JP2004333428A - Fluid flow measuring device - Google Patents

Fluid flow measuring device Download PDF

Info

Publication number
JP2004333428A
JP2004333428A JP2003133072A JP2003133072A JP2004333428A JP 2004333428 A JP2004333428 A JP 2004333428A JP 2003133072 A JP2003133072 A JP 2003133072A JP 2003133072 A JP2003133072 A JP 2003133072A JP 2004333428 A JP2004333428 A JP 2004333428A
Authority
JP
Japan
Prior art keywords
power supply
voltage
boosting
control means
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003133072A
Other languages
Japanese (ja)
Other versions
JP4649822B2 (en
Inventor
Bunichi Shiba
文一 芝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003133072A priority Critical patent/JP4649822B2/en
Publication of JP2004333428A publication Critical patent/JP2004333428A/en
Application granted granted Critical
Publication of JP4649822B2 publication Critical patent/JP4649822B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To heighten voltage stability by operating a boosting means after elapse of a fixed time after makeup of a power supply, because there is a possibility of generating malfunction of another circuit operation when a voltage is not yet stabilized in the initial stage of system operation in operation of the boosting means. <P>SOLUTION: A power supply control means 44 transmits a signal to the boosting means 43 to adjust the voltage after elapse of the fixed time after makeup of the power supply, to thereby perform power supply to an oscillator with a stabilized voltage, and the operation of the boosting means not exerting an influence such as a noise on the system can be realized by operating the boosting means 22 during a period when the load operation is not influenced. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、負荷に電源電圧より高電圧の電力を供給する昇圧手段を用い、超音波を利用して気体や液体などの流速およびまたは流量を計測する流体の流れ計測装置に関する。
【0002】
【従来の技術】
従来の昇圧手段としてはDCDCコンバータを利用したものがあり、これを利用した流量計測装置は、超音波を用いた電気的な計測方法である(例えば、特許文献1参照)。
【0003】
図11は一般的な昇圧回路の構成を示すもので、1は電源、2はDCDCコンバータ、3はインダクタンスL、4はダイオードD、5はコンデンサC、6は負荷である。
【0004】
DCDCコンバータ2はインダクタンス3をスイッチング動作することによりオンからオフになったときにインダクタンスに生じる逆起電力がダイオード4を介して整流し、コンデンサ5でリップルを小さくした安定した高電圧を負荷6に供給するものである。
【0005】
図12は従来の超音波流量計を示し、流体流路11の途中に超音波を発信する第1超音波振動子12と受信する第2超音波振動子13が流れ方向に配置されている。
【0006】
14は第1超音波振動子12への送信回路、15は第2超音波振動子13で受信した超音波を信号処理する受信回路である。16は受信回路15で超音波を検知した後第1超音波振動子12からの送信と第2超音波振動子13での受信を複数回繰り返す繰返し手段である。
【0007】
17は受信回路で超音波を検出した後、再度第1超音波振動子12から超音波を送信するまでの遅延時間を発生させる遅延時間発生手段であり、18は遅延時間発生手段17により発生した遅延時間を計測する遅延時間計測手段、19は遅延時間発生手段17の計測値を基に、遅延時間を制御する遅延時間制御手段、20はは繰返し手段により行われる複数回の超音波伝達の所要時間を計測する累積時間計測手段、21は遅延時間計測手段18および累積時間計測手段20の計測値から流量を求める流量演算手段である。
【0008】
送信回路14より送出されたバースト信号により第1超音波振動子12から発信された超音波信号は、流れの中を伝搬し、第2超音波振動子13で受信され受信回路15で検知され、遅延時間発生手段17で発生した遅延時間を置いた後、再び送信回路14よりバースト信号が送出される。
【0009】
送信回路14からのバースト信号は、予め定められた回数だけ繰り返され、この繰返しに要した時間を累積時間計測手段20で、また、遅延時間を遅延時間計測手段10により計測する。
【0010】
更に、流量演算手段21では、累積時間計測手段20で求めた値から遅延時間計測手段19で求めた遅延時間を差し引くことにより、超音波の伝達のみの所要時間Tを求める。
【0011】
通常、この送信回路から振動子を駆動する際には伝搬距離により信号が減衰することを考慮して高電圧を供給する。その回路として上記に説明した昇圧回路を利用することが多い。
【0012】
【特許文献1】
特開2000−292232号公報(第2頁、第1図)
【0013】
【発明が解決しようとする課題】
しかしながら従来の昇圧回路における高電圧供給回路では負荷の動作および回路全体の安定性を考えたDCDCコンバータの動作タイミングが統一されておらず、個々に動作している。
【0014】
例えば送信、受信回路への供給電圧が安定する前にDCDCコンバータの動作を開始すると充電後、負荷が動作するまでの時間に無駄が発生する可能性がでてくる。さらに回路の初期設定動作などを行なっている時に昇圧回路が動作するとシステムの電圧が変動したり、ノイズの発生による計測精度の劣化につながる可能性がある。
【0015】
本発明は上記の課題を解決するもので、昇圧手段をこまめに制御することで、安定した電圧で負荷への電力供給を行うとともに、ノイズ等の影響をシステムに与えないような昇圧手段の動作を実現することを目的としている。
【0016】
そして、このような安定した昇圧制御手段を用いることで、計測系の安定動作を実現する精度の良い流速およびまたは流量計測を実現することを目的としている。
【0017】
【課題を解決するための手段】
前記従来の課題を解決するために、本発明の流体の流れ計測装置は、被測定流体の流れる流路に配置され超音波を送受信する一対の超音波振動子と、これら超音波振動子を駆動する送信手段と、受信側超音波振動子の出力信号を電気信号に変換する受信手段と、前記超音波振動子の送受信の切換手段と、前記超音波振動子間相互の超音波伝搬を複数回行う繰返し手段と、前記繰返し時に前記超音波振動子からの送信信号を遅らせる遅延手段と、それぞれの複数回繰返しの伝搬時間を計測する計時手段と、前記計時手段でそれぞれの計時値の差に基づいて流速およびまたは流量を算出する演算手段と、電源と、前記電源より高電圧をつくる昇圧手段と、前記電源と昇圧手段を制御する電源制御手段とを備え、回路全体の動作と負荷の動作に応じてこまめに昇圧手段による電圧の上昇動作を制御するようにしたものである。
【0018】
【発明の実施の形態】
本発明の実施の形態は、被測定流体の流れる流路に配置され超音波を送受信する一対の超音波振動子と、これら超音波振動子を駆動する送信手段と、受信側超音波振動子の出力信号を電気信号に変換する受信手段と、前記超音波振動子の送受信の切換手段と、前記超音波振動子間相互の超音波伝搬を複数回行う繰返し手段と、前記繰返し時に前記振動子からの送信信号を遅らせる遅延手段と、それぞれの複数回繰返しの伝搬時間を計測する計時手段と、前記計時手段でそれぞれの計時値の差に基づいて流速およびまたは流量を算出する演算手段と、電源と、前記電源より高電圧をつくる昇圧手段と、前記電源と昇圧手段を制御する電源制御手段とを備えたものである。
【0019】
そして、回路動作が安定する電源電圧を確保するとともに負荷の動作に応じて電圧を制御する動作を行うことにより、安定した電圧で負荷への電力供給を行うとともに、ノイズ等の影響をシステムに与えないような昇圧手段の動作を実現することができ、計測系の安定動作を実現し、精度の良い流速およびまたは流量計測を実現することが可能になる。
【0020】
昇圧手段を動作は、電源制御手段が電源出力を安定化してから行うことにより、電源の出力電圧が安定し、各部の回路電圧が定まり、定常動作になった後に昇圧手段を動作でき、負荷の動作と周辺回路両方の安定度を向上することが可能になる。
【0021】
また、電源制御手段が電源出力を一定時間経過してから昇圧手段を動作することにより、電源の出力電圧が安定し各部の回路電圧が定まり初期動作が終了した後に昇圧手段を動作でき負荷の動作と周辺回路両方の安定度を向上することが可能になる。
【0022】
また、電源制御手段が昇圧手段の出力電圧があらかじめ定めた値になると昇圧手段の動作を停止することにより、昇圧手段の動作時間を短くし無駄な電力を切り詰めるとともにノイズ発生時間も短くし省電力動作が可能になる。
【0023】
また、電源制御手段が送信手段の動作が開始する前に昇圧手段の動作を停止することにより、負荷の動作する前に昇圧手段を動作を終了することにより、常に負荷が動作する時に高電圧を供給可能な状態にしておくとともに昇圧手段の動作時間を短くして省電力動作が可能になる。
【0024】
また、電源制御手段が送信手段の動作が終了後一定時間経過後に昇圧手段の動作を停止することにより、送信動作を安定した電圧で行うことができその後十分昇圧動作を行ってから動作を停止することで、次の動作準備をしておくことが可能になる。
【0025】
さらに、電源制御手段の動作を確実にするためのコンピュータを機能させるためのプログラムを有する構成としたもので、これにより昇圧手段の動作設定、変更が容易にでき、また経年変化などにも柔軟に対応できるためよりフレキシブルに昇圧出力電圧の精度向上を行うことができる。
【0026】
【実施例】
以下、本発明の実施例について図面を用いて説明する。
【0027】
(実施例1)
図1おいて、被測定流体の流れる流路31には超音波を送受信する第1の超音波振動子32と第2の超音波振動子33とが設置してある。
【0028】
また、前記第1の超音波振動子32を駆動する送信手段34と、前記第2の超音波振動子33の受信信号を受け受信タイミングを決定する受信手段35とを設け、さらに、前記送信手段34と第1の超音波振動子32、および、第2の超音波振動子33と受信手段35の間には切換手段36を設け、超音波の送受信を第1の超音波振動子32と第2の超音波振動子33の間で交互に行うようにしている。
【0029】
受信手段35の出力を受け、送信手段34を介して再度超音波の送受信を繰り返すという動作回数を計測し、所定の回数で動作を停止する繰返し手段37と、前記繰返し手段37の信号を受け所定の遅延時間遅れて前記送信手段34のトリガ信号として出力する遅延手段38と、少なくとも送信手段34による第1の振動子32の駆動開始から前記繰返し手段37の動作停止までの超音波の伝搬時間を測定する計時手段39と、前記計時手段39の値から流速を演算し、それから流量を求める演算手段40とを有するものである。
【0030】
また、計測制御手段41を設け、前記送信手段34を動作する計測スタート信号を出力する。
【0031】
さらに、電力の供給を行う電源42と、電源より高電圧の負荷を駆動するための昇圧手段43と、前記電源と昇圧手段を制御する電源制御手段44を備えている。
【0032】
通常の動作を説明する。計測制御手段41からスタート信号を受けた送信手段34が第1の超音波振動子32を一定時間パルス駆動行うと同時に計時手段39は計測制御手段41からの信号によって時間計測始める。
【0033】
パルス駆動された第1の超音波振動子32からは超音波が送信される。第1の超音波振動子32から送信した超音波は被測定流体中を伝搬し、第2の超音波振動子33で受信される。
【0034】
第2の超音波振動子33の受信出力は、受信手段35で信号を増幅された後、予め定められている受信タイミングの信号レベルで超音波の受信を決定する。繰返し動作を行わない場合はこの超音波の受信を決定した時点で計時手段39の動作を停止し、その時間情報tから(式1)によって流速を求める。
【0035】
(計時手段39から得た測定時間をt、超音波振動子間の流れ方向の有効距離をL、音速をc、被測定流体の流速をvとする)。
【0036】
v=(L/t)−c ・・・(式1)
受信手段35は通常コンパレータによって基準電圧と受信信号を比較するようになっていることが多い。
【0037】
繰返し手段37を用いる今回の動作は受信手段35の判定結果を遅延手段38で一定時間遅延させた後に送信手段34に返し、再度送信を行う。繰返し動作を決められた回数行い、その時間を計時手段39で測定し、計時手段39の測定時間を元に(式2)の計算によって流速を求める。
【0038】
なお、遅延手段の遅延時間をTd、繰返しの回数をn、測定時間をts、超音波振動子間の流れ方向の有効距離をL、音速をc、被測定流体の流速をvとする。
【0039】
v=L/(ts/n−Td)−c・・・(式2)
この方法によれば(式1)の方法に比べ精度よく測定することができる。
【0040】
また、第1の超音波振動子32と第2の超音波振動子33とを切り替え、被測定流体の上流から下流と下流から上流へのそれぞれの伝搬時間を測定し、(式3)より速度vを求める。
【0041】
なお、上流から下流への測定時間時間をt1、下流から上流への測定時間時間をt2とする。
【0042】
v=L/2((1/t1)−(1/t2))・・・(式3)
この方法によれば音速の変化の影響を受けずに流度を測定することが出来るので、流速・流量・距離などの測定に広く利用されている。流速vが求まると、それに流路1の断面積を乗ずることにより流量を導くことができる。
【0043】
通常の動作は図2に示すタイミング図のようになる。すなわち、計測制御手段41による時刻t0における開始信号から計測を開始し、t1で送信手段34を介して第1の超音波振動子32を駆動する。
【0044】
そこで発生した超音波信号は流路内を伝搬し、時刻t2で第2の超音波振動子33に到達し、受信手段35で受信点を検知すると繰返し手段37は設定回数に達していない場合、遅延手段38に信号を送出する。
【0045】
そして時刻t3から遅延手段38が動作し、予め定めた時間だけ動作した後時刻t4で送信手段34に信号を送出し、再び第1の超音波振動子32を駆動する。以下、この繰返しを行っている。
【0046】
繰返し手段37で決められた回数動作すると時刻t5で送受信動作は停止し、その時間はTとなる。その後、切換え手段36が送受信を切換える。すなわち第1の超音波振動子32が受信側、第2の超音波振動子33が送信側になる。そして同様な繰返し動作を行う。
【0047】
次に計測制御手段41などに電力を供給する電源周辺について図3も参照して説明する。
【0048】
42は電源、43は昇圧手段、44は電源制御手段、45は負荷である。昇圧手段43の例としては内部にインダクタンス43a、開閉手段43b、ダイオード43c、開閉制御手段43dで構成できる。
【0049】
制御手段44が負荷45の動作を検知すると、開閉制御手段43dに信号を送出し、この開閉制御手段43dは開閉手段43bをオン、オフ動作する。
【0050】
これにより電源42からインダクタンス43aを介して流れる電流が断続的になるため、インダクタンス43aの逆起電力がダイオード43cを通して負荷45に供給される。
【0051】
電源制御手段44による他の動作を示す構成としては負荷45の動作を電源制御手段44で検知できるようにしても良い。
【0052】
負荷45の端子電圧を抵抗分割などで電圧信号とし、その信号が昇圧手段43内部の開閉制御手段43dに入れば電圧の情報により開閉手段を動作して昇圧電圧を制御することが可能である。
【0053】
また、出力電圧を電源制御手段44で測定し、例えばAD変換器などにより電圧信号を得ることにより電源制御手段44は昇圧手段43の出力電圧を一定にするよう開閉手段43bを調整する信号を送出する。
【0054】
このように電源制御手段44は負荷45の動作を検知し、その動作に応じて昇圧手段43に信号を送出し電圧を調整することで、安定した電圧で負荷45への電力供給を行うとともに、負荷の動作に影響を与えない時期に昇圧手段43を動作することでノイズ等の影響をシステムに与えないような昇圧手段の動作を実現することが可能になる。
【0055】
さらに、電源電圧を降圧するための降圧手段43eや電源電圧と直結する電源経路を追加しておいても良い。
【0056】
従来例との差を図4のタイミングを用いて説明する。図4(a)は従来の昇圧回路であるDCDCコンバータ2における負荷の動作タイミングである。負荷が動作することにより昇圧手段2の出力電圧が(b)のように低下してくる。そしてt1で電圧が低下したことを検知してDCDCコンバータが動作する。このt1のタイミングは電圧によってのみ決まり負荷の動作を考慮していない。
【0057】
したがって、図4にあるように負荷6が動作中に電圧が低下した場合もすぐにDCDCコンバータが昇圧動作を開始してしまう。これは負荷の端子電圧が動作中に変動することを示している。
【0058】
計測装置などに使用していると動作電圧が変動するため安定度が悪くなってくる。同様に図4(c)は本発明の電源制御手段44を用いた場合の負荷の動作タイミングである。
【0059】
そして、(d)が電源制御手段44の動作タイミングである。電源制御手段44は負荷6の動作を検知しているため負荷の動作が終了すると時刻t3、t4で昇圧手段43に信号を送出し開閉手段を調節することで昇圧動作を行う。
【0060】
したがって昇圧手段43の出力電圧は図2(e)のようになり、負荷の動作タイミングを外して電圧の変更を行うことが可能になる。
【0061】
流量計測装置において図5のように電源制御手段44を組み込んだ場合について説明する。
【0062】
第1の超音波振動子32を駆動するには流路31の内部を十分な超音波信号レベルで伝送するためある程度高電圧で駆動する必要がある。そこで昇圧手段43の出力は送信手段34を介して第1の振動子32に繋がっている。
【0063】
途中の切換え手段36は送受信を切換えているだけなのでここでの詳しい説明は除く。
【0064】
送信手段34の内部の一例として超音波振動子を動作するために34aから34dまでの送信開閉手段を用いたブリッジ構成をとる。最初送信開閉手段34a,34dを通電状態にし、反対に34b、34cを開放しておく。
【0065】
次に送信開閉手段34a,34dを開放し、34b、34cを通電状態にする。この動作で超音波振動子が動作し始める。超音波振動子への電源は昇圧手段43からの高電圧が供給される。
【0066】
この高電圧の供給が図4(b)に示してあるように負荷(ここでは超音波振動子)の動作状態によらず、DCDCコンバータのみの動作で昇圧動作を行うと超音波振動子への供給電圧が動作中に変化してしまい、受信信号が一定でなくなる。これは流量の計測精度に大きく影響するために好ましいことではない。
【0067】
図4(d),(e)のように電源制御手段44が昇圧手段43の動作や超音波振動子32の動作を検知し、超音波振動子32の動作に影響の無い時期に昇圧手段43を動作するように制御信号を送出することにより安定した電圧で超音波振動子への電力供給を行うとともに、ノイズ等の影響を流量計測システム全体に与えないような昇圧手段43の動作を実現することが可能になる。
【0068】
電源制御手段44は計測制御手段41から計測動作信号が出ているのを信号として受け取ることが可能なため、より確実に振動子の動作に影響を与えない状態で昇圧手段43を制御することできるようになる。
【0069】
図5では電源制御手段44と計測制御手段41を別々に設けているが同じ制御手段として1つの論理手段、例えばマイコンを用いても良い。
【0070】
さらに、電源制御手段44が昇圧手段43にインダクタンスの開閉動作を指示しても出力電圧があまり低下していない場合には動作しないことがある。
【0071】
例えば、昇圧手段43としてDCDCコンバータを用いている場合は素子自体で出力電圧を監視している場合がある。
【0072】
このような場合は出力に抵抗などの電力消費を促す素子を一時的に接続し電圧を低下させてから昇圧動作を確実に動作する方法をとることが可能である。また開閉手段の動作時間を短くしたりするなどして昇圧手段43の出力電圧を微調整することが可能である。
【0073】
動作開始時の電源周辺のタイミングについて説明する。省電力で動作する場合などは電源をこまめに入り切りし、本当に動作が必要な場合のみ電源を各部に供給し、それ以外は休止する方法が多くの制御手段に用いられている。流量計測装置のように周期的に動作を行う機器では非動作時に電源を遮断することが有用である。
【0074】
そのため、電源を立ち上げる動作が頻発するが、その度に各種設定を行う必要がでてくる。送信手段34、受信手段35への供給電圧が安定する前に昇圧手段43の動作を開始すると充電後、負荷としての振動子が動作するまでの時間に無駄が発生する可能性がでてくる。
【0075】
