to mount the chip resistor 18, a connection pad 19 having a wavelength of / 4 is provided on the transmission line 12 on the output side. Along with the connection pad 19, a first intermediate line 21 is provided between the connection pad 19 and an output-side line 20 extending to the output terminal 17 on the output-side transmission line 12. The first intermediate line 21 allows the high-frequency signal transmission line substrate 10 to match the characteristic impedance between the connection pad 19 and the output line 20.
[0016]
The high-frequency signal transmission line substrate 10 includes a branch line 16 having a wavelength of / 4 provided between the connection pad 19 and the branch point 15, and an input-side line 22 extending to the input terminal 14. A second intermediate line 23 is provided therebetween. The second intermediate line 23 allows the high-frequency signal transmission line substrate 10 to match the characteristic impedance of the connection pad 19 with the characteristic impedance of the branch line 16 and the input side line 22.
[0017]
A modified example of the high-frequency signal transmission line substrate 10 according to one embodiment of the present invention will be described with reference to FIGS. One of the modifications is as shown in FIG. 2A, via a branch line 16a in which the input side line 22 and the transmission line 12 of the second intermediate line 23 branch at the branch point 15 into a U-shape. It is divided into two in a T shape. The connection pad 19a is provided to be bent at an angle with respect to the input side line 22 and the second intermediate line 23 so that two of them are opened outward, and the first intermediate line 21 and the output side line are provided. 20 is formed so as to be perpendicular to the input side line 22 and the second intermediate line 23. Another modification is a branch line 16b in which the input side line 22 and the transmission line 12 of the second intermediate line 23 branch in a Y-shape at the branch point 15, as shown in FIG. Are divided into two in a T-shape via a. The connection pad 19b is provided to be bent in the same manner as the connection pad 19a, and is formed on the first intermediate line 21 and the output side line 20 at right angles to the input side line 22 and the second intermediate line 23. Are formed so as to be connected to each other. In particular, in the high-frequency signal transmission line substrate 10 having these shapes, by providing the intervals A and B between the branch lines 16a and 16b, the occurrence of current leakage can be reduced, and the stubs are connected to the connection pads 19a and 19b. Can be prevented from occurring, so that the signal can be sent smoothly and at the same time, the occurrence of noise can be prevented.
[0018]
The length of the first intermediate line 21 of the high-frequency signal transmission line substrate 10, connection pads 19, 19a, the characteristic impedance of 19b Z p, the characteristic impedance of the output side line 20 when the Z 0, (Z 0 (Z p ) It is preferable that the wavelength is / 4 having a characteristic impedance of 1/2 . When the characteristic impedance of the branch lines 16, 16a and 16b is Z m and the characteristic impedance of the input side line 22 is Z 0 , the length of the second intermediate line 23 is (0.5 · Z m 2 · Z 0 / Z p) may comprise a wavelength / 4 1/2 of the characteristic impedance. With the first intermediate line 21 and the second intermediate line 23, a high-frequency signal from the input terminal 14 can be distributed to the two output terminals 17 without causing a mismatch in characteristic impedance.
[0019]
【Example】
Three layers each having a thickness of 0.20 mm are laminated to form an alumina (Al 2 O 3 ) substrate having an outer shape of 40 mm × 40 mm, and the transmission line is made of a conductive metal made of tungsten. The connection pad on which the chip resistor is mounted has a length of wavelength / 4, and the connection pad has a structure in which a stub is unlikely to be generated. The connection pad is sandwiched between the first and second intermediate portions. A line was provided, and an example in which the width of the input and output lines was 0.20 mm was manufactured. In addition, as a comparative example, with the same dimensions, the same substrate, and the same metal conductor as those of the example, the transmission line is divided into two at the branch point of the transmission line into an Ω shape, and the area of the mounting portion of the chip resistor is 0.4 mm × 0.2 mm. 5 mm, the first and second intermediate lines are not provided, the input side line having a width of 0.20 mm is connected at the branch point, and 0 mm is directly connected to the area of the mounting portion of the chip resistor of 0.4 mm × 0.5 mm. An output line having a width of .20 mm was prepared. For the example and the comparative example, the reflection coefficient as S11, the transmission coefficient as S21, and the isolation coefficient as S32 of the S parameters were simulated and investigated.
