JP2004332977A - Cooling body - Google Patents

Cooling body Download PDF

Info

Publication number
JP2004332977A
JP2004332977A JP2003126892A JP2003126892A JP2004332977A JP 2004332977 A JP2004332977 A JP 2004332977A JP 2003126892 A JP2003126892 A JP 2003126892A JP 2003126892 A JP2003126892 A JP 2003126892A JP 2004332977 A JP2004332977 A JP 2004332977A
Authority
JP
Japan
Prior art keywords
cooling
contact
cooling body
flow
cooling liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003126892A
Other languages
Japanese (ja)
Inventor
Toshiharu Mochida
敏治 持田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2003126892A priority Critical patent/JP2004332977A/en
Publication of JP2004332977A publication Critical patent/JP2004332977A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooling body, in which a liquid coolant flows once through the interior, heightening the cooling capability without any increase in flow of the liquid coolant. <P>SOLUTION: In the cooling body coming into contact with a heating unit and provided with a once-through passage disposed in the interior for the liquid coolant to flow once through a zigzag once-through passage allowing the liquid coolant to flow from one end to the other end while the flow direction is changed to the direction vertical to the contact surface and to the parallel direction so as to come into contact with both surfaces alternately is provided between both opposite surfaces which are contact surfaces between the cooling body and the heating unit. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、内部に冷却液が貫流する貫流路を設けた、例えば電力用の半導体素子等の発熱体の冷却に使用する冷却体に関する。
【0002】
【従来の技術】
この種の冷却体として従来から特許文献1に記載されるような冷却体が知られている。図5ないし図7にこの従来の冷却体を示す。
【0003】
図5において、1は冷却体であり、電力用半導体素子7と交互に積層してスタック27を構成する。このスタック27は、両端から数トンの力で押圧することにより、冷却体1と半導体素子7とを加圧接触させている。また、冷却体1は、冷却液を通流させるための絶縁パイプ28を介して相互に接続されている。
【0004】
このように構成されたなスタック27においては、水等の冷却液を、循環ポンプ31により、絶縁主パイプ29、冷却体1、絶縁パイプ28、熱交換器30により形成された循環路に循環させ、冷却体1を貫流される冷却液により半導体素子7の冷却を行う。
【0005】
冷却体1は、図6および図7に示すように構成されている。図6は冷却体1の外観を示す斜視図、図7(a)、(b)、(c)は、冷却体1の内部構造を示す各部の断面図である。これらの図に示すように、冷却体1は、熱伝導性および導電性の優れた、例えば銅又はアルミニウム等の金属により平板状の本体11が形成され、その対向する両主面12、13を半導体素子等の発熱体との接触面とする。本体11の内部に冷却液の貫流する連続した貫流路14が設けられ、その両端部に絶縁パイプ28または絶縁主パイプ29を接続するための口出し部15、16が設けられている。
【0006】
本体11の内部の貫流路14は、図7(a)に示すように、本体1の接触面12、13と平行な面内で2重の渦巻状に形成され、その両端が口出し部15、16に接続される。冷却液は一方の口出し部15から流入し、内部の貫流路14を矢印で示すように流れ、他方の口出し部16から流出する。冷却体1の接触面12、13に接触された半導体素子等の発熱体の熱は、冷却体1の接触面12、13から本体11を通り、貫流路14を貫流する冷却液に伝えられ、冷却液により外部へ運び出されることにより発熱体の冷却が行なわれる。
【0007】
【特許文献1】
特開2000−243886号公報(第2〜3頁、図15〜17)
【0008】
【発明が解決しようとする課題】
電力変換装置の容量が増大するのに伴って、そこに使用される電力用半導体素子の発生損失が増加するので半導体素子を冷却する冷却体も冷却能力を高める必要がある。しかしながら、前記した従来の冷却体の場合、冷却能力を向上させるには、冷却液の貫流路を拡大して冷却体本体と冷却液との接触面積を増加させたり、冷却液の流速を上げたりする必要があるが、どちらの場合も冷却液の流量を増加させてしまう。冷却液の流量を増加させると、装置全体の冷却液総量が増大するため、冷却液配管の口径を拡大したり、冷却液を循環させるポンプを大形にすることが必要になり、冷却装置全体が大形化するという問題が生じる。
【0009】
この発明は、上記の問題を解決するため、内部に冷却液を貫流させる形式の冷却体において、冷却液の流量を増加させることなく冷却能力を高めることのできる冷却体を提供することを目的とするものである。
【0010】
【課題を解決するための手段】
この発明は、上記の目的を達成するために、発熱体と接触し、内部に冷却液の貫流する貫流路を備えた冷却体において、前記貫流路の対向する1対の面間に、冷却液がその一方端からこの1対の面の各面に交互に接触するように流れの方向をこの面に垂直な方向と平行な方向に変更しながら他方端へ貫流するジグザグ状の貫流路を設けたことを特徴としている。
【0011】
また、この冷却体において、上下両面が開口された箱状の容器の内室をこの上下開口面に対して垂直な複数の仕切板により仕切って複数の小室を形成した本体と、この本体の上下開口面に被せられ、その内面に前記仕切板の幅と等しい長さの棒状片からなる突起と、間隔をおいて直線的に配置された複数の小片からなる突起とが交互に前記仕切板と同一の間隔で配設され、外面を発熱体との接触面とした上・下接触板とを一体的に接合して本体内部にジグザグ状の冷却液の貫流路を形成するようにするのが良い。
【0012】
このようにジグザグ状に冷却液の貫流路を形成すると、冷却体の発熱体の接触される面に冷却液が接触する際に直角に流れの方向を変えるため、ここで冷却液の流れの中に渦が発生し、冷却液の全体が撹拌混合されることにより冷却液の冷却体の接触面に直接接触する部分の温度が低下し、冷却体の冷却能力を高めることができるようになる。
【0013】
【発明の実施の形態】
この発明の実施の形態を図に示す実施例について説明する。
【0014】
図1は、この発明の実施例による冷却体の外観を示す分解斜視図、図2は、外観を示す斜視図、そして図3は、内部の構成を示す縦断面図である。
【0015】
図1において、5は、本体52と上下の接触板53および54とで構成された冷却体である。本体52は、間隔をおいて平行に配置された1対の垂直な枠板521および522とこの枠板521と522の間にこれらと直角に等間隔に配設された複数の仕切板523とを備え、枠板521、522の両端部に端板524および525が結合される。端板524、525には、それぞれを貫通して冷却液を通流する配管を接続するための口出し部526、527が設けられている。仕切板523の高さは枠板521、522の高さより僅かに低くなっている。
【0016】
上部接触板53の枠板に対向する側の面内(内面)に仕切板523の上端面に当接させるための2種類の突起531と532が複数設けられている。これらの突起531、532は、仕切板523と同じ間隔で交互に並べられており、一方の突起531は、接触板53の幅と等しい長さの棒状片からなり、他方の突起532は、間隔をおいて直線状に配設された複数の長さの短い小片からなる。
【0017】
下部接触板54にも上部接触板53に設けられた突起と同じ2種類の突起541と542が設けられているが、その配置が上部接触板とは互い違いとなっている。すなわち、下部接触板54の上部接触板53の小片の突起532に対応する位置には棒状突起541が、そして棒状突起531に対応する位置には小片突起542が設けられる。
【0018】
本体52の上下開口面にそれぞれ上下の接触板53および54を被せ、相互に液密的に接合して図2に示すように箱体状に組み立てることにより冷却体5が完成する。このように組み立てられた冷却体5の内部において、図3に示すように、上下の接触板53および54の突起531、532および541、542と本体52の仕切板523とが互いに当接される。棒状突起531および541と仕切板532によって本体52の内室が複数の小室に仕切られるが、小片突起532および542の間隔の空いた部分で各小室が相互に連通される。これにより、本体52の内部には、一方の口出し部526から他方の口出し部527に連通した矢印で示すようなジグザグ状の1本の冷却液の貫流路55が形成される。
【0019】
このように構成された冷却体5の上下の接触板53、54の外面に半導体素子等の冷却を必要とする発熱体6、6を所定の圧力で加圧接触させ、一方の口出し部526から冷却液51を供給すると、冷却液51は冷却体5の内部に形成されたジグザグ状の貫流路55を矢印で示すように貫流し、他方の口出し部527から流出し、冷却液51が冷却体52内を貫流する過程で、発熱体6、6の発生熱を吸収しこれを冷却する。
【0020】
冷却体5の内部の貫流路55は、図4に拡大して示すように、仕切り板523と突起531、541によって形成された小室部551aないし551cが交互に設けられた上下の小片突起532と542の部分に形成された連通路552aないし552dによって連通されジグザグ状の流路となる。冷却液51は、貫流路55の各小室部では接触板53、54に対して垂直な方向に流れ、各連通路部ではこれらと平行な方向に流れる。連通路部分552aから小室部分551aに接触板54と平行に流入した冷却液51は、その前方の棒状突起541および仕切板523に衝突して流れの方向を直角に変え、小室部分551a内を垂直に上部接触板53に向かって上向に流れる。この小室部分551a内を上向に流れる冷却液51は上部接触板53の内面に衝突したところで、再び直角に流れ方向を変え、接触板53と平行な流れとなって、連通路部分552bを通って後段の小室部分551bへ流入する。この小室部分551bでも冷却液51は棒状突起531および仕切板523に衝突して直角に流れを変え、この小室内を垂直に下部接触板54へ向かって下向きに流れる。冷却液51は、以後同様にしてジグザグの貫流路55に沿って、交互に接触板53、54に接触しながら垂直な方向と、平行な方向に流れの方向を変えて流れる。
【0021】
冷却液51は、貫流路55内において、冷却液51が直角に流れ方向を変更する図4のT部において流れが乱されるためこの部分に渦が発生される。この渦によって冷却液51の流れが撹拌されて全体が混合されるため、冷却液51の流れの内外部分の温度が均一化され、冷却液の接触板と直接接触する部分の温度が低下し、接触板に対する冷却効果を高めることができる。また、貫流路55を冷却液51がジグザグに方向を変えながら流れることにより、冷却液51は、常に冷却液の流れの流速の速い外周部が接触板53、54と接触するようになるため、これによっても冷却液による接触板に対する冷却効果を増大することができる。
【0022】
また、接触板53、54は突起を介して本体52の仕切板と接触するため、発熱体6からの熱は仕切板にも伝導され、この仕切板からもこれに接触する冷却液に伝導され、仕切板が冷却体における冷却液との接触面積の拡大を助けることになる。このため、仕切板も冷却効果を高める働きをする。
【0023】
さらに、この実施例によれば、冷却体5の両面の接触板53、54に発熱体となる半導体素子を大きな圧力でかつ接触させて使用しても、接触板53、54は、突起を介して複数の仕切板523により支持されるので変形することなく良好に半導体素子を支持することができるので、冷却効果が長期間安定に維持される。
【0024】
【発明の効果】
以上説明したように、この発明によれば、発熱体に接触され、内部に冷却液の貫流する貫流路を設けた冷却体において、この冷却体の発熱体との接触面となる対向する両面の間に、冷却液がその一方端からこの両面の各面に交互に接触するように流れの方向を接触面に垂直な方向と平行な方向に変更しながら他方端へ貫流するジグザグ状の貫流路を設けているので、冷却液の流れが方向を変換するところで渦を発生し、冷却液の流れ全体が撹拌混合されて接触面付近の冷却液の温度が低下されるため、そして冷却液の流れの流速の速い外周部分が常に接触板の内面に接触するため、冷却液の接触板に対する冷却効果が高まる。このため、この発明によれば、冷却液貫流形冷却体の冷却液流量を増やすことなく冷却能力を増大させることができるので、冷却液循環用ポンプ、熱交換器等を含めた冷却装置全体を小形にできる効果が得られる。
【図面の簡単な説明】
【図1】この発明の実施例による冷却体の分解斜視図。
【図2】この発明の実施例の冷却体の外観を示す斜視図。
【図3】この発明の実施例による冷却体の内部構造を示す縦断面図。
【図4】この発明の動作説明に用いる冷却体の部分断面図。
【図5】従来の冷却体装置を示す概略構成図。
【図6】従来の冷却体の外観を示す斜視図。
【図7】従来の冷却体の内部構造を示すもので、(a)は平面断面図、(b)は(a)のb−b線の断面図、(c)は(a)のc−c線の断面図。
【符号の説明】
5 冷却体
51 冷却液
52 冷却体の本体
523 仕切板
53 上部接触板
531 棒状突起
532 小片突起
54 下部接触板
541 棒状突起
542 小片突起
55 冷却液貫流路
6 発熱体
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a cooling body having a through flow passage through which a cooling liquid flows, and used for cooling a heating element such as a semiconductor element for electric power.
[0002]
[Prior art]
As such a cooling body, a cooling body as described in Patent Document 1 has been conventionally known. 5 to 7 show this conventional cooling body.
[0003]
In FIG. 5, reference numeral 1 denotes a cooling body, which is stacked alternately with the power semiconductor elements 7 to form a stack 27. The stack 27 presses the cooling body 1 and the semiconductor element 7 under pressure by applying a force of several tons from both ends. Further, the cooling bodies 1 are connected to each other via an insulating pipe 28 through which a cooling liquid flows.
[0004]
In the stack 27 configured as described above, the cooling liquid such as water is circulated by the circulation pump 31 to the circulation path formed by the insulating main pipe 29, the cooling body 1, the insulating pipe 28, and the heat exchanger 30. The semiconductor element 7 is cooled by the cooling liquid flowing through the cooling body 1.
[0005]
The cooling body 1 is configured as shown in FIGS. FIG. 6 is a perspective view showing an external appearance of the cooling body 1, and FIGS. 7A, 7B, and 7C are cross-sectional views of respective parts showing an internal structure of the cooling body 1. As shown in these figures, the cooling body 1 has a flat main body 11 formed of a metal such as copper or aluminum having excellent heat conductivity and conductivity. A contact surface with a heating element such as a semiconductor element. A continuous flow passage 14 through which the coolant flows is provided inside the main body 11, and outlets 15 and 16 for connecting an insulating pipe 28 or an insulating main pipe 29 are provided at both ends thereof.
[0006]
As shown in FIG. 7 (a), the through flow path 14 inside the main body 11 is formed in a double spiral shape in a plane parallel to the contact surfaces 12 and 13 of the main body 1, and both ends thereof are formed as a lead portion 15. 16 is connected. The coolant flows in from one outlet 15, flows through the through flow path 14 inside as shown by the arrow, and flows out from the other outlet 16. The heat of the heating element such as a semiconductor element contacting the contact surfaces 12 and 13 of the cooling body 1 is transmitted from the contact surfaces 12 and 13 of the cooling body 1 to the cooling liquid flowing through the through flow path 14 through the main body 11, The heating element is cooled by being carried outside by the cooling liquid.
[0007]
[Patent Document 1]
JP-A-2000-243886 (pages 2-3, FIGS. 15-17)
[0008]
[Problems to be solved by the invention]
As the capacity of the power conversion device increases, the generation loss of the power semiconductor device used therein increases, so that the cooling body for cooling the semiconductor device also needs to increase the cooling capacity. However, in the case of the conventional cooling body described above, in order to improve the cooling capacity, it is necessary to increase the contact area between the cooling body main body and the cooling liquid by enlarging the flow passage of the cooling liquid or to increase the flow rate of the cooling liquid. However, in either case, the flow rate of the coolant is increased. Increasing the flow rate of the cooling liquid increases the total amount of the cooling liquid in the entire apparatus, so it is necessary to increase the diameter of the cooling liquid piping and to increase the size of the pump for circulating the cooling liquid. However, there is a problem that the size of the image becomes large.
[0009]
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a cooling body capable of increasing a cooling capacity without increasing a flow rate of the cooling liquid in a cooling body in which a cooling liquid flows through the inside. To do.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a cooling body having a through-flow passage in contact with a heating element and through which a cooling fluid flows, wherein a cooling fluid is provided between a pair of opposed surfaces of the through-flow passage. Is provided with a zigzag-shaped through-flow passage which flows from one end thereof to the other end while changing the flow direction to a direction parallel to a direction perpendicular to this surface so as to alternately contact each surface of the pair of surfaces. It is characterized by having.
[0011]
Further, in the cooling body, a main body in which a plurality of small chambers are formed by dividing an inner chamber of a box-shaped container having upper and lower surfaces opened by a plurality of partition plates perpendicular to the upper and lower opening surfaces, A projection made of a bar-shaped piece having a length equal to the width of the partition plate on the inner surface of the opening surface, and a projection made of a plurality of small pieces arranged linearly at intervals alternately with the partition plate. It is arranged at the same interval, and the upper and lower contact plates with the outer surface as the contact surface with the heating element are integrally joined to form a zigzag shaped coolant flow passage inside the main body. good.
[0012]
When the coolant flow path is formed in a zigzag shape in this way, the coolant changes its flow direction at a right angle when the coolant comes into contact with the surface of the cooling body that contacts the heating element. As a result, a vortex is generated, and the whole of the cooling liquid is stirred and mixed, whereby the temperature of the portion of the cooling liquid that directly contacts the contact surface of the cooling body is reduced, and the cooling capacity of the cooling body can be increased.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described with reference to the drawings.
[0014]
FIG. 1 is an exploded perspective view showing the appearance of a cooling body according to an embodiment of the present invention, FIG. 2 is a perspective view showing the appearance, and FIG. 3 is a longitudinal sectional view showing the internal configuration.
[0015]
In FIG. 1, reference numeral 5 denotes a cooling body composed of a main body 52 and upper and lower contact plates 53 and 54. The main body 52 includes a pair of vertical frame plates 521 and 522 which are arranged in parallel at intervals, and a plurality of partition plates 523 disposed between the frame plates 521 and 522 at regular intervals at right angles thereto. , And end plates 524 and 525 are coupled to both ends of the frame plates 521 and 522, respectively. The end plates 524 and 525 are provided with outlets 526 and 527 for connecting pipes that penetrate therethrough and allow the coolant to flow. The height of the partition plate 523 is slightly lower than the height of the frame plates 521, 522.
[0016]
A plurality of two types of projections 531 and 532 for contacting the upper end surface of the partition plate 523 are provided in the surface (inner surface) of the upper contact plate 53 on the side facing the frame plate. These projections 531 and 532 are alternately arranged at the same interval as the partition plate 523. One projection 531 is formed of a bar-shaped piece having a length equal to the width of the contact plate 53, and the other projection 532 is And a plurality of short pieces each having a length arranged in a straight line.
[0017]
The lower contact plate 54 is also provided with the same two types of protrusions 541 and 542 as the protrusions provided on the upper contact plate 53, but their arrangement is alternated with that of the upper contact plate. That is, a bar-shaped projection 541 is provided at a position of the lower contact plate 54 corresponding to the small piece projection 532 of the upper contact plate 53, and a small piece projection 542 is provided at a position corresponding to the bar-shaped projection 531.
[0018]
The cooling body 5 is completed by covering the upper and lower opening surfaces of the main body 52 with upper and lower contact plates 53 and 54, respectively, joining them in a liquid-tight manner and assembling them into a box shape as shown in FIG. As shown in FIG. 3, the projections 531, 532, 541, and 542 of the upper and lower contact plates 53 and 54 and the partition plate 523 of the main body 52 come into contact with each other inside the cooling body 5 assembled as described above. . The inner chamber of the main body 52 is partitioned into a plurality of small chambers by the rod-shaped projections 531 and 541 and the partition plate 532, and the small chambers communicate with each other at a space between the small piece projections 532 and 542. As a result, a zigzag-shaped coolant flow passage 55 is formed inside the main body 52 as shown by an arrow extending from one outlet portion 526 to the other outlet portion 527.
[0019]
Heating elements 6, which require cooling of a semiconductor element or the like, are brought into press contact with the outer surfaces of the upper and lower contact plates 53, 54 of the cooling element 5 configured as described above at a predetermined pressure. When the cooling liquid 51 is supplied, the cooling liquid 51 flows through a zigzag through flow path 55 formed inside the cooling body 5 as shown by an arrow, flows out of the other outlet 527, and the cooling liquid 51 is cooled. In the process of flowing through the inside of the heating element 52, the heat generated by the heating elements 6, 6 is absorbed and cooled.
[0020]
As shown in the enlarged view of FIG. 4, the through flow path 55 inside the cooling body 5 includes upper and lower small protrusions 532 in which small chamber portions 551 a to 551 c formed by the partition plate 523 and the protrusions 531 and 541 are alternately provided. The passages 552a to 552d formed in the portion 542 communicate with each other to form a zigzag passage. The cooling liquid 51 flows in a direction perpendicular to the contact plates 53 and 54 in each of the small chambers of the through flow path 55, and flows in a direction parallel to these in the communication paths. The coolant 51 that has flowed into the small chamber portion 551a from the communication passage portion 552a in parallel with the contact plate 54 collides with the rod-shaped protrusion 541 and the partition plate 523 in front of the coolant 51, changes the flow direction to a right angle, and vertically flows through the small chamber portion 551a. Flows upward toward the upper contact plate 53. When the coolant 51 flowing upward in the small chamber portion 551a collides with the inner surface of the upper contact plate 53, the coolant 51 changes its flow direction again at a right angle, becomes a flow parallel to the contact plate 53, and passes through the communication passage portion 552b. To the small chamber portion 551b at the subsequent stage. Even in the small chamber portion 551b, the cooling liquid 51 collides with the rod-shaped projection 531 and the partition plate 523, changes the flow at right angles, and flows vertically downward in the small chamber toward the lower contact plate 54. In the same manner, the coolant 51 flows along the zigzag through flow path 55 in the same manner while alternately contacting the contact plates 53 and 54 while changing the flow direction in a vertical direction and a parallel direction.
[0021]
The flow of the cooling liquid 51 is disturbed in the through-flow channel 55 at a portion T in FIG. 4 where the flowing direction of the cooling liquid 51 changes at right angles, so that a vortex is generated in this portion. Since the flow of the cooling liquid 51 is agitated by the vortex and mixed as a whole, the temperature of the inner and outer portions of the flow of the cooling liquid 51 is made uniform, and the temperature of the part directly contacting the contact plate of the cooling liquid decreases. The cooling effect on the contact plate can be enhanced. In addition, since the coolant 51 flows in the through flow path 55 while changing the direction in a zigzag manner, the coolant 51 always comes into contact with the contact plates 53 and 54 at the outer peripheral portion where the flow speed of the coolant is high, This can also increase the cooling effect of the cooling liquid on the contact plate.
[0022]
In addition, since the contact plates 53 and 54 come into contact with the partition plate of the main body 52 via the projections, the heat from the heating element 6 is also transmitted to the partition plate, and also from this partition plate to the coolant that contacts the partition plate. In addition, the partition plate helps to increase the contact area of the cooling body with the cooling liquid. For this reason, the partition plate also functions to enhance the cooling effect.
[0023]
Furthermore, according to this embodiment, even when the semiconductor element serving as the heating element is used under a large pressure and in contact with the contact plates 53 and 54 on both surfaces of the cooling body 5, the contact plates 53 and 54 are formed via the projections. Since the semiconductor device can be favorably supported without being deformed because it is supported by the plurality of partition plates 523, the cooling effect is stably maintained for a long time.
[0024]
【The invention's effect】
As described above, according to the present invention, in a cooling body that is in contact with the heating element and has a through flow passage through which the cooling liquid flows, the opposite surfaces of the cooling element that are in contact with the heating element are provided. In the meantime, a zigzag through flow path through which the coolant flows from the one end to the other end while changing the flow direction to a direction parallel to a direction perpendicular to the contact surface so that the coolant alternately contacts each surface of the both surfaces. Vortex is generated where the flow of the coolant changes direction, and the entire flow of the coolant is stirred and mixed to lower the temperature of the coolant near the contact surface. Since the outer peripheral portion having the high flow velocity always contacts the inner surface of the contact plate, the cooling effect of the coolant on the contact plate is enhanced. Therefore, according to the present invention, the cooling capacity can be increased without increasing the coolant flow rate of the coolant flowing-through type cooling body, so that the entire cooling device including the coolant circulation pump, the heat exchanger, and the like can be used. The effect that can be made compact is obtained.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view of a cooling body according to an embodiment of the present invention.
FIG. 2 is a perspective view showing an appearance of a cooling body according to the embodiment of the present invention.
FIG. 3 is a longitudinal sectional view showing an internal structure of a cooling body according to the embodiment of the present invention.
FIG. 4 is a partial sectional view of a cooling body used for explaining the operation of the present invention.
FIG. 5 is a schematic configuration diagram showing a conventional cooling device.
FIG. 6 is a perspective view showing the appearance of a conventional cooling body.
7A and 7B show the internal structure of a conventional cooling body, wherein FIG. 7A is a cross-sectional plan view, FIG. 7B is a cross-sectional view taken along line bb of FIG. 7A, and FIG. Sectional drawing of a c-line.
[Explanation of symbols]
5 Cooling Body 51 Cooling Liquid 52 Main Body of Cooling Body 523 Partition Plate 53 Upper Contact Plate 531 Rodlike Projection 532 Small Piece Projection 54 Lower Contact Plate 541 Rodlike Projection 542 Small Piece Projection 55 Coolant Fluid Flow Path 6 Heating Element

Claims (2)

発熱体と接触し、内部に冷却液の貫流する貫流路を備えた冷却体において、前記貫流路の対向する1対の面間に、冷却液がその一方端からこの1対の面の各面に交互に接触するように流れの方向をこの面に垂直な方向と平行な方向に変更しながら他方端へ貫流するジグザグ状の貫流路を設けたことを特徴とする冷却体。In a cooling body having a through flow path in contact with a heating element and through which a cooling liquid flows, between the pair of opposed surfaces of the through flow path, the cooling liquid flows from one end thereof to each of the pair of surfaces. A zigzag through-flow passage for flowing to the other end while changing the flow direction to a direction parallel to a direction perpendicular to this surface so as to alternately contact the cooling body. 請求項1記載の冷却体において、上下両面が開口された箱状の容器の内室をこの上下開口面に対して垂直な複数の仕切板により仕切って複数の小室を形成した本体と、この本体の上下開口面に被せられ、その内面に前記仕切板の幅と等しい長さの棒状片からなる突起と、間隔をおいて直線的に配置された複数の小片からなる突起とが交互に前記仕切板と同一の間隔で配設され、外面を発熱体との接触面とした上・下接触板とを一体的に接合して本体内部にジグザグ状の冷却液の貫流路を形成したことを特徴とする冷却体。2. The cooling body according to claim 1, wherein a plurality of small chambers are formed by partitioning an inner chamber of a box-shaped container having upper and lower surfaces opened by a plurality of partition plates perpendicular to the upper and lower opening surfaces. The upper surface of the partition is covered with a projection made of a bar-shaped piece having a length equal to the width of the partition plate, and a projection made of a plurality of small pieces arranged linearly at intervals. It is arranged at the same interval as the plate, and the upper and lower contact plates whose outer surface is the contact surface with the heating element are integrally joined to form a zigzag shaped coolant passage inside the main body. And cooling body.
JP2003126892A 2003-05-02 2003-05-02 Cooling body Pending JP2004332977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003126892A JP2004332977A (en) 2003-05-02 2003-05-02 Cooling body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003126892A JP2004332977A (en) 2003-05-02 2003-05-02 Cooling body

Publications (1)

Publication Number Publication Date
JP2004332977A true JP2004332977A (en) 2004-11-25

Family

ID=33503639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003126892A Pending JP2004332977A (en) 2003-05-02 2003-05-02 Cooling body

Country Status (1)

Country Link
JP (1) JP2004332977A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012151328A (en) * 2011-01-20 2012-08-09 Mitsubishi Electric Corp Heat sink and semiconductor device equipped with heat sink
DE102019118834A1 (en) * 2019-07-11 2021-01-14 Cool Tec Electronic GmbH Heat sink through which fluid flows
KR20230012918A (en) * 2021-07-16 2023-01-26 한국생산기술연구원 Water-cooling structure of power semiconductor, and method for manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012151328A (en) * 2011-01-20 2012-08-09 Mitsubishi Electric Corp Heat sink and semiconductor device equipped with heat sink
DE102019118834A1 (en) * 2019-07-11 2021-01-14 Cool Tec Electronic GmbH Heat sink through which fluid flows
KR20230012918A (en) * 2021-07-16 2023-01-26 한국생산기술연구원 Water-cooling structure of power semiconductor, and method for manufacturing the same
KR102578281B1 (en) * 2021-07-16 2023-09-13 한국생산기술연구원 Water-cooling structure of power semiconductor, and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US7017655B2 (en) Forced fluid heat sink
JP5983565B2 (en) Cooler
KR100388321B1 (en) Heat exchanger for temperature control
JP4555114B2 (en) Heat storage device
US20060237166A1 (en) High Efficiency Fluid Heat Exchanger and Method of Manufacture
CN111052360A (en) Heat sink
US20100181055A1 (en) Plate laminate type heat exchanger
CN108886188A (en) The register of battery module, the method for manufacturing battery module and battery module
JP3998592B2 (en) Fluid temperature control device
KR20190138563A (en) Heat transfer device
US9568257B2 (en) Thermal transfer device with spiral fluid pathways
JP2011233688A (en) Semiconductor cooling device
JP4544187B2 (en) Cooler
JP2004332977A (en) Cooling body
KR20140088125A (en) Plate for heat exchanger and heat exchanger equipped with such plates
WO2011114616A1 (en) Ebullient cooling device
JP4080479B2 (en) Liquid cooler cooler
JP2002110878A (en) Cooling module and cooling system comprising it
AU759747B2 (en) Heat exchanger tracking
CN205537257U (en) Plate heat exchanger who contains misalignment heat pipe array
JP2010210202A (en) Heat exchange body
JP4905266B2 (en) Heat exchanger, refrigeration cycle apparatus and water heater
CN111506176A (en) Efficient immersion type liquid cooling server based on tapered flow channel design
CN112880454A (en) Heat exchange structure and semiconductor heat exchange device
JPS59158986A (en) Laminated type heat exchanger