さらに、計測制御手段41の初期設定動作などを行なっている時に昇圧手段43が動作するとシステムの電圧が変動したり、ノイズの発生による計測精度の劣化につながる可能性がある。
【0076】
例えば、計測制御手段41の内部に複数の集積回路が存在し、初期データのやり取りやアナログ部の調整を行っているような場合である。
【0077】
このような場合は図6に示しているように(a)のように電源制御手段の入力部の電圧が上昇し、規定電圧を超えると(b)のようにデジタル機器は動作を開始する。時刻t1で計測制御手段41が動作を開始し、初期設定を行いはじめる。
【0078】
そしてt2までの時間で各部の設定を終了した後(c)で電源制御手段44が昇圧手段43を動作するよう信号を送出する。昇圧手段43の出力は(d)のように立ち上がりt3で所定の電圧を満足する。
【0079】
その後で計測制御手段41は送信手段34を動作する。このように安定した昇圧制御手段を用いることで、計測系の安定動作を実現する精度の良い流速およびまたは流量計測を実現することができる。
【0080】
さらに、アナログ回路などの設定後に昇圧手段43を動作することでノイズ等の影響をシステムに与えないような昇圧手段の動作を実現することが可能になる。
【0081】
また、図7を用いて他の動作を説明する。電源の立ち上げを頻発している場合、電源42からの電圧立ち上がりが安定しない間に昇圧手段43が動作すると周辺の動作に悪影響を与えたり、無駄な動作待ち時間を発生する場合がある。そこで図7(a)のように電源制御手段の入力部の電圧が上昇し、t0で規定電圧を超えると(b)のようにデジタル機器は動作を開始する。
【0082】
そして、(c1)のようにt1で電源制御手段44が昇圧手段43を動作するよう信号を送出する。時刻t0からt1の間で電源出力はほぼ安定しているため各部の動作も落ち着いてきている。
【0083】
このように、電源制御手段44が電源出力が安定してから昇圧手段43を動作することにより、電源の出力電圧が安定し各部の回路電圧が定まり定常動作になった後に昇圧手段43を動作でき負荷である超音波振動子の動作と周辺回路両方の安定度を向上することが可能になる。
【0084】
また、図7を用いて他の動作を説明する。電源の立ち上がりが安定しても他の周辺部分の動作がまだ安定していない場合がある。そこで上記動作と同様に図7(a)のように電源制御手段の入力部の電圧が上昇し、t0で規定電圧を超えると(b)のようにデジタル機器は動作を開始する。
【0085】
そしてt0から一定時間Tを経過してから(c2)のようにt2で電源制御手段44が昇圧手段43を動作するよう信号を送出する。時刻t0からt2の間で周辺回路の動作、初期設定がほぼ安定しているため各部の動作も正常になっている。
【0086】
このように電源の出力電圧が安定しすぐに動作を開始するのでは無く一定時間待機し各部の回路電圧が定まり初期動作が終了した後に昇圧手段を動作することで負荷の動作と周辺回路両方の安定度を向上することが可能になる。
【0087】
また、図8を用いて他の動作を説明する。電源の立ち上がりが終了した後、電源制御手段44により昇圧手段43を動作すると昇圧手段43の出力は電源42の電圧より高くなっていく。
【0088】
そして、一定電圧まで上昇すると後は回路電流を消費しながら待機しているだけである。省電力動作をしている場合、このような待機電流を必要とする動作は避けなければならない。
【0089】
そこで図8(a)のように電源制御手段の入力部の電圧が上昇し、t0で規定電圧を超えると(b)のようにデジタル機器は動作を開始する。その後(c)のようにt1で電源制御手段44が昇圧手段43を動作するよう信号を送出する。
【0090】
昇圧手段43の出力は(d)のように上昇しt2で一定電圧に達した後その電圧を維持する。電源制御手段44はt1からt2までの時間T1より長い時間経過したt3において昇圧手段43の動作を停止する信号をだす。
【0091】
これによって昇圧手段43の内部で消費される回路電流を極力無くすことができる。このように電源制御手段が、昇圧手段の出力電圧があらかじめ定めた値になると昇圧手段の動作を停止することにより、昇圧手段の動作時間を短くし無駄な電力を切り詰めるとともにノイズ発生時間も短くし省電力動作が可能になる。
【0092】
(実施例2)
実施例2を図9、図10も参照して説明する。実施例1と異なるところは昇圧手段の動作を振動子の動作近傍で行うことである。
【0093】
まず、実施例1で示したように流量計測装置に用いられている超音波振動子などの負荷は動作することにより電力を消費するため昇圧手段の出力電圧が低下する。
【0094】
例えば、図1の第1の超音波振動子32が動作すると、図5における昇圧手段43の出力電圧は低下するため、それを補うため昇圧手段43が動作しなければならない。
【0095】
そこで、昇圧手段43を動作するタイミングを調節することにより超音波振動子の動作を安定したものにしていく。
【0096】
図9の時刻t31,t33,t35,t37で(a)のように第1の超音波振動子32が動作すると電力を消費するため昇圧手段43の出力電圧は低下している。
【0097】
これを防止するために振動子の動作する前に(b)のように時刻t30,t32,t34,t36で電力制御手段44が昇圧手段43を動作して電圧を調整する。
【0098】
時刻t30の前には図示していないが振動子が動作しているため昇圧手段43の出力電圧は低下しているが繰返し動作のため説明を省略している。負荷である振動子の動作は計測制御手段41を介して電力制御手段44が検知できるため、振動子の動作する前に昇圧手段43に信号を送出し電圧の調整を行うことが可能になる。その結果昇圧手段43の出力は図9(c)のように安定した電圧状態を示す。
【0099】
これは超音波振動子の動作する前に昇圧手段43の動作が終了しているため電圧は最適な値になり、負荷である超音波振動子が動作する時に高電圧を供給可能な状態にしておくことが可能になる。
【0100】
さらに、システム全体に対するインダクタンス動作などによるノイズ発生が無くなっているため流量計測に応用した場合でも安定した計測動作をすることが可能になる。
【0101】
図9(b)では昇圧手段43の動作が超音波振動子の動作する直前に停止するようになっているが、(b2)のように超音波振動子の動作する一定時間前ΔT2に動作を終了するよう電力制御手段44が調整するようにしても良い。
【0102】
これは電力制御手段44からの停止信号が変化することによりシステム全体に微弱な電圧変化(ノイズ)が発生する場合が考えられる。
【0103】
その電圧変化が他の手段に影響を与えないよう超音波振動子が動作する一定時間前に信号を送出しておけば例えば信号による反射やダンピング信号が収束してからシステム全体の安定後に超音波の送受信動作を安定に行うことが可能になる。また、こまめに昇圧手段をオンオフすることにより省電力も実現できる。
【0104】
このように電源制御手段が送信手段の動作が開始する前に昇圧手段の動作を停止することにより、負荷の動作する前に昇圧手段を動作を終了することができ、常に負荷が動作する時に高電圧を供給可能な状態にしておくとともにシステムの安定性を向上し、昇圧手段の動作時間を短くして省電力動作が可能になる。
【0105】
図9では振動子が動作する直前には必ず昇圧手段が動作するようになっているが、一定回数毎や動作回数の公約数に相当する回数毎において振動子が動作する前に昇圧手段43を動作する構成をとっても良い。
【0106】
また、図10も参照して他の動作を説明する。昇圧手段43を動作するタイミングを調節することにより超音波振動子の動作を安定したものにしていく。
【0107】
図10の時刻t40,t42,t44,t46で(a)のように第1の超音波振動子32が動作して電圧がある程度低下すると、(b)のように時刻t41,t43,t45,t47で電源制御手段44が昇圧手段43を動作して電圧を調整する。
【0108】
負荷である超音波振動子の動作は計測制御手段41を介して電力制御手段44が検知できるため、超音波振動子の動作した後に昇圧手段43に信号を送出し電圧の調整を行うことが可能になる。
【0109】
その結果昇圧手段43の出力は(c)のように安定した電圧状態を示す。これは超音波振動子の動作した後において電圧低下分を正確に把握し、昇圧手段43で補充するとともにその昇圧した電圧が安定してから次回に負荷である超音波振動子の動作を行うことができるため流速およびまたは流量計測などに応用した場合安定したシステム動作を行うことが可能になる。
【0110】
例えば、昇圧手段43に容量性の大きな負荷が接続されていた場合などは電圧の上昇も大きな時定数を持った変化になるが、超音波振動子の動作終了後から電圧の調整を行うと、次の超音波振動子の動作するかなり前から余裕をもって、安定した電圧に調整することができる。
【0111】
図10(b)では昇圧手段43の動作が超音波振動子の動作した直後に停止するようになっているが、(b2)のように超音波振動子が動作した後一定時間後ΔT3に動作を開始するよう電力制御手段44が調整するようにしても良い。
【0112】
これは超音波振動子が動作した直後は高電圧の信号が変化するためシステム全体にグランドを含めて電圧変化を発生する場合が考えられる。
【0113】
その電圧変化が他の手段に影響を与えている場合には例えば電源制御手段44で昇圧手段43の正確な出力電圧を検出できない場合がある。
【0114】
そこで超音波振動子が動作した後、システム全体の電気信号が安定した後に昇圧手段の正確な電圧を把握してから昇圧動作を行うことで安定な電源管理が可能になる。また、こまめに昇圧手段をオンオフすることにより省電力も実現できる。
【0115】
このように電源制御手段が送信手段の動作が終了した後に昇圧手段の動作を開始して次回の超音波振動子の動作に備えることにより、超音波振動子の動作の前に十分時間を持って安定な高電圧を供給可能な状態にしておくとともにシステムの安定性を向上し、昇圧手段の動作時間を短くして省電力動作が可能になる。
【0116】
このように電源制御手段が送信手段の動作が終了後一定時間経過後に昇圧手段の動作を停止することにより、送信動作を安定した電圧で行うことができその後十分昇圧動作を行ってから動作を停止することで、次の動作準備をしておくことが可能になる。
【0117】
図10では超音波振動子が動作した後には必ず昇圧手段が動作するようになっているが、一定回数毎や動作回数の公約数に相当する回数毎において超音波振動子が動作した後に昇圧手段を動作する構成をとっても良い。
【0118】
(実施例3)
実施例3に関する流量計測装置について説明する。
【0119】
実施例1と異なるところは、昇圧手段43の動作を調整する電源制御手段44の動作を確実にするためのコンピュータを機能させるためのプログラムを有する記憶媒体46を用いていることである。
【0120】
図1、および図5において実施例1から実施例2で示した電源制御手段44の動作を行うには、予め実験等により振動子の動作による昇圧手段43の出力変化、経年変化、温度変化、システムの安定度に関して昇圧手段の動作タイミングなどの相関を求め、例えばファジィ制御のメンバーシップ関数のように適合度というような形で判断する判定ソフトをプログラムとして記憶媒体46に格納しておく。
【0121】
通常マイクロコンピュータのメモリやフラッシュメモリ等電気的に書き込み可能なものにしておくと利用が便利である。
【0122】
このように電源制御手段44の動作をプログラムで行うことができるようになると超音波振動子の駆動電圧の変化に対して追随する昇圧手段43の動作をソフトで行うことになる。これにより送信回数の条件設定、切換手段36動作前後における電圧調整の条件設定、変更が容易にでき、また経年変化などにも柔軟に対応できるためよりフレキシブルに計測時間の精度向上を行うことができる。
【0123】
なお、本実施例において電源制御手段44以外の動作もマイコン等によりプログラムで行ってもよい。
【0124】
【発明の効果】
以上の説明から明らかのように本発明の計測装置によれば、電源制御手段が回路全体の動作と負荷の動作に応じてこまめに昇圧手段による電圧の上昇動作を制御することにより、回路動作が安定する電源電圧を確保するとともに負荷の動作に応じて電圧を制御する動作を行うことにより安定した電圧で負荷への電力供給を行うとともに、ノイズ等の影響をシステムに与えないような昇圧手段の動作を実現することができる。このような安定した昇圧手段を用いることで、計測系の安定動作を実現する精度の良い流速およびまたは流量計測を実現することが可能になる。
【図面の簡単な説明】
【図1】本発明の流れ計測装置の全体ブロック図
【図2】(a)同計測装置における計測制御手段の動作を示すタイミング図
(b)同計測装置における送信波の動作を示すタイミング図
(c)同計測装置における受信波の動作を示すタイミング図
(d)同計測装置における遅延手段の動作を示すタイミング図
【図3】本発明の実施例1における電源周辺のブロック図
【図4】(a)従来の昇圧回路における負荷の動作を示すタイミング図
(b)従来の昇圧回路における出力を示すタイミング図
(c)本発明の計測装置における昇圧手段の動作を示すタイミング図
(d)同電源制御手段の動作を示すタイミング図
(e)同昇圧手段の動作を示すタイミング図
【図5】同流れ計測装置の送信手段周辺の接続を示すブロック図
【図6】(a)同計測装置における電源の動作を示すタイミング図
(b)同計測装置における計測制御手段の動作を示すタイミング図
(c)同計測装置における電源制御手段の動作を示すタイミング図
(d)同計測装置における昇圧手段の動作を示すタイミング図
【図7】(a)同計測装置における電源の動作を示すタイミング図
(b)同計測装置における計測制御手段の動作を示すタイミング図
(c1)同計測装置における電源制御手段の動作を示すタイミング図
(c2)同計測装置における電源制御手段の動作を示すタイミング図
【図8】(a)同計測装置における電源の動作を示すタイミング図
(b)同量計測装置における計測制御手段の動作を示すタイミング図
(c)同計測装置における電源制御手段の動作を示すタイミング図
(d)同計測装置における昇圧手段の動作を示すタイミング図
【図9】(a)本発明の第2の実施例の計測装置における超音波振動子の動作を示すタイミング図
(b)同計測装置における電源制御手段の動作を示すタイミング図
(b2)同計測装置における電源制御手段の動作を示すタイミング図
(c)同計測装置における昇圧手段の動作を示すタイミング図
【図10】(a)同計測装置における振動子の動作を示すタイミング図
(b)同計測装置における電源制御手段の動作を示すタイミング図
(b2)同計測装置における電源制御手段の動作を示すタイミング図
(c)同計測装置における昇圧手段の動作を示すタイミング図
【図11】従来の昇圧回路の全体のブロック図
【図12】従来の流量計測装置の全体のブロック図
【符号の説明】
31 流路
32 第1の超音波振動子
33 第2の超音波振動子
34 送信手段
35 受信手段
36 切換手段
37 繰返し手段
38 遅延手段
39 計時手段
40 演算手段
42 電源
43 昇圧手段
44 電源制御手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fluid flow measuring device that uses a boosting means for supplying power having a voltage higher than a power supply voltage to a load and measures the flow velocity and / or flow rate of gas or liquid using ultrasonic waves.
[0002]
[Prior art]
As a conventional boosting means, there is one using a DCDC converter, and a flow rate measuring device using this is an electrical measurement method using ultrasonic waves (see, for example, Patent Document 1).
[0003]
FIG. 11 shows a configuration of a general booster circuit, where 1 is a power source, 2 is a DCDC converter, 3 is an inductance L, 4 is a diode D, 5 is a capacitor C, and 6 is a load.
[0004]
In the DC-DC converter 2, the back electromotive force generated in the inductance is rectified through the diode 4 when the inductance 3 is switched from on to off by switching the inductance 3, and a stable high voltage in which the ripple is reduced by the capacitor 5 is applied to the load 6. To supply.
[0005]
FIG. 12 shows a conventional ultrasonic flowmeter, in which a first ultrasonic transducer 12 for transmitting ultrasonic waves and a second ultrasonic transducer 13 for receiving are arranged in the flow direction in the middle of the fluid flow path 11.
[0006]
Reference numeral 14 denotes a transmission circuit to the first ultrasonic transducer 12, and reference numeral 15 denotes a reception circuit that performs signal processing on the ultrasonic waves received by the second ultrasonic transducer 13. Reference numeral 16 denotes a repeating unit that repeats transmission from the first ultrasonic transducer 12 and reception by the second ultrasonic transducer 13 a plurality of times after the reception circuit 15 detects the ultrasonic waves.
[0007]
Reference numeral 17 denotes delay time generating means for generating a delay time until ultrasonic waves are transmitted again from the first ultrasonic transducer 12 after detecting the ultrasonic wave by the receiving circuit, and 18 is generated by the delay time generating means 17. A delay time measuring means for measuring the delay time, 19 is a delay time control means for controlling the delay time based on the measured value of the delay time generating means 17, and 20 is a requirement for a plurality of times of ultrasonic transmission performed by the repetition means. An accumulated time measuring means 21 for measuring time is a flow rate calculating means 21 for obtaining a flow rate from the measured values of the delay time measuring means 18 and the accumulated time measuring means 20.
[0008]
The ultrasonic signal transmitted from the first ultrasonic transducer 12 by the burst signal transmitted from the transmission circuit 14 propagates in the flow, is received by the second ultrasonic transducer 13, and is detected by the reception circuit 15. After the delay time generated by the delay time generating means 17 is set, the burst signal is transmitted again from the transmission circuit 14.
[0009]
The burst signal from the transmission circuit 14 is repeated a predetermined number of times, and the time required for this repetition is measured by the accumulated time measuring means 20 and the delay time is measured by the delay time measuring means 10.
[0010]
Further, the flow rate calculating means 21 obtains the required time T for only transmitting ultrasonic waves by subtracting the delay time obtained by the delay time measuring means 19 from the value obtained by the accumulated time measuring means 20.
[0011]
Normally, when driving a vibrator from this transmission circuit, a high voltage is supplied in consideration of the signal attenuation due to the propagation distance. As the circuit, the booster circuit described above is often used.
[0012]
[Patent Document 1]
JP 2000-292232 A (2nd page, FIG. 1)
[0013]
[Problems to be solved by the invention]
However, in the conventional high voltage supply circuit in the booster circuit, the operation timing of the DCDC converter considering the operation of the load and the stability of the entire circuit is not unified, and operates individually.
[0014]
For example, if the operation of the DCDC converter is started before the supply voltage to the transmission / reception circuit is stabilized, there is a possibility that waste will occur in the time after the charging until the load operates. Further, if the booster circuit operates during the initial setting operation of the circuit, the system voltage may fluctuate, or the measurement accuracy may be degraded due to the generation of noise.
[0015]
The present invention solves the above-mentioned problem. By controlling the boosting means frequently, power is supplied to the load with a stable voltage, and the operation of the boosting means does not affect the system such as noise. The purpose is to realize.
[0016]
An object of the present invention is to realize accurate flow velocity and / or flow rate measurement that realizes stable operation of the measurement system by using such a stable boost control means.
[0017]
[Means for Solving the Problems]
In order to solve the above-described conventional problems, a fluid flow measurement device according to the present invention includes a pair of ultrasonic transducers that are arranged in a flow path of a fluid to be measured and that transmits and receives ultrasonic waves, and drives these ultrasonic transducers. Transmitting means, receiving means for converting the output signal of the receiving ultrasonic transducer into an electrical signal, transmission / reception switching means for the ultrasonic transducer, and ultrasonic propagation between the ultrasonic transducers a plurality of times. Repetitive means for performing, a delay means for delaying a transmission signal from the ultrasonic transducer during the repetition, a time measuring means for measuring a propagation time of each of a plurality of repetitions, and a time difference between the time measured values by the time measuring means Calculation means for calculating the flow velocity and / or flow rate, a power supply, a boosting means for generating a higher voltage than the power supply, and a power supply control means for controlling the power supply and the boosting means, for the operation of the entire circuit and the operation of the load. According It is obtained so as to control the increase in operation voltage by diligently boosting means.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention includes a pair of ultrasonic transducers that are arranged in a flow path through which a fluid to be measured flows and that transmits and receives ultrasonic waves, a transmission unit that drives these ultrasonic transducers, and a reception-side ultrasonic transducer. A receiving means for converting an output signal into an electric signal; a transmission / reception switching means for the ultrasonic vibrator; a repeating means for performing ultrasonic propagation between the ultrasonic vibrators a plurality of times; and A delay means for delaying the transmission signal, a time measuring means for measuring the propagation time of each of the plurality of repetitions, a calculating means for calculating a flow velocity and / or a flow rate based on a difference between the respective time measured values by the time measuring means, and a power source And a boosting means for generating a higher voltage than the power supply, and a power supply control means for controlling the power supply and the boosting means.
[0019]
By ensuring the power supply voltage that stabilizes the circuit operation and controlling the voltage according to the operation of the load, power is supplied to the load at a stable voltage, and noise and other effects are given to the system. Thus, it is possible to realize the operation of the boosting means, to realize a stable operation of the measurement system, and to realize accurate flow velocity and / or flow rate measurement.
[0020]
The boosting means is operated after the power supply control means stabilizes the power supply output, so that the output voltage of the power supply is stabilized, the circuit voltage of each part is determined, and the boosting means can be operated after the steady operation is performed. It is possible to improve the stability of both the operation and the peripheral circuit.
[0021]
Also, by operating the booster after the power supply control unit has passed the power supply output for a certain time, the booster can operate after the initial operation is completed after the output voltage of the power supply is stabilized and the circuit voltage of each part has been determined. And the stability of both peripheral circuits can be improved.
[0022]
In addition, the power supply control means stops the operation of the boosting means when the output voltage of the boosting means reaches a predetermined value, thereby shortening the operation time of the boosting means and cutting down unnecessary power and shortening the noise generation time and saving power. Operation becomes possible.
[0023]
In addition, the power supply control means stops the operation of the boosting means before the operation of the transmission means is started, and the operation of the boosting means is terminated before the operation of the load, so that the high voltage is always applied when the load is operated. It is possible to perform power saving operation while keeping the supply state possible and shortening the operation time of the boosting means.
[0024]
Further, the power supply control means stops the operation of the boosting means after a certain time has elapsed after the operation of the transmission means is completed, so that the transmission operation can be performed at a stable voltage, and then the operation is stopped after a sufficient boosting operation is performed. This makes it possible to prepare for the next operation.
[0025]
Furthermore, it is configured to have a program for causing the computer to function to ensure the operation of the power supply control means, thereby making it possible to easily set and change the operation of the boosting means, and to flexibly with aging etc. Since it can respond, the accuracy of the boosted output voltage can be improved more flexibly.
[0026]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0027]
Example 1
In FIG. 1, a first ultrasonic transducer 32 and a second ultrasonic transducer 33 that transmit and receive ultrasonic waves are installed in a flow path 31 through which a fluid to be measured flows.
[0028]
In addition, a transmission unit 34 for driving the first ultrasonic transducer 32 and a reception unit 35 for receiving a reception signal of the second ultrasonic transducer 33 and determining a reception timing are provided, and the transmission unit 34 and the first ultrasonic transducer 32, and between the second ultrasonic transducer 33 and the receiving unit 35, a switching unit 36 is provided to transmit and receive ultrasonic waves to and from the first ultrasonic transducer 32 and the first ultrasonic transducer 32. The two ultrasonic transducers 33 are alternately arranged.
[0029]
Receiving the output of the receiving means 35, measuring the number of operations of repeating the transmission / reception of the ultrasonic wave again via the transmitting means 34, and the repeating means 37 for stopping the operation at a predetermined number of times, and receiving the signal of the repeating means 37 A delay means 38 that outputs a trigger signal of the transmission means 34 with a delay of the delay time, and at least the propagation time of the ultrasonic wave from the start of driving of the first vibrator 32 by the transmission means 34 to the stop of the operation of the repeat means 37. It has a time measuring means 39 for measuring, and a calculating means 40 for calculating the flow velocity from the value of the time measuring means 39 and obtaining the flow rate therefrom.
[0030]
Further, a measurement control unit 41 is provided, and a measurement start signal for operating the transmission unit 34 is output.
[0031]
Furthermore, a power source 42 for supplying power, a booster unit 43 for driving a load having a higher voltage than the power source, and a power source controller 44 for controlling the power source and the booster unit are provided.
[0032]
Normal operation will be described. Upon receipt of the start signal from the measurement control means 41, the transmission means 34 drives the first ultrasonic transducer 32 with a pulse for a certain period of time, and at the same time, the time measurement means 39 starts measuring time in accordance with the signal from the measurement control means 41.
[0033]
Ultrasound is transmitted from the pulse-driven first ultrasonic transducer 32. The ultrasonic wave transmitted from the first ultrasonic transducer 32 propagates through the fluid to be measured and is received by the second ultrasonic transducer 33.
[0034]
The reception output of the second ultrasonic transducer 33 amplifies the signal by the receiving means 35 and then determines the reception of the ultrasonic wave at the signal level at a predetermined reception timing. When the repeated operation is not performed, the operation of the time measuring means 39 is stopped when the reception of the ultrasonic wave is determined, and the flow velocity is obtained from the time information t by (Equation 1).
[0035]
(The measurement time obtained from the time measuring means 39 is t, the effective distance in the flow direction between the ultrasonic transducers is L, the sound velocity is c, and the flow velocity of the fluid to be measured is v).
[0036]
v = (L / t) -c (Formula 1)
The receiving means 35 is usually configured to compare the reference voltage and the received signal by a comparator.
[0037]
In the current operation using the repeating unit 37, the determination result of the receiving unit 35 is delayed by a delay unit 38 for a certain period of time, then returned to the transmitting unit 34 and transmitted again. The repetitive operation is performed a predetermined number of times, the time is measured by the time measuring means 39, and the flow velocity is obtained by the calculation of (Equation 2) based on the measurement time of the time measuring means 39.
[0038]
The delay time of the delay means is Td, the number of repetitions is n, the measurement time is ts, the effective distance in the flow direction between the ultrasonic transducers is L, the sound velocity is c, and the flow velocity of the fluid to be measured is v.
[0039]
v = L / (ts / n−Td) −c (Expression 2)
According to this method, it is possible to measure with higher accuracy than the method of (Equation 1).
[0040]
Further, the first ultrasonic transducer 32 and the second ultrasonic transducer 33 are switched, and the respective propagation times of the fluid under measurement from upstream to downstream and from downstream to upstream are measured. Find v.
[0041]
Note that the measurement time from upstream to downstream is t1, and the measurement time from downstream to upstream is t2.
[0042]
v = L / 2 ((1 / t1)-(1 / t2)) (Formula 3)
According to this method, the flow rate can be measured without being affected by the change in the sound speed, and thus it is widely used for measuring the flow velocity, the flow rate, the distance, and the like. When the flow velocity v is obtained, the flow rate can be derived by multiplying it by the cross-sectional area of the flow path 1.
[0043]
Normal operation is as shown in the timing diagram of FIG. That is, measurement is started from the start signal at time t0 by the measurement control means 41, and the first ultrasonic transducer 32 is driven via the transmission means 34 at t1.
[0044]
The ultrasonic signal generated there propagates in the flow path, reaches the second ultrasonic transducer 33 at time t2, and when the receiving means 35 detects the reception point, the repeating means 37 has not reached the set number of times. A signal is sent to the delay means 38.
[0045]
Then, the delay means 38 starts operating from time t3, operates for a predetermined time, and then sends a signal to the transmitting means 34 at time t4 to drive the first ultrasonic transducer 32 again. This is repeated below.
[0046]
When the number of times determined by the repeat means 37 is operated, the transmission / reception operation is stopped at time t5, and the time is T. Thereafter, the switching means 36 switches between transmission and reception. That is, the first ultrasonic transducer 32 is on the receiving side, and the second ultrasonic transducer 33 is on the transmitting side. Then, the same repeated operation is performed.
[0047]
Next, the vicinity of the power source that supplies power to the measurement control means 41 and the like will be described with reference to FIG.
[0048]
42 is a power supply, 43 is a boosting means, 44 is a power supply control means, and 45 is a load. As an example of the boosting means 43, it can be constituted by an inductance 43a, an opening / closing means 43b, a diode 43c, and an opening / closing control means 43d.
[0049]
When the control means 44 detects the operation of the load 45, it sends a signal to the opening / closing control means 43d, and the opening / closing control means 43d turns on / off the opening / closing means 43b.
[0050]
As a result, the current flowing from the power source 42 via the inductance 43a becomes intermittent, so that the counter electromotive force of the inductance 43a is supplied to the load 45 through the diode 43c.
[0051]
As a configuration showing another operation by the power supply control unit 44, the operation of the load 45 may be detected by the power supply control unit 44.
[0052]
If the terminal voltage of the load 45 is converted into a voltage signal by resistance division or the like and the signal enters the open / close control means 43d inside the boost means 43, the open / close means can be operated based on the voltage information to control the boost voltage.
[0053]
Further, the output voltage is measured by the power supply control means 44, and the power supply control means 44 sends a signal for adjusting the opening / closing means 43b so as to make the output voltage of the boosting means 43 constant, for example, by obtaining a voltage signal by an AD converter or the like. To do.
[0054]
In this way, the power supply control unit 44 detects the operation of the load 45, sends a signal to the boosting unit 43 according to the operation and adjusts the voltage, thereby supplying power to the load 45 with a stable voltage. By operating the boosting means 43 at a time when it does not affect the operation of the load, it is possible to realize the operation of the boosting means so as not to affect the system due to noise or the like.
[0055]
Further, step-down means 43e for stepping down the power supply voltage and a power supply path directly connected to the power supply voltage may be added.
[0056]
A difference from the conventional example will be described with reference to the timing of FIG. FIG. 4A shows the operation timing of the load in the DCDC converter 2 which is a conventional booster circuit. When the load operates, the output voltage of the booster 2 decreases as shown in (b). Then, it is detected that the voltage has dropped at t1, and the DCDC converter operates. The timing of t1 is determined only by the voltage and does not consider the operation of the load.
[0057]
Therefore, as shown in FIG. 4, even when the voltage drops while the load 6 is operating, the DCDC converter immediately starts the boosting operation. This indicates that the terminal voltage of the load fluctuates during operation.
[0058]
If it is used in a measuring device, the operating voltage fluctuates and the stability becomes worse. Similarly, FIG. 4C shows the operation timing of the load when the power supply control means 44 of the present invention is used.
[0059]
(D) shows the operation timing of the power supply control means 44. Since the power supply control means 44 detects the operation of the load 6, when the load operation ends, a signal is sent to the boosting means 43 at times t3 and t4 to adjust the opening / closing means to perform the boosting operation.
[0060]
Accordingly, the output voltage of the boosting means 43 is as shown in FIG. 2E, and the voltage can be changed by removing the operation timing of the load.
[0061]
The case where the power supply control means 44 is incorporated in the flow rate measuring device as shown in FIG. 5 will be described.
[0062]
In order to drive the first ultrasonic transducer 32, it is necessary to drive the flow path 31 at a certain high voltage in order to transmit the inside of the flow path 31 at a sufficient ultrasonic signal level. Therefore, the output of the booster 43 is connected to the first vibrator 32 via the transmitter 34.
[0063]
Since the switching means 36 on the way only switches between transmission and reception, a detailed description here is omitted.
[0064]
As an example of the inside of the transmission means 34, a bridge configuration using transmission opening / closing means 34a to 34d is used to operate the ultrasonic transducer. First, the transmission opening / closing means 34a and 34d are energized, and on the contrary, 34b and 34c are opened.
[0065]
Next, the transmission opening / closing means 34a and 34d are opened, and 34b and 34c are energized. With this operation, the ultrasonic transducer starts to operate. A high voltage from the booster 43 is supplied to the power source for the ultrasonic transducer.
[0066]
As shown in FIG. 4B, when this high voltage is supplied, regardless of the operating state of the load (in this case, the ultrasonic transducer), if the boosting operation is performed only by the DCDC converter, The supply voltage changes during operation, and the received signal is not constant. This is not preferable because it greatly affects the measurement accuracy of the flow rate.
[0067]
As shown in FIGS. 4D and 4E, the power supply control unit 44 detects the operation of the boosting unit 43 and the operation of the ultrasonic transducer 32, and at a time when the operation of the ultrasonic transducer 32 is not affected. By supplying a control signal so as to operate, power is supplied to the ultrasonic transducer with a stable voltage, and the operation of the boosting means 43 is realized so as not to affect the entire flow measurement system by the influence of noise or the like. It becomes possible.
[0068]
Since the power supply control unit 44 can receive a measurement operation signal from the measurement control unit 41 as a signal, the booster unit 43 can be controlled more reliably without affecting the operation of the vibrator. It becomes like this.
[0069]
In FIG. 5, the power supply control means 44 and the measurement control means 41 are provided separately, but one logic means, for example, a microcomputer may be used as the same control means.
[0070]
Further, even if the power supply control means 44 instructs the boosting means 43 to open and close the inductance, the power supply control means 44 may not operate if the output voltage has not decreased so much.
[0071]
For example, when a DCDC converter is used as the booster 43, the output voltage may be monitored by the element itself.
[0072]
In such a case, it is possible to take a method of reliably operating the boosting operation after temporarily reducing the voltage by connecting an element that promotes power consumption such as a resistor to the output. Further, the output voltage of the boosting means 43 can be finely adjusted by shortening the operation time of the opening / closing means.
[0073]
The timing around the power supply at the start of operation will be described. Many control means use a method in which the power supply is frequently turned on when operating with power saving, the power supply is supplied to each unit only when the operation is really necessary, and the rest is performed otherwise. In a device that operates periodically, such as a flow rate measuring device, it is useful to shut off the power supply when not operating.
[0074]
For this reason, the operation of turning on the power frequently occurs, but various settings need to be made each time. If the operation of the boosting unit 43 is started before the supply voltage to the transmission unit 34 and the reception unit 35 is stabilized, there is a possibility that waste will occur in the time until the vibrator as a load operates after charging.
[0075]
Furthermore, if the voltage boosting unit 43 operates during the initial setting operation of the measurement control unit 41 or the like, there is a possibility that the system voltage fluctuates or that the measurement accuracy is degraded due to the generation of noise.
[0076]
For example, there is a case where a plurality of integrated circuits exist in the measurement control means 41 and initial data is exchanged and analog units are adjusted.
[0077]
In such a case, as shown in FIG. 6, the voltage of the input part of the power supply control means rises as shown in (a), and when the voltage exceeds the specified voltage, the digital device starts its operation as shown in (b). At time t1, the measurement control means 41 starts its operation and starts performing initial setting.
[0078]
Then, after the setting of each part is completed in the time up to t2, the power supply control means 44 sends a signal to operate the boosting means 43 after (c). The output of the booster 43 satisfies a predetermined voltage at the rising edge t3 as shown in (d).
[0079]
Thereafter, the measurement control unit 41 operates the transmission unit 34. By using such a stable boost control means, it is possible to realize accurate flow velocity and / or flow rate measurement that realizes stable operation of the measurement system.
[0080]
Furthermore, by operating the boosting unit 43 after setting the analog circuit or the like, it is possible to realize the operation of the boosting unit so that the influence of noise or the like is not given to the system.
[0081]
Further, another operation will be described with reference to FIG. When the power supply is frequently started up, if the voltage boosting unit 43 operates while the voltage rise from the power supply 42 is not stable, it may adversely affect peripheral operations or generate a wasteful operation waiting time. Therefore, as shown in FIG. 7A, when the voltage of the input unit of the power supply control unit rises and exceeds the specified voltage at t0, the digital device starts operation as shown in (b).
[0082]
Then, as shown in (c1), the power supply control means 44 sends a signal to operate the boosting means 43 at t1. Since the power supply output is almost stable between time t0 and t1, the operation of each part is settled.
[0083]
As described above, the power supply control means 44 operates the boosting means 43 after the power supply output is stabilized, so that the boosting means 43 can be operated after the output voltage of the power supply is stabilized and the circuit voltage of each part is determined and becomes a steady operation. It is possible to improve the stability of both the operation of the ultrasonic transducer as a load and the peripheral circuit.
[0084]
Further, another operation will be described with reference to FIG. Even if the power supply rises stably, the operation of other peripheral parts may not be stable yet. Therefore, similarly to the above operation, when the voltage of the input part of the power supply control unit rises as shown in FIG. 7A and exceeds the specified voltage at t0, the digital device starts operation as shown in FIG.
[0085]
Then, after a predetermined time T has elapsed from t0, the power supply control means 44 sends a signal to operate the boosting means 43 at t2 as shown in (c2). Since the operation and initial setting of the peripheral circuits are almost stable between the times t0 and t2, the operation of each part is also normal.
[0086]
Thus, instead of starting the operation immediately after the output voltage of the power supply is stabilized, it waits for a certain period of time, and after the circuit voltage of each part is determined and the initial operation is completed, the boosting unit is operated so that both the load operation and the peripheral circuit are operated. Stability can be improved.
[0087]
Further, another operation will be described with reference to FIG. After the start-up of the power supply is completed, when the booster 43 is operated by the power supply controller 44, the output of the booster 43 becomes higher than the voltage of the power supply 42.
[0088]
Then, when the voltage rises to a certain voltage, the device simply waits while consuming circuit current. When a power saving operation is performed, such an operation that requires a standby current must be avoided.
[0089]
Therefore, when the voltage of the input part of the power supply control means rises as shown in FIG. 8A and exceeds the specified voltage at t0, the digital device starts operation as shown in FIG. 8B. Thereafter, as shown in (c), the power supply control means 44 sends a signal to operate the boosting means 43 at t1.
[0090]
The output of the booster 43 rises as shown in (d), and after reaching a constant voltage at t2, the voltage is maintained. The power supply control means 44 issues a signal for stopping the operation of the boosting means 43 at t3 when a time longer than the time T1 from t1 to t2 has elapsed.
[0091]
As a result, the circuit current consumed in the booster 43 can be eliminated as much as possible. In this way, the power supply control means stops the operation of the boosting means when the output voltage of the boosting means reaches a predetermined value, thereby shortening the operation time of the boosting means, cutting wasteful power and shortening the noise generation time. Power saving operation becomes possible.
[0092]
(Example 2)
A second embodiment will be described with reference to FIGS. 9 and 10 as well. The difference from the first embodiment is that the operation of the boosting means is performed in the vicinity of the operation of the vibrator.
[0093]
First, as shown in the first embodiment, a load such as an ultrasonic transducer used in the flow rate measuring device operates to consume electric power, so that the output voltage of the boosting unit decreases.
[0094]
For example, when the first ultrasonic transducer 32 of FIG. 1 operates, the output voltage of the boosting unit 43 in FIG. 5 decreases. Therefore, the boosting unit 43 must operate to compensate for this.
[0095]
Therefore, the operation of the ultrasonic vibrator is stabilized by adjusting the timing at which the booster 43 is operated.
[0096]
When the first ultrasonic transducer 32 operates as shown in (a) at times t31, t33, t35, and t37 in FIG. 9, the power is consumed, and the output voltage of the booster 43 decreases.
[0097]
In order to prevent this, the power control means 44 operates the boosting means 43 to adjust the voltage at times t30, t32, t34, and t36 as shown in FIG.
[0098]
Although not shown before time t30, the output voltage of the booster 43 is lowered because the vibrator is operating, but the description is omitted because of the repeated operation. Since the operation of the vibrator serving as a load can be detected by the power control means 44 via the measurement control means 41, it is possible to adjust the voltage by sending a signal to the boosting means 43 before the vibrator operates. As a result, the output of the booster 43 shows a stable voltage state as shown in FIG.
[0099]
This is because the operation of the boosting means 43 is completed before the ultrasonic transducer operates, so that the voltage becomes an optimum value, and the high voltage can be supplied when the ultrasonic transducer as a load operates. It is possible to leave.
[0100]
Furthermore, since noise generation due to inductance operation or the like for the entire system is eliminated, stable measurement operation can be performed even when applied to flow measurement.
[0101]
In FIG. 9B, the operation of the boosting means 43 is stopped immediately before the ultrasonic transducer is operated. However, as shown in (b2), the operation is performed at a certain time ΔT2 before the ultrasonic transducer is operated. The power control means 44 may adjust so as to end the process.
[0102]
This may be the case where a weak voltage change (noise) occurs in the entire system due to a change in the stop signal from the power control means 44.
[0103]
If a signal is sent out before a certain time before the ultrasonic transducer operates so that the voltage change does not affect other means, for example, after the reflection or damping signal by the signal converges, Can be stably performed. Further, power saving can be realized by frequently turning on and off the boosting means.
[0104]
In this way, the power supply control means stops the operation of the boosting means before the operation of the transmission means is started, so that the operation of the boosting means can be terminated before the load operates, and when the load always operates, While maintaining the voltage supply state, the stability of the system is improved, and the operation time of the boosting means is shortened to enable the power saving operation.
[0105]
In FIG. 9, the boosting means always operates immediately before the vibrator operates. However, before the vibrator operates every fixed number of times or every number corresponding to the common divisor of the number of operations, the boosting means 43 is turned on. It may be configured to operate.
[0106]
Another operation will be described with reference to FIG. The operation of the ultrasonic transducer is stabilized by adjusting the timing at which the booster 43 is operated.
[0107]
When the first ultrasonic transducer 32 operates as shown in (a) at time t40, t42, t44, and t46 in FIG. Then, the power supply control means 44 operates the boosting means 43 to adjust the voltage.
[0108]
Since the operation of the ultrasonic vibrator as a load can be detected by the power control means 44 via the measurement control means 41, it is possible to adjust the voltage by sending a signal to the boosting means 43 after the operation of the ultrasonic vibrator. become.
[0109]
As a result, the output of the boosting means 43 shows a stable voltage state as shown in (c). This is to accurately grasp the voltage drop after the operation of the ultrasonic vibrator, replenish it with the boosting means 43, and perform the operation of the ultrasonic vibrator as a load next time after the boosted voltage is stabilized. Therefore, stable system operation can be performed when applied to flow velocity and / or flow rate measurement.
[0110]
For example, when a large capacitive load is connected to the booster 43, the voltage rise also changes with a large time constant, but when the voltage is adjusted after the operation of the ultrasonic transducer is completed, The voltage can be adjusted to a stable voltage with a margin long before the next ultrasonic transducer operates.
[0111]
In FIG. 10B, the operation of the boosting means 43 is stopped immediately after the operation of the ultrasonic transducer. However, as shown in FIG. 10B, the operation is performed at ΔT3 after a certain time after the operation of the ultrasonic transducer. The power control means 44 may adjust so as to start the operation.
[0112]
This is because a high voltage signal changes immediately after the ultrasonic transducer is operated, so that a voltage change including the ground may occur in the entire system.
[0113]
When the voltage change affects other means, for example, the power supply control means 44 may not be able to detect the accurate output voltage of the boosting means 43.
[0114]
Therefore, after the ultrasonic transducer is operated, after the electrical signal of the entire system is stabilized, the accurate voltage of the boosting means is grasped and then the boosting operation is performed, thereby enabling stable power management. Further, power saving can be realized by frequently turning on and off the boosting means.
[0115]
In this way, the power supply control means starts the operation of the boosting means after the operation of the transmission means is completed and prepares for the next operation of the ultrasonic vibrator, so that there is sufficient time before the operation of the ultrasonic vibrator. It is possible to supply a stable high voltage, improve the stability of the system, shorten the operation time of the boosting means, and enable a power saving operation.
[0116]
In this way, the power supply control means stops the operation of the boosting means after a lapse of a certain time after the operation of the transmission means, so that the transmission operation can be performed at a stable voltage, and then the operation is stopped after sufficient boosting operation is performed. By doing so, it becomes possible to prepare for the next operation.
[0117]
In FIG. 10, the boosting unit always operates after the ultrasonic transducer is operated. However, the boosting unit is operated after the ultrasonic transducer is operated every certain number of times or every number corresponding to the common divisor of the number of operations. It is also possible to take a configuration that operates.
[0118]
(Example 3)
A flow rate measuring apparatus according to the third embodiment will be described.
[0119]
The difference from the first embodiment is that a storage medium 46 having a program for causing a computer to function to ensure the operation of the power supply control means 44 for adjusting the operation of the boosting means 43 is used.
[0120]
1 and 5, in order to perform the operation of the power supply control means 44 shown in the first to second embodiments, the output change, secular change, temperature change, Correlation such as the operation timing of the boosting means is obtained with respect to the stability of the system, and determination software for determining the degree of fitness such as a membership function of fuzzy control, for example, is stored in the storage medium 46 as a program.
[0121]
Usually, it is convenient to use an electrically writable memory such as a microcomputer memory or a flash memory.
[0122]
As described above, when the operation of the power supply control unit 44 can be performed by a program, the operation of the boosting unit 43 that follows the change in the driving voltage of the ultrasonic transducer is performed by software. As a result, it is possible to easily set and change the conditions for the number of transmissions, set and change the voltage adjustment conditions before and after the operation of the switching means 36, and flexibly cope with aging, etc., so that the accuracy of the measurement time can be improved more flexibly. .
[0123]
In the present embodiment, operations other than the power control means 44 may be performed by a program using a microcomputer or the like.
[0124]
【The invention's effect】
As is apparent from the above description, according to the measuring apparatus of the present invention, the power supply control means frequently controls the voltage raising operation by the boosting means according to the operation of the entire circuit and the operation of the load. The power supply is supplied to the load with a stable voltage by ensuring the stable power supply voltage and controlling the voltage according to the operation of the load. Operation can be realized. By using such a stable boosting means, it is possible to realize a highly accurate flow velocity and / or flow rate measurement that realizes a stable operation of the measurement system.
[Brief description of the drawings]
FIG. 1 is an overall block diagram of a flow measuring apparatus according to the present invention.
FIG. 2A is a timing chart showing the operation of measurement control means in the measurement apparatus.
(B) Timing chart showing operation of transmission wave in the measurement apparatus
(C) Timing chart showing operation of received wave in the measurement apparatus
(D) Timing chart showing operation of delay means in the measurement apparatus
FIG. 3 is a block diagram around a power source in the first embodiment of the present invention.
FIG. 4A is a timing chart showing the operation of a load in a conventional booster circuit.
(B) Timing chart showing output in conventional booster circuit
(C) Timing chart showing the operation of the boosting means in the measuring apparatus of the present invention.
(D) Timing chart showing the operation of the power supply control means
(E) Timing chart showing the operation of the boosting means
FIG. 5 is a block diagram showing connections around the transmission means of the flow measuring device
FIG. 6A is a timing chart showing the operation of a power supply in the measurement apparatus.
(B) Timing chart showing operation of measurement control means in the measurement apparatus
(C) Timing chart showing operation of power control means in the measurement apparatus
(D) Timing chart showing the operation of the boosting means in the measurement apparatus
FIG. 7A is a timing chart showing the operation of the power supply in the measurement apparatus.
(B) Timing chart showing operation of measurement control means in the measurement apparatus
(C1) Timing chart showing the operation of the power supply control means in the measurement apparatus
(C2) Timing chart showing the operation of the power supply control means in the measurement apparatus
FIG. 8A is a timing chart showing the operation of a power supply in the measurement apparatus.
(B) Timing chart showing operation of measurement control means in the same amount measuring apparatus
(C) Timing chart showing operation of power control means in the measurement apparatus
(D) Timing chart showing the operation of the boosting means in the measurement apparatus
FIG. 9A is a timing chart showing the operation of the ultrasonic transducer in the measuring apparatus according to the second embodiment of the present invention.
(B) Timing chart showing operation of power supply control means in the measurement apparatus
(B2) Timing chart showing the operation of the power supply control means in the measurement apparatus
(C) Timing chart showing the operation of the boosting means in the measuring device
FIG. 10A is a timing chart showing the operation of the vibrator in the measurement apparatus.
(B) Timing chart showing operation of power supply control means in the measurement apparatus
(B2) Timing chart showing the operation of the power supply control means in the measurement apparatus
(C) Timing chart showing the operation of the boosting means in the measuring device
FIG. 11 is an overall block diagram of a conventional booster circuit.
FIG. 12 is an overall block diagram of a conventional flow rate measuring device.
[Explanation of symbols]
31 channel
32 First ultrasonic transducer
33 Second ultrasonic transducer
34 Transmission means
35 Receiving means
36 switching means
37 Repeating means
38 Delay means
39 Timekeeping
40 Calculation means
42 Power supply
43 Boosting means
44 Power control means

Claims (7)

被測定流体の流れる流路に配置され超音波を送受信する一対の超音波振動子と、これら超音波振動子を駆動する送信手段と、受信側超音波振動子の出力信号を電気信号に変換する受信手段と、前記超音波振動子の送受信の切換手段と、前記超音波振動子間相互の超音波伝搬を複数回行う繰返し手段と、前記繰返し時に前記超音波振動子からの送信信号を遅らせる遅延手段と、それぞれの複数回繰返しの伝搬時間を計測する計時手段と、前記計時手段でそれぞれの計時値の差に基づいて流速およびまたは流量を算出する演算手段と、電源と、前記電源より高電圧をつくる昇圧手段と、前記電源と昇圧手段を制御する電源制御手段とを備えた流体の流れ計測装置。A pair of ultrasonic transducers that are arranged in the flow path of the fluid to be measured and transmit / receive ultrasonic waves, a transmission unit that drives these ultrasonic transducers, and an output signal of the reception-side ultrasonic transducer are converted into electrical signals A receiving unit, a switching unit for transmission / reception of the ultrasonic transducer, a repeating unit for performing ultrasonic propagation between the ultrasonic transducers a plurality of times, and a delay for delaying a transmission signal from the ultrasonic transducer during the repetition Means, time measuring means for measuring a plurality of times of propagation times, calculation means for calculating a flow velocity and / or a flow rate based on a difference between the time measured values by the time measuring means, a power source, and a higher voltage than the power source. A fluid flow measuring device, comprising: a pressure-increasing means for generating a power source; and a power source control means for controlling the power source and the pressure-increasing means. 電源制御手段は電源出力が安定してから昇圧手段を動作する請求項1記載の流体の流れ計測装置。2. The fluid flow measuring device according to claim 1, wherein the power control means operates the boosting means after the power output is stabilized. 電源制御手段は電源出力を一定時間経過してから昇圧手段を動作する請求項1記載の流体の流れ計測装置。2. The fluid flow measuring device according to claim 1, wherein the power supply control means operates the boosting means after a predetermined time elapses in the power supply output. 電源制御手段は昇圧手段の出力電圧があらかじめ定めた値になると昇圧手段の動作を停止する請求項1記載の流体の流れ計測装置。2. The fluid flow measuring device according to claim 1, wherein the power supply control means stops the operation of the boosting means when the output voltage of the boosting means reaches a predetermined value. 電源制御手段は送信手段の動作が開始する前に昇圧手段の動作を停止する請求項1記載の流体の流れ計測装置。2. The fluid flow measuring device according to claim 1, wherein the power supply control means stops the operation of the boosting means before the operation of the transmission means is started. 電源制御手段は送信手段の動作が終了後一定時間経過後に昇圧手段の動作を停止する請求項1記載の流体の流れ計測装置。2. The fluid flow measuring device according to claim 1, wherein the power supply control means stops the operation of the boosting means after a lapse of a certain time after the operation of the transmission means is completed. 請求項1から請求項6のいずれか1項記載の電源制御手段としてコンピュータを機能させるためのプログラム。The program for functioning a computer as a power supply control means in any one of Claims 1-6.
JP2003133072A 2003-05-12 2003-05-12 Fluid flow measuring device Expired - Lifetime JP4649822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003133072A JP4649822B2 (en) 2003-05-12 2003-05-12 Fluid flow measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003133072A JP4649822B2 (en) 2003-05-12 2003-05-12 Fluid flow measuring device

Publications (2)

Publication Number Publication Date
JP2004333428A true JP2004333428A (en) 2004-11-25
JP4649822B2 JP4649822B2 (en) 2011-03-16

Family

ID=33507719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003133072A Expired - Lifetime JP4649822B2 (en) 2003-05-12 2003-05-12 Fluid flow measuring device

Country Status (1)

Country Link
JP (1) JP4649822B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006266976A (en) * 2005-03-25 2006-10-05 Matsushita Electric Ind Co Ltd Fluid flow measuring instrument
JP2006284266A (en) * 2005-03-31 2006-10-19 Matsushita Electric Ind Co Ltd Flow measuring instrument
JP2006284267A (en) * 2005-03-31 2006-10-19 Matsushita Electric Ind Co Ltd Flow measuring instrument
JP2008014839A (en) * 2006-07-06 2008-01-24 Toshiba Corp Ultrasonic gas meter
CN108759944A (en) * 2018-05-29 2018-11-06 上海交通大学 A kind of self-powered composite ultrasonic flowmeter

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0217786A (en) * 1988-07-05 1990-01-22 Sharp Corp Remote controller
JPH0318165A (en) * 1989-06-15 1991-01-25 Nec Corp Backup system for digital multi-function telephone set
JPH05165080A (en) * 1991-12-11 1993-06-29 Canon Inc Power supply circuit of camera
JPH07229735A (en) * 1994-02-15 1995-08-29 Toshihide Miyake Active range finder
JPH09280917A (en) * 1996-04-10 1997-10-31 Matsushita Electric Ind Co Ltd Flow rate measuring apparatus
JPH09325059A (en) * 1996-06-06 1997-12-16 Matsushita Electric Ind Co Ltd Ultrasonic flow speed meter
JP2000050620A (en) * 1998-07-30 2000-02-18 Nec Yamagata Ltd Boosting circuit
JP2000147367A (en) * 1998-11-13 2000-05-26 Olympus Optical Co Ltd Range finder
JP2000292232A (en) * 1999-04-02 2000-10-20 Matsushita Electric Ind Co Ltd Flow rate measuring apparatus
JP2002365108A (en) * 2001-06-11 2002-12-18 Aichi Tokei Denki Co Ltd Ultrasonic flowmeter

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0217786A (en) * 1988-07-05 1990-01-22 Sharp Corp Remote controller
JPH0318165A (en) * 1989-06-15 1991-01-25 Nec Corp Backup system for digital multi-function telephone set
JPH05165080A (en) * 1991-12-11 1993-06-29 Canon Inc Power supply circuit of camera
JPH07229735A (en) * 1994-02-15 1995-08-29 Toshihide Miyake Active range finder
JPH09280917A (en) * 1996-04-10 1997-10-31 Matsushita Electric Ind Co Ltd Flow rate measuring apparatus
JPH09325059A (en) * 1996-06-06 1997-12-16 Matsushita Electric Ind Co Ltd Ultrasonic flow speed meter
JP2000050620A (en) * 1998-07-30 2000-02-18 Nec Yamagata Ltd Boosting circuit
JP2000147367A (en) * 1998-11-13 2000-05-26 Olympus Optical Co Ltd Range finder
JP2000292232A (en) * 1999-04-02 2000-10-20 Matsushita Electric Ind Co Ltd Flow rate measuring apparatus
JP2002365108A (en) * 2001-06-11 2002-12-18 Aichi Tokei Denki Co Ltd Ultrasonic flowmeter

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006266976A (en) * 2005-03-25 2006-10-05 Matsushita Electric Ind Co Ltd Fluid flow measuring instrument
JP2006284266A (en) * 2005-03-31 2006-10-19 Matsushita Electric Ind Co Ltd Flow measuring instrument
JP2006284267A (en) * 2005-03-31 2006-10-19 Matsushita Electric Ind Co Ltd Flow measuring instrument
JP4735005B2 (en) * 2005-03-31 2011-07-27 パナソニック株式会社 Flow measuring device
JP2008014839A (en) * 2006-07-06 2008-01-24 Toshiba Corp Ultrasonic gas meter
CN108759944A (en) * 2018-05-29 2018-11-06 上海交通大学 A kind of self-powered composite ultrasonic flowmeter

Also Published As

Publication number Publication date
JP4649822B2 (en) 2011-03-16

Similar Documents

Publication Publication Date Title
TWI624831B (en) Controller and electronic device for switch mode regulators operating in discontinuous conduction mode
US7061292B2 (en) Adaptive voltage regulator for powered digital devices
CN103532350B (en) Control circuit with fast dynamic response for power converters
US7262588B2 (en) Method and apparatus for power supply controlling capable of effectively controlling switching operations
TWI390828B (en) Switched converter with variable peak current and variable off-time control
US7054170B2 (en) Power-mode controlled power converter
CN103312179B (en) Power-supply device and image processing system
EP2637294A2 (en) Power supply device and image forming apparatus
CN104426360B (en) Regulation circuit and adjusting method for charge pump
WO2006120842A1 (en) Switching regulator and electronic device having same
JP2002281743A (en) Semiconductor integrated circuit and portable electronic apparatus
JP2008104285A (en) Switching power supply method
JP4862362B2 (en) Switching power supply
JP4649822B2 (en) Fluid flow measuring device
TWI413350B (en) Switching mode power supply with burst mode operation
JP3695432B2 (en) Flow measuring device
WO2010070892A1 (en) Oscillation circuit
JP4735005B2 (en) Flow measuring device
JP4639830B2 (en) Booster and flow velocity or flow rate measuring device
JP2005249641A (en) Flow measuring device
JP5123518B2 (en) Ultrasonic flow meter
JP2005257613A (en) Apparatus for measuring flow of fluid
JP2005249642A (en) Flow measuring device
JP2009303347A (en) Control circuit of dc-dc converter
JP3689982B2 (en) Ultrasonic current meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060412

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100910

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101129

R151 Written notification of patent or utility model registration

Ref document number: 4649822

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

EXPY Cancellation because of completion of term