[0020]
As shown in FIGS. 3 (A) to 3 (C), the result of performing the S-parameter simulation shows that the reflection coefficient S11 of the example is a good result when the reflection coefficient S11 is −25 dB or less in a high frequency region around 25 GHz. The result is much better than the example (see FIG. 3A). Further, the pass coefficient S21 of the embodiment is a good result when it is -4 dB or more, and shows a better result than the comparative example (see FIG. 3B). Furthermore, the isolation coefficient S32 of the example is a good result when it is -20 dB or less, and shows a result comparable to that of the comparative example (see FIG. 3C). It was found that the example had better transmission characteristics than the conventional example.
[0021]
【The invention's effect】
In the high-frequency signal transmission line substrate according to the first and second aspects, the transmission line extending from the input terminal for the high-frequency signal formed on the dielectric substrate is divided into two at the branch point, A high-frequency signal transmission line substrate having a Wilkinson-type circuit formed by joining a chip resistor between transmission lines extending from an output terminal to an output terminal, and the length for mounting the chip resistor on the transmission line is a wavelength. / 4, a first intermediate line is provided between the connection pad and the output line, and a branch line is provided between the connection pad and the branch point. Since the second intermediate line is provided between the input side line and the input side line, a chip resistor can be easily mounted on the connection pad, and there is no characteristic impedance mismatching portion, and resonance, lamination displacement, printing displacement, etc. It can be a high-frequency signal transmission line substrate having no stable transmission characteristics. In addition, a resistor is provided between the two transmission lines after branching to measure isolation between the transmission lines, and the resistor provided between the two transmission lines after branching is a chip resistor. The substrate can be made inexpensive.
[0022]
In particular, in the high-frequency signal transmission line substrate according to the second aspect, when the length of the first intermediate line is Z p , Z 0 , respectively, the characteristic impedances of the connection pad and the output-side line are (Z 0. Z p ) 1/2 of the characteristic impedance wavelength / 4, and the length of the second intermediate line is (0 .Zp ) when the characteristic impedances of the branch line and the input side line are Z m and Z 0 , respectively. since consisting 5 · Z m 2 · Z 0 / Z p) wavelength / 4 1/2 of the characteristic impedance, the characteristic impedance of the transmission line on the input side and the output side across the connection pads of the chip resistor mounted non A high-frequency signal can be distributed to two output terminals by eliminating a matching portion.
[Brief description of the drawings]
FIGS. 1A and 1B are a perspective view and an enlarged plan view of a branch portion of a high-frequency signal transmission line substrate according to an embodiment of the present invention, respectively.
FIGS. 2A and 2B are enlarged plan views of a branch portion of a modified example of the high-frequency signal transmission line substrate.
3 (A) to 3 (C) are graphs of simulation results of transmission characteristics of the present invention and a conventional high-frequency signal transmission line substrate, respectively.
FIG. 4 is an explanatory diagram of a conventional method for calculating a characteristic impedance.
FIG. 5 is an explanatory diagram of a conventional transmission line having a Wilkinson-type circuit.
FIG. 6 is an enlarged plan view of a branch portion of a comparative example which is a conventional high-frequency signal transmission line substrate.
[Explanation of symbols]
10: high-frequency signal transmission line substrate, 11: dielectric substrate, 12: transmission line, 13, semiconductor device mounting pad, 14: input terminal, 15: branch point, 16, 16a, 16b: branch line, 17: output Terminal, 18: chip resistor, 19, 19a, 19b: connection pad, 20: output side line, 21: first intermediate line, 22: input side line, 23: second intermediate line

