JP2006284267A - Flow measuring instrument - Google Patents

Flow measuring instrument Download PDF

Info

Publication number
JP2006284267A
JP2006284267A JP2005102140A JP2005102140A JP2006284267A JP 2006284267 A JP2006284267 A JP 2006284267A JP 2005102140 A JP2005102140 A JP 2005102140A JP 2005102140 A JP2005102140 A JP 2005102140A JP 2006284267 A JP2006284267 A JP 2006284267A
Authority
JP
Japan
Prior art keywords
control means
flow rate
flow
power supply
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005102140A
Other languages
Japanese (ja)
Other versions
JP4735005B2 (en
Inventor
Bunichi Shiba
文一 芝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005102140A priority Critical patent/JP4735005B2/en
Publication of JP2006284267A publication Critical patent/JP2006284267A/en
Application granted granted Critical
Publication of JP4735005B2 publication Critical patent/JP4735005B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To highly accurately measure flow rate by halting the operation of a boosting means by output of a flow rate computation means in the case of absence of flow or the absence of flow velocity, driving an oscillator at a low voltage, implementing a power-saving operation, and performing a boosting operation via a power control means at some time intervals. <P>SOLUTION: In the case of absence of flow velocity, the control means 47 does not make the boosting means 44 operate but feeds the oscillator with electric power. After a lapse of a predetermined number of times of measurement, the control means 47 makes the boosting means 44 operate and feeds a transmission means 34 with electric power at a voltage boosted to v2. It is possible to perform highly accurate measurement at regular intervals while saving power in this way. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、振動子に電源電圧より高電圧の電力を供給する昇圧手段を用い、超音波を利用して気体や液体などの流速または流量を計測する流れ計測装置に関する。   The present invention relates to a flow measuring apparatus that uses a boosting unit that supplies power having a voltage higher than a power supply voltage to a vibrator and measures a flow velocity or a flow rate of gas or liquid using ultrasonic waves.

従来の昇圧手段としてはDCDCコンバータを利用したものがあり、これを利用した流量計測装置は超音波を用いた電気的な計測方法である(例えば、特許文献1参照)。図12は一般的な昇圧回路の構成を示すブロック図である。図12において1は電源、2はDCDCコンバータ、3はインダクタンスL,4はダイオードD,5はコンデンサC、6は負荷である。DCDCコンバータ2はインダクタンス3をスイッチング動作することによりオンからオフになったときにインダクタンスに生じる逆起電力がダイオード4を介して整流し、コンデンサ5でリップルを小さくした安定した高電圧を負荷6に供給するものである。図13は、従来の超音波流量計の構成を示すブロック図である(例えば、特許文献1参照)。   As a conventional boosting means, there is one using a DCDC converter, and a flow rate measuring device using the DCDC converter is an electrical measuring method using ultrasonic waves (for example, see Patent Document 1). FIG. 12 is a block diagram showing a configuration of a general booster circuit. In FIG. 12, 1 is a power source, 2 is a DCDC converter, 3 is an inductance L, 4 is a diode D, 5 is a capacitor C, and 6 is a load. In the DC-DC converter 2, the back electromotive force generated in the inductance is rectified through the diode 4 when the inductance 3 is switched from on to off by switching the inductance 3, and a stable high voltage in which the ripple is reduced by the capacitor 5 is applied to the load 6. To supply. FIG. 13 is a block diagram showing a configuration of a conventional ultrasonic flowmeter (see, for example, Patent Document 1).

同図において、流体流路11の途中に超音波を発信する第1振動子12と受信する第2振動子13が流れ方向に配置されている。14は第1振動子12への送信回路、15は第2振動子13で受信した超音波を信号処理する受信回路である。16は受信回路15で超音波を検知した後第1振動子12からの送信と第2振動子13での受信を複数回繰り返す繰返し手段である。17は受信回路で超音波を検出した後、再度第1振動子12から超音波を送信するまでの遅延時間を発生させる遅延時間発生手段であり、18は遅延時間発生手段17により発生した遅延時間を計測する遅延時間計測手段、19は遅延時間発生手段17の計測値を基に、遅延時間を制御する遅延時間制御手段である。   In the figure, a first vibrator 12 that transmits ultrasonic waves and a second vibrator 13 that receives ultrasonic waves are arranged in the flow direction in the middle of a fluid flow path 11. Reference numeral 14 denotes a transmission circuit to the first vibrator 12, and 15 denotes a reception circuit that performs signal processing on the ultrasonic waves received by the second vibrator 13. Reference numeral 16 denotes a repeating unit that repeats transmission from the first vibrator 12 and reception by the second vibrator 13 after the ultrasonic wave is detected by the receiving circuit 15. Reference numeral 17 denotes delay time generating means for generating a delay time until ultrasonic waves are transmitted again from the first transducer 12 after the ultrasonic wave is detected by the receiving circuit, and 18 is a delay time generated by the delay time generating means 17. 19 is a delay time control means for controlling the delay time based on the measurement value of the delay time generation means 17.

20は繰返し手段により行われる複数回の超音波伝達の所要時間を計測する累積時間計測手段、21は遅延時間計測手段18および累積時間計測手段20の計測値から流量を求める流量演算手段である。送信回路14より送出されたバースト信号により第1振動子12から発信された超音波信号は、流れの中を伝搬し、第2振動子13で受信され受信回路15で検知され、遅延時間発生手段17で発生した遅延時間を置いた後、再び送信回路14よりバースト信号が送出される。送信回路14からのバースト信号は、予め定められた回数だけ繰り返され、この繰返しに要した時間を累積時間計測手段20で、また、遅延時間を遅延時間計測手段10により計測する。   Reference numeral 20 denotes cumulative time measuring means for measuring the time required for a plurality of times of ultrasonic transmission performed by the repeating means, and reference numeral 21 denotes flow rate calculating means for obtaining a flow rate from the measured values of the delay time measuring means 18 and the cumulative time measuring means 20. The ultrasonic signal transmitted from the first transducer 12 by the burst signal transmitted from the transmission circuit 14 propagates in the flow, is received by the second transducer 13 and detected by the reception circuit 15, and delay time generating means After the delay time generated at 17 is set, the burst signal is transmitted from the transmission circuit 14 again. The burst signal from the transmission circuit 14 is repeated a predetermined number of times, and the time required for this repetition is measured by the accumulated time measuring means 20 and the delay time is measured by the delay time measuring means 10.

更に、流量演算手段21では、累積時間計測手段20で求めた値から遅延時間計測手段19で求めた遅延時間を差し引くことにより、超音波の伝達のみの所要時間Tを求める。通常、この送信回路から振動子を駆動する際には伝搬距離により信号が減衰することを考慮して高電圧を供給する。その回路として上記に説明した昇圧回路を利用することが多い。
特開2000−292232号公報(第2頁、第1図)
Further, the flow rate calculating means 21 obtains the required time T for only transmitting ultrasonic waves by subtracting the delay time obtained by the delay time measuring means 19 from the value obtained by the accumulated time measuring means 20. Normally, when driving a vibrator from this transmission circuit, a high voltage is supplied in consideration of the signal attenuation due to the propagation distance. As the circuit, the booster circuit described above is often used.
JP 2000-292232 A (2nd page, FIG. 1)

しかしながら従来の昇圧回路における高電圧供給回路では回路全体の安定性を考えたDCDCコンバータ2の動作タイミングが統一されておらず、独立して動作している。例えば流量が無いような場合、流速がゼロである時が計測装置として設置した場合にかなりの割合で発生していることが多い。特に家庭用のガスメータや水道メータを考えると一日のうちほとんどの時間において流量が流れること、すなわち流速の発生することは無いのが普通である。そのような場合でも流量を計測するためにDCDCコンバータ2の動作を開始するのは電池動作のシステム等では電力を考えた場合に無駄が多い。   However, in the conventional high voltage supply circuit in the booster circuit, the operation timing of the DCDC converter 2 considering the stability of the entire circuit is not unified and operates independently. For example, when there is no flow rate, when the flow velocity is zero, it often occurs at a considerable rate when installed as a measuring device. Considering home gas meters and water meters in particular, it is normal for the flow rate to flow in most of the day, that is, no flow rate is generated. Even in such a case, starting the operation of the DCDC converter 2 in order to measure the flow rate is wasteful when considering power in a battery-operated system or the like.

本発明は上記の課題を解決するもので、電源投入後において回路電圧が安定し、昇圧手段を動作する際に流量演算手段の出力により流量が無い、すなわち流速が無い場合には昇圧手段の動作を停止して低圧での振動子駆動を行い、ある時間間隔を持って昇圧動作を行い計測系の安定動作を実現する精度の良い流量計測を実現することを目的としている。   The present invention solves the above-mentioned problem. When the circuit voltage is stable after power-on and there is no flow rate due to the output of the flow rate calculation means when operating the boost means, that is, the operation of the boost means when there is no flow rate. The purpose is to realize a highly accurate flow rate measurement in which the oscillator is driven at a low pressure and the pressure is increased with a certain time interval to realize a stable operation of the measurement system.

そして、このような昇圧動作を用いることで、省電力でかつ精度の良い流量計測を実現することを目的としている。   An object of the present invention is to realize flow measurement with high power saving and accuracy by using such a boosting operation.

前記従来の課題を解決するために、本発明の流れ計測装置の制御手段は、電源投入後に演算手段の出力により流量が無い、すなわち流速が無い場合には昇圧手段の動作を停止して低圧での振動子駆動を行い、ある時間間隔を持って昇圧動作を行う動作をする。   In order to solve the above-mentioned conventional problems, the control means of the flow measuring device according to the present invention stops the operation of the boosting means at low pressure when there is no flow rate due to the output of the calculation means after power-on, that is, when there is no flow velocity. The vibrator is driven to perform a boosting operation with a certain time interval.

本発明の、流れ計測装置における制御手段は、電源投入後において昇圧手段の動作を停止して低圧での振動子駆動を行い、ある時間間隔で電源制御手段を介して昇圧動作を行うものである。   The control means in the flow measuring device of the present invention stops the operation of the boosting means after turning on the power, drives the vibrator at a low pressure, and performs the boosting operation via the power supply control means at a certain time interval. .

これによって、流量演算手段の出力により流量が無い、すなわち流速が無い場合には昇圧手段の動作を停止して低圧での振動子駆動を行うとともに省電力動作を実現し、ある時間間隔で電源制御手段を介して昇圧動作を行うことで、精度の良い流量計測を実現することができる。   As a result, when there is no flow rate due to the output of the flow rate calculation means, that is, when there is no flow rate, the operation of the boosting means is stopped to drive the vibrator at a low pressure and realize power saving operation, and power control at a certain time interval By performing the step-up operation through the means, it is possible to realize accurate flow rate measurement.

第1の発明は被測定流体の流れる流路に配置され超音波を送受信する一対の振動子と、振動子を駆動する送信手段と、受信側振動子の出力信号を電気信号に変換する受信手段と、前記受信手段の信号を用いて流量を算出する演算手段と、電源と、前記電源から前記送信手段用などの高電圧をつくる昇圧手段と、前記昇圧手段を制御する電源制御手段と、制御手段を有し、前記制御手段は時間的に前記電源制御手段を動作する流れ計測装置である。   A first invention is a pair of transducers arranged in a flow path through which a fluid to be measured flows and transmits / receives ultrasonic waves, a transmission unit that drives the transducers, and a reception unit that converts an output signal of a reception-side transducer into an electrical signal A calculating means for calculating a flow rate using the signal of the receiving means, a power supply, a boosting means for generating a high voltage for the transmitting means from the power supply, a power supply control means for controlling the boosting means, and a control And the control means is a flow measuring device that operates the power supply control means in terms of time.

そして、制御手段は電源立ち上げ時に、システム全体の回路電圧が安定し、昇圧手段を動作する際に、ある時間間隔を持って昇圧動作を行い省電力と計測系の安定動作を実現する精度の良い流量計測を実現することができる。   When the power supply is turned on, the control means stabilizes the circuit voltage of the entire system, and when operating the boosting means, the control means performs a boosting operation with a certain time interval to achieve power saving and stable operation of the measurement system. Good flow rate measurement can be realized.

第2の発明は、特に第1の発明の制御手段が演算手段の信号により電源制御手段を介して昇圧手段を動作することにより流速または流量が存在する、すなわち流速がある場合には昇圧手段の動作頻度を増して計測系の安定動作を行うことが可能になる。   In the second invention, the control means of the first invention operates the boosting means via the power supply control means in accordance with the signal of the arithmetic means, and there exists a flow rate or flow rate, that is, when there is a flow rate, It becomes possible to perform stable operation of the measurement system by increasing the operation frequency.

第3の発明は、特に第1の発明の制御手段が演算手段の出力により流速が無い場合に電源制御手段を介して昇圧手段の動作を間欠的に調整することにより、省電力動作で計測を継続することが可能になる。   In the third invention, particularly when the control means of the first invention has no flow velocity due to the output of the computing means, the operation of the boosting means is intermittently adjusted via the power supply control means, thereby making it possible to measure with the power saving operation. It becomes possible to continue.

第4の発明は、特に第1の発明の制御手段がタイマ手段を有し、流速が無い場合に前記タイマ手段の信号に応じて電源制御手段の動作を調整することにより、流速がなくなってからの時間に応じて間欠的に動作する昇圧手段の動作を調整し、より省電力動作を高めることが可能になる。   In the fourth invention, particularly when the control means of the first invention has a timer means, and there is no flow speed, the operation of the power supply control means is adjusted according to the signal of the timer means, so that the flow speed disappears. By adjusting the operation of the boosting means that operates intermittently according to the time, it is possible to further improve the power saving operation.

第5の発明は、特に第1の発明の制御手段が前回の流速または流量を記憶する流れ記憶手段を有し、流速が無い場合に前記流れ記憶手段の信号に応じて電源制御手段の動作を調整することにより、前回流れた流速または流量に応じて次に流れる時間を予測するなどして間欠的に動作する昇圧手段の動作を調整し、より省電力動作を高めることが可能になる。   In the fifth aspect of the invention, the control means of the first aspect of the invention has flow storage means for storing the previous flow velocity or flow rate, and the operation of the power supply control means is performed according to the signal of the flow storage means when there is no flow velocity. By adjusting, it is possible to adjust the operation of the boosting means that operates intermittently by predicting the next flow time according to the flow velocity or flow rate that flowed last time, and to further improve the power saving operation.

第6の発明は、特に第1の発明の制御手段が前回の流量を記憶する流量記憶手段と、タイマ手段を有し、流速が無い場合に前記流れ記憶手段の信号とタイマ手段の信号に応じて電源制御手段の動作を調整することにより、前回流れた流量とその継続時間に応じて次に流れる時間を予測するなどして間欠的に動作する昇圧手段の動作を調整し、より省電力動作を高めることが可能になる。   According to a sixth aspect of the invention, the control means of the first aspect of the invention has a flow rate storage means for storing the previous flow rate and a timer means, and responds to the signal of the flow storage means and the signal of the timer means when there is no flow rate. By adjusting the operation of the power supply control means, the operation of the boosting means that operates intermittently is adjusted by predicting the next flow time according to the flow rate and the duration of the previous flow, and more power saving operation Can be increased.

第7の発明は、特に第1の発明の制御手段が記憶手段を有し、流速が無い場合に前記記憶手段の信号に応じて電源制御手段の動作を調整することにより流量と時間や季節、温度などのデータベースに応じて次に流れる時間を予測するなどして間欠的に動作する昇圧手段の動作を調整し、より省電力動作を高めることが可能になる。   In the seventh invention, the control means of the first invention particularly has a storage means, and when there is no flow rate, by adjusting the operation of the power supply control means according to the signal of the storage means, the flow rate, time, season, It is possible to adjust the operation of the boosting means that operates intermittently by predicting the next flowing time according to a database such as temperature, and to further improve the power saving operation.

第8の発明は、特に第1の発明の制御手段が設定手段を有し、流速が無い場合に前記設定手段の信号に応じて電源制御手段の動作を調整することにより、使用する場所や特定の使い方に応じた設定を外部から行うことにより間欠的に動作する昇圧手段の動作を調整し、より省電力動作を高めることが可能になる。   In the eighth aspect of the invention, in particular, the control means of the first aspect of the invention has a setting means, and when there is no flow rate, by adjusting the operation of the power supply control means according to the signal of the setting means, It is possible to adjust the operation of the step-up means that operates intermittently by performing setting according to how to use from the outside, and to further improve the power saving operation.

第9の発明は、特に第1の発明から第8の発明のいずれか1つにおける制御手段としてのコンピュータを機能させるためのプログラムを有する構成としたもので、これにより昇圧手段の動作設定、変更が容易にでき、また経年変化などにも柔軟に対応できるためよりフレキシブルに動作タイミングの精度向上を行うことができる。   The ninth invention has a program for causing a computer to function as the control means in any one of the first invention to the eighth invention, and thereby, setting and changing the operation of the boosting means. Therefore, it is possible to improve the accuracy of the operation timing more flexibly because it can flexibly cope with aging.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、本実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiment.

(実施の形態1)
本発明の実施の形態1における流れ計測装置について説明する。
(Embodiment 1)
A flow measuring apparatus according to Embodiment 1 of the present invention will be described.

図1は本実施の形態1の構成を示す流れ計測装置のブロック図である。図1おいて、被測定流体の流れる流路31と、前記流路31に配置された超音波を送受信する第1の振動子32、第2の振動子33を設置し、前記第1の振動子32を駆動する送信手段34と、前記第2の振動子33の受信信号を受け受信タイミングを決定する受信手段35と、前記送信手段34と第1の振動子32、および第2の振動子33と受信手段35の間に切換手段36を設け、超音波の送受信を第1の振動子32と第2の振動子33の間で交互に行うようにしている。   FIG. 1 is a block diagram of a flow measuring apparatus showing the configuration of the first embodiment. In FIG. 1, a flow path 31 through which a fluid to be measured flows, a first vibrator 32 and a second vibrator 33 that transmit and receive ultrasonic waves arranged in the flow path 31 are installed, and the first vibration is provided. A transmission means 34 for driving the child 32; a reception means 35 for receiving a reception signal of the second vibrator 33; and determining a reception timing; the transmission means 34, the first vibrator 32, and a second vibrator; A switching unit 36 is provided between the first transducer 32 and the receiving unit 35 so that transmission / reception of ultrasonic waves is alternately performed between the first transducer 32 and the second transducer 33.

そして、流量演算手段41(演算手段)は、受信手段35の出力を受け送信手段34を介して再度超音波の送受信を繰り返すという動作回数を計測し所定の回数で動作を停止する繰返し手段37と、前記繰返し手段37の信号を受け所定の遅延時間遅れて前記送信手段34のトリガ信号として出力する遅延手段38と、少なくとも送信手段34による第1の振動子32の駆動開始から前記繰返し手段37の動作停止までの超音波の伝搬時間を測定する計時手段39と、前記計時手段39の値から前記一対の振動子間の流速を演算し、それから流量を求める演算手段40とを有するものである。さらに計測制御手段42を設け、送信手段34を動作する計測スタート信号を出力する。さらに電力の供給を行う電源43と、電源より高電圧の負荷を駆動するための昇圧手段44と、前記電源43と前記昇圧手段44を制御する電源制御手段45を備えている。   The flow rate calculating means 41 (calculating means) receives the output of the receiving means 35, repeats the means 37 for repeating the transmission / reception of ultrasonic waves via the transmitting means 34, and repeat means 37 for stopping the operation at a predetermined number of times. A delay means 38 for receiving the signal of the repeat means 37 and outputting it as a trigger signal of the transmitter means 34 with a predetermined delay time delay, and at least the start of the driving of the first vibrator 32 by the transmitter means 34 It has time measuring means 39 for measuring the propagation time of the ultrasonic wave until the operation is stopped, and calculating means 40 for calculating the flow velocity between the pair of vibrators from the value of the time measuring means 39 and obtaining the flow rate therefrom. Further, a measurement control unit 42 is provided, and a measurement start signal for operating the transmission unit 34 is output. Furthermore, a power supply 43 for supplying power, a booster 44 for driving a load having a higher voltage than the power supply, and a power supply controller 45 for controlling the power supply 43 and the booster 44 are provided.

また、送信手段34、受信手段35、切換手段36、流量演算手段41の設定値を記憶している記憶手段46と、電源43を投入後に記憶手段46の設定値を各手段に送出する制御手段47を備えている。   Further, a storage means 46 for storing the setting values of the transmission means 34, the reception means 35, the switching means 36 and the flow rate calculation means 41, and a control means for sending the setting values of the storage means 46 to each means after the power source 43 is turned on. 47 is provided.

通常の動作を説明する。計測制御手段42からスタート信号を受けた送信手段34が第1の振動子32を一定時間パルス駆動行うと同時に計時手段39は計測制御手段41からの信号によって時間計測始める。パルス駆動された第1の振動子32からは超音波が送信される。第1の振動子32から送信した超音波は被測定流体中を伝搬し、第2の振動子33で受信される。第2の振動子33の受信出力は、受信手段35で信号を増幅された後、予め定められている受信タイミングの信号レベルで超音波の受信を決定する。繰返し動作を行わない場合はこの超音波の受信を決定した時点で計時手段39の動作を停止し、その時間情報tから(式1)によって流速を求める。ここで、計時手段39から得た測定時間をt、超音波振動子間の流れ方向の有効距離をL、音速をc、被測定流体の流速をvとする。   Normal operation will be described. Upon receiving the start signal from the measurement control means 42, the transmission means 34 pulse-drives the first vibrator 32 for a certain period of time, and at the same time, the time measurement means 39 starts measuring time according to the signal from the measurement control means 41. An ultrasonic wave is transmitted from the pulse-driven first vibrator 32. The ultrasonic wave transmitted from the first vibrator 32 propagates through the fluid to be measured and is received by the second vibrator 33. The reception output of the second vibrator 33 amplifies the signal by the receiving means 35 and then determines the reception of the ultrasonic wave at the signal level at a predetermined reception timing. When the repeated operation is not performed, the operation of the time measuring means 39 is stopped when the reception of the ultrasonic wave is determined, and the flow velocity is obtained from the time information t by (Equation 1). Here, the measurement time obtained from the time measuring means 39 is t, the effective distance in the flow direction between the ultrasonic transducers is L, the sound velocity is c, and the flow velocity of the fluid to be measured is v.

v=(L/t)−c ・・・(式1)
受信手段35は通常コンパレータによって基準電圧と受信信号を比較するようになっていることが多い。
v = (L / t) -c (Formula 1)
The receiving means 35 is usually configured to compare the reference voltage and the received signal by a comparator.

繰返し手段37を用いる今回の動作は受信手段35の判定結果を遅延手段38で一定時間遅延させた後に送信手段34に返し、再度送信を行う。繰返し動作を決められた回数行い、その時間を計時手段39で測定し、計時手段39の測定時間を元に(式2)の計算によって流速を求める。ここで、遅延手段の遅延時間をTd、繰返しの回数をn、測定時間をts、超音波振動子間の流れ方向の有効距離をL、音速をc、被測定流体の流速をvとする。   In the current operation using the repeating unit 37, the determination result of the receiving unit 35 is delayed by a delay unit 38 for a certain period of time, then returned to the transmitting unit 34 and transmitted again. The repetitive operation is performed a predetermined number of times, the time is measured by the time measuring means 39, and the flow velocity is obtained by the calculation of (Equation 2) based on the measurement time of the time measuring means 39. Here, the delay time of the delay means is Td, the number of repetitions is n, the measurement time is ts, the effective distance in the flow direction between the ultrasonic transducers is L, the sound velocity is c, and the flow velocity of the fluid to be measured is v.

v=L/(ts/n−Td)−c ・・・(式2)
この方法によれば(式1)の方法に比べ精度よく測定することができる。
v = L / (ts / n-Td) -c (Formula 2)
According to this method, it is possible to measure with higher accuracy than the method of (Equation 1).

また、第1の超音波振動子32と第2の超音波振動子33とを切り替え、被測定流体の上流から下流と下流から上流へのそれぞれの伝搬時間を測定し、(式3)より速度vを求める。ここで、上流から下流への測定時間時間をt1、下流から上流への測定時間時間をt2とする。   Further, the first ultrasonic transducer 32 and the second ultrasonic transducer 33 are switched, and the respective propagation times of the fluid under measurement from upstream to downstream and from downstream to upstream are measured. Find v. Here, the measurement time from upstream to downstream is t1, and the measurement time from downstream to upstream is t2.

v=L/2((1/t1)−(1/t2))・・・(式3)
この方法によれば音速の変化の影響を受けずに流度を測定することが出来るので、流速・流量・距離などの測定に広く利用されている。流速vが求まると、それに流路1の断面積を乗ずることにより流量を導くことができる。
v = L / 2 ((1 / t1)-(1 / t2)) (Formula 3)
According to this method, the flow rate can be measured without being affected by the change in the sound speed, and thus it is widely used for measuring the flow velocity, the flow rate, the distance, and the like. When the flow velocity v is obtained, the flow rate can be derived by multiplying it by the cross-sectional area of the flow path 1.

通常の動作は図2に示すタイミング図のようになる。すなわち、計測制御手段42による時刻t0における開始信号から計測を開始し、t1で送信手段34を介して第1の超音波振動子32を駆動する。そこで発生した超音波信号は流路内を伝搬し時刻t2で第2の超音波振動子33に到達し、受信手段35で受信点を検知すると繰返し手段37は設定回数に達していない場合、遅延手段38に信号を送出する。そして時刻t3から遅延手段38が動作し、予め定めた時間だけ動作した後時刻t4で送信手段34に信号を送出し、再び第1の超音波振動子32を駆動する。以下、この繰返しを行っている。   Normal operation is as shown in the timing diagram of FIG. That is, measurement is started from the start signal at time t0 by the measurement control means 42, and the first ultrasonic transducer 32 is driven via the transmission means 34 at t1. The ultrasonic signal generated there propagates in the flow path, reaches the second ultrasonic transducer 33 at time t2, and when the reception means detects the reception point, the repeat means 37 does not reach the set number of times. A signal is sent to the means 38. Then, the delay means 38 starts operating from time t3, operates for a predetermined time, and then sends a signal to the transmitting means 34 at time t4 to drive the first ultrasonic transducer 32 again. This is repeated below.

繰返し手段37で決められた回数動作すると図2時刻t5で送受信動作は停止し、その時間は図に示すTとなる。その後、切換え手段36が送受信を切換える。すなわち第1の超音波振動子32が受信側、第2の超音波振動子33が送信側になる。そして同様な繰返し動作を行う。   When the number of times determined by the repeating means 37 is operated, the transmission / reception operation stops at time t5 in FIG. 2, and the time is T shown in the figure. Thereafter, the switching means 36 switches between transmission and reception. That is, the first ultrasonic transducer 32 is the reception side, and the second ultrasonic transducer 33 is the transmission side. Then, the same repeated operation is performed.

次に、計測制御手段42などに電力を供給する電源周辺について説明する。図3は本実施例の電源周辺の構成を示すブロック図である。図3は本実施例の電源周辺の構成を示すブロック図である。DC/DCコンバータについて説明する。図3において43は電源、44は昇圧手段、45は電源制御手段、5は蓄電手段、6は負荷である。昇圧手段44としては通常のインダクタンス44aとダイオード44bを有するDC/DCコンバータや、内部に少なくとも1つのコンデンサを有するチャージポンプ型昇圧手段で構成できる。DC/DCコンバータや、チャージポンプ型昇圧手段の昇圧動作については詳しい説明を省略する。電源安定手段44eはシステムの電力供給を行うために追加している。また電圧切り替え手段44fを有している。   Next, the vicinity of the power source that supplies power to the measurement control means 42 and the like will be described. FIG. 3 is a block diagram showing the configuration around the power source of this embodiment. FIG. 3 is a block diagram showing the configuration around the power source of this embodiment. A DC / DC converter will be described. In FIG. 3, 43 is a power supply, 44 is a boosting means, 45 is a power supply control means, 5 is a power storage means, and 6 is a load. The boosting means 44 can be constituted by a normal DC / DC converter having an inductance 44a and a diode 44b, or a charge pump type boosting means having at least one capacitor inside. Detailed description of the boosting operation of the DC / DC converter and the charge pump boosting means is omitted. The power supply stabilization means 44e is added to supply power to the system. Moreover, it has the voltage switching means 44f.

図3では負荷6の動作は電源制御手段45で検知できるようになっている。電圧の情報によりスイッチの開閉手段を制御して昇圧電圧を調節することが可能である。また出力電圧を電源制御手段45で測定し、例えばAD変換器などにより電圧信号を得ることにより電源制御手段45は昇圧手段44の出力電圧を一定にするよう調整する信号を送出する。   In FIG. 3, the operation of the load 6 can be detected by the power supply control means 45. It is possible to adjust the boost voltage by controlling the switching means of the switch according to the voltage information. Further, the output voltage is measured by the power supply control means 45, and the power supply control means 45 sends a signal for adjusting the output voltage of the boosting means 44 to be constant, for example, by obtaining a voltage signal by an AD converter or the like.

このように電源制御手段45は負荷6の動作を検知し、その動作に応じて昇圧手段44に信号を送出し電圧を調整することで、安定した電圧で負荷6への電力供給を行うとともに、負荷の動作に影響を与えない時期に昇圧手段44を動作することでノイズ等の影響をシステムに与えないような昇圧手段の動作を実現することが可能になる。   In this way, the power supply control means 45 detects the operation of the load 6 and sends a signal to the boosting means 44 according to the operation to adjust the voltage, thereby supplying power to the load 6 with a stable voltage. By operating the boosting means 44 at a time when it does not affect the operation of the load, it is possible to realize the operation of the boosting means that does not affect the system due to noise or the like.

図3(a)では負荷6の動作は電源制御手段45で検知できるようになっている。電圧の情報によりスイッチの開閉手段を制御して昇圧電圧を調節することが可能である。また出力電圧を電源制御手段45で測定し、例えばAD変換器などにより電圧信号を得ることにより電源制御手段45は昇圧手段44の出力電圧を一定にするよう調整する信号を送出する。このように電源制御手段45は負荷6の動作を検知し、その動作に応じて昇圧手段44に信号を送出し電圧を調整することで、安定した電圧で負荷6への電力供給を行うとともに、負荷の動作に影響を与えない時期に昇圧手段44を動作することでノイズ等の影響をシステムに与えないような昇圧手段の動作を実現することが可能になる。   In FIG. 3A, the operation of the load 6 can be detected by the power supply control means 45. It is possible to adjust the boost voltage by controlling the switching means of the switch according to the voltage information. Further, the output voltage is measured by the power supply control means 45, and the power supply control means 45 sends a signal for adjusting the output voltage of the boosting means 44 to be constant, for example, by obtaining a voltage signal by an AD converter or the like. In this way, the power supply control means 45 detects the operation of the load 6 and sends a signal to the boosting means 44 according to the operation to adjust the voltage, thereby supplying power to the load 6 with a stable voltage. By operating the boosting means 44 at a time when it does not affect the operation of the load, it is possible to realize the operation of the boosting means that does not affect the system due to noise or the like.

通常、流体は流路31内部を流れているが常時連続して流れがあるとは限らない。下流側でその流体を使用しない場合は流路31内部で流体は停止している。一方流れ計測装置としては常に流体の状態を把握していなければ正確な計測はできにくい。常に電力をふんだんに使い丁寧な計測をしていると、装置として大規模な電力供給部分をもたなければならない。電池駆動のシステムなどでは大量の電池を必要とし、大きさやコストの面からも実現することは難しい。   Usually, the fluid flows in the flow path 31 but does not always flow continuously. When the fluid is not used on the downstream side, the fluid is stopped inside the flow path 31. On the other hand, as a flow measuring device, accurate measurement is difficult unless the fluid state is always grasped. If you always use power abundantly and make careful measurements, you must have a large-scale power supply as a device. A battery-driven system or the like requires a large amount of batteries and is difficult to realize in terms of size and cost.

そこで、計測する方法を検討してみる。図4(a)において時刻T0で電源を投入してからシステム電圧安定手段44eの出力が安定するT1までは制御手段47は動作を行わない。図4(b)T1以降で電圧が安定しているためT2から制御手段47は電源制御手段45を介して昇圧手段44を動作する。波振動子に高電圧の信号を印加することで超音波を送出し、流路31内部を伝搬した超音波の信号より流速または流量を上述したようにして求める。   Therefore, let's examine the measurement method. In FIG. 4A, the control means 47 does not operate until the time T1 when the output of the system voltage stabilization means 44e is stabilized after the power is turned on at time T0. Since the voltage is stable after T 1 in FIG. 4B, the control means 47 operates the boosting means 44 via the power supply control means 45 from T 2. An ultrasonic wave is transmitted by applying a high-voltage signal to the wave vibrator, and the flow velocity or flow rate is obtained as described above from the ultrasonic signal propagated through the flow path 31.

図4において制御手段は間欠的な一定時間毎に電源制御手段45を介して昇圧手段44を動作し送信手段34に給電する電圧をつくっている。そして計測を一定時間毎に行っている。超音波振動子の振動は入力する電圧が高いほどよく振動し、また受信信号のレベルも大きく微小な流体の変動を識別することが可能になる。   In FIG. 4, the control means operates the boosting means 44 via the power supply control means 45 every intermittent fixed time to generate a voltage for supplying power to the transmission means 34. Measurement is performed at regular intervals. The vibration of the ultrasonic vibrator vibrates better as the input voltage is higher, and the level of the received signal is larger and it becomes possible to identify minute fluctuations in the fluid.

演算で求めた流速が無い場合、流路31の下流側で流体が使用されていないことになる。このような状態は一時的なこともあるが、一旦停止すると長時間使用しない場合もある。そのような場合は頻繁に振動子に給電して計測するのは省電力という面からも工夫する必要がある。   When there is no flow velocity obtained by calculation, no fluid is used on the downstream side of the flow path 31. Such a state may be temporary, but once stopped, it may not be used for a long time. In such a case, it is necessary to devise from the viewpoint of power saving that the vibrator is frequently fed and measured.

このように常に高電圧を作っていると電源43の消費が厳しくなる。そこで計測は図4(c)にあるように昇圧手段44を動作せずに電源からつくったシステム電圧安定手段44eの出力を例えば用いて電圧v1を振動子に給電する。そして予め定めた計測回数を経過すると制御手段は電源制御手段45を介して昇圧手段44を動作しv2に昇圧した電圧で送信手段34に給電する。高電圧で振動子を駆動すると受信信号の波形も大きく、微小な変化を検出することが容易になり精度の良い計測が可能になる。   Thus, if the high voltage is always made, consumption of the power supply 43 becomes severe. Therefore, in the measurement, as shown in FIG. 4C, the voltage v1 is supplied to the vibrator by using, for example, the output of the system voltage stabilizing means 44e generated from the power supply without operating the boosting means 44. When a predetermined number of measurements has elapsed, the control means operates the boosting means 44 via the power supply control means 45 to supply power to the transmission means 34 with a voltage boosted to v2. When the vibrator is driven with a high voltage, the waveform of the received signal is large, and it becomes easy to detect a minute change and measurement with high accuracy is possible.

このように、流量演算手段の出力により流量が無い、すなわち流速が無い場合には昇圧手段の動作を停止して低圧での振動子駆動を行い省電力動作を実現し、ある時間間隔で電源制御手段を介して昇圧動作を行うことで、精度の良い流量計測を実現することができる。   In this way, when there is no flow rate due to the output of the flow rate calculation means, that is, there is no flow rate, the operation of the boosting means is stopped and the vibrator is driven at a low pressure to realize the power saving operation, and the power supply control at a certain time interval By performing the step-up operation through the means, it is possible to realize accurate flow rate measurement.

そして、制御手段は電源立ち上げ時に、システム全体の回路電圧が安定し、昇圧手段を動作する際に、ある時間間隔を持って昇圧動作を行い省電力と計測系の安定動作を実現する精度の良い流量計測を実現することができる。   When the power supply is turned on, the control means stabilizes the circuit voltage of the entire system, and when operating the boosting means, the control means performs a boosting operation with a certain time interval to achieve power saving and stable operation of the measurement system. Good flow rate measurement can be realized.

流速またはた流量計測装置において図5のように電源制御手段45から送信手段34付近の動作について説明する。第1の振動子32を駆動するには流路31の内部を十分な超音波信号レベルで伝送するためある程度高電圧で駆動する必要がある。そこで昇圧手段43の出力は送信手段34を介して第1の振動子32に繋がっている。途中の切換え手段36は送受信を切換えているだけなのでここでの詳しい説明は除く。送信手段34の内部の一例として振動子を動作するために34aから34dまでの送信開閉手段を用いたブリッジ構成をとる。最初送信開閉手段34a,34dを通電状態にし、反対に34b、34cを開放しておく。   The operation in the vicinity of the transmission means 34 from the power supply control means 45 as shown in FIG. In order to drive the first vibrator 32, it is necessary to drive the flow path 31 at a certain high voltage in order to transmit the inside of the flow path 31 at a sufficient ultrasonic signal level. Therefore, the output of the booster 43 is connected to the first vibrator 32 via the transmitter 34. Since the switching means 36 on the way only switches between transmission and reception, a detailed description here is omitted. As an example of the inside of the transmission unit 34, a bridge configuration using transmission opening / closing units 34a to 34d is used to operate the vibrator. First, the transmission opening / closing means 34a and 34d are energized, and on the contrary, 34b and 34c are opened.

次に、送信開閉手段34a,34dを開放し、34b,34cを通電状態にする。この動作で振動子が動作し始める。振動子への電源は昇圧手段44からの高電圧が供給される。   Next, the transmission opening / closing means 34a and 34d are opened, and 34b and 34c are energized. With this operation, the vibrator starts to operate. The power supply to the vibrator is supplied with a high voltage from the boosting means 44.

この高電圧の供給が振動子の動作状態によらず、昇圧手段44のみの動作で行うと振動子への供給電圧が動作中に変化してしまい、受信信号が一定でなくなる。これは流量の計測精度に大きく影響するために好ましいことではない。そこで電源制御手段45が昇圧手段44の動作や振動子32の動作を検知し、振動子32の動作に影響の無い時期に昇圧手段44を動作するように制御信号を送出することにより安定した電圧で振動子への電力供給を行うとともに、ノイズ等の影響を流量計測システム全体に与えないような昇圧手段44の動作を実現することが可能になる。   If this high voltage is supplied by the operation of only the boosting means 44 regardless of the operating state of the vibrator, the supply voltage to the vibrator changes during the operation, and the received signal is not constant. This is not preferable because it greatly affects the measurement accuracy of the flow rate. Therefore, the power supply control means 45 detects the operation of the boosting means 44 and the operation of the vibrator 32, and sends a control signal to operate the boosting means 44 at a time when the operation of the vibrator 32 is not affected. Thus, it is possible to supply the power to the vibrator and to realize the operation of the boosting unit 44 so as not to affect the entire flow rate measurement system by noise or the like.

電源制御手段45は計測制御手段42から計測動作信号が出ているのを信号として受け取ることが可能なため、より確実に振動子の動作に影響を与えない状態で昇圧手段44を制御することできるようになる。図5では電源制御手段45と計測制御手段42を別々に設けているが同じ制御手段として1つの論理手段、例えばマイコンを用いても良い。   Since the power supply control means 45 can receive the measurement operation signal from the measurement control means 42 as a signal, the booster means 44 can be controlled more reliably without affecting the operation of the vibrator. It becomes like this. In FIG. 5, the power supply control means 45 and the measurement control means 42 are provided separately, but one logic means such as a microcomputer may be used as the same control means.

さらに、昇圧手段を停止する動作時に通常動作に戻ることを考慮して動作する方法について説明する。流量が一定値以下、あるいは流れが無い場合に制御手段47は昇圧手段の動作を停止して流量の有無のみを調べれば良い程度の低電圧で振動子を駆動して計測を行っている。そこで流量演算手段41の出力により計測モードを切り替えていくことを説明する。図6の101で流量演算手段41の出力が予め設定していた流量より多くなると102の計測モードに動作を切り替える。計測モードに入ると制御手段47は電源制御手段45を介して昇圧手段44を動作し計測精度の出る駆動電圧、例えば図4のv2になるように昇圧動作を行う。電圧を高くすることで受信信号も大きくなり精度の良い流量計測が可能になる。この動作は全部の計測を昇圧動作してv2で行うのでは無く、図4のような一定間隔で昇圧していた割合を短くすることで対応しても良い。この動作は流量によって変更していくことも可能である。   Further, a method of operating in consideration of returning to the normal operation during the operation of stopping the boosting means will be described. When the flow rate is equal to or less than a certain value or there is no flow, the control means 47 performs measurement by driving the vibrator with a low voltage enough to stop the operation of the boosting means and check only the presence or absence of the flow rate. Therefore, switching the measurement mode by the output of the flow rate calculation means 41 will be described. When the output of the flow rate calculation means 41 exceeds the preset flow rate in 101 of FIG. 6, the operation is switched to the measurement mode of 102. When the measurement mode is entered, the control means 47 operates the boosting means 44 via the power supply control means 45 to perform a boosting operation so as to obtain a driving voltage with a high measurement accuracy, for example, v2 in FIG. Increasing the voltage increases the received signal and enables accurate flow rate measurement. This operation may be dealt with by shortening the ratio of boosting at a constant interval as shown in FIG. This operation can be changed according to the flow rate.

これにより制御手段47は流量演算手段41の信号により電源制御手段45を介して昇圧手段44を動作することにより流量が存在する、すなわち流速がある場合には昇圧手段44の動作頻度を増して計測系の安定動作を行うことが可能になる。   As a result, the control means 47 operates the boosting means 44 via the power supply control means 45 in response to the signal from the flow rate calculation means 41 to measure the increase in the operating frequency of the boosting means 44 when there is a flow rate, that is, when there is a flow velocity. It is possible to perform stable operation of the system.

さらに、昇圧手段の動作をさらに間引くことを考慮して動作する方法について説明する。   Further, a method for operating in consideration of further thinning out the operation of the boosting means will be described.

流量が一定値以下、あるいは流れが無い場合に制御手段47は昇圧手段の動作を停止して流量の有無のみを調べれば良い程度の低電圧で振動子を駆動して計測を行っている。そこで流量演算手段41の出力が長期間にわたり少ない場合について説明する。図6の101で流量演算手段41の出力が予め設定していた流量より少なくなると103の検索モードに動作を切り替える。検索モードに入ると制御手段47は電源制御手段45を介して昇圧手段44を動作する間隔をだんだんと長くしていく。さらには昇圧してv2の電圧をつくる割合も減らしていく。これは一方だけを行う動作でも良い。例えばv2とv1の比をだんだんと変化してv2に昇圧する頻度を下げて省電力状態をつくっても良いし、計測間隔を図7(a)が標準の場合に図7(b)のように長くして計測系全体の動作電力を削減しても良い。これは長時間流れが無いということからできることである。   When the flow rate is equal to or less than a certain value or there is no flow, the control means 47 performs measurement by driving the vibrator with a low voltage enough to stop the operation of the boosting means and check only the presence or absence of the flow rate. Therefore, a case where the output of the flow rate calculation means 41 is small over a long period will be described. When the output of the flow rate calculation means 41 becomes smaller than the preset flow rate in 101 of FIG. 6, the operation is switched to the search mode 103. When the search mode is entered, the control means 47 gradually increases the interval for operating the boosting means 44 via the power supply control means 45. Furthermore, the ratio of generating voltage of v2 by boosting is reduced. This may be an operation in which only one is performed. For example, the ratio of v2 and v1 may be gradually changed to reduce the frequency of boosting to v2 to create a power saving state, or the measurement interval is as shown in FIG. 7B when FIG. 7A is standard. The operating power of the entire measurement system may be reduced by increasing the length. This is possible because there is no flow for a long time.

これにより制御手段47は流量演算手段41の出力により流速が無い場合に電源制御手段45を介して昇圧手段44の動作を間欠的に調整することにより、省電力動作で計測を継続することが可能になる。   Thus, the control means 47 can continue the measurement with the power saving operation by adjusting the operation of the boosting means 44 intermittently via the power supply control means 45 when there is no flow velocity due to the output of the flow rate calculation means 41. become.

この場合でも図6の101で流量が予め定めた一定値Q0より大きくなるとすぐに計測モードに戻って通常の動作を行うことができる程度の時間間隔にしておく必要がある。   Even in this case, it is necessary to set a time interval enough to return to the measurement mode and perform normal operation as soon as the flow rate becomes larger than the predetermined value Q0 in 101 of FIG.

なお、本実施の形態においては、流体の流れ計測装置の一例として、演算手段により、流体の流速を演算してこの流速から流量を求める流量計測装置について説明したが、流れ計測装置として、流体の流速を求める流速計測装置としてもよく、この場合、急激な流速変化や所定値以上の流速を計測して、流体の流れを遮断してもよい。特に、流体がガスである場合、ガスを流す配管中に遮断装置を設けることにより、ガス漏洩を検知し漏洩を遮断することができる。   In the present embodiment, as an example of the fluid flow measurement device, the flow rate measurement device that calculates the flow rate of the fluid and calculates the flow rate from the flow rate by the calculation means has been described. A flow velocity measuring device that obtains the flow velocity may be used. In this case, the flow of the fluid may be interrupted by measuring a rapid flow velocity change or a flow velocity of a predetermined value or more. In particular, when the fluid is a gas, by providing a shut-off device in the pipe through which the gas flows, the gas leak can be detected and the leak can be shut off.

(実施の形態2)
本発明の実施の形態2における流れ計測装置について説明する。実施の形態1と異なるところはタイマ手段もしくは記憶手段を設け、流速が無い場合の計測動作にかかわる昇圧動作を調節することである。これは流速が無い場合においても流量計測を続けなければならないが、通常の計測においては流速の無い場合の方が長時間である場合が多い。例えば家庭用のガスメータなどを考えてみると下流側で使用するのは1日のうち数時間しかなく、ほとんどは流速ゼロという状態が連続していると考えてよい。その場合でも流れはじめを検出したり、下流側の異常を検知するためには精度のよい計測を行う必要がある。そこで昇圧手段をその流速が無い状態に応じて間欠的に動作することにより省電力を実現することを考える。図1、図8から図11を用いて説明する。
(Embodiment 2)
A flow measuring apparatus according to Embodiment 2 of the present invention will be described. The difference from the first embodiment is that a timer unit or a storage unit is provided to adjust a boosting operation related to a measurement operation when there is no flow rate. In this case, the flow rate measurement must be continued even when there is no flow velocity, but in normal measurement, the case where there is no flow velocity is often longer. For example, when considering a gas meter for home use, it can be considered that only a few hours of the day are used on the downstream side, and the state of zero flow rate is almost continuous. Even in such a case, it is necessary to perform accurate measurement in order to detect the beginning of the flow or to detect an abnormality on the downstream side. Therefore, it is considered to realize power saving by operating the boosting means intermittently according to the state where there is no flow velocity. This will be described with reference to FIGS. 1 and 8 to 11.

実施の形態1で示したように流れ計測装置が設置されている流路31内部の流体はそう頻繁に移動しているわけでは無く、むしろ停止している時間の方が長い。そこでこの停止している状態で電力をいかに使用せずに流体変化を調べるかについて以下に説明する。   As shown in the first embodiment, the fluid inside the flow path 31 in which the flow measuring device is installed does not move so frequently, but rather has a longer stop time. Therefore, how to check the fluid change without using electric power in the stopped state will be described below.

図8は制御手段47の周辺示すブロック図である。制御手段47は流量演算手段41の出力を入力し、タイマ手段49、流量記憶手段50(流れ記憶手段)、記憶手段51、設定手段52の信号を個々もしくは組み合わせることで電源制御手段45を介して昇圧手段の動作を制御する。   FIG. 8 is a block diagram showing the periphery of the control means 47. The control means 47 inputs the output of the flow rate calculation means 41, and through the power supply control means 45 by individually or combining the signals of the timer means 49, the flow rate storage means 50 (flow storage means), the storage means 51, and the setting means 52. Controls the operation of the boosting means.

通常に計測をしている間に、下流側の流体の使用が減少し図9(a)のようにt0において流速が無くなったとする。それまでは一定時間間隔で制御手段47が昇圧手段44を動作して高電圧をつくり振動子を駆動していたが、流速が無くなると頻繁に計測しなくてもよいことがある。そのため流量演算手段41からの信号が流速なしとなると、制御手段はタイマ手段49を動作して計測間隔を今までのT0から長くしていく。図9(b)に示すように一定時間T1の間隔で行い、T1時間経過毎に制御手段47は電源制御手段45を介して昇圧手段44を動作し、高電圧をつくって送信手段である振動子を駆動する。その結果、まだ流量が無い状態が継続しているときは間隔をT2に延ばし、さらにT3という具合に計測間隔を広げていく。   It is assumed that the use of the fluid on the downstream side is reduced during the normal measurement, and the flow velocity disappears at t0 as shown in FIG. 9A. Until then, the control means 47 operated the boosting means 44 at regular time intervals to generate a high voltage and drive the vibrator. However, when the flow velocity is lost, it may not be necessary to measure frequently. For this reason, when the signal from the flow rate calculation means 41 indicates no flow rate, the control means operates the timer means 49 to increase the measurement interval from the current T0. As shown in FIG. 9 (b), the control means 47 operates at the interval of a predetermined time T1, and the control means 47 operates the boosting means 44 via the power supply control means 45 every time the T1 time elapses. Drive the child. As a result, when the state where there is still no flow rate continues, the interval is extended to T2, and further the measurement interval is expanded to T3.

この計測間隔はTmaxというある時間で制限することも必要である。時間間隔はタイマ手段49が決定している。計測時に流量演算手段41の信号により流量があることが判明すると制御手段47は計測方法を従来の間隔T0のモードにもどして流量計測を行う。   This measurement interval needs to be limited by a certain time Tmax. The timer means 49 determines the time interval. When it is determined that there is a flow rate from the signal of the flow rate calculation means 41 during the measurement, the control means 47 returns the measurement method to the conventional mode at the interval T0 and measures the flow rate.

このように、流速が無い場合にタイマ手段49の信号に応じて電源制御手段45の動作を調整することにより、流速がなくなってからの時間に応じて間欠的に動作する昇圧手段44の動作を調整し、より省電力動作を高めることが可能になる。   Thus, by adjusting the operation of the power supply control means 45 according to the signal of the timer means 49 when there is no flow speed, the operation of the boosting means 44 that operates intermittently according to the time after the flow speed disappears. It becomes possible to adjust and enhance the power saving operation.

また、流速が無くなる前の流量により次に下流側で使われるタイミングを推定して動作することも可能である。例えば、図10(a)のように流量がQ1と多い場合は、例えばガスを考えると給湯機による風呂の追い炊きなどの状態が考えられる。その場合は次に同様な流量が使用される可能性があるため流量変化を早く捉える必要から流量演算手段41からの信号が流速なしとなると、制御手段47は流量記憶手段50にその流量を記憶し、流量記憶手段50はこの記憶した流量に応じて例えば比例したり、経験学習した時間を制御手段47に返す。そして制御手段は図10(b)に示すように一定時間T1の間隔毎に制御手段47は電源制御手段45を介して昇圧手段44を動作し、高電圧をつくって送信手段である振動子を駆動する。   It is also possible to operate by estimating the next timing used on the downstream side based on the flow rate before the flow velocity disappears. For example, when the flow rate is as high as Q1 as shown in FIG. 10 (a), for example, when considering gas, a state such as reheating a bath by a water heater can be considered. In that case, since the same flow rate may be used next, it is necessary to catch the flow rate change quickly, so that when the signal from the flow rate calculation unit 41 has no flow rate, the control unit 47 stores the flow rate in the flow rate storage unit 50. Then, the flow rate storage means 50 returns, for example, to the control means 47 in proportion to the stored flow rate or the time learned through experience learning. Then, as shown in FIG. 10B, the control means 47 operates the boosting means 44 via the power supply control means 45 at intervals of a predetermined time T1, and generates a high voltage to control the vibrator as the transmission means. To drive.

反対に図10(c)のように流量がある程度少ない場合は、ガスを考えると洗面の湯沸しなどが考えられ、流量が少なく使用頻度も少ないことが考えられ、計測頻度を上げる必要性は少なくなる。そこで流量演算手段41からの信号が流速なしとなると、制御手段47は流量記憶手段50にその流量を記憶し、流量記憶手段50はこの記憶した流量に応じて例えば比例したり、経験学習した時間を制御手段47に返す。そして制御手段は図10(d)に示すように一定時間T2の間隔毎に制御手段47は電源制御手段45を介して昇圧手段44を動作し、高電圧をつくって送信手段である振動子を駆動する。流量が少ないためT2はT1より長くなっても問題はない。   On the other hand, when the flow rate is small to some extent as shown in FIG. 10 (c), considering the gas, it is possible that the bathroom is heated, etc., the flow rate is low and the frequency of use is low, and the need for increasing the measurement frequency is reduced. . Therefore, when the signal from the flow rate calculation means 41 indicates that there is no flow velocity, the control means 47 stores the flow rate in the flow rate storage means 50, and the flow rate storage means 50 is proportional to the stored flow rate, for example, or the time learned through experience. Is returned to the control means 47. Then, as shown in FIG. 10 (d), the control means 47 operates the boosting means 44 via the power supply control means 45 at intervals of a predetermined time T2 to generate a high voltage to control the vibrator as the transmission means. To drive. Since the flow rate is small, there is no problem even if T2 is longer than T1.

計測時に流量演算手段41の信号により流量があることが判明すると制御手段47は計測方法を従来の間隔T0のモードにもどして流量計測を行う。   When it is determined that there is a flow rate from the signal of the flow rate calculation means 41 during the measurement, the control means 47 returns the measurement method to the conventional mode at the interval T0 and measures the flow rate.

このように、制御手段47が前回の流量を記憶する流量記憶手段50を有し、流速が無い場合に流量記憶手段50の信号に応じて電源制御手段45の動作を調整することにより、前回流れた流量に応じて次に流れる時間を予測するなどして間欠的に動作する昇圧手段の動作を調整し、より省電力動作を高めることが可能になる。   As described above, the control unit 47 has the flow rate storage unit 50 for storing the previous flow rate, and adjusts the operation of the power supply control unit 45 in accordance with the signal of the flow rate storage unit 50 when there is no flow rate, so By adjusting the operation of the boosting means that operates intermittently by predicting the next flowing time according to the flow rate, it is possible to further improve the power saving operation.

また、流速が無くなった後の経過時間と、流れていた時の流量を組み合わせて次に下流側で使われるタイミングを推定して動作することも可能である。   It is also possible to operate by estimating the timing used next on the downstream side by combining the elapsed time after the flow velocity disappears and the flow rate when it has flowed.

例えば、図11のように流量Qと、流速が無くなってからの時間tの関数f(Q,t)を考えても良い。図では一次関数であるが、この関数は別にこの形に限定されるものでは無い。これをタイマ手段49と流量記憶手段50の値を元に制御手段47で計測間隔Tを決定し、その時間になると制御手段47は電源制御手段45を介して昇圧手段44を動作し、高電圧をつくって送信手段である振動子を駆動する。   For example, as shown in FIG. 11, a function f (Q, t) of the flow rate Q and the time t after the flow velocity disappears may be considered. Although it is a linear function in the figure, this function is not limited to this form. Based on the values of the timer means 49 and the flow rate storage means 50, the control means 47 determines the measurement interval T. At that time, the control means 47 operates the boosting means 44 via the power supply control means 45, and the high voltage To drive a transducer as a transmission means.

これはガスを流体として例をあげると、流量が多くても動作時間が短い場合は台所の使用が考えられ、反対に低流量で長時間の場合はガス暖房機が推定される。   Taking gas as a fluid as an example, if the operation time is short even if the flow rate is large, the use of the kitchen can be considered. Conversely, if the flow rate is low and the flow time is long, a gas heater is estimated.

台所の場合は繰り返し頻度が高いが、暖房機は一旦停止すると次に使用するまではある程度長時間停止する状態が続くと推定される。このように停止時間の推定には流量が大いに関係する。タイマ手段は計測間隔を設定するだけでなく、使用時間も計測すればよりきめ細かい推定が可能になり、流速停止時の計測間隔を最適にすることが可能になる。計測時に流量演算手段41の信号により流量があることが判明すると制御手段47は計測方法を従来の間隔T0のモードにもどして流量計測を行う。   In the case of a kitchen, the repetition frequency is high, but once the heater is stopped, it is presumed that the heater will stop for a long time until it is used again. Thus, the flow rate is greatly related to the estimation of the stop time. The timer means not only sets the measurement interval, but also enables more accurate estimation if the usage time is measured, and the measurement interval when the flow rate is stopped can be optimized. When it is determined that there is a flow rate from the signal of the flow rate calculation means 41 during the measurement, the control means 47 returns the measurement method to the conventional mode at the interval T0 and measures the flow rate.

このように、制御手段47が前回の流量を記憶する流量記憶手段50と、タイマ手段49を有し、流速が無い場合に流量記憶手段50の信号とタイマ手段49の信号に応じて電源制御手段45の動作を調整することにより、前回流れた流量とその継続時間に応じて次に流れる時間を予測するなどして間欠的に動作する昇圧手段44の動作を調整し、より省電力動作を高めることが可能になる。   Thus, the control means 47 has the flow rate storage means 50 for storing the previous flow rate and the timer means 49, and when there is no flow rate, the power supply control means according to the signal of the flow rate storage means 50 and the signal of the timer means 49. By adjusting the operation of 45, the operation of the step-up means 44 that operates intermittently is adjusted by predicting the next flow time according to the flow rate and the duration time of the previous flow, thereby further improving the power saving operation. It becomes possible.

また、流速が無くなった後の経過時間と、流れていた時の流量を組み合わせをタイマ手段49や流量記憶手段50のデータを用いるのでは無く、予め記憶手段51にその関数f(Q,t)をテーブルのように記憶しておいても良い。制御手段47は流量演算手段41から流速が無くなると、それからの時間とそれまでの流量を記憶手段51のテーブルに渡すと最適な計測間隔Tを求められるようにしておくことが可能である。そして予め関数を設定することができるのできめ細かい計測時間間隔を設定することが可能になる。   Further, instead of using the data of the timer means 49 and the flow rate storage means 50, the function f (Q, t) is stored in advance in the storage means 51, instead of using the data of the timer means 49 and the flow rate storage means 50. May be stored like a table. When the flow rate is lost from the flow rate calculation unit 41, the control unit 47 can obtain the optimum measurement interval T by passing the time and the flow rate until then to the table of the storage unit 51. A function can be set in advance, and a fine measurement time interval can be set.

この計測時に流量演算手段41の信号により流量があることが判明すると制御手段47は計測方法を従来の間隔T0のモードにもどして流量計測を行う。温度や季節のデータベーステーブルも記憶手段51の大規模化が容易になってきているため設定しておくことは可能である。   When it is determined that there is a flow rate from the signal of the flow rate calculation means 41 during this measurement, the control means 47 returns the measurement method to the conventional mode at the interval T0 and measures the flow rate. The temperature and season database tables can also be set because the storage means 51 has become easier to enlarge.

このように、制御手段47が記憶手段51を有し、流速が無い場合に記憶手段51の信号に応じて電源制御手段45の動作を調整することにより流量と時間や季節、温度などのデータベースに応じて次に流れる時間を予測するなどして間欠的に動作する昇圧手段44の動作を調整し、より省電力動作を高めることが可能になる。   Thus, when the control means 47 has the storage means 51 and there is no flow velocity, the operation of the power supply control means 45 is adjusted in accordance with the signal of the storage means 51 to thereby store the flow rate, time, season, temperature, etc. in the database. Accordingly, it is possible to adjust the operation of the boosting means 44 that operates intermittently, for example, by predicting the next flowing time, thereby further improving the power saving operation.

また、流速が無くなった後の経過時間と、流れていた時の流量を組み合わせをタイマ手段49や流量記憶手段50のデータを用いるのでは無く、例えばその流路31に接続されている下流側の機器の使用方法が複雑であったり、季節によって大きく変動するものであったり、さらには設置場所により特有の動作方法があるような場合も考えられる。このような場合は。設定手段52を用いて外部から関数f(Q,t)をテーブルのように入力しておくようにしても良い。設定手段52から設定したテーブルは記憶手段51に残しても良いし、少ない条件であれば制御手段47内部の例えばRAMのような場所に保存することも可能である。   In addition, the combination of the elapsed time after the flow velocity disappears and the flow rate at the time of flow is not used in the data of the timer means 49 or the flow rate storage means 50, but, for example, on the downstream side connected to the flow path 31 It can be considered that the method of using the device is complicated, greatly varies depending on the season, or has a specific operation method depending on the installation location. In such a case. The setting means 52 may be used to input the function f (Q, t) from the outside like a table. The table set from the setting means 52 may be left in the storage means 51, and can be saved in a location such as a RAM inside the control means 47 if the conditions are small.

この設定した時間間隔Tを用いて流速が無い場合に計測間隔を広くしておく。もちろん、この計測時に流量演算手段41の信号により流量があることが判明すると制御手段47は計測方法を従来の間隔T0のモードにもどして流量計測を行う。   The measurement interval is widened when there is no flow velocity using the set time interval T. Of course, if it is found that there is a flow rate from the signal of the flow rate calculation means 41 during this measurement, the control means 47 returns the measurement method to the conventional mode at the interval T0 and measures the flow rate.

このように、制御手段47が設定手段52を有し、流速が無い場合に設定手段52の信号に応じて電源制御手段45の動作を調整することにより、使用する場所や特定の使い方に応じた設定を外部から行うことにより間欠的に動作する昇圧手段44の動作を調整し、より省電力動作を高めることが可能になる。   Thus, the control means 47 has the setting means 52, and when there is no flow velocity, the operation of the power supply control means 45 is adjusted according to the signal of the setting means 52, so that it can be used according to the place to be used or a specific usage. By performing the setting from the outside, it is possible to adjust the operation of the boosting means 44 that operates intermittently, and to further increase the power saving operation.

なお、本実施の形態では、流量記憶手段50に記憶させた流量値を用いる例を説明したが、流れ記憶手段として、流速記憶手段に記憶させた流速値を用いても、同様な効果を得ることができる。   In the present embodiment, the example in which the flow rate value stored in the flow rate storage unit 50 is used has been described. However, the same effect can be obtained even if the flow rate value stored in the flow rate storage unit is used as the flow storage unit. be able to.

(実施の形態3)
本発明の実施の形態3における流れ計測装置について説明する。実施の形態1と異なるところは、昇圧手段44の動作を調整する電源制御手段45の動作を確実にするためのコンピュータを機能させるためのプログラムを有する記憶媒体53を用いていることである。
(Embodiment 3)
A flow measuring apparatus according to Embodiment 3 of the present invention will be described. The difference from the first embodiment is that a storage medium 53 having a program for causing a computer to function to ensure the operation of the power supply control means 45 for adjusting the operation of the boosting means 44 is used.

図1、図3、図5および図8において、実施の形態1から実施の形態2で示した電源制御手段44の動作を行うには、予め実験等により振動子の動作による昇圧手段44の出力変化、経年変化、温度変化、システムの安定度に関して昇圧手段44の動作タイミングなどの相関を求め、例えばファジィ制御のメンバーシップ関数のように適合度というような形で判断する判定ソフトをプログラムとして記憶媒体53に格納しておく。通常マイクロコンピュータのメモリやフラッシュメモリ等電気的に書き込み可能なものにしておくと利用が便利である。   1, FIG. 3, FIG. 5 and FIG. 8, in order to perform the operation of the power supply control unit 44 shown in the first to second embodiments, the output of the boosting unit 44 by the operation of the vibrator is experimentally performed in advance. Correlation such as operation timing of the boosting means 44 with respect to change, aging, temperature change, system stability, etc. is obtained, and judgment software for judging in the form of fitness, such as a fuzzy control membership function, is stored as a program Stored in the medium 53. Usually, it is convenient to use an electrically writable memory such as a microcomputer memory or a flash memory.

このように電源制御手段45の動作をプログラムで行うことができるようになると振動子の駆動電圧の変化に対して追随する昇圧手段44の動作をソフトで行うことになる。これにより送信回数の条件設定、切換手段36動作前後における電圧調整の条件設定、変更が容易にでき、また経年変化などにも柔軟に対応できるためよりフレキシブルに計測時間の精度向上を行うことができる。なお本実施例において電源制御手段44以外の動作もマイコン等によりプログラムで行ってもよい。   Thus, when the operation of the power supply control means 45 can be performed by a program, the operation of the boosting means 44 that follows the change in the driving voltage of the vibrator is performed by software. As a result, it is possible to easily set and change the condition of the number of transmissions, set and change the voltage adjustment condition before and after the operation of the switching means 36, and flexibly cope with secular change, etc., so that the accuracy of the measurement time can be improved more flexibly. . In this embodiment, operations other than the power supply control means 44 may be performed by a program using a microcomputer or the like.

本発明の流れ計測装置は、電源投入後に流量演算手段の出力により流量が無い、すなわち流速が無い場合には昇圧手段の動作を停止して低圧での振動子駆動を行い、ある時間間隔を持って昇圧動作を行う動作をするものである。   The flow measuring device according to the present invention stops the operation of the boosting unit and drives the vibrator at a low pressure when there is no flow rate by the output of the flow rate calculation unit after power-on, that is, when there is no flow velocity, and has a certain time interval. Thus, an operation for performing a boosting operation is performed.

これによって、流量が無い、すなわち流速が無い場合には昇圧手段の動作を停止して低圧での振動子駆動を行い省電力動作を実現し、ある時間間隔で電源制御手段を介して昇圧動作を行うことで、精度の良い流量計測を実現することができる。   As a result, when there is no flow rate, that is, when there is no flow velocity, the operation of the boosting unit is stopped and the vibrator is driven at a low pressure to realize the power saving operation, and the boosting operation is performed via the power supply control unit at a certain time interval. By doing so, accurate flow rate measurement can be realized.

したがって、家庭用のガスメータや水道メータなどの独立した電源として電池を搭載するような装置においてはその電池容量を小さくでき、本体の小型化や軽量化を図ることが可能になる。   Therefore, in a device in which a battery is mounted as an independent power source such as a home gas meter or a water meter, the battery capacity can be reduced, and the main body can be reduced in size and weight.

本発明の実施の形態1における流れ計測装置の全体ブロック図FIG. 1 is an overall block diagram of a flow measuring apparatus according to Embodiment 1 of the present invention. 同実施の形態における流れ計測装置の動作を示すタイミング図Timing chart showing the operation of the flow measuring device in the same embodiment 同実施の形態における電源周辺のブロック図Block diagram around the power supply in the same embodiment 同実施の形態における制御手段と昇圧手段との動作を示すタイミング図Timing chart showing operation of control means and boosting means in the same embodiment 同計測装置の送信手段周辺の接続を示すブロック図Block diagram showing connections around the transmission means of the measuring device 同制御手段の設定順を示すフローチャートFlow chart showing the setting order of the control means 同実施の形態における流れ計測装置の昇圧手段の動作を示すタイミング図Timing chart showing the operation of the boosting means of the flow measuring device in the same embodiment 本発明の実施の形態2における流れ計測装置のブロック図The block diagram of the flow measuring device in Embodiment 2 of this invention 同実施の形態における流速と昇圧手段との動作を示すタイミング図Timing chart showing operation of flow velocity and boosting means in the same embodiment 同実施の形態における流れ計測装置の流速と昇圧手段との動作を示すタイミング図Timing chart showing the operation of the flow velocity and the boosting means of the flow measuring device in the same embodiment (a)同昇圧間隔の関数を示すグラフ(b)同昇圧手段の動作時間を示すタイミング図(A) Graph showing function of same boosting interval (b) Timing diagram showing operation time of same boosting means 従来の昇圧回路の全体のブロック図Overall block diagram of conventional booster circuit 従来の流量計測装置の全体のブロック図Overall block diagram of a conventional flow measurement device

符号の説明Explanation of symbols

1 電源
5 蓄電手段
6 負荷
31 流路
32 第1の振動子
33 第2の振動子
34 送信手段
35 受信手段
41 流量演算手段(演算手段)
43 電源
44 昇圧手段
45 電源制御手段
47 制御手段
49 タイマ手段
50 流量記憶手段(流れ記憶手段)
51 記憶手段
52 設定手段
53 記憶媒体
DESCRIPTION OF SYMBOLS 1 Power supply 5 Power storage means 6 Load 31 Flow path 32 1st vibrator 33 2nd vibrator 34 Transmission means 35 Reception means 41 Flow volume calculation means (calculation means)
43 Power supply 44 Boosting means 45 Power supply control means 47 Control means 49 Timer means 50 Flow rate storage means (flow storage means)
51 storage means 52 setting means 53 storage medium

Claims (9)

被測定流体の流れる流路に配置され超音波を送受信する一対の振動子と、振動子を駆動する送信手段と、受信側振動子の出力信号を電気信号に変換する受信手段と、前記受信手段の信号を用いて流速または流量を算出する演算手段と、電源と、前記電源から前記送信手段用などの高電圧をつくる昇圧手段と、前記昇圧手段を制御する電源制御手段と、制御手段を有し、前記制御手段は時間的に前記電源制御手段を動作する流れ計測装置。 A pair of transducers arranged in a flow path through which the fluid to be measured flows and transmits / receives ultrasonic waves, a transmission unit that drives the transducers, a reception unit that converts an output signal of the reception-side transducer into an electrical signal, and the reception unit A calculation means for calculating a flow velocity or a flow rate using the signal, a power supply, a boosting means for generating a high voltage for the transmission means from the power supply, a power supply control means for controlling the boosting means, and a control means. The control means is a flow measuring device that operates the power supply control means in terms of time. 制御手段は演算手段の信号により電源制御手段の動作を調整する請求項1記載の流れ計測装置。 2. The flow measuring apparatus according to claim 1, wherein the control means adjusts the operation of the power supply control means according to a signal from the calculation means. 制御手段は流速が無い場合に電源制御手段の動作を間欠的に調整する請求項1記載の流れ計測装置。 The flow measuring device according to claim 1, wherein the control means intermittently adjusts the operation of the power supply control means when there is no flow velocity. 制御手段はタイマ手段を有し、流速が無い場合に前記タイマ手段の信号に応じて電源制御手段の動作を調整する請求項1記載の流れ計測装置。 2. The flow measuring apparatus according to claim 1, wherein the control means has timer means, and adjusts the operation of the power supply control means in accordance with a signal from the timer means when there is no flow velocity. 制御手段は前回の流速または流量を記憶する流れ記憶手段を有し、流速が無い場合に前記流量記憶手段の信号に応じて電源制御手段の動作を調整する請求項1記載の流れ計測装置。 2. The flow measuring apparatus according to claim 1, wherein the control means has flow storage means for storing the previous flow velocity or flow rate, and adjusts the operation of the power supply control means according to a signal of the flow rate storage means when there is no flow velocity. 制御手段は前回の流速または流量を記憶する流れ記憶手段と、タイマ手段を有し、流速が無い場合に前記流れ記憶手段の信号とタイマ手段の信号に応じて電源制御手段の動作を調整する請求項1記載の流れ計測装置。 The control means has flow storage means for storing the previous flow rate or flow rate and timer means, and adjusts the operation of the power supply control means according to the signal of the flow storage means and the signal of the timer means when there is no flow rate. Item 1. The flow measuring device according to Item 1. 制御手段は記憶手段を有し、流速が無い場合に前記記憶手段の信号に応じて電源制御手段の動作を調整する請求項1記載の流れ計測装置。 2. The flow measuring device according to claim 1, wherein the control means has storage means, and adjusts the operation of the power supply control means in accordance with a signal from the storage means when there is no flow velocity. 制御手段は設定手段を有し、流速が無い場合に前記設定手段の信号に応じて電源制御手段の動作を調整する請求項1記載の流れ計測装置。 2. The flow measuring device according to claim 1, wherein the control means has setting means, and adjusts the operation of the power supply control means in accordance with a signal from the setting means when there is no flow velocity. 請求項1から請求項8のいずれか1項記載の制御手段としてのコンピュータを機能させるためのプログラム。 The program for functioning the computer as a control means of any one of Claims 1-8.
JP2005102140A 2005-03-31 2005-03-31 Flow measuring device Expired - Fee Related JP4735005B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005102140A JP4735005B2 (en) 2005-03-31 2005-03-31 Flow measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005102140A JP4735005B2 (en) 2005-03-31 2005-03-31 Flow measuring device

Publications (2)

Publication Number Publication Date
JP2006284267A true JP2006284267A (en) 2006-10-19
JP4735005B2 JP4735005B2 (en) 2011-07-27

Family

ID=37406359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005102140A Expired - Fee Related JP4735005B2 (en) 2005-03-31 2005-03-31 Flow measuring device

Country Status (1)

Country Link
JP (1) JP4735005B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008014839A (en) * 2006-07-06 2008-01-24 Toshiba Corp Ultrasonic gas meter
JP2010145250A (en) * 2008-12-18 2010-07-01 Yazaki Corp Measuring device, mode shifting method therefor, and trigger signal generation device
JP2010181199A (en) * 2009-02-03 2010-08-19 Yazaki Corp Device and method for determination

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002236040A (en) * 2001-02-08 2002-08-23 Matsushita Electric Ind Co Ltd Flow rate measuring apparatus
JP2003232663A (en) * 2003-03-17 2003-08-22 Matsushita Electric Ind Co Ltd Flow rate measuring device
JP2004333428A (en) * 2003-05-12 2004-11-25 Matsushita Electric Ind Co Ltd Fluid flow measuring device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002236040A (en) * 2001-02-08 2002-08-23 Matsushita Electric Ind Co Ltd Flow rate measuring apparatus
JP2003232663A (en) * 2003-03-17 2003-08-22 Matsushita Electric Ind Co Ltd Flow rate measuring device
JP2004333428A (en) * 2003-05-12 2004-11-25 Matsushita Electric Ind Co Ltd Fluid flow measuring device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008014839A (en) * 2006-07-06 2008-01-24 Toshiba Corp Ultrasonic gas meter
JP2010145250A (en) * 2008-12-18 2010-07-01 Yazaki Corp Measuring device, mode shifting method therefor, and trigger signal generation device
JP2010181199A (en) * 2009-02-03 2010-08-19 Yazaki Corp Device and method for determination

Also Published As

Publication number Publication date
JP4735005B2 (en) 2011-07-27

Similar Documents

Publication Publication Date Title
EP2631610B1 (en) Flow-rate measurement device
JP4735005B2 (en) Flow measuring device
JP2008190930A (en) System and program for measuring flow velocity or flow quantity
JP2008190971A (en) System and program for measuring flow velocity or flow quantity
JP4649822B2 (en) Fluid flow measuring device
JP4639830B2 (en) Booster and flow velocity or flow rate measuring device
JP3695432B2 (en) Flow measuring device
JP5123518B2 (en) Ultrasonic flow meter
JP3748353B2 (en) Flow rate measuring method, flow rate measuring apparatus, and gas meter
JP3689982B2 (en) Ultrasonic current meter
JP3689977B2 (en) Ultrasonic current meter
JP4788166B2 (en) Fluid flow measuring device
JP4293134B2 (en) Instrument discrimination device
TWI434495B (en) Voltage generation system that can dynamically calibrate time period for enabling the system and method thereof
JP4788176B2 (en) Flow measuring device
JP4306618B2 (en) Instrument discrimination device
JP4686848B2 (en) Flow measuring device
JP2005249641A (en) Flow measuring device
JP2005257362A (en) Flow-measuring apparatus
JP2002365108A (en) Ultrasonic flowmeter
JP4581879B2 (en) Flow velocity or flow rate measuring device
JP2004085420A (en) Flow measuring instrument
JP2005257613A (en) Apparatus for measuring flow of fluid
JP2002148086A (en) Flow rate measuring equipment
JP4973638B2 (en) Fluid flow measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080227

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080312

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110411

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees