JP2004333014A - Heat accumulator utilizing latent heat - Google Patents

Heat accumulator utilizing latent heat Download PDF

Info

Publication number
JP2004333014A
JP2004333014A JP2003129772A JP2003129772A JP2004333014A JP 2004333014 A JP2004333014 A JP 2004333014A JP 2003129772 A JP2003129772 A JP 2003129772A JP 2003129772 A JP2003129772 A JP 2003129772A JP 2004333014 A JP2004333014 A JP 2004333014A
Authority
JP
Japan
Prior art keywords
heat
storage tank
heat storage
cold
mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003129772A
Other languages
Japanese (ja)
Other versions
JP3831923B2 (en
Inventor
Seiichi Kubokawa
清一 窪川
Hiromi Mori
弘美 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Engineering Corp
Original Assignee
Mitsubishi Chemical Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Engineering Corp filed Critical Mitsubishi Chemical Engineering Corp
Priority to JP2003129772A priority Critical patent/JP3831923B2/en
Publication of JP2004333014A publication Critical patent/JP2004333014A/en
Application granted granted Critical
Publication of JP3831923B2 publication Critical patent/JP3831923B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an accumulator utilizing the latent heat, wherein COP of a heat source device is improved, by setting an outlet temperature of the heat source device in radiating operation, to high temperatures or low temperatures before achievement with respect to a set temperature of an inlet of a heat exchanger, and the stability and controllability of a supply temperature to heat load is improved by a thermal buffer function of a heat storage tank. <P>SOLUTION: In a cold accumulation mode, a heat transfer medium from a cold source device 20 is joined to a downstream side of a circulation pipe conduit 25b after accumulating the cold from a circulation pipe conduit 25a to a thermal storage tank 1, and then returned to the cold source device 20 again. In a cold heat radiating mode, the heat transfer medium is passed through the thermal storage tank 1 from the circulation pipe conduit 25a at a downstream of the cold source device 20, joined to the downstream side of the circulation pipe conduit 25a again through a heat transfer pipe 23b', then passed through a heat exchanger 28 at a side of an apparatus 26 using the cold or a bypass pipe 27, and returned to the thermal storage tank 1 again through a bypass pipe 24 at the cold source device 20 side or between the upstream and downstream. The thermal storage tank 1 is connected to the downstream side of the cold source device 20 in series. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、例えば建屋内を冷、暖房する空調システムや冷却、加熱を必要とするプロセスに適用し、電気料金の割安な夜間電力で熱源機を運転して蓄熱し、昼間の時間帯に放熱するように空調機器を運転するようにした潜熱利用蓄熱装置に関する。
【0002】
【従来の技術】
この種の潜熱利用蓄熱装置として、蓄熱槽をヒートポンプなどの熱発生機器に接続し、空調機器が運転休止している深夜の時間帯には安価な深夜電力を使用して熱発生機器を運転し、この熱発生機器で生成した熱量を伝熱媒体を介して蓄熱槽に蓄熱するとともに、昼間の時間帯には蓄熱槽を放熱モードにしてこの蓄熱槽と空調機器との間で伝熱媒体を循環させて空調機器を運転するようにした蓄熱装置が知られている(特許文献1参照)。
【0003】
ところで、このような従来の蓄熱装置は、図6に示すように、蓄熱槽301の下流側には、二方弁302,303およびポンプ304を介して蓄熱・空調用熱源機であるブラインヒートポンプ装置305が直列に配管接続され、ポンプ304の運転により循環するブラインを、冷房時に冷却し、暖房時に加熱する。
【0004】
蓄熱槽301には、三方弁312、二方弁306,307、およびポンプ309を介して第1熱交換器310の熱源側コイル310aが配管接続され、三方弁312を介して放熱温度調節用のバイパス配管314が接続されている。
【0005】
三方弁312、バイパス配管314、温度センサ311およびコントローラ313の働きにより、蓄熱槽301からの放熱温度が調節されるようになっており、ポンプ304およびブラインヒートポンプ装置305と並列に、二方弁315,316を介して第2熱交換器317の熱源側コイル317aが配管接続されている。
【0006】
蓄熱槽301の流出部には、三方弁312、二方弁303、ポンプ304を介してヒートポンプ装置305の吸込口が接続され、ブラインヒートポンプ装置305の吐出口には、二方弁315、熱源側コイル317a、及び二方弁306を介して蓄熱槽301の流入部が接続された構成となっている。
【0007】
【特許文献1】
特開平10−61996号公報(段落0024〜段落0029、図1)
【0008】
【発明が解決しようとする課題】
しかしながら、上記のような従来の蓄熱装置では、熱源機と蓄熱槽とが熱交換器に対し並列に配設されていることから、熱源機は、蓄熱槽の温度と同等の温度レベルの出力が必要となり、これが熱交換器1次側の温度となる熱負荷に必要な温度レベルを得るためには、熱源機のCOP(エネルギー利用効率)が低い運転となる問題を有していた。
【0009】
また、熱源機と蓄熱槽がそれぞれ熱交換器に対して独立していることから、熱源機のON/OFF時の温度変動が熱源機に直接影響するため、運転効率が低くなる原因となるだけでなく、それぞれに循環ポンプが必要となりエネルギーロスの要因となっていた。
【0010】
従って、本発明の目的とする所は、放熱運転時に於ける熱源機出口温度を熱交換器入口の設定温度に対し到達前の高温または低温への設定を可能とすることで、熱源機のCOPを向上すると共に蓄熱槽の熱バッファ機能により熱負荷への供給温度の安定性と制御性を向上した潜熱利用蓄熱装置を提供することである。
【0011】
【課題を解決する為の手段】
上記目的を達成するために、本発明は次の技術的手段を有する。即ち、実施の形態に対応する添付図面に使用した符号を用いて説明すると、熱源機、蓄熱槽、熱使用機器側に伝熱媒体を循環する循環管路を備え、夜間の蓄熱モード時に熱源機と蓄熱槽の間で伝熱媒体を循環して生成熱を蓄熱し、昼間の放熱モード時に蓄熱槽と熱使用機器側との間で伝熱媒体を循環して蓄熱槽に蓄えた熱量を熱使用機器側の熱交換器に放熱するようにした潜熱利用蓄熱装置に於いて、蓄熱動作をするための冷熱蓄熱モード時に於いては、冷熱源機20を出た伝熱媒体を循環管路25aから分岐した冷熱蓄熱モード時伝熱管23bを介して蓄熱槽1に通して蓄熱し、該蓄熱槽1を出た伝熱媒体を冷熱蓄熱モード時伝熱管23cを介して循環管路25bの下流側に合流したのち、ポンプPによって再び冷熱源機20に戻るように構成し、放熱動作をするための冷熱放熱モード時に於いては、上記冷熱源機20下流の循環管路25aから分岐した冷熱放熱モード時伝熱管23aを介して蓄熱槽1を通し、該蓄熱槽1を出た伝熱媒体を冷熱放熱モード時伝熱管23b’を介して再び上記循環管路25aの下流側に合流したのち、冷熱使用機器26側の熱交換器28あるいは該熱交換器28の上、下流の間に接続されたバイパス管27を通し、該熱交換器28から上記循環管路25bに出た伝熱媒体をポンプPによって上記冷熱源機20側あるいはその上、下流間に接続されたバイパス管24を通し、循環管路25aの下流側から分岐した蓄熱モード時伝熱管23aを介して再び蓄熱槽1に戻るように構成し、上記冷熱源機20の下流側に蓄熱槽1を直列に配設したことを特徴とする潜熱利用蓄熱装置である。
上記によれば、冷熱蓄熱モード時では、冷熱源機20から出た低温の伝熱媒体は、循環管路25aから分岐した冷熱蓄熱モード時伝熱管23bを介して蓄熱槽1に通して蓄熱し、該蓄熱槽1を出た伝熱媒体は冷熱蓄熱モード時伝熱管23cを介して循環管路25bの下流側に合流したのち、ポンプPによって再び冷熱源機20に戻る。また、冷熱放熱モード時では、冷熱源機20下流の循環管路25aから分岐した冷熱放熱モード時伝熱管23aを介して蓄熱槽1を通し、蓄熱槽1を出た伝熱媒体は、冷熱放熱モード時伝熱管23b’を介して再び上記循環管路25aの下流側に合流し、冷熱使用機器26側の熱交換器28あるいは該熱交換器28の上、下流間に接続されたバイパス管27を通し、該熱交換器28から上記循環管路25bに出た伝熱媒体をポンプPによって上記冷熱源機20側あるいはその上、下流間に接続されたバイパス管24を通して、循環管路25a下流側から分岐した蓄熱モード時伝熱管23aを介して再び蓄熱槽1に戻る。
従って、熱交換器28側から下流側に冷熱源機20、蓄熱槽1の順に直列に配設することで、冷熱放熱運転時に於ける冷熱源機20の出口温度を熱交換器入口の設定温度以上に設定することが可能となり、冷熱源機20のCOPを向上することが可能となる。また、上記のように直列配置となることで、伝熱媒体を循環するポンプを1台で対応することができる。
【0012】
また本発明は、冷熱放熱モード時に於ける冷熱源機20出口側の温度設定値が、冷熱使用機器26側の熱交換器28入口側の温度設定値以上に設定されることを特徴とする潜熱利用蓄熱装置である。
従って、蓄熱槽1が熱バッファ機能を備えることにより冷熱源機20のON/OFF作動による冷熱源機20出口温度の変動を吸収することができ、熱負荷への供給温度の安定性と制御性が向上する。
【0013】
また本発明は、熱源機、蓄熱槽、熱使用機器側に伝熱媒体を循環する循環管路を備え、夜間の蓄熱モード時に熱源機と蓄熱槽の間で伝熱媒体を循環して生成熱を蓄熱し、昼間の放熱モード時に蓄熱槽と熱使用機器側との間で伝熱媒体を循環して蓄熱槽に蓄えた熱量を熱使用機器側の熱交換器に放熱するようにした潜熱利用蓄熱装置に於いて、蓄熱動作をするための温熱蓄熱モード時に於いては、温熱源機20を出た伝熱媒体を循環管路25aから分岐した温熱蓄熱モード時伝熱管23bを介して蓄熱槽1に通して蓄熱し、該蓄熱槽1を出た伝熱媒体を温熱蓄熱モード時伝熱管23cを介して循環管路25bの下流側に合流したのち、ポンプPよって再び温熱源機20に戻るように構成し、放熱動作をするための温熱放熱モード時に於いては、上記温熱源機20下流の循環管路25aから分岐した温熱放熱モード時伝熱管23aを介して蓄熱槽1を通し、該蓄熱槽1を出た伝熱媒体を温熱放熱モード時伝熱管23b’を介して再び上記循環管路25aの下流側に合流したのち、温熱使用機器26側の熱交換器28あるいは該熱交換器28の上、下流の間に接続されたバイパス管27を通し、該熱交換器28から上記循環管路25bに出た伝熱媒体をポンプPによって上記温熱源機20側あるいはその上、下流間に接続されたバイパス管24を通し、循環管路25aの下流側から分岐した蓄熱モード時伝熱管23bを介して再び蓄熱槽1に戻るように構成し、上記温熱源機20の下流側に蓄熱槽1を直列に配設したことを特徴とする潜熱利用蓄熱装置である。
上記によれば、温熱蓄熱モード時では、温熱源機20から出た高温の伝熱媒体は、循環管路25aから分岐した温熱蓄熱モード時伝熱管23bを介して蓄熱槽1に通して蓄熱し、該蓄熱槽1を出た伝熱媒体は温熱蓄熱モード時伝熱管23cを介して循環管路25bの下流側に合流したのち、ポンプPによって再び温熱源機20に戻る。また、温熱放熱モード時では、温熱源機20下流の循環管路25aから分岐した温熱放熱モード時伝熱管23aを介して蓄熱槽1を通し、蓄熱槽1を出た伝熱媒体は、温熱放熱モード時伝熱管23b’を介して再び上記循環管路25aの下流側に合流し、温熱使用機器26側の熱交換器28あるいは該熱交換器28の上、下流の間に接続されたバイパス管27を通し、上記熱交換器28から循環管路25bに出た伝熱媒体はポンプPによって温熱源機20を通して循環管路25a下流側から分岐した蓄熱モード時伝熱管23bを介して再び蓄熱槽1に戻る。
従って、熱交換器28側から下流側に温熱源機20、蓄熱槽1の順に直列に配設することで、温熱放熱運転時に於ける温熱源機20の出口温度を熱交換器28入口の設定温度以下に設定することが可能となり、温熱源機20のCOPを向上することが可能となる。また、上記のように直列配置となることで、伝熱媒体を循環するポンプPを1台で対応することができる。
【0014】
また本発明は、温熱放熱モード時に於ける温熱源機20出口側の温度設定値が、温熱使用機器26側の熱交換器28入口側の温度設定値以下に設定されることを特徴とする潜熱利用蓄熱装置である。
従って、蓄熱槽1が熱バッファ機能を備えることにより温熱源機20のON/OFF作動による温熱源機20出口温度の変動を吸収することができ、熱負荷への供給温度の安定性と制御性が向上する。
【0015】
【発明の実施の形態】
以下、本発明の実施形態を添付図面に基づき詳細に説明する。図1は本発明に係る蓄熱槽の実施例であって、(A)、(B)は円筒形胴体の蓄熱槽の一部断面を示す側面図、(C)は矩形胴体の蓄熱槽の斜視図である。
【0016】
以下この実施例では熱使用機器として、冷房,冷凍装置に適用した例をとって説明する。
【0017】
図1(A)〜(C)における符号1は、本発明の蓄熱装置として使用される蓄熱槽の実施例であって、この蓄熱槽1は、円筒形あるいは矩形の胴体2と、円筒形の場合では上下あるいは左右両端に取着された胴体蓋4,5とを有している。
【0018】
円筒形の場合では、上下あるいは左右両端の胴体蓋4,5中央には夫々上下の接続口6,8が設けられており、これら上下の接続口6,8には図示しない伝熱管が接続されている。上記胴体蓋4,5の内部には、上下の接続口6,8に対向して配設された伝熱媒体の分散器10,12が設置されており、これら分散器10,12には、胴体内部16に伝熱媒体を拡散流通させる多数の小孔が形成されている。
【0019】
上記分散器10,12によって仕切られる胴体2の内部には、周知の小球状蓄熱体18(例えば特公平5−81832号公報)が多数、密に充填されており、これら小球状蓄熱体18は、相変化温度で液相から固相に変わる時に固化の潜熱として冷熱を蓄熱し、固相から液相に相変化する時に先に蓄熱した冷熱を放出する蓄熱材を球状のシェル内に封入したものであり、好適な蓄熱材としては、例えば、HO(水)に発核剤を微量添加した組成物を主液としている。
【0020】
勿論、温熱を対象とする場合には、小球状蓄熱体18内に封入された蓄熱媒材は、相変化温度で融解した時に蓄熱し、凝固した時に潜熱を放出する。
【0021】
次に、図2〜図5に従い本発明の好適な実施形態に付き詳述する。図2は本発明の冷熱/温熱源機の単独運転モード時における説明図、図3は冷熱/温熱蓄熱モード時に於ける説明図、図4は冷熱/温熱放熱運転モード時における説明図であり、図5は蓄熱装置の放熱ピーク時に冷熱/温熱機を併用運転している放熱運転モード時の説明図である。
【0022】
先ず、図2〜図5に示される共通の装置に付き説明する。以下に説明する全図において、開閉弁のバルブ記号は黒塗りが閉弁状態、白塗りが開弁状態、また半分黒塗り、半分白塗りが閉弁状態、開弁状態の何れかのケースもあり得ることを示している。図2〜図5に示す20は冷熱源機であって、22は冷熱を発生する冷凍機などの冷凍装置を示し、28は冷熱使用機器26側の熱交換器である。
【0023】
図2に示すように、冷熱源機20側の冷凍装置22に接続された循環管路25aの下流側に2つの分岐点B1,B2が配設されており、上流分岐点B1からは蓄熱槽1に接続すべく開閉弁V4を備えた後述する冷熱放熱モード時伝熱管23aが分岐されると共に、下流分岐点B2からは蓄熱槽1に接続すべく、互いに共用となる冷熱蓄熱モード時伝熱管23b、冷熱放熱モード時伝熱管23b’が分岐され、上、下流分岐点B1,B2の間の循環管路25aには開閉弁V3が配置されている。
【0024】
下流分岐点B2の循環管路25a下流側には、冷熱使用機器26側の熱交換器28に接続されていて、この熱交換器28の上流と下流の間にバイパス管27が接続されている。
【0025】
更に、熱交換器28の下流は循環管路25bに接続されており、循環管路25b下流側の分岐点B3には蓄熱槽1に接続され開閉弁V8を備えた冷熱蓄熱モード時伝熱管23cが接続され、分岐点B3下流側の循環管路25bには冷熱源機20側の冷凍装置22が接続されており、冷凍装置22の上流と下流の間にはバイパス管24が接続されている。
【0026】
冷熱使用機器26は、例えば冷房装置などの空調機であって、この空調機は、熱交換器28で冷やされた伝熱流体をポンプP1によってOUT側からIN側に循環させる過程で放冷されるようになっている。
【0027】
そして、冷凍装置22、冷熱使用機器26側の熱交換器28には、開閉弁V2,V5を備えたバイパス管24,27が接続され、冷凍装置22、冷熱使用機器26の上流側にはそれぞれ開閉弁V1,V6が設けられている。
【0028】
次に、上記のように構成された一連の動作に付き図2〜図5を参照して説明する。
【0029】
図2は冷熱源機側冷凍装置の単独運転モードを示している。この単独運転モードに於いては、冷熱源機20の冷凍装置22から循環管路25aに出た伝熱媒体は、図中太線で示すようにポンプPにより、循環管路25aの2つの上流ないし下流分岐点B1,B2間の開弁された開閉弁V3を介して冷熱使用機器側の熱交換器あるいは該熱交換器の上流と下流の間に接続されたバイパス管を通し、上記熱交換器から循環管路に出た伝熱媒体は開閉弁V7,V1を通して再び冷凍装置22に戻る。
【0030】
図3は、冷熱蓄熱運転モードを示している。この冷熱蓄熱運転モードに於いては、冷熱源機20の冷凍装置22から出た低温の伝熱媒体は、図中太線で示すように循環管路25a下流の開閉弁V3を介して下流分岐点B2から分岐した冷熱蓄熱モード時伝熱管23bを介して蓄熱槽1に通して蓄熱し、この蓄熱槽1を出た伝熱媒体は、冷熱蓄熱モード時伝熱管23cを介して循環管路25bの下流側に合流したのち、ポンプPによって開弁された開閉弁V1を通り再び冷熱源機に戻る。
【0031】
図4は、冷熱放熱運転モードを示している。この冷熱放熱運転モードに於いては、冷熱源機20の冷凍装置22を出た伝熱媒体は、図中太線で示すように下流の循環管路25aに於ける上流分岐点B1から分岐した冷熱放熱モード時伝熱管23aの開閉弁V4を介して蓄熱槽1を通り、この蓄熱槽1を出た伝熱媒体は、冷熱放熱モード時伝熱管23b’から下流分岐点B2を介して再び循環管路25aの下流側に合流し、冷熱使用機器26側の開閉弁V6を通して熱交換器28、あるいはこの熱交換器28の上流と下流の間の開閉弁V5を介してバイパス管27を通り、熱交換器28から出た伝熱媒体はポンプPによって循環管路25b下流側の開閉弁V7を介して冷凍装置22側あるいはその上流と下流の間に接続されたバイパス管24を通過し、循環管路25a下流側の上流分岐点B1から分岐した冷熱放熱モード時伝熱管23aの開閉弁V4を介して再び蓄熱槽1に戻る。
【0032】
図5は、蓄熱装置の放熱ピーク時に冷熱機を併用運転している冷熱放熱運転モードを示している。
【0033】
本実施例の場合は、上記の冷熱放熱運転モードに加え冷熱機を併用運転した運転モードであって、重複する冷熱放熱運転モードの説明は省略するが、熱交換器28から循環管路25bに出た伝熱媒体は、図中太線で示すように開放された開閉弁V1を介して冷熱源機20側の冷凍装置22を通過する過程で加熱されたのち、循環管路25aの開閉弁V3を通過すると共に蓄熱槽1を通り再び循環管路25aに合流し熱交換器28に循環する。
【0034】
従って、上記の実施形態によれば、熱交換器28側から下流側に冷熱源機20側の冷凍装置22、蓄熱槽1の順に直列に配設することで、冷熱放熱運転時に於ける冷凍装置22の出口温度を熱交換器28入口の設定温度以上に設定することが可能となり、冷凍装置22のCOPを向上することが可能となる。また、上記のように直列配置となることで、伝熱媒体を循環するポンプPを1台で対応することができる。
【0035】
また、冷熱放熱モード時に於ける冷凍装置22出口側の温度設定値が、冷熱使用機器26側の熱交換器28入口側の温度設定値以上に設定されることで、蓄熱槽1が熱バッファ機能を備えることにより冷凍装置22のON/OFF作動による冷凍装置22出口温度の変動を吸収することができ、熱負荷への供給温度の安定性と制御性が向上する。
【0036】
上記の実施例においては、この装置を冷房、冷凍装置に適用した例を示し、熱使用機器における熱交換器へ冷熱を伝える場合を示したが、本発明の潜熱利用蓄熱装置は、この例に限定されることなく、他の冷熱利用装置にも適用できる他、熱使用機器を太陽熱装置や、暖房熱源供給装置として、そこから熱使用機器に於ける熱交換器へ温熱を伝えるような装置にも、この潜熱利用蓄熱装置を適用でき、蓄熱時には、蓄熱槽内に潜熱が蓄熱され、放熱時には熱使用機器の熱交換器へ温熱が放熱される。
【0037】
勿論、温熱を対象とする場合には、小球状蓄熱体18内に封入された蓄熱材は、相変化温度で融解した時に蓄熱し、凝固した時に潜熱を放出する。
【0038】
【発明の効果】
以上詳述した如く、本発明によると次の様な効果を奏する。
【0039】
即ち、請求項1及び請求項2によると、熱交換器側から下流側に冷熱源機、蓄熱槽の順に直列に配設することで、冷熱放熱運転時に於ける冷熱源機の出口温度を熱交換器入口の設定温度以上に設定することが可能となり、熱源機のCOPを向上することが可能となる。また、上記のように直列配置となることで、伝熱媒体を循環するポンプを1台で対応することができる。
更に、蓄熱槽が熱バッファ機能を備えることにより冷熱源機のON/OFF作動による冷熱源機出口温度の変動を吸収することができ、熱負荷への供給温度の安定性と制御性が向上する。
【0040】
また請求項3及び請求項4によると、温熱放熱運転時に於ける温熱源機の出口温度を熱交換器入口の設定温度以下に設定することが可能となり、熱源機のCOPを向上することが可能となる。また、上記のように直列配置となることで、伝熱媒体を循環するポンプを1台で対応することができる。
更に、蓄熱槽が熱バッファ機能を備えることにより温熱源機のON/OFF作動による温熱源機出口温度の変動を吸収することができ、熱負荷への供給温度の安定性と制御性が向上する。
【図面の簡単な説明】
【図1】本発明の実施形態に係る蓄熱槽の実施例であって、(A)、(B)は円筒形胴体の蓄熱槽の一部断面を示す側面図、(C)は矩形胴体の蓄熱槽の斜視図である。
【図2】本発明の冷熱/温熱源機の単独運転モード時における説明図である。
【図3】同じく、冷熱/温熱蓄熱モード時に於ける説明図である。
【図4】同じく、冷熱/温熱放熱運転モード時における説明図である。
【図5】同じく、蓄熱装置の放熱ピーク時に冷熱/温熱機を併用運転している放熱運転モード時の説明図である。
【図6】従来の蓄熱空調システム装置の説明図である。
【符号の説明】
1 蓄熱槽
2 胴体
4,5 胴体蓋
6,8 接続口
16 胴体内部
18 小球状蓄熱体
20 冷熱源機
10,12 分散器
22 冷凍装置
23a 冷熱放熱モード時伝熱管
23b,23c 冷熱蓄熱モード時伝熱管
23b’ 冷熱放熱モード時伝熱管
24 バイパス管
25a,25b 循環管路
26 冷熱使用機器
27 バイパス管
28 熱交換器
B1 上流分岐点
B2 下流分岐点
B3 分岐点
P,P1 ポンプ
V1〜V8 開閉弁
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is applied to, for example, an air conditioning system that cools and heats a building or a process that requires cooling and heating.The heat source device is operated using night-time electric power at a low electricity rate to store heat and radiate heat during the daytime. The present invention relates to a latent heat storage device that operates an air conditioner so as to operate.
[0002]
[Prior art]
As this type of latent heat storage device, a heat storage tank is connected to a heat generating device such as a heat pump, and the heat generating device is operated using inexpensive midnight power during the midnight hours when the air conditioner is out of operation. The heat generated by the heat generating device is stored in the heat storage tank via the heat transfer medium, and during the daytime, the heat storage tank is set to the heat dissipation mode to transfer the heat transfer medium between the heat storage tank and the air conditioner. 2. Description of the Related Art A heat storage device that circulates air to operate an air conditioner is known (see Patent Document 1).
[0003]
By the way, as shown in FIG. 6, such a conventional heat storage device is provided with a brine heat pump device which is a heat source device for heat storage and air conditioning downstream of a heat storage tank 301 via two-way valves 302 and 303 and a pump 304. A pipeline 305 is connected in series, and the brine circulated by the operation of the pump 304 is cooled during cooling and heated during heating.
[0004]
A heat source side coil 310 a of the first heat exchanger 310 is connected to the heat storage tank 301 via a three-way valve 312, two-way valves 306 and 307, and a pump 309. The bypass pipe 314 is connected.
[0005]
The operation of the three-way valve 312, the bypass pipe 314, the temperature sensor 311 and the controller 313 adjusts the heat radiation temperature from the heat storage tank 301. The two-way valve 315 is provided in parallel with the pump 304 and the brine heat pump device 305. , 316, the heat source side coil 317a of the second heat exchanger 317 is connected by piping.
[0006]
The outlet of the heat storage tank 301 is connected to a suction port of a heat pump device 305 via a three-way valve 312, a two-way valve 303, and a pump 304, and a discharge port of the brine heat pump device 305 is connected to a two-way valve 315, a heat source side. The configuration is such that the inflow portion of the heat storage tank 301 is connected via the coil 317a and the two-way valve 306.
[0007]
[Patent Document 1]
JP-A-10-61996 (paragraphs 0024 to 0029, FIG. 1)
[0008]
[Problems to be solved by the invention]
However, in the conventional heat storage device as described above, since the heat source unit and the heat storage tank are disposed in parallel with the heat exchanger, the heat source unit has an output at a temperature level equivalent to the temperature of the heat storage tank. In order to obtain a temperature level required for a heat load that becomes the temperature of the primary side of the heat exchanger, there is a problem that the COP (energy use efficiency) of the heat source device is low.
[0009]
In addition, since the heat source unit and the heat storage tank are independent of the heat exchanger, temperature fluctuations when the heat source unit is turned ON / OFF directly affect the heat source unit, which only lowers the operating efficiency. Instead, a circulating pump was required for each, causing energy loss.
[0010]
Accordingly, an object of the present invention is to make it possible to set the heat source unit outlet temperature during the heat radiation operation to a high temperature or a low temperature before the heat source unit reaches the set temperature at the heat exchanger inlet, thereby reducing the COP of the heat source unit. It is an object of the present invention to provide a latent heat storage device that improves the stability and controllability of the supply temperature to the heat load by the heat buffer function of the heat storage tank.
[0011]
[Means for solving the problem]
In order to achieve the above object, the present invention has the following technical means. That is to say, using the reference numerals used in the accompanying drawings corresponding to the embodiments, a heat source unit, a heat storage tank, and a circulation pipe for circulating a heat transfer medium on the side of the heat use device are provided. Circulates a heat transfer medium between the heat storage tank and the heat storage tank to store the generated heat, and circulates the heat transfer medium between the heat storage tank and the heat-using equipment during the daytime heat release mode to transfer the amount of heat stored in the heat storage tank. In the latent heat storage device that radiates heat to the heat exchanger of the equipment used, in the cold heat storage mode for performing the heat storage operation, the heat transfer medium exiting the cold heat source unit 20 is passed through the circulation line 25a. The heat is transferred to the heat storage tank 1 through the heat transfer tube 23b at the time of the cold heat storage mode branched from the heat storage medium, and the heat transfer medium exiting the heat storage tank 1 is downstream of the circulation pipe 25b through the heat transfer tube 23c at the time of the cold heat storage mode. So that the pump P returns to the cold heat source unit 20 again. In the cold heat radiation mode for performing the heat radiation operation, the heat storage tank 1 passes through the heat storage tank 1 via the heat radiation tube 23a in the cold heat radiation mode branched from the circulation pipe 25a downstream of the cold heat source unit 20. After the heat transfer medium having exited 1 is joined again to the downstream side of the circulation pipe 25a via the heat transfer pipe 23b 'in the cold heat radiation mode, the heat exchanger 28 on the side of the equipment 26 using the cold heat or the heat exchanger 28 of the heat exchanger 28 The heat transfer medium flowing out of the heat exchanger 28 to the circulation pipe 25b through the bypass pipe 27 connected between the upper and the lower stream is connected by the pump P to the side of the cold heat source unit 20 or between the upper and the lower stream. The heat storage tank 1 is configured to return to the heat storage tank 1 again through the heat transfer tube 23a in the heat storage mode branched from the downstream side of the circulation pipe line 25a through the bypass pipe 24 that is provided. Are arranged in series. It is a latent heat thermal storage device that.
According to the above, in the cold heat storage mode, the low-temperature heat transfer medium discharged from the cold heat source device 20 passes through the heat storage tank 1 via the cold heat storage mode heat transfer tube 23b branched from the circulation pipeline 25a to store heat. The heat transfer medium exiting the heat storage tank 1 joins the downstream side of the circulation pipe 25b via the heat transfer tube 23c in the cold heat storage mode, and then returns to the cold heat source device 20 by the pump P again. Further, in the cool heat radiation mode, the heat transfer medium passing through the heat storage tank 1 via the heat transfer tube 23a in the cold heat radiation mode branched from the circulation pipe 25a downstream of the cold heat source device 20 and leaving the heat storage tank 1 is cooled by the heat radiation. In the mode, the heat exchanger 28 joins again downstream of the circulation pipe 25a via the heat transfer pipe 23b ', and the heat exchanger 28 on the side of the equipment 26 using the cold heat or the bypass pipe 27 connected between the upper and lower sides of the heat exchanger 28. The heat transfer medium flowing out of the heat exchanger 28 to the circulation line 25b is passed by the pump P through the bypass line 24 connected between the cooling / heating source device 20 or above and downstream thereof, and then downstream of the circulation line 25a. It returns to the heat storage tank 1 again via the heat transfer tube 23a in the heat storage mode branched from the side.
Therefore, by arranging the cold heat source device 20 and the heat storage tank 1 in series in this order from the heat exchanger 28 side to the downstream side, the outlet temperature of the cold heat source device 20 during the cold heat radiation operation is set to the set temperature at the heat exchanger inlet. These settings can be made, and the COP of the cold heat source device 20 can be improved. In addition, by being arranged in series as described above, a single pump that circulates the heat transfer medium can be used.
[0012]
Further, the present invention is characterized in that the temperature set value on the outlet side of the cold heat source device 20 in the cold heat radiation mode is set to be equal to or higher than the temperature set value on the inlet side of the heat exchanger 28 on the cold use device 26 side. It is a use heat storage device.
Therefore, by providing the heat storage tank 1 with a heat buffer function, it is possible to absorb fluctuations in the temperature of the cold heat source device 20 due to the ON / OFF operation of the cold heat source device 20, thereby stabilizing and controlling the supply temperature to the heat load. Is improved.
[0013]
In addition, the present invention further includes a circulation pipe for circulating the heat transfer medium on the side of the heat source unit, the heat storage tank, and the heat-using device, and circulating the heat transfer medium between the heat source unit and the heat storage tank during the night heat storage mode to generate heat. Uses latent heat to store heat and circulate the heat transfer medium between the heat storage tank and the heat-using equipment during the daytime heat dissipation mode to release the heat stored in the heat storage tank to the heat exchanger on the heat-using equipment In the heat storage device, in the heat storage mode for performing the heat storage operation, the heat transfer medium that has exited the heat source device 20 is transferred from the circulation pipe 25a to the heat storage tank via the heat transfer tube 23b in the heat storage mode during the heat storage mode. 1, heat is stored, and the heat transfer medium that has exited the heat storage tank 1 joins the downstream side of the circulation pipe 25b via the heat transfer pipe 23c in the heat storage mode, and then returns to the heat source device 20 again by the pump P. In the heat dissipation mode for performing the heat dissipation operation, The heat transfer medium 23 that passes through the heat storage tank 1 via the heat transfer tube 23a in the thermal radiation mode when branched from the circulation conduit 25a downstream of the heat source device 20 is passed through the heat transfer tube 23b 'in the thermal radiation mode. Via the heat exchanger 28 on the side of the heating equipment 26 or a bypass pipe 27 connected between the upper and lower portions of the heat exchanger 28, and The heat transfer medium flowing out of the exchanger 28 into the circulation line 25b is branched by a pump P from the downstream side of the circulation line 25a through a bypass pipe 24 connected between the heat source unit 20 or above and downstream thereof. A heat storage device utilizing latent heat, wherein the heat storage tank 1 is configured to return to the heat storage tank 1 again via the heat transfer tube 23b during the heat storage mode, and the heat storage tank 1 is arranged in series downstream of the heat source device 20. .
According to the above, in the heat storage mode, the high-temperature heat transfer medium that has exited from the heat source device 20 passes through the heat storage tank 1 via the heat transfer tube 23b in the heat storage mode that branches off from the circulation pipe 25a to store heat. The heat transfer medium exiting the heat storage tank 1 joins the downstream side of the circulation line 25b via the heat transfer tube 23c in the heat storage mode, and then returns to the heat source device 20 by the pump P again. Further, in the heat radiation mode, the heat transfer medium passing through the heat storage tank 1 through the heat transfer tube 23a in the heat radiation mode in the thermal radiation mode branching off from the circulation pipe 25a downstream of the heat source unit 20, and the heat transfer medium exiting the heat storage tank 1 is subjected to thermal radiation. The mode-mode heat transfer pipe 23b 'joins the downstream side of the circulation pipe 25a again via the heat transfer pipe 23b', and the heat exchanger 28 on the side of the heat use equipment 26 or the bypass pipe connected between the upper side and the downstream side of the heat exchanger 28. The heat transfer medium flowing out of the heat exchanger 28 into the circulation line 25b through the heat exchanger 27 is again transferred to the heat storage tank via the heat transfer mode time heat transfer tube 23b branched from the downstream side of the circulation line 25a by the pump P through the heat source device 20. Return to 1.
Therefore, by arranging the heat source unit 20 and the heat storage tank 1 in series in this order from the heat exchanger 28 side to the downstream side, the outlet temperature of the heat source unit 20 during the heat radiation operation is set at the inlet of the heat exchanger 28. The temperature can be set to be lower than the temperature, and the COP of the heat source device 20 can be improved. Further, by being arranged in series as described above, one pump P that circulates the heat transfer medium can be used.
[0014]
Further, the present invention is characterized in that the temperature set value at the outlet side of the heat source device 20 in the heat radiation mode is set to be equal to or less than the temperature set value at the inlet side of the heat exchanger 28 on the heat use equipment 26 side. It is a use heat storage device.
Therefore, by providing the heat storage tank 1 with the heat buffer function, it is possible to absorb fluctuations in the outlet temperature of the heat source device 20 due to the ON / OFF operation of the heat source device 20, thereby stabilizing and controlling the supply temperature to the heat load. Is improved.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 shows an embodiment of a heat storage tank according to the present invention. (A) and (B) are side views showing a partial cross section of a cylindrical heat storage tank, and (C) is a perspective view of a rectangular body heat storage tank. FIG.
[0016]
Hereinafter, in this embodiment, an example in which the present invention is applied to a cooling and refrigerating device as a heat-using device will be described.
[0017]
Reference numeral 1 in FIGS. 1A to 1C is an embodiment of a heat storage tank used as a heat storage device of the present invention. The heat storage tank 1 includes a cylindrical or rectangular body 2 and a cylindrical body. In some cases, it has a body cover 4, 5 attached to the upper and lower or left and right ends.
[0018]
In the case of the cylindrical shape, upper and lower connection ports 6 and 8 are provided at the center of the body lids 4 and 5 at the upper and lower sides or at both left and right ends, and a heat transfer tube (not shown) is connected to the upper and lower connection ports 6 and 8. ing. Dispersers 10 and 12 for the heat transfer medium disposed opposite the upper and lower connection ports 6 and 8 are installed inside the body lids 4 and 5. A large number of small holes for diffusing and flowing the heat transfer medium are formed inside the body 16.
[0019]
A large number of well-known small spherical heat accumulators 18 (for example, Japanese Patent Publication No. 5-81832) are densely filled inside the body 2 partitioned by the dispersers 10 and 12. A heat storage material that stores cold heat as latent heat of solidification when the liquid phase changes to the solid phase at the phase change temperature, and releases the cold heat previously stored when the phase changes from the solid phase to the liquid phase is enclosed in a spherical shell. As a preferred heat storage material, for example, a composition obtained by adding a trace amount of a nucleating agent to H 2 O (water) is used as a main liquid.
[0020]
Of course, in the case of heat, the heat storage medium enclosed in the small spherical heat storage 18 stores heat when melted at the phase change temperature and releases latent heat when solidified.
[0021]
Next, a preferred embodiment of the present invention will be described in detail with reference to FIGS. FIG. 2 is an explanatory diagram of the cold / hot heat source device of the present invention in the single operation mode, FIG. 3 is an explanatory diagram of the cold / hot heat storage mode, and FIG. 4 is an explanatory diagram of the cold / hot heat radiation operation mode. FIG. 5 is an explanatory diagram in the heat dissipation operation mode in which the cooling / heating machine is operated in combination during the heat dissipation peak of the heat storage device.
[0022]
First, the common device shown in FIGS. 2 to 5 will be described. In all the drawings described below, the valve symbol of the on-off valve is black in the closed state, white in the open state, half black in half, half white in the closed state, or open state. It indicates what is possible. Reference numeral 20 shown in FIGS. 2 to 5 is a cold heat source device, 22 is a refrigerating device such as a refrigerator that generates cold heat, and 28 is a heat exchanger on the side of the device 26 using cold heat.
[0023]
As shown in FIG. 2, two branch points B1 and B2 are provided on the downstream side of the circulation pipeline 25a connected to the refrigerating device 22 on the side of the cold heat source unit 20, and a heat storage tank is provided from the upstream branch point B1. 1 is connected to the heat transfer tube 23a in the cold heat radiation mode described later, which is provided with an on-off valve V4, and is connected to the heat storage tank 1 from the downstream branch point B2 so as to be shared with each other in the cold heat storage mode. 23b, the heat transfer tube 23b 'in the cold heat radiation mode is branched, and an on-off valve V3 is disposed in the circulation pipeline 25a between the upper and downstream branch points B1 and B2.
[0024]
Downstream of the downstream branch point B2, the circulation pipe 25a is connected to a heat exchanger 28 on the cold heat use equipment 26 side, and a bypass pipe 27 is connected between the upstream and downstream of the heat exchanger 28. .
[0025]
Further, the downstream of the heat exchanger 28 is connected to the circulation pipe 25b, and a branch point B3 downstream of the circulation pipe 25b is connected to the heat storage tank 1 and provided with the on-off valve V8 in the cold heat storage mode heat transfer pipe 23c. Is connected to the refrigeration unit 22 on the side of the cold heat source unit 20 on the circulation line 25b downstream of the branch point B3, and a bypass pipe 24 is connected between the upstream and downstream of the refrigeration unit 22. .
[0026]
The cold heat use device 26 is, for example, an air conditioner such as a cooling device. The air conditioner is cooled in a process of circulating the heat transfer fluid cooled in the heat exchanger 28 from the OUT side to the IN side by the pump P1. It has become so.
[0027]
Further, bypass pipes 24 and 27 provided with on-off valves V2 and V5 are connected to the heat exchanger 28 on the side of the refrigeration apparatus 22 and the cold energy use equipment 26, respectively. On-off valves V1 and V6 are provided.
[0028]
Next, a series of operations configured as described above will be described with reference to FIGS.
[0029]
FIG. 2 shows an isolated operation mode of the refrigeration apparatus on the side of the cold heat source unit. In this single operation mode, the heat transfer medium flowing out of the refrigerating device 22 of the cold heat source unit 20 into the circulation pipeline 25a is pumped by a pump P as shown by a thick line in FIG. The heat exchanger is passed through a heat exchanger on the side of the cold-heat using equipment or a bypass pipe connected between the upstream and the downstream of the heat exchanger via the on-off valve V3 opened between the downstream branch points B1 and B2. The heat transfer medium that has flowed out of the circulation line returns to the refrigerating device 22 through the on-off valves V7 and V1.
[0030]
FIG. 3 shows a cold heat storage operation mode. In this cold heat storage operation mode, the low-temperature heat transfer medium that has flowed out of the refrigerating device 22 of the cold heat source unit 20 passes through the on-off valve V3 downstream of the circulation pipe line 25a as shown by the thick line in the drawing, and the downstream branch point. The heat is transferred through the heat storage tank 1 via the heat transfer tube 23b in the cold heat storage mode branched from B2, and the heat transfer medium exiting the heat storage tank 1 is transferred to the circulation pipe 25b through the heat transfer tube 23c in the cold heat storage mode. After merging to the downstream side, it returns to the cold heat source device again through the on-off valve V1 opened by the pump P.
[0031]
FIG. 4 shows a cooling heat radiation operation mode. In this cooling heat radiation operation mode, the heat transfer medium exiting the refrigerating device 22 of the cold heat source device 20 is cooled by the cooling medium branched from the upstream branch point B1 in the downstream circulation line 25a as shown by the thick line in the drawing. The heat transfer medium that has passed through the heat storage tank 1 via the on-off valve V4 of the heat transfer tube 23a in the heat dissipation mode and exited the heat storage tank 1 is again circulated from the heat transfer tube 23b 'in the cold heat dissipation mode via the downstream branch point B2. It merges with the downstream side of the path 25a, passes through the on-off valve V6 on the side of the equipment using cold energy 26, passes through the heat exchanger 28, or passes through the bypass pipe 27 via the on-off valve V5 between the upstream and downstream of the heat exchanger 28, and passes through the heat pipe. The heat transfer medium exiting from the exchanger 28 passes through the bypass pipe 24 connected by the pump P via the on-off valve V7 on the downstream side of the circulation line 25b or the refrigeration system 22 or between the upstream side and the downstream side thereof. Upstream branch point B downstream of road 25a At the time of the cooling heat radiation mode branched from 1, the heat storage tank 1 returns to the heat storage tank 1 again via the on-off valve V4 of the heat transfer tube 23a.