Claims (2)

誘電体基板に形成される高周波信号用の入力端子から延設される伝送線路が分岐点で2分配され、該分岐点から出力端子へ延設される前記伝送線路間にチップ抵抗が接合されて形成されるウイルキンソン型の回路を有する高周波信号伝送線路基板であって、
前記伝送線路に前記チップ抵抗を搭載するための長さが波長/4からなる接続用パッドが設けられると共に、該接続用パッドと、出力側線路との間に第1の中間線路が設けられて、前記接続用パッドと前記出力側線路の特性インピーダンスの整合が計られ、しかも、前記接続用パッドと前記分岐点の間に設けられる分岐線路と、入力側線路との間に第2の中間線路が設けられて、前記接続用パッドと前記分岐線路及び前記入力側線路の特性インピーダンスの整合が計られることを特徴とする高周波信号伝送線路基板。
A transmission line extending from an input terminal for a high-frequency signal formed on a dielectric substrate is divided into two at a branch point, and a chip resistor is joined between the transmission lines extending from the branch point to an output terminal. A high-frequency signal transmission line substrate having a Wilkinson-type circuit to be formed,
A connection pad having a wavelength of / 4 for mounting the chip resistor on the transmission line is provided, and a first intermediate line is provided between the connection pad and the output line. A characteristic impedance between the connection pad and the output line is matched, and a second intermediate line is provided between the input line and a branch line provided between the connection pad and the branch point. Wherein the characteristic impedances of the connection pad, the branch line, and the input line are matched.
請求項1記載の高周波信号伝送線路基板において、前記第1の中間線路の長さが、前記接続用パッドと前記出力側線路のそれぞれの特性インピーダンスをZ、Zとする時に、(Z・Z1/2の特性インピーダンスの波長/4からなり、前記第2の中間線路の長さが、前記分岐線路と前記入力側線路のそれぞれの特性インピーダンスをZ、Zとする時に、(0.5・Z ・Z/Z1/2の特性インピーダンスの波長/4からなることを特徴とする高周波信号伝送線路基板。2. The high-frequency signal transmission line board according to claim 1, wherein the length of the first intermediate line is (Z 0) when the characteristic impedances of the connection pad and the output-side line are Z p and Z 0 , respectively. · Z p) consists wavelength / 4 1/2 of the characteristic impedance, the length of the second intermediate line is, each of the characteristic impedance of the branch line and the input side line when a Z m, Z 0 , the high-frequency signal transmission line substrate, characterized in that it consists of (0.5 · Z m 2 · Z 0 / Z p) wavelength / 4 1/2 of the characteristic impedance.
JP2003128680A 2003-05-07 2003-05-07 High frequency signal transmission line substrate Expired - Fee Related JP4201257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003128680A JP4201257B2 (en) 2003-05-07 2003-05-07 High frequency signal transmission line substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003128680A JP4201257B2 (en) 2003-05-07 2003-05-07 High frequency signal transmission line substrate

Publications (2)

Publication Number Publication Date
JP2004336321A true JP2004336321A (en) 2004-11-25
JP4201257B2 JP4201257B2 (en) 2008-12-24

Family

ID=33504723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003128680A Expired - Fee Related JP4201257B2 (en) 2003-05-07 2003-05-07 High frequency signal transmission line substrate

Country Status (1)

Country Link
JP (1) JP4201257B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100810512B1 (en) * 2001-10-31 2008-03-07 삼성전자주식회사 Printed Circuit Board
CN108767408A (en) * 2018-07-27 2018-11-06 辽宁普天数码股份有限公司 A kind of subminaturization Wilkinson power divider

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100810512B1 (en) * 2001-10-31 2008-03-07 삼성전자주식회사 Printed Circuit Board
CN108767408A (en) * 2018-07-27 2018-11-06 辽宁普天数码股份有限公司 A kind of subminaturization Wilkinson power divider
CN108767408B (en) * 2018-07-27 2023-09-19 辽宁普天数码股份有限公司 Microminiaturized wilkinson power divider

Also Published As

Publication number Publication date
JP4201257B2 (en) 2008-12-24

Similar Documents

Publication Publication Date Title
KR100282274B1 (en) Transmission circuit using strip line in three dimensions
US6822532B2 (en) Suspended-stripline hybrid coupler
US20060109062A1 (en) High frequency component
JP2001320208A (en) High frequency circuit, module and communication equipment using the same
JPH0321089B2 (en)
CN216529280U (en) Transmission line member
US20040000965A1 (en) Directional coupler and electronic device using the same
JPH09191205A (en) Signal separation microwave splitter/combiner
JP2000510299A (en) Coplanar waveguide coupler
WO2014157031A1 (en) High-frequency transmission line and electronic device
JP4201257B2 (en) High frequency signal transmission line substrate
KR100779168B1 (en) Signal transmission line for millimeter wave band
JPH08250911A (en) High frequency air-tight module
JP3935082B2 (en) High frequency package
JP4381701B2 (en) Connection structure between coaxial connector and multilayer board
JP2002185201A (en) Wiring board for high frequency
JP2000106501A (en) Power distribution circuit and power synthesizing circuit
JP6973662B2 (en) Flexible boards and electronic devices
WO2020115978A1 (en) Transmission device, printed wiring board, and information apparatus
US12004289B2 (en) Flexible substrate and electronic device
EP2634859B1 (en) Lange coupler and fabrication method
JP3833426B2 (en) High frequency wiring board
JP6907916B2 (en) High frequency circuit
JP3504453B2 (en) Power distribution combiner
JP3506647B2 (en) Matching circuit and high-frequency high-power semiconductor device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081001

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081003

R150 Certificate of patent or registration of utility model

Ref document number: 4201257

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees