JP2005249642A - Flow measuring device - Google Patents

Flow measuring device Download PDF

Info

Publication number
JP2005249642A
JP2005249642A JP2004061950A JP2004061950A JP2005249642A JP 2005249642 A JP2005249642 A JP 2005249642A JP 2004061950 A JP2004061950 A JP 2004061950A JP 2004061950 A JP2004061950 A JP 2004061950A JP 2005249642 A JP2005249642 A JP 2005249642A
Authority
JP
Japan
Prior art keywords
power
power supply
voltage
transmission
control means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004061950A
Other languages
Japanese (ja)
Inventor
Bunichi Shiba
文一 芝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004061950A priority Critical patent/JP2005249642A/en
Publication of JP2005249642A publication Critical patent/JP2005249642A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform stable power supply with the same voltage by using an ordinary measuring power source as a power source for ultrasonic driving, and to realize operation not exerting an influence of a noise or the like on a system, by solving the problems wherein operation timing is not unified, and, if a booster circuit is operated when performing initial setting operation or the like of a circuit, a system voltage is fluctuated, in the case of using a DCDC converter. <P>SOLUTION: A control device 45 controls the whole operation of a measuring system by a voltage lowered by a voltage stabilizing means 43 from the power source 42, and controls power supply to an oscillator 32 transmitting an ultrasonic wave by using the same voltage. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、超音波を利用して気体や液体などの流量を計測する流れ計測装置に関する。   The present invention relates to a flow measurement device that measures the flow rate of gas or liquid using ultrasonic waves.

従来、この種の流れ計測装置は超音波を出力させるために高電圧を用いる手段としてDCDCコンバータを利用したものがある(例えば、特許文献1参照)。図13は一般的な昇圧回路の構成を示すブロック図である。図13に示すようにに電源1と、DCDCコンバータ2と、インダクタンスL3と,ダイオードD4と,コンデンサC5と、負荷6から構成されている。DCDCコンバータ2はインダクタンス3をスイッチング動作することによりオンからオフになったときにインダクタンスに生じる逆起電力がダイオード4を介して整流し、コンデンサ5でリップルを小さくした安定した高電圧を負荷6に供給するものである。図14は、従来の超音波流量計の構成を示すブロック図である(例えば、特許文献1参照)。   Conventionally, this type of flow measuring device uses a DCDC converter as means for using a high voltage to output ultrasonic waves (see, for example, Patent Document 1). FIG. 13 is a block diagram showing a configuration of a general booster circuit. As shown in FIG. 13, the power source 1, the DCDC converter 2, the inductance L <b> 3, the diode D <b> 4, the capacitor C <b> 5, and the load 6 are included. In the DC-DC converter 2, the back electromotive force generated in the inductance is rectified through the diode 4 when the inductance 3 is switched from on to off by switching the inductance 3, and a stable high voltage in which the ripple is reduced by the capacitor 5 is applied to the load 6. To supply. FIG. 14 is a block diagram showing a configuration of a conventional ultrasonic flowmeter (see, for example, Patent Document 1).

図14において、流体流路11の途中に超音波を発信する第1振動子12と受信する第2振動子13が流れ方向に配置されている。14は第1振動子12への送信回路、15は第2振動子13で受信した超音波を信号処理する受信回路である。16は受信回路15で超音波を検知した後第1振動子12からの送信と第2振動子13での受信を複数回繰り返す繰返し手段である。   In FIG. 14, a first vibrator 12 that transmits ultrasonic waves and a second vibrator 13 that receives ultrasonic waves are disposed in the flow direction in the middle of the fluid flow path 11. Reference numeral 14 denotes a transmission circuit to the first vibrator 12, and 15 denotes a reception circuit that performs signal processing on the ultrasonic waves received by the second vibrator 13. Reference numeral 16 denotes a repeating unit that repeats transmission from the first vibrator 12 and reception by the second vibrator 13 after the ultrasonic wave is detected by the receiving circuit 15.

17は受信回路で超音波を検出した後、再度第1振動子12から超音波を送信するまでの遅延時間を発生させる遅延時間発生手段であり、18は遅延時間発生手段17により発生した遅延時間を計測する遅延時間計測手段、19は遅延時間発生手段17の計測値を基に、遅延時間を制御する遅延時間制御手段、20はは繰返し手段により行われる複数回の超音波伝達の所要時間を計測する累積時間計測手段、21は遅延時間計測手段18および累積時間計測手段20の計測値から流量を求める流量演算手段である。   Reference numeral 17 denotes delay time generating means for generating a delay time until ultrasonic waves are transmitted again from the first transducer 12 after detecting the ultrasonic wave by the receiving circuit. Reference numeral 18 denotes delay time generated by the delay time generating means 17. Is a delay time measuring means for measuring the delay time, 19 is a delay time control means for controlling the delay time based on the measured value of the delay time generating means 17, and 20 is a time required for plural times of ultrasonic transmission performed by the repeating means. An accumulated time measuring means 21 for measuring, a flow rate calculating means for obtaining a flow rate from the measured values of the delay time measuring means 18 and the accumulated time measuring means 20.

送信回路14より送出されたバースト信号により第1振動子12から発信された超音波信号は、流れの中を伝搬し、第2振動子13で受信され受信回路15で検知され、遅延時間発生手段17で発生した遅延時間を置いた後、再び送信回路14よりバースト信号が送出される。送信回路14からのバースト信号は、予め定められた回数だけ繰り返され、この繰返しに要した時間を累積時間計測手段20で、また、遅延時間を遅延時間計測手段10により計測する。   The ultrasonic signal transmitted from the first transducer 12 by the burst signal transmitted from the transmission circuit 14 propagates in the flow, is received by the second transducer 13 and detected by the reception circuit 15, and delay time generating means After the delay time generated at 17 is set, the burst signal is transmitted from the transmission circuit 14 again. The burst signal from the transmission circuit 14 is repeated a predetermined number of times, and the time required for this repetition is measured by the accumulated time measuring means 20 and the delay time is measured by the delay time measuring means 10.

更に、流量演算手段21では、累積時間計測手段20で求めた値から遅延時間計測手段19で求めた遅延時間を差し引くことにより、超音波の伝達のみの所要時間Tを求める。通常、この送信回路から振動子を駆動する際には伝搬距離により信号が減衰することを考慮して高電圧を供給する。その回路として上記に説明した昇圧回路を利用することが多い。
特開2000−292232号公報(第2頁、第1図)
Further, the flow rate calculating means 21 obtains the required time T for only transmitting ultrasonic waves by subtracting the delay time obtained by the delay time measuring means 19 from the value obtained by the accumulated time measuring means 20. Normally, when driving the vibrator from this transmission circuit, a high voltage is supplied in consideration of the signal attenuation due to the propagation distance. As the circuit, the booster circuit described above is often used.
JP 2000-292232 A (2nd page, FIG. 1)

しかしながら前記従来の昇圧回路における高電圧供給回路では負荷の動作および回路全体の安定性を考えたDCDCコンバータの動作タイミングが統一されておらず、個々に動作している。例えば送信、受信回路への供給電圧が安定する前にDCDCコンバータの動作を開始すると充電後、負荷が動作するまでの時間に無駄が発生する可能性がでてくる。さらに回路の初期設定動作などを行っている時に昇圧回路が動作するとシステムの電圧が変動したり、ノイズの発生による計測精度の劣化につながる可能性がある。また、DCDCコンバータの電圧変換効率はそれほど高いものでは無く省電力を必要とする計測システムには利用が難しい面があるという課題を有していた。   However, in the conventional high voltage supply circuit in the booster circuit, the operation timing of the DCDC converter considering the operation of the load and the stability of the entire circuit is not unified, and operates individually. For example, if the operation of the DCDC converter is started before the supply voltage to the transmission / reception circuit is stabilized, there is a possibility that waste will occur in the time after the charging until the load operates. Furthermore, if the booster circuit operates during the initial setting operation of the circuit, the system voltage may fluctuate or the measurement accuracy may be degraded due to noise. Further, the voltage conversion efficiency of the DCDC converter is not so high, and there is a problem that the measurement system that requires power saving has a difficulty in use.

本発明は前記従来の課題を解決するもので、超音波駆動用の電源を別に設置するのではなく、通常の制御回路用電源を共用して用い、計測系と超音波発振系の電圧差を無くした状態で安定した電力供給を行うとともにノイズ等の影響をシステムに与えないような動作をすることで、計測系の安定動作を行う精度の良い流量計測を実現することを目的とする。   The present invention solves the above-described conventional problem, and does not install a separate power source for driving ultrasonic waves, but uses a common power source for control circuits, and the voltage difference between the measurement system and the ultrasonic oscillation system is determined. An object of the present invention is to realize an accurate flow rate measurement that performs a stable operation of a measurement system by performing stable power supply in a state of being eliminated and performing an operation that does not affect the system such as noise.

前記従来の課題を解決するために、本発明の流れ計測装置の制御手段は、電源から降圧した安定電圧によって計測系の全体の動作を制御するともに超音波を送信する振動子への電力供給も共用して制御するものである。   In order to solve the above-mentioned conventional problems, the control means of the flow measurement device of the present invention controls the overall operation of the measurement system with a stable voltage stepped down from the power supply and also supplies power to the transducer that transmits ultrasonic waves. It is shared and controlled.

本発明の、流れ計測装置における制御手段は、電源から降圧した電圧によって計測系の全体の動作を制御するともに超音波を送信する振動子への電力供給も同じ安定した電圧を用いて制御するものである。これによって昇圧などの動作による電圧の不安定さやスイッチングノイズの発生を抑えることで計測系の安定動作を実現する精度の良い流量計測を実現することが可能になるとともに電力変換効率を下げることなくシステム動作を行うことができる。   The control means in the flow measuring device of the present invention controls the overall operation of the measurement system by the voltage stepped down from the power supply, and also controls the power supply to the transducer transmitting ultrasonic waves using the same stable voltage. It is. This makes it possible to realize accurate flow measurement that realizes stable operation of the measurement system by suppressing the instability of voltage and switching noise caused by operations such as boosting, and the system without reducing power conversion efficiency The action can be performed.

第1の発明は被測定流体の流れる流路に配置され超音波を送受信する一対の振動子と、振動子を駆動する送信手段と、受信側振動子の出力信号を電気信号に変換する受信手段と、前記振動子の送受信の切換手段と、前記振動子間相互の超音波伝搬を複数回行う繰返し手段と、前記繰返し時に前記振動子からの送信信号を遅らせる遅延手段と、それぞれの複数回繰返しの伝搬時間を計測する計時手段と、前記計時手段でそれぞれの計時値の差に基づいて流量を算出する流量演算手段と、電源と、前記電源より低電圧をつくる電源安定手段と、制御手段を有し、前記制御手段は電源安定手段の出力で前記送信手段を制御する電源制御手段とを備えた流れ計測装置である。   A first invention is a pair of transducers arranged in a flow path through which a fluid to be measured flows and transmits / receives ultrasonic waves, a transmission unit that drives the transducers, and a reception unit that converts an output signal of a reception-side transducer into an electrical signal A transmission / reception switching unit of the transducer, a repeating unit that performs ultrasonic propagation between the transducers a plurality of times, a delay unit that delays a transmission signal from the transducer during the repetition, and a plurality of repetitions of each A time measuring means for measuring the propagation time, a flow rate calculating means for calculating a flow rate based on a difference between respective time measured values by the time measuring means, a power source, a power source stabilizing means for generating a lower voltage than the power source, and a control means. And the control means includes a power supply control means for controlling the transmission means by the output of the power supply stabilization means.

そして制御手段は、電源から降圧した電圧によって計測系の全体の動作を制御するともに超音波を送信する振動子への電力供給も同じ安定した電圧を用いて制御するものである。これによって昇圧などの動作による電圧の不安定さやスイッチングノイズの発生を抑えることで計測系の安定動作を実現する精度の良い流量計測を実現することが可能になるとともに電力変換効率を下げることなくシステム動作を行なうことができる。   The control means controls the overall operation of the measurement system with the voltage stepped down from the power source and controls the power supply to the transducer that transmits the ultrasonic wave using the same stable voltage. This makes it possible to realize accurate flow measurement that realizes stable operation of the measurement system by suppressing the instability of voltage and switching noise caused by operations such as boosting, and the system without reducing power conversion efficiency Operation can be performed.

第2の発明は、特に、第1の発明の電源安定手段と送信手段の間に開閉手段を設け、制御手段は前記開閉手段を動作することにより、振動子駆動用の回路への電源供給を調節することができる。   In the second invention, in particular, an opening / closing means is provided between the power stabilization means and the transmission means of the first invention, and the control means operates the opening / closing means to supply power to the vibrator driving circuit. Can be adjusted.

第3の発明は、特に、第1の発明の電源と送信手段の間に第2の電源安定手段を設け、電源制御手段は前記第2の電源安定手段を制御することにより、制御系以外の電源で振動子駆動用の回路への電源供給を調節することができる。   In particular, the third invention provides a second power supply stabilizing means between the power supply of the first invention and the transmitting means, and the power supply control means controls the second power supply stabilizing means, so that the control system other than the control system is provided. The power supply to the circuit for driving the vibrator can be adjusted by the power supply.

第4の発明は、特に、第3の発明の第2の電源安定手段の前段もしくは後段に第2の開閉手段を設け、制御手段は前記第2の開閉手段を動作することにより、振動子駆動用の回路への電源供給を独自に調節することができる。   In the fourth aspect of the invention, in particular, the second opening / closing means is provided before or after the second power supply stabilizing means of the third invention, and the control means operates the second opening / closing means to drive the vibrator. The power supply to the circuit can be adjusted independently.

第5の発明は、特に、第1の発明の電源制御手段が電源安定手段の電源出力が安定してから開閉手段を動作することにより、制御手段の動作が安定してから各部の回路電圧が定まり定常動作になった後に送信動作を行うことになり振動子の送信動作と周辺回路両方の安定度を向上することが可能になる。   In the fifth invention, in particular, the power supply control means of the first invention operates the opening / closing means after the power supply output of the power supply stabilization means is stabilized, so that the circuit voltage of each part is changed after the operation of the control means is stabilized. Since the transmission operation is performed after the fixed and steady operation, the stability of both the transmission operation of the vibrator and the peripheral circuit can be improved.

第6の発明は、特に、第1の発明の電源制御手段が電源安定手段の電源出力が安定後
一定時間経過してから開閉手段を動作することにより電源安定手段の出力電圧が安定し各部の回路電圧が定まり初期動作が終了した後に振動子の送信動作ができるため、超音波駆動動作と周辺回路両方の安定度を向上することが可能になる。
In the sixth aspect of the invention, in particular, when the power supply control means of the first aspect of the invention operates the opening / closing means after the power supply output of the power supply stabilization means has stabilized for a certain time, the output voltage of the power supply stabilization means is stabilized, Since the transmission operation of the vibrator can be performed after the circuit voltage is determined and the initial operation is completed, the stability of both the ultrasonic drive operation and the peripheral circuit can be improved.

第7の発明は、特に、第1の発明の電源制御手段が送信手段の動作が開始する前に開閉手段を閉動作することにより制御手段の出力が安定してから送信手段への給電を開始することになり振動子への不要な電圧印加を防止することが可能になる。   In the seventh aspect of the invention, in particular, the power supply control unit of the first aspect of the invention starts the power supply to the transmission unit after the output of the control unit is stabilized by closing the opening / closing unit before the operation of the transmission unit starts. As a result, unnecessary voltage application to the vibrator can be prevented.

第8の発明は、特に、第1の発明の電源制御手段が送信手段の動作が終了後一定時間経過後に開閉手段を開動作することにより送信動作が終了後の振動子への電圧印加を無くし不必要な振動動作を防止することが可能になる。   In the eighth invention, in particular, the power control means of the first invention opens the opening / closing means after a lapse of a certain time after the operation of the transmission means, thereby eliminating voltage application to the vibrator after the transmission operation is completed. Unnecessary vibration operation can be prevented.

第9の発明は、特に、第1の発明の流れ計測装置に主制御手段を設け、電源安定手段から後段の電源管理を一括する構成により電源の電圧管理を容易に行うことが可能になる。   According to the ninth aspect of the invention, in particular, the main control means is provided in the flow measuring device of the first aspect of the invention, and the power supply voltage management can be easily performed by the configuration in which the power supply stabilization means collectively performs the subsequent power management.

第10の発明は、特に、第1の発明の電源安定手段の入力電圧を検出する電圧検出手段を設け、主制御手段は前記電圧検出手段の信号により、電源安定手段から後段の電源管理を行うことで入力電圧に応じて制御方法を調整して安定に動作することが可能になる。   According to a tenth aspect of the invention, in particular, a voltage detection means for detecting an input voltage of the power supply stabilization means of the first invention is provided, and the main control means performs subsequent power management from the power supply stabilization means by a signal of the voltage detection means. Thus, it is possible to adjust the control method according to the input voltage and to operate stably.

第11の発明は、特に、第1の発明から第10の発明のいずれか1つにおける制御手段としてコンピュータを機能させるためのプログラムを有する構成としたもので、これにより電源周辺の動作設定、変更が容易にでき、また経年変化などにも柔軟に対応できるためよりフレキシブルに振動子への給電電圧の精度向上とシステム信頼性向上を行うことができる。   In the eleventh aspect of the invention, in particular, there is provided a configuration having a program for causing a computer to function as the control means in any one of the first to tenth aspects of the invention. In addition, since it is possible to flexibly cope with aging, etc., the accuracy of the power supply voltage to the vibrator and the system reliability can be improved more flexibly.

(実施の形態1)
本発明の第1の実施の形態に関する流れ計測装置について説明する。
(Embodiment 1)
A flow measurement apparatus according to the first embodiment of the present invention will be described.

図1は、本発明の第1の実施の形態における流れ計測装置のブロック図を示すものである。   FIG. 1 shows a block diagram of a flow measuring apparatus according to the first embodiment of the present invention.

図1おいて、被測定流体の流れる流路31と、前記流路31に配置された超音波を送受信する第1の振動子32、第2の振動子33を設置し、前記第1の振動子32を駆動する送信手段34と、前記第2の振動子33の受信信号を受け受信タイミングを決定する受信手段35と、前記送信手段34と第1の振動子32、および第2の振動子33と受信手段35の間に切換手段36を設け、超音波の送受信を第1の振動子32と第2の振動子33の間で交互に行うようにしている。   In FIG. 1, a flow path 31 through which a fluid to be measured flows, a first vibrator 32 and a second vibrator 33 that transmit and receive ultrasonic waves arranged in the flow path 31 are installed, and the first vibration is provided. A transmission means 34 for driving the child 32; a reception means 35 for receiving a reception signal of the second vibrator 33; and determining a reception timing; the transmission means 34, the first vibrator 32, and a second vibrator; A switching unit 36 is provided between the first transducer 32 and the receiving unit 35 so that transmission / reception of ultrasonic waves is alternately performed between the first transducer 32 and the second transducer 33.

受信手段35の出力を受け送信手段34を介して再度超音波の送受信を繰り返すという動作回数を計測し所定の回数で動作を停止する繰返し手段37と、前記繰返し手段37の信号を受け所定の遅延時間遅れて前記送信手段34のトリガ信号として出力する遅延手段38と、少なくとも送信手段34による第1の振動子32の駆動開始から前記繰返し手段37の動作停止までの超音波の伝搬時間を測定する計時手段39と、前記計時手段39の値から前記一対の振動子間の流速を演算し、それから流量を求める流量演算手段40(特許請求の範囲の演算手段に相当)とを有するものである。   The repeater 37 for measuring the number of operations of receiving and receiving the output of the receiver 35 and repeating the transmission / reception of the ultrasonic wave again via the transmitter 34 and stopping the operation at a predetermined number of times, and receiving a signal of the repeater 37 for a predetermined delay A delay unit 38 that outputs the trigger signal of the transmission unit 34 with a time delay, and at least the propagation time of the ultrasonic wave from the start of driving the first vibrator 32 by the transmission unit 34 to the stop of the operation of the repeating unit 37 are measured. It has time measuring means 39 and flow rate calculating means 40 (corresponding to the calculating means in the claims) for calculating the flow velocity between the pair of vibrators from the value of the time measuring means 39 and obtaining the flow rate therefrom.

さらに制御手段45を設け、前記制御手段45の計測制御手段41は、前記送信手段34を動作する計測スタート信号を出力する。さらに電力の供給を行う電源42と、電源より低電圧で動作する制御手段45を動作するための電源安定手段43と、前記電源安定手段43を制御する電源制御手段44を備えている。   Further, a control unit 45 is provided, and the measurement control unit 41 of the control unit 45 outputs a measurement start signal for operating the transmission unit 34. Furthermore, a power supply 42 for supplying power, a power supply stabilization means 43 for operating the control means 45 operating at a lower voltage than the power supply, and a power supply control means 44 for controlling the power supply stabilization means 43 are provided.

通常の動作を説明する。計測制御手段41からスタート信号を受けた送信手段34が第1の振動子32を一定時間パルス駆動行うと同時に計時手段39は計測制御手段41からの信号によって時間計測始める。パルス駆動された第1の振動子32からは超音波が送信される。第1の振動子32から送信した超音波は被測定流体中を伝搬し、第2の振動子33で受信される。第2の振動子33の受信出力は、受信手段35で信号を増幅された後、予め定められている受信タイミングの信号レベルで超音波の受信を決定する。繰返し動作を行わない場合はこの超音波の受信を決定した時点で計時手段39の動作を停止し、その時間情報tから(式1)によって流速を求める。   Normal operation will be described. Upon receiving the start signal from the measurement control means 41, the transmission means 34 pulse-drives the first vibrator 32 for a fixed time, and at the same time, the time measurement means 39 starts measuring time according to the signal from the measurement control means 41. An ultrasonic wave is transmitted from the pulse-driven first vibrator 32. The ultrasonic wave transmitted from the first vibrator 32 propagates through the fluid to be measured and is received by the second vibrator 33. The reception output of the second vibrator 33 amplifies the signal by the receiving means 35 and then determines the reception of the ultrasonic wave at the signal level at a predetermined reception timing. When the repeated operation is not performed, the operation of the time measuring means 39 is stopped when the reception of the ultrasonic wave is determined, and the flow velocity is obtained from the time information t by (Equation 1).

ここで、計時手段39から得た測定時間をt、超音波振動子間の流れ方向の有効距離をL、音速をc、被測定流体の流速をvとする。   Here, the measurement time obtained from the time measuring means 39 is t, the effective distance in the flow direction between the ultrasonic transducers is L, the sound velocity is c, and the flow velocity of the fluid to be measured is v.

v=(L/t)−c ・・・(式1)
受信手段35は通常コンパレータによって基準電圧と受信信号を比較するようになっていることが多い。
v = (L / t) -c (Formula 1)
The receiving means 35 is usually configured to compare the reference voltage and the received signal by a comparator.

繰返し手段37を用いる今回の動作は受信手段35の判定結果を遅延手段38で一定時間遅延させた後に送信手段34に返し、再度送信を行う。繰返し動作を決められた回数行い、その時間を計時手段39で測定し、計時手段39の測定時間を元に(式2)の計算によって流速を求める。   In the current operation using the repeating unit 37, the determination result of the receiving unit 35 is delayed by a delay unit 38 for a certain period of time, then returned to the transmitting unit 34 and transmitted again. The repetitive operation is performed a predetermined number of times, the time is measured by the time measuring means 39, and the flow velocity is obtained by the calculation of (Equation 2) based on the measurement time of the time measuring means 39.

ここで、遅延手段の遅延時間をTd、繰返しの回数をn、測定時間をts、超音波振動子間の流れ方向の有効距離をL、音速をc、被測定流体の流速をvとする。   Here, the delay time of the delay means is Td, the number of repetitions is n, the measurement time is ts, the effective distance in the flow direction between the ultrasonic transducers is L, the sound velocity is c, and the flow velocity of the fluid to be measured is v.

v=L/(ts/n−Td)−c・・・(式2)
この方法によれば(式1)の方法に比べ精度よく測定することができる。
v = L / (ts / n−Td) −c (Expression 2)
According to this method, it is possible to measure with higher accuracy than the method of (Equation 1).

また、第1の超音波振動子32と第2の超音波振動子33とを切り替え、被測定流体の上流から下流と下流から上流へのそれぞれの伝搬時間を測定し、(式3)より速度vを求める。   Further, the first ultrasonic transducer 32 and the second ultrasonic transducer 33 are switched, and the respective propagation times of the fluid under measurement from upstream to downstream and from downstream to upstream are measured. Find v.

ここで、上流から下流への測定時間時間をt1、下流から上流への測定時間時間をt2とする。   Here, the measurement time from upstream to downstream is t1, and the measurement time from downstream to upstream is t2.

v=L/2((1/t1)−(1/t2))・・・(式3)
この方法によれば音速の変化の影響を受けずに流度を測定することが出来るので、流速・流量・距離などの測定に広く利用されている。流速vが求まると、それに流路1の断面積を乗ずることにより流量を導くことができる。
v = L / 2 ((1 / t1)-(1 / t2)) (Formula 3)
According to this method, the flow rate can be measured without being affected by the change in the sound speed, and thus it is widely used for measuring the flow velocity, the flow rate, the distance, and the like. When the flow velocity v is obtained, the flow rate can be derived by multiplying it by the cross-sectional area of the flow path 1.

通常の動作は図2に示すタイミング図のようになる。すなわち、計測制御手段41による時刻t0における開始信号から計測を開始し、t1で送信手段34を介して第1の超音波振動子32を駆動する。そこで発生した超音波信号は流路内を伝搬し時刻t2で第2の超音波振動子33に到達し、受信手段35で受信点を検知すると繰返し手段37は設定回数に達していない場合、遅延手段38に信号を送出する。そして時刻t3から遅延手段38が動作し、予め定めた時間だけ動作した後時刻t4で送信手段34に信号を送出し、再び第1の超音波振動子32を駆動する。以下、この繰返しを行っている。   Normal operation is as shown in the timing diagram of FIG. That is, measurement is started from the start signal at time t0 by the measurement control means 41, and the first ultrasonic transducer 32 is driven via the transmission means 34 at t1. The ultrasonic signal generated there propagates in the flow path, reaches the second ultrasonic transducer 33 at time t2, and when the reception means detects the reception point, the repeat means 37 does not reach the set number of times. A signal is sent to the means 38. Then, the delay means 38 starts operating from time t3, operates for a predetermined time, and then sends a signal to the transmitting means 34 at time t4 to drive the first ultrasonic transducer 32 again. This is repeated below.

繰返し手段37で決められた回数動作すると図2時刻t5で送受信動作は停止し、その時間は図に示すTとなる。その後、切換え手段36が送受信を切換える。すなわち第1の超音波振動子32が受信側、第2の超音波振動子33が送信側になる。そして同様な繰返し動作を行う。   When the number of times determined by the repeating means 37 is operated, the transmission / reception operation stops at time t5 in FIG. 2, and the time is T shown in the figure. Thereafter, the switching means 36 switches between transmission and reception. That is, the first ultrasonic transducer 32 is the reception side, and the second ultrasonic transducer 33 is the transmission side. Then, the same repeated operation is performed.

次に計測制御手段41などに電力を供給する電源周辺について説明する。図3は本実施の形態の電源周辺の構成を示すブロック図である。図3において42は電源、43は電源安定手段、44は電源制御手段である。電源安定手段43の例としては3端子レギュレータやツェナーダイオードなどが利用できる。   Next, the vicinity of the power source that supplies power to the measurement control means 41 and the like will be described. FIG. 3 is a block diagram showing a configuration around the power source according to the present embodiment. In FIG. 3, reference numeral 42 denotes a power source, 43 denotes a power source stabilization means, and 44 denotes a power source control means. As an example of the power supply stabilizing means 43, a three-terminal regulator or a Zener diode can be used.

また、近年改良が進んでいる降圧タイプのDCDCコンバータを用いることも可能である。   It is also possible to use a step-down DCDC converter that has been improved in recent years.

従来例との差を図4のタイミングを用いて説明する。図4(a)は従来の昇圧回路であるDCDCコンバータ2における負荷である振動子32の動作タイミングである。振動子が動作することにより昇圧手段2の出力電圧が図4(b)のように低下してくる。そしてt1で電圧が低下したことを検知してDCDCコンバータが動作する。   A difference from the conventional example will be described with reference to the timing of FIG. FIG. 4A shows the operation timing of the vibrator 32 which is a load in the DCDC converter 2 which is a conventional booster circuit. As the vibrator operates, the output voltage of the boosting means 2 decreases as shown in FIG. Then, it is detected that the voltage has dropped at t1, and the DCDC converter operates.

このt1のタイミングは電圧によってのみ決まり振動子の動作を考慮していない。したがって、図4にあるように振動子32が動作中に電圧が低下した場合もすぐにDCDCコンバータが昇圧動作を開始してしまう。これは振動子32の端子電圧が動作中に変動することを示している。計測装置などに使用していると動作電圧が変動するため安定度が悪くなってくる。同様に図4(c)は本発明の振動子の動作タイミングである。そして図4(d)が電源制御手段44の動作タイミングである。例えば送信するたびに送信手段34に電源を供給するように動作しても良いし、送信手段34の電圧を確認し動作を確かめても良い。送信手段34の入力電圧は図4(e)のように電源安定手段43の出力からの電圧をそのまま利用できるため振動子の動作にかかわり無く、一定電圧を維持することができていることがわかる。   The timing of t1 is determined only by the voltage and does not consider the operation of the vibrator. Therefore, as shown in FIG. 4, even when the voltage is lowered during operation of the vibrator 32, the DCDC converter immediately starts the boosting operation. This indicates that the terminal voltage of the vibrator 32 fluctuates during operation. If it is used in a measuring device, the operating voltage fluctuates and the stability becomes worse. Similarly, FIG. 4C shows the operation timing of the vibrator of the present invention. FIG. 4D shows the operation timing of the power supply control means 44. For example, it may operate to supply power to the transmission means 34 every time it transmits, or the voltage of the transmission means 34 may be confirmed to confirm the operation. As shown in FIG. 4E, the voltage from the output of the power supply stabilization means 43 can be used as it is as the input voltage of the transmission means 34, so that a constant voltage can be maintained regardless of the operation of the vibrator. .

流れ計測装置において図5のように電源制御手段44を組み込んだ場合について説明する。超音波の信号は第1の振動子32を駆動し流路31の内部を十分な超音波信号レベルで伝送した後第2の振動子33で受信する。振動子の駆動電圧が電源安定手段43の出力をそのまま用いていると通常のように高電圧では無いため信号変換効率の良い振動子を用いることにより送信する超音波レベルを確保するか、微弱信号でも受信できる感度の良い振動子を用いる必要がある。もちろん受信レベルが低い場合は低ノイズで増幅度が高くとれる受信手段を構成することも必要である。   The case where the power supply control means 44 is incorporated in the flow measuring device as shown in FIG. 5 will be described. The ultrasonic signal is received by the second vibrator 33 after driving the first vibrator 32 and transmitting the inside of the flow path 31 at a sufficient ultrasonic signal level. If the output of the power source stabilization means 43 is used as it is for the driving voltage of the vibrator, it is not a high voltage as usual, so that an ultrasonic level to be transmitted can be secured by using a vibrator with good signal conversion efficiency, or a weak signal However, it is necessary to use a highly sensitive transducer that can be received. Of course, when the reception level is low, it is also necessary to configure a receiving means that can obtain a high amplification degree with low noise.

そして、電源42から電源安定手段43を通過した出力は送信手段34を介して第1の振動子32に繋がっている。途中の切換え手段36は送受信を切換えているだけなのでここでの詳しい説明は除く。送信手段34の内部の一例として振動子を動作するために34aから34dまでの送信開閉手段を用いたブリッジ構成をとる。最初送信開閉手段34a,34dを通電状態にし、反対に34b、34cを開放しておく。次に送信開閉手段34a,34dを開放し、34b、34cを通電状態にする。この動作で振動子が動作し始める。このように振動子への給電は電源安定手段43からの計測系と同じ電圧で直接行っている。   The output passing from the power source 42 through the power source stabilization means 43 is connected to the first vibrator 32 via the transmission means 34. Since the switching means 36 on the way only switches between transmission and reception, a detailed description here is omitted. As an example of the inside of the transmission unit 34, a bridge configuration using transmission opening / closing units 34a to 34d is used to operate the vibrator. First, the transmission opening / closing means 34a and 34d are energized, and on the contrary, 34b and 34c are opened. Next, the transmission opening / closing means 34a and 34d are opened, and 34b and 34c are energized. With this operation, the vibrator starts to operate. In this way, the power supply to the vibrator is directly performed at the same voltage as the measurement system from the power supply stabilizing means 43.

この電圧の供給が図4(b)に示してあるような変動があると受信信号が一定でなくなる。これは流量の計測精度に大きく影響するために好ましいことではない。電源安定手段43の動作により図4(d),(e)のように安定した電圧で振動子への電力供給を行うことで送信信号の安定化が図れる。さらに高圧電源を作製する必要が無いため、ノイズ等の影響を流量計測システム全体に与えないような動作を実現することが可能になる。   If the supply of this voltage varies as shown in FIG. 4B, the received signal will not be constant. This is not preferable because it greatly affects the measurement accuracy of the flow rate. The operation of the power supply stabilizing means 43 can stabilize the transmission signal by supplying power to the vibrator with a stable voltage as shown in FIGS. Furthermore, since there is no need to produce a high-voltage power supply, it is possible to realize an operation that does not affect the entire flow rate measurement system due to noise or the like.

電源制御手段44は計測制御手段41から計測動作信号が出ているのを信号として受け取ることが可能なため、より確実に振動子の動作に影響を与えない状態でシステム全体の電圧管理を主とする制御することできるようになる。図5では電源制御手段44と計測制御手段41を別々に設けているが同じ制御手段として1つの論理手段、例えばマイコンを用いても良い。   Since the power supply control unit 44 can receive the measurement operation signal from the measurement control unit 41 as a signal, the power control unit 44 mainly manages the voltage of the entire system in a state that does not affect the operation of the vibrator more reliably. You will be able to control. In FIG. 5, the power supply control means 44 and the measurement control means 41 are provided separately, but one logic means, for example, a microcomputer may be used as the same control means.

電源42から電源安定手段43を介して安定した電圧による給電を計測系と振動子へ共用して行うことで電源まわりの部品を減らすことが可能になり省電力が実現できる。また供給電源の電圧が1つのため電圧差による電流の回り込みなどによるトラブルが発生する可能性を小さくできる。さらに高電圧を作製するような回路を省略することで省スペースも図れる。またDCDCコンパータ等のコイルを含んだ回路を省略することでノイズ発生も抑えることが可能になる。   By supplying a stable voltage from the power source 42 to the measurement system and the vibrator via the power source stabilizing means 43, it is possible to reduce the number of components around the power source and to realize power saving. In addition, since the voltage of the power supply is one, the possibility of trouble due to current wraparound due to a voltage difference can be reduced. Furthermore, space can be saved by omitting a circuit for producing a high voltage. Also, noise generation can be suppressed by omitting a circuit including a coil such as a DCDC converter.

また、動作開始時の電源周辺のタイミングについて説明する。省電力で動作する場合などは電源をこまめに入り切りし、本当に動作が必要な場合のみ電源を各部に供給し、それ以外は休止する方法が多くの制御手段に用いられている。流量計測装置のように周期的に動作を行う機器では非動作時に電源を遮断することが有用である。そのため電源を立ち上げる動作が頻発するが、その度に各種設定を行う必要がでてくる。送信手段34、受信手段35への供給電圧が安定する前に電源安定手段43から給電を開始すると負荷としての振動子が動作するまでの時間に無駄が発生する可能性や各部における電圧の安定度合いの不釣合いから不安定な動作がでてくる可能性がある。さらに計測制御手段41の初期設定動作などを行っている時に送信手段34が動作するとシステムの電圧が変動したり、ノイズの発生による計測精度の劣化につながる可能性がある。例えば計測制御手段41の内部に複数の集積回路が存在し、初期データのやり取りやアナログ部の調整を行っているような場合である。   The timing around the power supply at the start of operation will be described. Many control means use a method in which the power supply is frequently turned on when operating with power saving, the power supply is supplied to each unit only when the operation is really necessary, and the rest is performed otherwise. In a device that operates periodically, such as a flow rate measuring device, it is useful to shut off the power supply when not operating. As a result, the power-on operation frequently occurs, but it is necessary to make various settings each time. If power supply is started from the power supply stabilization means 43 before the supply voltage to the transmission means 34 and the reception means 35 is stabilized, there is a possibility that waste will occur in the time until the vibrator as a load operates and the degree of voltage stability in each part There is a possibility that an unstable operation may occur due to the unbalance. Further, if the transmission unit 34 operates during the initial setting operation of the measurement control unit 41, the system voltage may fluctuate, or the measurement accuracy may deteriorate due to the generation of noise. For example, there is a case where a plurality of integrated circuits exist inside the measurement control means 41, and exchange of initial data and adjustment of an analog unit are performed.

このような場合は図6に示しているように開閉手段46を設置し、電源制御手段44が開閉の指示を出すようにすれば良い。制御手段43内部の各手段が安定するまで振動子32に不用意な電圧が印加されるのを防止するために開閉手段46を開成動作しておく。その動作を図7を用いて説明する。   In such a case, an opening / closing means 46 may be installed as shown in FIG. 6 so that the power supply control means 44 issues an opening / closing instruction. The opening / closing means 46 is opened in order to prevent an inadvertent voltage from being applied to the vibrator 32 until each means inside the control means 43 is stabilized. The operation will be described with reference to FIG.

図7(a)のように電源制御手段44の入力部の電圧が上昇し、規定電圧を超えると図7(b)のようにデジタル機器は動作を開始する。時刻t1で計測制御手段41が動作を開始し、初期設定を行いはじめる。そしてt2までの時間で各部の設定を終了した後図7(c)のように電源制御手段44が開閉手段46を閉動作するよう信号を送出する。開閉手段45が閉動作すると送信手段34の入力電圧は図7(d)のように立ち上がりt3で所定の電圧を満足する。その後で計測制御手段41は送信手段34を動作する。このように安定した回路電圧と送信電圧の共用化を図ることで、計測系の安定動作を実現する精度の良い流量計測を実現することができる。さらにアナログ回路などの設定後に開閉手段45を動作することでノイズ等の影響をシステムに与えないような動作を実現することが可能になる。   As shown in FIG. 7A, when the voltage of the input unit of the power supply control unit 44 rises and exceeds the specified voltage, the digital device starts operation as shown in FIG. 7B. At time t1, the measurement control means 41 starts its operation and starts performing initial setting. Then, after the setting of each part is completed in the time until t2, the power supply control means 44 sends a signal for closing the opening / closing means 46 as shown in FIG. When the opening / closing means 45 is closed, the input voltage of the transmission means 34 satisfies a predetermined voltage at the rising edge t3 as shown in FIG. Thereafter, the measurement control unit 41 operates the transmission unit 34. By sharing the stable circuit voltage and the transmission voltage in this way, it is possible to realize an accurate flow rate measurement that realizes a stable operation of the measurement system. Further, by operating the opening / closing means 45 after setting an analog circuit or the like, it is possible to realize an operation that does not affect the system by noise or the like.

送信電圧が従来の測定系に比べて低くなるため受信レベルも下がることが考えられるが電源の一元化により昇圧手段などのノイズが発生する可能性のなる部分を無くすることで電圧変動の無い安定した受信手段の動作も可能になり増幅率も大きくとれるようになる。   Since the transmission voltage is lower than that of the conventional measurement system, the reception level may be reduced, but by eliminating the part that may generate noise such as boosting means by unifying the power supply, the voltage level is stable. The operation of the receiving means is also possible, and the gain can be increased.

また、図8を用いて他の動作を説明する。電源42から電源安定手段43を介して制御手段44は安定した電圧で動作しているが、送信手段34への給電は電源42から直接行っても良い場合がある。電源42と送信手段34の間に第2の電源安定手段47を設け、振動子への給電を第2の電源安定手段47から行うようにする。これは振動子の感度によっては電源安定手段43の電圧より低い場合や高い場合が発生する可能性があることや、たとえ電源安定手段43と同じ電圧で動作できる振動子であっても、送信するタイミングで過渡的な電流が流れることにより測定系の電圧を変動する可能性があるため、別の電源系統を準備する。このように第2の電源安定手段47を有することにより制御手段43は振動子駆動用の回路への電源供給を測定系から切り離して独自に調節することが可能になる。第の電源安定手段47の出力電圧は電源安定手段43の出力電圧と同じである必要は別に無い。   Further, another operation will be described with reference to FIG. Although the control unit 44 operates at a stable voltage from the power source 42 through the power source stabilization unit 43, the power supply to the transmission unit 34 may be performed directly from the power source 42 in some cases. A second power stabilizing unit 47 is provided between the power source 42 and the transmitting unit 34 so that power is supplied to the vibrator from the second power stabilizing unit 47. Depending on the sensitivity of the vibrator, there may be cases where the voltage is lower or higher than the voltage of the power stabilization means 43, and even if the vibrator can operate at the same voltage as the power stabilization means 43, it is transmitted. Since there is a possibility that the voltage of the measurement system will fluctuate due to a transient current flowing at the timing, another power supply system is prepared. By having the second power supply stabilizing means 47 in this way, the control means 43 can independently adjust the power supply to the vibrator driving circuit from the measurement system. The output voltage of the first power stabilization means 47 does not have to be the same as the output voltage of the power stabilization means 43.

また、図8を用いて他の動作を説明する。第2の電源安定手段47を設けた場合、動作開始時の電源周辺のタイミングについて説明する。省電力で動作する場合などは電源をこまめに入り切りし、本当に動作が必要な場合のみ電源を各部に供給し、それ以外は休止する方法が多くの制御手段に用いられている。流量計測装置のように周期的に動作を行う機器では非動作時に電源を遮断することが有用である。そのため電源を立ち上げる動作が頻発するが、その度に各種設定を行う必要がでてくる。電源安定手段43からの給電により制御手段41が動作を開始した時点では他の測定系の初期設定などを行っている場合があり送信をすぐに行うことは無い。また第2の電源安定手段は送信手段34にのみ給電しているため電源容量などを考えると小型で立ち上がりが早くてすむ場合もある。そこで、図8に示しているように第2の電源安定手段47の前段に第2の開閉手段48a、または後段に48bを設置し、電源制御手段44が開閉の指示を出すようにすれば良い。   Further, another operation will be described with reference to FIG. When the second power supply stabilizing means 47 is provided, the timing around the power supply at the start of operation will be described. Many control means use a method in which the power supply is frequently turned on when operating with power saving, the power supply is supplied to each unit only when the operation is really necessary, and the rest is performed otherwise. In a device that operates periodically, such as a flow rate measuring device, it is useful to shut off the power supply when not operating. As a result, the power-on operation frequently occurs, but it is necessary to make various settings each time. At the time when the control unit 41 starts to operate due to the power supply from the power supply stabilization unit 43, there are cases where initial setting of other measurement systems is performed, and transmission is not performed immediately. In addition, since the second power stabilizing means supplies power only to the transmitting means 34, considering the power capacity and the like, the second power stabilizing means may be small and start up quickly. Therefore, as shown in FIG. 8, the second opening / closing means 48a may be installed in the front stage of the second power supply stabilizing means 47, or 48b in the rear stage, so that the power supply control means 44 issues an opening / closing instruction. .

そして制御手段43内部の各手段が安定するまで振動子32に不用意な電圧が印加されるのを防止するために第2の開閉手段48を開成動作しておく。そして制御手段43が安定すると電源制御手段44の信号により第2の開閉手段48が閉止動作を行い、電源42から第2の電源安定手段47を介して送信手段34に給電を開始する。このように安定した回路電圧と送信電圧の初期立ち上げ動作を行うことで、計測系の安定動作を実現する精度の良い流量計測を実現することができる。さらにアナログ回路などの設定後に第2の開閉手段48を動作することでノイズ等の影響をシステムに与えないような動作を実現でき、振動子の送信動作と周辺回路両方の安定度を向上することが可能になる。   Then, the second opening / closing means 48 is opened in order to prevent an inadvertent voltage from being applied to the vibrator 32 until each means inside the control means 43 is stabilized. When the control means 43 is stabilized, the second opening / closing means 48 is closed by a signal from the power supply control means 44, and power supply from the power supply 42 to the transmission means 34 is started via the second power supply stabilization means 47. By performing the initial rising operation of the stable circuit voltage and the transmission voltage in this way, it is possible to realize a highly accurate flow rate measurement that realizes a stable operation of the measurement system. Furthermore, by operating the second opening / closing means 48 after setting an analog circuit or the like, it is possible to realize an operation that does not affect the system, such as noise, and to improve the stability of both the transmission operation of the vibrator and the peripheral circuit. Is possible.

また、図9を用いて他の動作を説明する。電源の立ち上げを頻発している場合、電源42からの電圧立ち上がりが安定しない間に先に送信手段34が動作すると周辺の動作に悪影響を発生する場合がある。そこで図9(a)のように電源制御手段の入力部の電圧が上昇し、t0で規定電圧を超えると図9(b)のようにデジタル機器は動作を開始する。そして図9(c1)のようにt1で電源制御手段44が開閉手段46を動作するよう信号を送出する。時刻t0からt1の間で電源出力はほぼ安定しているため各部の動作も落ち着いてきている。このように電源制御手段44は電源出力が安定してから開閉手段46を閉止動作することにより、電源安定手段43の出力電圧が安定し各部の回路電圧が定まり定常動作になった後に送信手段34に電圧を印加する動作ができ、負荷である振動子の動作と周辺回路両方の安定度を向上することが可能になる。開閉手段46を動作するのではなく、送信手段34に直接動作しても同様の効果が得られる。   Further, another operation will be described with reference to FIG. When the power supply is frequently started up, if the transmission unit 34 is operated first while the voltage rise from the power supply 42 is not stable, the peripheral operation may be adversely affected. Therefore, when the voltage of the input part of the power supply control means rises as shown in FIG. 9A and exceeds the specified voltage at t0, the digital device starts operation as shown in FIG. 9B. Then, as shown in FIG. 9 (c1), the power supply control means 44 sends a signal to operate the opening / closing means 46 at t1. Since the power supply output is almost stable between time t0 and t1, the operation of each part is settled. In this way, the power supply control means 44 closes the opening / closing means 46 after the power supply output is stabilized, so that the output voltage of the power supply stabilization means 43 is stabilized, the circuit voltage of each part is determined, and the transmission means 34 is brought into a steady operation. Therefore, it is possible to improve the stability of both the operation of the vibrator as a load and the peripheral circuit. The same effect can be obtained by operating the opening / closing means 46 directly instead of operating the opening / closing means 46.

このように電源制御手段44が電源安定手段43の電源出力が安定してから開閉手段46を動作することにより、制御手段41の動作が安定してから各部の回路電圧が定まり定常動作になった後に送信動作を行なうことになり振動子の送信動作と周辺回路両方の安定度を向上することが可能になる。   As described above, the power supply control means 44 operates the opening / closing means 46 after the power supply output of the power supply stabilization means 43 is stabilized, so that the circuit voltage of each part is determined after the operation of the control means 41 is stabilized and the steady operation is performed. Since the transmission operation is performed later, the stability of both the transmission operation of the vibrator and the peripheral circuit can be improved.

また、図9を用いて他の動作を説明する。電源の立ち上がりが安定しても他の周辺部分の動作がまだ安定していない場合がある。そこで上記動作と同様に図9(a)のように電源制御手段44の入力部の電圧が上昇し、t0で規定電圧を超えると図9(b)のようにデジタル機器は動作を開始する。そしてt0から一定時間Tを経過してから図9(c2)のようにt2で電源制御手段44が開閉手段46を動作するよう信号を送出する。時刻t0からt2の間で周辺回路の動作、初期設定がほぼ安定しているため各部の動作も正常になっている。このように電源安定手段43の出力電圧が安定しすぐに動作を開始するのでは無く一定時間待機し各部の回路電圧が定まり初期動作が終了した後に開閉手段46を動作して送信手段に電圧を印加することで、電源安定手段43の出力電圧も一騎に電流を流すことなく、時間遅れをもって給電を行うことができる。そのため各部の回路電圧が定まり初期動作が終了した後に振動子の送信動作ができるため、超音波駆動動作と周辺回路両方の安定度を向上することが可能になる。   Further, another operation will be described with reference to FIG. Even if the power supply rises stably, the operation of other peripheral parts may not be stable yet. Therefore, as in the above operation, when the voltage at the input portion of the power supply control means 44 rises as shown in FIG. 9A and exceeds the specified voltage at t0, the digital device starts operation as shown in FIG. 9B. Then, after a predetermined time T has elapsed from t0, the power supply control means 44 sends a signal to operate the opening / closing means 46 at t2 as shown in FIG. 9 (c2). Since the operation and initial setting of the peripheral circuits are almost stable between the times t0 and t2, the operation of each part is also normal. Thus, instead of starting the operation immediately after the output voltage of the power source stabilization means 43 is stabilized, the circuit voltage of each part is determined after waiting for a certain period of time and the initial operation is completed, and the opening / closing means 46 is operated to apply the voltage to the transmission means. By applying the power, the power supply can be fed with a time delay without causing the output voltage of the power source stabilizing means 43 to flow. For this reason, since the transducer voltage can be transmitted after the circuit voltage of each part is determined and the initial operation is completed, it is possible to improve the stability of both the ultrasonic drive operation and the peripheral circuit.

(実施の形態2)
本発明の第2の実施の形態に関する流れ計測装置について図1と図5、図10、図11を用いて説明する。第1の実施の形態と異なるところは送信手段への電源印加を振動子の動作近傍で行うことである。
(Embodiment 2)
A flow measuring apparatus according to a second embodiment of the present invention will be described with reference to FIGS. 1, 5, 10, and 11. The difference from the first embodiment is that power is applied to the transmission means in the vicinity of the operation of the vibrator.

まず、図1、図5および図10を用いて動作を説明する。実施例1で示したように流量計測装置に用いられている振動子などの負荷への給電は計測系が安定してから行うことが望ましい。そのためには開閉手段46が適した動作を行わなければならない。そこで開閉手段46を動作するタイミングを調節することにより振動子の動作を安定したものにしていく。図10の時刻t31、t33、t35、t37で、図10(a)のように第1の振動子32が動作するためには電源安定手段43からの給電が必要である。このため振動子の動作する前に図10(b)のように時刻t30、t32、t34、t36で電力制御手段44が開閉手段46を動作して電源安定手段43から送信手段34に給電動作を開始する。時刻t30の前には図示していないが振動子が動作しているため開閉手段45は動作しているが繰返し動作のため説明を省略している。   First, the operation will be described with reference to FIG. 1, FIG. 5, and FIG. As shown in the first embodiment, it is desirable to supply power to a load such as a vibrator used in the flow rate measuring apparatus after the measurement system is stabilized. For this purpose, the opening / closing means 46 must perform a suitable operation. Therefore, the operation of the vibrator is stabilized by adjusting the timing of operating the opening / closing means 46. In order to operate the first vibrator 32 as shown in FIG. 10A at time t31, t33, t35, and t37 in FIG. 10, power supply from the power supply stabilizing means 43 is necessary. For this reason, before the vibrator operates, the power control means 44 operates the opening / closing means 46 at time t30, t32, t34, t36 as shown in FIG. Start. Although not shown before time t30, the opening / closing means 45 is operating because the vibrator is operating, but the description thereof is omitted because it is a repetitive operation.

負荷である振動子の動作は計測制御手段41を介して電力制御手段44が検知できるため、振動子の動作する前に開閉手段46に信号を送出し電源安定手段43からの給電を開始することが可能になる。その結果送信手段34の入力は図10(c)のように安定した電圧状態を示す。これは振動子の動作する前に開閉手段45の動作が行われているため電圧は最適な値になり、負荷である振動子が動作する時に電力を供給可能な状態にしておくことが可能になる。   Since the operation of the vibrator serving as a load can be detected by the power control means 44 via the measurement control means 41, a signal is sent to the opening / closing means 46 to start power feeding from the power supply stabilization means 43 before the vibrator operates. Is possible. As a result, the input of the transmission means 34 shows a stable voltage state as shown in FIG. This is because the operation of the opening / closing means 45 is performed before the vibrator operates, so that the voltage becomes an optimum value, and it is possible to keep power supplyable when the vibrator serving as a load operates. Become.

図10(b)では開閉手段45の動作が振動子の動作後すぐに停止するようになっているが、図10(b2)のように振動子の動作する一定時間前ΔT2に動作を終了するよう電力制御手段44が調整するようにしても良い。これは電力制御手段44からの停止信号が変化することによりシステム全体に微弱な電圧変化(ノイズ)が発生する場合が考えられる。その電圧変化が他の手段に影響を与えないよう振動子が動作する一定時間前に信号を送出しておけば例えば信号による反射やダンピング信号が収束してからシステム全体の安定後に超音波の送受信動作を安定に行うことが可能になる。この場合は送信手段34の近傍に容量性素子を置いて電圧を維持する必要がある。   In FIG. 10 (b), the operation of the opening / closing means 45 is stopped immediately after the operation of the vibrator. However, the operation ends at a certain time ΔT2 before the operation of the vibrator as shown in FIG. 10 (b2). The power control means 44 may be adjusted as described above. This may be the case where a weak voltage change (noise) occurs in the entire system due to a change in the stop signal from the power control means 44. If a signal is sent before the vibrator operates for a certain time so that the voltage change does not affect other means, for example, after the reflection or damping signal by the signal converges, ultrasonic transmission / reception is performed after the entire system is stabilized The operation can be performed stably. In this case, it is necessary to place a capacitive element in the vicinity of the transmission means 34 to maintain the voltage.

また、こまめに開閉手段をオンオフすることにより省電力も実現できる。このように電源制御手段44が送信手段34の動作が終了すると開閉手段46の動作を開成動作することにより、負荷の動作する前に給電を開始することができ、常に負荷が動作する時に高電圧を供給可能な状態にしておくとともにシステムの安定性を向上し、送信手段への給電時間を短くして省電力動作が可能になる。   Further, power saving can be realized by frequently turning on and off the opening / closing means. Thus, when the operation of the transmission means 34 is completed, the power supply control means 44 opens the operation of the opening / closing means 46 so that power supply can be started before the load is operated. The system can be supplied and the stability of the system can be improved, and the time for supplying power to the transmission means can be shortened to enable the power saving operation.

このように、電源制御手段44が送信手段34の動作が開始する前に開閉手段46を閉動作することにより制御手段41の出力が安定してから送信手段への給電を開始することになり振動子への不要な電圧印加を防止することが可能になる。   As described above, the power supply control means 44 closes the opening / closing means 46 before the operation of the transmission means 34 is started, whereby the power supply to the transmission means is started after the output of the control means 41 becomes stable. It becomes possible to prevent unnecessary voltage application to the child.

また、図1、図5および図11を用いて他の動作を説明する。開閉手段46を動作するタイミングを調節することにより振動子の動作を安定したものにしていく。図11の時刻t40、t42、t44、t46で、図11(a)のように第1の振動子32が動作して電圧がある程度低下する可能性がある場合、図11(b)のように開閉手段46が電源制御手段44により動作し送信手段34に給電する。負荷である振動子の動作は計測制御手段41を介して電力制御手段44が検知できるため、振動子の動作した後に開閉手段46を動作して電圧の調整を行うことが可能になる。この電圧調整もしくは電圧検出により受信手段のゲインを調節することも可能になる。   Other operations will be described with reference to FIGS. 1, 5 and 11. FIG. By adjusting the timing of operating the opening / closing means 46, the operation of the vibrator is stabilized. When the first vibrator 32 operates as shown in FIG. 11A and the voltage may drop to some extent at times t40, t42, t44, and t46 in FIG. 11, as shown in FIG. 11B. The opening / closing means 46 is operated by the power supply control means 44 to supply power to the transmission means 34. Since the operation of the vibrator serving as a load can be detected by the power control means 44 via the measurement control means 41, the voltage can be adjusted by operating the opening / closing means 46 after the vibrator is operated. It becomes possible to adjust the gain of the receiving means by this voltage adjustment or voltage detection.

開閉手段46を動作することにより送信手段34の出力は図11(c)のように安定した電圧状態を示す。これは振動子の動作した後においても電圧低下分を正確に把握し、開閉手段45で補充するとともにその昇圧した電圧が安定してから次回に負荷である振動子の動作を行うことができるため流量計測などに応用した場合安定したシステム動作を行うことが可能になる。この場合は送信手段の前段に容量を備えておけばさらに安定する。例えば開閉手段46に容量性の大きな負荷が接続されていた場合などは電圧の上昇も大きな時定数を持った変化になるが、振動子の動作終了後から電圧の調整を行うと、次の振動子の動作するかなり前から余裕をもって、安定した電圧に調整することができる。   By operating the opening / closing means 46, the output of the transmitting means 34 shows a stable voltage state as shown in FIG. This is because the voltage drop can be accurately grasped even after the vibrator is operated, supplemented by the opening / closing means 45, and the vibrator as the load can be operated next time after the boosted voltage is stabilized. When applied to flow measurement, etc., stable system operation can be performed. In this case, if a capacity is provided in front of the transmission means, it is further stabilized. For example, when a large capacitive load is connected to the switching means 46, the voltage rise also changes with a large time constant. However, if the voltage is adjusted after the operation of the vibrator is finished, the next vibration The voltage can be adjusted to a stable voltage with a margin long before the child operates.

図11(b)では開閉手段45の動作が振動子の動作した直後に停止するようになっているが、図11(b2)のように振動子が動作した後一定時間後ΔT3に動作を開始するよう電力制御手段44が調整するようにしても良い。これは振動子が動作した直後は高周波動作などで信号が変化するためシステム全体にグランドを含めて電圧変化を発生する場合が考えられる。その電圧変化が他の手段に影響を与えている場合には例えば電源制御手段44で開閉手段46の正確な出力電圧を検出できない場合がある。   In FIG. 11 (b), the operation of the opening / closing means 45 is stopped immediately after the operation of the vibrator. However, as shown in FIG. 11 (b2), the operation is started at ΔT3 after a certain time after the vibrator is operated. The power control means 44 may adjust so as to. This is because the signal changes due to high-frequency operation or the like immediately after the vibrator is operated, so that a voltage change including the ground may occur in the entire system. When the voltage change affects other means, for example, the power supply control means 44 may not be able to detect the accurate output voltage of the opening / closing means 46.

そこで振動子が動作した後、システム全体の電気信号が安定した後に給電動作を行うことで安定な電源管理が可能になる。また、こまめに開閉手段46をオンオフすることにより省電力も実現できる。このように電源制御手段44が送信手段34の動作が終了した後に開閉手段46の動作を開始して次回の振動子の動作に備えることにより、振動子の動作の前に十分時間を持って安定な給電動作を可能な状態にしておくとともにシステムの安定性を向上し、開閉手段の動作時間を短くして省電力動作が可能になる。このように電源制御手段44が送信手段34の動作が終了後一定時間経過後に開閉手段46の動作を停止することにより、送信動作を安定した電圧で行うことができその後十分昇圧動作を行ってから動作を停止することで、次の動作準備をしておくことが可能になる。   Therefore, stable power management can be performed by performing a power feeding operation after the electric signal of the entire system is stabilized after the vibrator is operated. Further, power saving can be realized by frequently turning on / off the opening / closing means 46. As described above, the power supply control means 44 starts the operation of the opening / closing means 46 after the operation of the transmission means 34 is completed and prepares for the next operation of the vibrator, so that the operation is stable with sufficient time before the operation of the vibrator. The power supply operation is enabled and the stability of the system is improved, and the operation time of the opening / closing means is shortened to enable the power saving operation. In this way, the power supply control means 44 stops the operation of the opening / closing means 46 after a lapse of a certain time after the operation of the transmission means 34, so that the transmission operation can be performed at a stable voltage, and then a sufficient boosting operation is performed. It is possible to prepare for the next operation by stopping the operation.

さらに、電源制御手段44が送信手段34の動作が終了後一定時間経過後に開閉手段46を開動作することにより送信動作が終了後の振動子への電圧印加を無くし不必要な振動動作を防止することが可能になる。   Further, the power supply control means 44 opens the opening / closing means 46 after a lapse of a certain time after the operation of the transmission means 34, thereby eliminating the voltage application to the vibrator after the transmission operation is completed and preventing unnecessary vibration operation. It becomes possible.

図11では振動子が動作した後には必ず開閉手段46が動作するようになっているが、送信手段34の前に容量性の素子を設置して充電しておくことにより一定回数毎や動作回数の公約数に相当する回数毎において振動子が動作した後に開閉手段46を動作する構成をとっても良い。   In FIG. 11, the opening / closing means 46 always operates after the vibrator is operated. However, by installing a capacitive element in front of the transmitting means 34 and charging it, the switching means 46 is operated every predetermined number of times. The opening / closing means 46 may be operated after the vibrator is operated every number of times corresponding to the common divisor.

(実施の形態3)
本発明の第3の実施の形態に関する流れ計測装置について図1と図12を用いて説明する。第1の実施の形態と異なるところは主制御手段49を設け、電源安定手段43から後段の電源管理を行うことである。
(Embodiment 3)
A flow measuring apparatus according to a third embodiment of the present invention will be described with reference to FIGS. The difference from the first embodiment is that the main control means 49 is provided and the power supply stabilization means 43 performs subsequent power management.

動作を説明する。電源42で動作する主制御手段49は電源安定手段43にかかわらず常に動作することが可能である。また自分にタイマを内蔵することによりスリープ動作で一定時間休止して電力削減することも可能である。主制御手段49は一定時間毎に電源安定手段43を動作し、その後段にある制御手段41以下を動作するように制御する。たとえば主制御手段49が電源安定手段43に信号を送り電源供給を開始する。制御手段41は電源が供給されてから初めて動作を開始する。それまでは電源安定手段43も停止することにより省電力が可能になる。このように電源安定手段43の動作を外部から行うことでシステム全体の電源管理を一括して管理する構成によりさらなる電力削減が可能になる。   The operation will be described. The main control means 49 operating with the power supply 42 can always operate regardless of the power supply stabilization means 43. Also, by incorporating a timer in itself, it is possible to reduce power by pausing for a certain period of time in the sleep operation. The main control means 49 operates the power supply stabilization means 43 at regular intervals and controls the control means 41 and the subsequent stages to operate. For example, the main control means 49 sends a signal to the power stabilization means 43 to start power supply. The control means 41 starts to operate only after power is supplied. Until then, the power supply stabilization means 43 is also stopped to save power. In this way, by performing the operation of the power supply stabilization means 43 from the outside, it is possible to further reduce the power by the configuration in which the power management of the entire system is collectively managed.

計測周期や電力管理を主制御手段49で行うことにより制御手段41は計測に専念することができるようになるため細かな場合分けなどによる精度を考慮した複雑な動作を決められた時間内に十分行うことが可能になる。   By performing the measurement cycle and power management by the main control means 49, the control means 41 can concentrate on the measurement, so that a complicated operation taking into account the precision by fine case classification etc. is sufficient within the determined time. It becomes possible to do.

また、図12を用いて他の動作を説明する。電源42から電圧安定手段43を介して制御手段41は安定した電圧で動作しているが、電源42の電圧が低下してくると動作に不安定さを生じる可能性が出てくる。そこで電源42の電圧を電圧検出手段50で検出し主制御手段49は電源安定手段43を入力電圧に応じて調整していく。たとえば電圧が低下している場合は動作周期を長くして電圧低下による誤動作を避けるなどの判断が可能になる。   Further, another operation will be described with reference to FIG. Although the control means 41 operates at a stable voltage from the power supply 42 via the voltage stabilization means 43, there is a possibility that the operation becomes unstable when the voltage of the power supply 42 decreases. Therefore, the voltage of the power supply 42 is detected by the voltage detection means 50, and the main control means 49 adjusts the power supply stabilization means 43 according to the input voltage. For example, when the voltage is lowered, it is possible to make a judgment such as extending the operation cycle to avoid malfunction due to the voltage drop.

また、予め定めた電圧まで電源が低下してくると主制御手段49は記憶している別の制御動作に入り、主制御手段そのものの動作周期を下げたり、制御手段41に信号を送り繰り返し回数を調整する等の長期動作を行う対策を行うことが可能である。   Further, when the power source drops to a predetermined voltage, the main control means 49 enters another control operation stored therein, lowers the operation cycle of the main control means itself, or sends a signal to the control means 41 to repeat the operation. It is possible to take measures to perform long-term operation such as adjusting.

このように、主制御手段49は前記電圧検出手段50の信号により、電源安定手段43から後段の電源管理を行うことで入力電圧に応じて制御方法を調整して安定に動作することが可能になる。   As described above, the main control means 49 can operate stably by adjusting the control method according to the input voltage by performing the subsequent power management from the power stabilizing means 43 by the signal of the voltage detecting means 50. Become.

(実施の形態4)
請求項11に係る本発明の第4の実施の形態に関する流れ計測装置について説明する。実施の形態1と異なるところは、電源42と送信手段34、開閉手段46の動作を調整する電源制御手段44の動作を確実にするためのコンピュータを機能させるためのプログラムを有する記憶媒体51を用いていることである。
(Embodiment 4)
A flow measuring apparatus according to a fourth embodiment of the present invention according to claim 11 will be described. The difference from the first embodiment is that a storage medium 51 having a program for causing a computer to function to ensure the operation of the power supply control means 44 for adjusting the operation of the power supply 42, the transmission means 34, and the opening / closing means 46 is used. It is that.

図1、図5、図6、図8および図12において実施の形態1から実施の形態3で示した電源制御手段44の動作を行うには、予め実験等により振動子の動作による送信手段43の出力変化、経年変化、温度変化、システムの安定度等の環境変化要因に関して送信手段の動作タイミングなどの相関を求め、例えばファジィ制御のメンバーシップ関数のように適合度というような形で判断する判定ソフトをプログラムとして記憶媒体51に格納しておく。通常マイクロコンピュータのメモリやフラッシュメモリ等電気的に書き込み可能なものにしておくと利用が便利である。   In FIG. 1, FIG. 5, FIG. 6, FIG. 8 and FIG. 12, in order to perform the operation of the power supply control means 44 shown in the first to third embodiments, the transmission means 43 based on the operation of the vibrator is previously tested. Correlation of the operation timing of the transmission means with respect to environmental change factors such as output change, aging change, temperature change, system stability, etc., for example, judgment is made in the form of fitness like a membership function of fuzzy control Determination software is stored in the storage medium 51 as a program. Usually, it is convenient to use an electrically writable memory such as a microcomputer memory or a flash memory.

このように電源制御手段44の動作をプログラムで行うことができるようになると振動子の駆動電圧の変化に対して追随する送信手段43の動作をソフトで行うことになる。これにより送信回数の条件設定、切換手段36動作前後における電圧調整の条件設定、電源周辺の動作設定、変更が容易にでき、また経年変化などにも柔軟に対応できるためよりフレキシブルに振動子への給電の精度向上とシステム信頼性向上および計測時間の精度向上を行うことができる。なお本実施の形態において電源制御手段44以外の動作もマイコン等によりプログラムで行ってもよい。   As described above, when the operation of the power supply control unit 44 can be performed by a program, the operation of the transmission unit 43 that follows the change in the driving voltage of the vibrator is performed by software. This makes it easy to set the conditions for the number of transmissions, set the conditions for voltage adjustment before and after the switching means 36 operation, set the operation around the power supply, and change it flexibly. It is possible to improve power supply accuracy, system reliability, and measurement time. In the present embodiment, operations other than the power supply control means 44 may be performed by a program using a microcomputer or the like.

本発明の流れ計測装置は、超音波を送信する電圧を通常の計測手段に給電している電源から同じ電圧で給電することで、計測系における電位差が発生することでのトラブルやノイズの問題も無い安定した状態で気体や液体などの流速や流量を計測することが可能となり、ガスメーターや各種流体の計測装置などの用途にも適用できる。   The flow measurement device of the present invention also has trouble and noise problems caused by potential difference in the measurement system by supplying the same voltage from the power supply that supplies power to the normal measurement means. It is possible to measure the flow velocity and flow rate of gases and liquids in a stable state, and it can be applied to applications such as gas meters and measuring devices for various fluids.

本発明の実施の形態1における流れ計測装置の全体ブロック図FIG. 1 is an overall block diagram of a flow measuring apparatus according to Embodiment 1 of the present invention. 同流れ計測装置の動作を示すタイミング図Timing diagram showing the operation of the flow measurement device 本発明の実施例1における電源周辺のブロック図1 is a block diagram around a power source in a first embodiment of the present invention 本発明の流れ計測装置の動作を示すタイミング図Timing diagram showing the operation of the flow measuring device of the present invention 同流れ計測装置の送信手段周辺の接続を示すブロック図Block diagram showing connections around the transmission means of the same flow measurement device 同流れ計測装置の開閉手段周辺の接続を示すブロック図Block diagram showing the connection around the opening and closing means of the flow measurement device 同流れ計測装置の動作を示すタイミング図Timing diagram showing the operation of the flow measurement device 同流れ計測装置の第2の電源安定手段周辺の接続を示すブロック図Block diagram showing the connection around the second power stabilization means of the flow measuring device 同流れ計測装置における電源の動作を示すタイミング図Timing diagram showing the operation of the power supply in the same flow measurement device 本発明の実施の形態2の流れ計測装置の動作を示すタイミング図Timing chart showing the operation of the flow measuring apparatus according to the second embodiment of the present invention. 同流れ計測装置の動作を示すタイミング図Timing diagram showing the operation of the flow measurement device 本発明の実施の形態3の流れ計測装置の電圧検出手段周辺の接続を示すブロック図The block diagram which shows the connection of the voltage detection means periphery of the flow measurement apparatus of Embodiment 3 of this invention 従来の昇圧回路の全体のブロック図Overall block diagram of conventional booster circuit 従来の流れ計測装置の全体のブロック図Overall block diagram of a conventional flow measurement device

符号の説明Explanation of symbols

31 流路
32 第1の振動子
33 第2の振動子
34 送信手段
35 受信手段
36 切換え手段
37 繰返し手段
38 遅延手段
39 計時手段
40 流量演算手段(演算手段)
42 電源
43 電源安定手段
44 電源制御手段
45 制御手段
46 開閉手段
47 第2の電源安定手段
48 第2の開閉手段
49 主制御手段
50 電圧検出手段
51 記憶媒体
31 Flow path 32 First vibrator 33 Second vibrator 34 Transmitting means 35 Receiving means 36 Switching means 37 Repeating means 38 Delay means 39 Timing means 40 Flow rate calculating means (calculating means)
42 Power supply 43 Power supply stabilization means 44 Power supply control means 45 Control means 46 Opening / closing means 47 Second power supply stabilization means 48 Second opening / closing means 49 Main control means 50 Voltage detection means 51 Storage medium

Claims (11)

被測定流体の流れる流路に配置され超音波を送受信する一対の振動子と、前記振動子を駆動する送信手段と、受信側振動子の出力信号を電気信号に変換する受信手段と、前記振動子の送受信の切換手段と、前記振動子間相互の超音波伝搬を複数回行う繰返し手段と、前記繰返し時に送信側振動子からの送信信号を遅らせる遅延手段と、前記振動子の送受信を切換えるごとの複数回繰返した超音波伝搬の伝搬時間を計測する計時手段と、前記計時手段でそれぞれの計時値の差に基づいて流速または流量を算出する演算手段と、電源と、前記電源より低電圧をつくる電源安定手段と、制御手段とを有し、前記制御手段は前記電源安定手段の出力で前記送信手段を制御する電源制御手段とを備えた流れ計測装置。 A pair of transducers arranged in the flow path of the fluid to be measured and transmitting / receiving ultrasonic waves, a transmission unit that drives the transducers, a reception unit that converts an output signal of the reception-side transducer into an electrical signal, and the vibrations A transmission / reception switching means, a repetition means for performing ultrasonic propagation between the vibrators a plurality of times, a delay means for delaying a transmission signal from a transmission-side vibrator during the repetition, and a transmission / reception of the vibrator A time measuring means for measuring the propagation time of ultrasonic propagation repeated several times, a calculating means for calculating a flow velocity or a flow rate based on a difference between the respective time measured values by the time measuring means, a power source, and a voltage lower than the power source. A flow measuring apparatus comprising: a power supply stabilizing means and a control means, wherein the control means includes a power supply control means for controlling the transmitting means with an output of the power supply stabilizing means. 電源安定手段と送信手段の間に開閉手段を設け、制御手段は前記開閉手段を動作する請求項1記載の流れ計測装置。 The flow measuring apparatus according to claim 1, wherein an opening / closing means is provided between the power stabilization means and the transmission means, and the control means operates the opening / closing means. 電源と送信手段の間に第2の電源安定手段を設け、電源制御手段は前記第2の電源安定手段を制御する請求項1記載の流れ計測装置。 2. The flow measuring device according to claim 1, wherein a second power stabilizing unit is provided between the power source and the transmitting unit, and the power control unit controls the second power stabilizing unit. 第2の電源安定手段の前段もしくは後段に第2の開閉手段を設け、制御手段は前記第2の開閉手段を動作する請求項3記載の流れ計測装置。 4. The flow measuring apparatus according to claim 3, wherein a second opening / closing means is provided before or after the second power supply stabilizing means, and the control means operates the second opening / closing means. 電源制御手段は電源安定手段の電源出力が安定してから開閉手段を動作する請求項1記載の流れ計測装置。 2. The flow measuring device according to claim 1, wherein the power control means operates the opening / closing means after the power output of the power stabilization means is stabilized. 電源制御手段は電源安定手段の電源出力が安定後一定時間経過してから開閉手段を動作する請求項1記載の流れ計測装置。 2. The flow measuring device according to claim 1, wherein the power control means operates the opening / closing means after a predetermined time has elapsed after the power output of the power stabilization means has stabilized. 電源制御手段は送信手段の動作が開始する前に開閉手段を閉動作する請求項1記載の流れ計測装置。 2. The flow measuring device according to claim 1, wherein the power control means closes the opening / closing means before the operation of the transmission means is started. 電源制御手段は送信手段の動作が終了後一定時間経過後に開閉手段を開動作する請求項1記載の流れ計測装置。 2. The flow measuring device according to claim 1, wherein the power control means opens the opening / closing means after a predetermined time has elapsed after the operation of the transmission means is completed. 主制御手段を設け、電源安定手段から後段の電源管理を行う請求項1記載の流れ計測装置。 The flow measuring device according to claim 1, wherein main flow control means is provided, and power management in the subsequent stage is performed from power supply stabilization means. 電源安定手段の入力電圧を検出する電圧検出手段を設け、主制御手段は前記電圧検出手段の信号により、電源安定手段から後段の電源管理を行う請求項1記載の流れ計測装置。 2. The flow measuring apparatus according to claim 1, further comprising a voltage detection unit configured to detect an input voltage of the power supply stabilization unit, wherein the main control unit performs subsequent power management from the power supply stabilization unit based on a signal from the voltage detection unit. 請求項1から請求項10のいずれか1項記載の流れ計測装置において、制御手段に設けられたコンピュータに送信手段の環境変化要因と前記送信手段の動作タイミングとの相関を求めるためのプログラム。 11. The flow measurement apparatus according to claim 1, wherein a program for obtaining a correlation between an environmental change factor of the transmission unit and an operation timing of the transmission unit in a computer provided in the control unit.
JP2004061950A 2004-03-05 2004-03-05 Flow measuring device Pending JP2005249642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004061950A JP2005249642A (en) 2004-03-05 2004-03-05 Flow measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004061950A JP2005249642A (en) 2004-03-05 2004-03-05 Flow measuring device

Publications (1)

Publication Number Publication Date
JP2005249642A true JP2005249642A (en) 2005-09-15

Family

ID=35030245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004061950A Pending JP2005249642A (en) 2004-03-05 2004-03-05 Flow measuring device

Country Status (1)

Country Link
JP (1) JP2005249642A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61286746A (en) * 1985-06-13 1986-12-17 Snow Brand Milk Prod Co Ltd Method for detecting mixing-in of bubbles in bottle after capping machining
JP2002148087A (en) * 2000-11-15 2002-05-22 Matsushita Electric Ind Co Ltd Flow rate measuring equipment
JP2004072912A (en) * 2002-08-07 2004-03-04 Matsushita Electric Ind Co Ltd Boosting controller and flow rate measuring instrument

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61286746A (en) * 1985-06-13 1986-12-17 Snow Brand Milk Prod Co Ltd Method for detecting mixing-in of bubbles in bottle after capping machining
JP2002148087A (en) * 2000-11-15 2002-05-22 Matsushita Electric Ind Co Ltd Flow rate measuring equipment
JP2004072912A (en) * 2002-08-07 2004-03-04 Matsushita Electric Ind Co Ltd Boosting controller and flow rate measuring instrument

Similar Documents

Publication Publication Date Title
US7262588B2 (en) Method and apparatus for power supply controlling capable of effectively controlling switching operations
US7061292B2 (en) Adaptive voltage regulator for powered digital devices
CN104426360B (en) Regulation circuit and adjusting method for charge pump
JP2010183722A (en) Dc-dc converter and switching control circuit
JP5251499B2 (en) Semiconductor device, startup control method and system for semiconductor device
JP2008104285A (en) Switching power supply method
US20230216515A1 (en) Driver circuitry
JP4649822B2 (en) Fluid flow measuring device
JP3695432B2 (en) Flow measuring device
US20110226067A1 (en) Oscillation circuit
JP2005249642A (en) Flow measuring device
JP2012070501A (en) Voltage generation circuit
JP4639830B2 (en) Booster and flow velocity or flow rate measuring device
JP2005249641A (en) Flow measuring device
JP2009257883A (en) Radar dc power supply unit
JP4735005B2 (en) Flow measuring device
JP2007151322A (en) Power circuit and dc-dc converter
JP5123518B2 (en) Ultrasonic flow meter
JP3689982B2 (en) Ultrasonic current meter
JP2005257613A (en) Apparatus for measuring flow of fluid
JP2010035302A (en) Power control circuit
KR100870424B1 (en) Internal voltage generating circuit
JP4788166B2 (en) Fluid flow measuring device
JP7068075B2 (en) Signal transduction device
JP3689977B2 (en) Ultrasonic current meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070222

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070313

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100826

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100914