[0032]
FIG. 5 shows a cooling heat radiation operation mode in which a cooler is also operated at the peak of the heat radiation of the heat storage device.
[0033]
In the case of the present embodiment, the cooling / heat dissipating operation mode is an operation mode in which a cooler is also used in addition to the above-described cooling / heat dissipating operation mode. The discharged heat transfer medium is heated in the process of passing through the refrigerating device 22 on the side of the cold heat source device 20 through the open / close valve V1 which is opened as shown by the thick line in the figure, and then is turned on / off in the circulation line 25a. At the same time, passes through the heat storage tank 1 and joins the circulation pipe 25a again, and circulates to the heat exchanger 28.
[0034]
Therefore, according to the above-described embodiment, the refrigeration apparatus 22 on the side of the cold heat source device 20 and the heat storage tank 1 are arranged in series in this order from the heat exchanger 28 side to the downstream side, so that the refrigeration apparatus during the cold heat radiation operation is provided. The outlet temperature of the heat exchanger 22 can be set to be equal to or higher than the set temperature of the inlet of the heat exchanger 28, and the COP of the refrigeration apparatus 22 can be improved. Further, by being arranged in series as described above, one pump P that circulates the heat transfer medium can be used.
[0035]
In addition, when the temperature set value on the outlet side of the refrigerating apparatus 22 in the cold heat radiation mode is set to be equal to or higher than the temperature set value on the inlet side of the heat exchanger 28 on the cold heat use device 26 side, the heat storage tank 1 functions as a heat buffer. Is provided, fluctuations in the outlet temperature of the refrigerating device 22 due to ON / OFF operation of the refrigerating device 22 can be absorbed, and the stability and controllability of the supply temperature to the heat load can be improved.
[0036]
In the above embodiment, an example in which this apparatus is applied to a cooling and refrigeration apparatus is shown, and a case where cold heat is transmitted to a heat exchanger in a heat-using device is shown. Without limitation, it can be applied to other types of cold heat utilization equipment, as well as equipment that uses heat as a solar heat device or a heating heat source supply device, and transmits heat to a heat exchanger in the heat use equipment. This latent heat utilizing heat storage device can also be applied. When storing heat, latent heat is stored in the heat storage tank, and when radiating heat, heat is radiated to the heat exchanger of the heat-using device.
[0037]
Of course, in the case of heat, the heat storage material sealed in the small spherical heat storage 18 stores heat when melted at the phase change temperature and releases latent heat when solidified.
[0038]
【The invention's effect】
As described in detail above, the present invention has the following effects.
[0039]
That is, according to claim 1 and claim 2, by arranging the cold heat source device and the heat storage tank in series in this order from the heat exchanger side to the downstream side, the outlet temperature of the cold heat source device during the cold heat radiating operation is increased. The temperature can be set to be equal to or higher than the set temperature at the inlet of the exchanger, and the COP of the heat source unit can be improved. In addition, by being arranged in series as described above, a single pump that circulates the heat transfer medium can be used.
Furthermore, since the heat storage tank has a heat buffer function, it is possible to absorb fluctuations in the temperature of the cold heat source device due to ON / OFF operation of the cold heat source device, thereby improving the stability and controllability of the supply temperature to the heat load. .
[0040]
According to the third and fourth aspects, it is possible to set the temperature of the outlet of the heat source unit during the heat radiation operation to be equal to or lower than the set temperature of the inlet of the heat exchanger, thereby improving the COP of the heat source unit. It becomes. In addition, by being arranged in series as described above, a single pump that circulates the heat transfer medium can be used.
Furthermore, since the heat storage tank has a heat buffer function, it is possible to absorb fluctuations in the temperature at the outlet of the heat source device due to the ON / OFF operation of the heat source device, thereby improving the stability and controllability of the supply temperature to the heat load. .
[Brief description of the drawings]
FIG. 1 is an example of a heat storage tank according to an embodiment of the present invention, in which (A) and (B) are side views showing a partial cross section of a cylindrical heat storage tank, and (C) is a rectangular body. It is a perspective view of a heat storage tank.
FIG. 2 is an explanatory diagram of the cold / hot heat source device of the present invention in an independent operation mode.
FIG. 3 is also an explanatory diagram in a cold / hot heat storage mode.
FIG. 4 is an explanatory diagram in a cooling / heating heat dissipation operation mode.
FIG. 5 is an explanatory diagram of a heat dissipation operation mode in which a cooling / heating machine is operated in combination during a heat dissipation peak of the heat storage device.
FIG. 6 is an explanatory diagram of a conventional thermal storage air conditioning system device.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 heat storage tank 2 body 4, 5 body lid 6, 8 connection port 16 inside of body 18 small spherical heat storage body 20 cold heat source device 10, 12 disperser 22 refrigeration unit 23a heat transfer tubes 23b, 23c in cold heat dissipation mode Transfer in cold heat storage mode Heat pipe 23b 'Cooling heat radiation mode heat transfer pipe 24 Bypass pipe 25a, 25b Circulation line 26 Cold heat use equipment 27 Bypass pipe 28 Heat exchanger B1 Upstream branch point B2 Downstream branch point B3 Branch point P, P1 Pump V1-V8 Open / close valve

Claims (4)

熱源機、蓄熱槽、熱使用機器側に伝熱媒体を循環する循環管路を備え、夜間の蓄熱モード時に熱源機と蓄熱槽の間で伝熱媒体を循環して生成熱を蓄熱し、昼間の放熱モード時に蓄熱槽と熱使用機器側との間で伝熱媒体を循環して蓄熱槽に蓄えた熱量を熱使用機器側の熱交換器に放熱するようにした潜熱利用蓄熱装置に於いて、
蓄熱動作をするための冷熱蓄熱モード時に於いては、冷熱源機20を出た伝熱媒体を循環管路25aから分岐した冷熱蓄熱モード時伝熱管23bを介して蓄熱槽1に通して蓄熱し、該蓄熱槽1を出た伝熱媒体を冷熱蓄熱モード時伝熱管23cを介して循環管路25bの下流側に合流したのち、ポンプPによって再び冷熱源機20に戻るように構成し、放熱動作をするための冷熱放熱モード時に於いては、上記冷熱源機20下流の循環管路25aから分岐した冷熱放熱モード時伝熱管23aを介して蓄熱槽1を通し、該蓄熱槽1を出た伝熱媒体を冷熱放熱モード時伝熱管23b’を介して再び上記循環管路25aの下流側に合流したのち、冷熱使用機器26側の熱交換器28あるいは該熱交換器28の上、下流の間に接続されたバイパス管27を通し、該熱交換器28から上記循環管路25bに出た伝熱媒体をポンプPによって上記冷熱源機20側あるいはその上、下流間に接続されたバイパス管24を通し、循環管路25aの下流側から分岐した蓄熱モード時伝熱管23aを介して再び蓄熱槽1に戻るように構成し、上記冷熱源機20の下流側に蓄熱槽1を直列に配設したことを特徴とする潜熱利用蓄熱装置。
A circulation line for circulating the heat transfer medium is provided on the heat source unit, heat storage tank, and heat-using device side.In the night heat storage mode, the heat transfer medium is circulated between the heat source unit and the heat storage tank to store the generated heat, and A latent heat storage device that circulates a heat transfer medium between the heat storage tank and the heat-using device in the heat-dissipation mode to radiate the heat stored in the heat storage tank to the heat exchanger on the heat-using device. ,
In the cold heat storage mode for performing the heat storage operation, the heat transfer medium exiting the cold heat source unit 20 is passed through the heat storage tank 1 via the heat transfer tube 23b in the cold heat storage mode branched from the circulation pipe 25a to store heat. After the heat transfer medium exiting the heat storage tank 1 is joined to the downstream side of the circulation pipe 25b via the heat transfer pipe 23c in the cold heat storage mode, the heat transfer medium is returned to the cold heat source unit 20 by the pump P again, In the cool heat radiation mode for the operation, the heat storage tank 1 is passed through the heat storage tank 1 via the heat transfer tube 23a in the cool heat radiation mode branched from the circulation pipe 25a downstream of the cold heat source unit 20, and exits the heat storage tank 1. After the heat transfer medium joins the downstream side of the circulation pipe 25a again via the heat transfer pipe 23b 'in the cold heat radiation mode, the heat exchanger 28 on the side of the equipment 26 using the cold heat or the heat exchanger 28 above and below the heat exchanger 28 is used. The bypass pipe 27 connected between The heat transfer medium flowing out of the heat exchanger 28 to the circulation pipe 25b is passed by the pump P through the bypass pipe 24 connected between the cold heat source unit 20 or above and downstream thereof. Latent heat utilization characterized in that the heat storage tank 1 is configured to return to the heat storage tank 1 again via the heat transfer tube 23a in the heat storage mode branched from the downstream side, and the heat storage tank 1 is arranged in series downstream of the cold heat source unit 20. Heat storage device.
冷熱放熱モード時に於ける冷熱源機20出口側の温度設定値が、冷熱使用機器26側の熱交換器28入口側の温度設定値以上に設定されることを特徴とする請求項1に記載の潜熱利用蓄熱装置。The temperature set value on the outlet side of the cold heat source device 20 in the cool heat radiation mode is set to be equal to or higher than the temperature set value on the inlet side of the heat exchanger 28 on the cold use device 26 side. Latent heat storage device. 熱源機、蓄熱槽、熱使用機器側に伝熱媒体を循環する循環管路を備え、夜間の蓄熱モード時に熱源機と蓄熱槽の間で伝熱媒体を循環して生成熱を蓄熱し、昼間の放熱モード時に蓄熱槽と熱使用機器側との間で伝熱媒体を循環して蓄熱槽に蓄えた熱量を熱使用機器側の熱交換器に放熱するようにした潜熱利用蓄熱装置に於いて、
蓄熱動作をするための温熱蓄熱モード時に於いては、温熱源機20を出た伝熱媒体を循環管路25aから分岐した温熱蓄熱モード時伝熱管23bを介して蓄熱槽1に通して蓄熱し、該蓄熱槽1を出た伝熱媒体を温熱蓄熱モード時伝熱管23cを介して循環管路25bの下流側に合流したのち、ポンプPによって再び温熱源機20に戻るように構成し、放熱動作をするための温熱放熱モード時に於いては、上記温熱源機20下流の循環管路25aから分岐した温熱放熱モード時伝熱管23aを介して蓄熱槽1を通し、該蓄熱槽1を出た伝熱媒体を温熱放熱モード時伝熱管23b’を介して再び上記循環管路25aの下流側に合流したのち、温熱使用機器26側の熱交換器28あるいは該熱交換器28の上、下流の間に接続されたバイパス管27を通し、該熱交換器28から上記循環管路25bに出た伝熱媒体をポンプPによって上記温熱源機20側あるいはその上、下流間に接続されたバイパス管24を通し、循環管路25aの下流側から分岐した蓄熱モード時伝熱管23aを介して再び蓄熱槽1に戻るように構成し、上記温熱源機20の下流側に蓄熱槽1を直列に配設したことを特徴とする潜熱利用蓄熱装置。
A circulation line for circulating the heat transfer medium is provided on the heat source unit, heat storage tank, and heat-using device side.In the night heat storage mode, the heat transfer medium is circulated between the heat source unit and the heat storage tank to store the generated heat, and A latent heat storage device that circulates a heat transfer medium between the heat storage tank and the heat-using device in the heat-dissipation mode to radiate the heat stored in the heat storage tank to the heat exchanger on the heat-using device. ,
In the heat storage mode for performing the heat storage operation, the heat transfer medium that has exited the heat source unit 20 passes through the heat storage tank 1 via the heat transfer tube 23b in the heat storage mode and branches off from the circulation pipe 25a. After the heat transfer medium exiting the heat storage tank 1 is joined to the downstream side of the circulation pipe 25b via the heat transfer pipe 23c in the heat storage mode, the pump P returns to the heat source unit 20 again to release heat. In the heat radiation mode for operation, the heat storage tank 1 is passed through the heat storage tank 1 via the heat transfer tube 23a in the heat radiation mode in the thermal radiation mode branching off from the circulation pipe 25a downstream of the heat source unit 20, and exits the heat storage tank 1. After the heat transfer medium is again joined to the downstream side of the circulation line 25a via the heat transfer tube 23b 'in the heat radiation mode, the heat exchanger 28 on the side of the heat use equipment 26 or the heat exchanger 28 above and below the heat exchanger 28 is used. The bypass pipe 27 connected between The heat transfer medium flowing out from the heat exchanger 28 to the circulation pipe 25b is passed by the pump P through the bypass pipe 24 connected between the heat source unit 20 or above and downstream thereof. Latent heat utilization characterized in that the heat storage tank 1 is configured to return to the heat storage tank 1 again via the heat transfer tube 23a in the heat storage mode branched from the downstream side, and the heat storage tank 1 is arranged downstream of the heat source device 20 in series. Heat storage device.
温熱放熱モード時に於ける温熱源機20出口側の温度設定値が、温熱使用機器26側の熱交換器28入口側の温度設定値以下に設定されることを特徴とする請求項3に記載の潜熱利用蓄熱装置。4. The temperature set value on the outlet side of the heat source device 20 in the heat radiation mode is set to be equal to or less than the temperature set value on the inlet side of the heat exchanger 28 on the heat use equipment 26 side. Latent heat storage device.
JP2003129772A 2003-05-08 2003-05-08 Latent heat storage device Expired - Fee Related JP3831923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003129772A JP3831923B2 (en) 2003-05-08 2003-05-08 Latent heat storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003129772A JP3831923B2 (en) 2003-05-08 2003-05-08 Latent heat storage device

Publications (2)

Publication Number Publication Date
JP2004333014A true JP2004333014A (en) 2004-11-25
JP3831923B2 JP3831923B2 (en) 2006-10-11

Family

ID=33505477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003129772A Expired - Fee Related JP3831923B2 (en) 2003-05-08 2003-05-08 Latent heat storage device

Country Status (1)

Country Link
JP (1) JP3831923B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109899518A (en) * 2019-04-10 2019-06-18 青岛达能环保设备股份有限公司 Large-scale flat pressure-bearing heat-accumulator tank

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH058328U (en) * 1991-07-08 1993-02-05 株式会社クボタ Cold storage type cold heat supply device
JPH06185762A (en) * 1992-12-14 1994-07-08 Shinko Kogyo Co Ltd Cooling or heating method
JPH1061996A (en) * 1996-08-19 1998-03-06 N T T Facilities:Kk Heat storage type air conditioning system apparatus and control method therefor
JPH10292949A (en) * 1997-04-17 1998-11-04 Ebara Corp Compressor capacity controller for air conditioner
JP2001027429A (en) * 1999-07-13 2001-01-30 Kandenko Co Ltd Control method for ice storage air-conditioning system
JP2003021365A (en) * 2001-07-04 2003-01-24 Mitsubishi Heavy Ind Ltd Ice heat accumulator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH058328U (en) * 1991-07-08 1993-02-05 株式会社クボタ Cold storage type cold heat supply device
JPH06185762A (en) * 1992-12-14 1994-07-08 Shinko Kogyo Co Ltd Cooling or heating method
JPH1061996A (en) * 1996-08-19 1998-03-06 N T T Facilities:Kk Heat storage type air conditioning system apparatus and control method therefor
JPH10292949A (en) * 1997-04-17 1998-11-04 Ebara Corp Compressor capacity controller for air conditioner
JP2001027429A (en) * 1999-07-13 2001-01-30 Kandenko Co Ltd Control method for ice storage air-conditioning system
JP2003021365A (en) * 2001-07-04 2003-01-24 Mitsubishi Heavy Ind Ltd Ice heat accumulator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109899518A (en) * 2019-04-10 2019-06-18 青岛达能环保设备股份有限公司 Large-scale flat pressure-bearing heat-accumulator tank

Also Published As

Publication number Publication date
JP3831923B2 (en) 2006-10-11

Similar Documents

Publication Publication Date Title
JP5604190B2 (en) Heat storage system
JP5253582B2 (en) Thermal storage hot water supply air conditioner
CN104735959B (en) The cooling system of rack
WO2010109632A1 (en) Temperature regulator, fluid supply system, heating system, method of fixing temperature regulator, and fluid supply method
EP3098541B1 (en) Co2 water heater
KR101316355B1 (en) Heating system for electric car using heat pump system
JP2012117783A (en) Hot water utilization system
JP7022487B2 (en) Solar power generation hot water supply system
JP3831923B2 (en) Latent heat storage device
CN108312866A (en) A kind of power battery cooling heating management system and power battery
JP2004324995A (en) Heat accumulator utilizing latent heat
JP2007051829A (en) Heat storage type hot water supply apparatus
JP2006105452A (en) Cogeneration system and its control method
JP6506918B2 (en) Ice storage system
JP3831924B2 (en) Capsule type latent heat storage system
CN207842707U (en) A kind of power battery cooling heating management system and power battery
JP6116093B2 (en) Heat source system
JP3273734B2 (en) Cold / hot heat supply device
JP2004085008A (en) Hydrate slurry manufacturing system and its operation method
JP2006162207A (en) Ground heat utilizing water cooled heat pump air conditioning system
JP2004156805A (en) Heat pump system
JP2013155928A (en) Heat pump air conditioning system
KR20120080063A (en) Geothermal cooling and heating apparatus
CN212720471U (en) Single water pump circulation system of cold and heat exchange
JP4427971B2 (en) Ice heat storage method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060707

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees