JP2004332666A - Compression device - Google Patents

Compression device Download PDF

Info

Publication number
JP2004332666A
JP2004332666A JP2003131841A JP2003131841A JP2004332666A JP 2004332666 A JP2004332666 A JP 2004332666A JP 2003131841 A JP2003131841 A JP 2003131841A JP 2003131841 A JP2003131841 A JP 2003131841A JP 2004332666 A JP2004332666 A JP 2004332666A
Authority
JP
Japan
Prior art keywords
impeller
gas
water
compression device
compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003131841A
Other languages
Japanese (ja)
Other versions
JP4432360B2 (en
Inventor
Masanao Ando
昌尚 安藤
Hidefumi Saito
英文 斎藤
Hiroshi Isaka
弘 猪坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2003131841A priority Critical patent/JP4432360B2/en
Publication of JP2004332666A publication Critical patent/JP2004332666A/en
Application granted granted Critical
Publication of JP4432360B2 publication Critical patent/JP4432360B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve cooling efficiency of compressed gas and compression efficiency of a second compression part in a two stage compression device. <P>SOLUTION: Cooling water W is supplied to a back surface of a first impeller 1a. The cooling water W is scattered from an outer circumference end by centrifugal force generated by rotation of the first impeller 1a and is sprayed to the compressed gas. Since the compressed gas is directly cooled by injecting cooling water therein, cooling efficiency can be improved. Since the compressed air of which temperature is raised through the first compression part 1 enters a second compression part 2 after being cooled, compression efficiency of the second compression part can be improved. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、第1圧縮部と第2圧縮部とで気体を2段に圧縮する圧縮装置に関し、さらに詳しくは、圧縮気体の冷却効率および第2圧縮部での圧縮効率を向上することが出来る圧縮装置に関する。
【0002】
【従来の技術】
従来、2段圧縮機の第1圧縮部と第2圧縮部の中間に中間冷却器を設置すると共に第2圧縮部の後に吐出冷却器を設置した圧縮装置が知られている(例えば、特許文献1参照。)。
他方、2段圧縮機の第1圧縮部に入る気体に冷却水を噴射すると共に第2圧縮部から吐出した気体に冷却水を噴射する圧縮装置が知られている(例えば、特許文献2参照。)。
【0003】
【特許文献1】
特開平11−201098号公報(図3)
【特許文献2】
特開2001−165514号公報(図3)
【0004】
【発明が解決しようとする課題】
中間冷却器および吐出冷却器を設置した上記従来の圧縮装置では、熱交換器の隔壁を介して圧縮気体を冷却する間接冷却を行っているが、間接冷却では冷却効率が悪い問題点がある。
他方、気体に冷却水を噴射する上記従来の圧縮装置では、直接冷却という点では冷却効率が良いが、第1圧縮部を経て高温(例えば110℃)となった圧縮気体を十分に混合してから冷却するという手段がないため、圧縮気体の一部は冷却されずに高温のまま第2圧縮部に入ることになり、第2圧縮部での圧縮効率が悪い問題点がある。
そこで、本発明の目的は、圧縮気体の冷却効率および第2圧縮部での圧縮効率を向上することが出来る圧縮装置を提供することにある。
【0005】
【課題を解決するための手段】
第1の観点では、本発明は、気体を円周端から流出させ遠心方向と周方向の速度成分が含まれる回転流を形成する第1回転翼車と前記流出した気体を減速させ圧縮気体に変換する第1ディフューザと前記圧縮気体を集める第1スクロールからなる第1圧縮部と、気体を円周端から流出させ遠心方向と周方向の速度成分が含まれる回転流を形成する第2回転翼車と前記流出した気体を減速させ圧縮気体に変換する第2ディフューザと前記圧縮気体を集める第2スクロールからなる第2圧縮部と、前記第1圧縮部を出た圧縮気体を前記第2圧縮部に導くための連結流路と、前記第1回転翼車の外周端から前記第1スクロールの出口までの間の流路内で気体中に冷却水を噴霧する第1冷却水噴霧手段とを具備したことを特徴とする圧縮装置を提供する。
上記第1の観点による圧縮装置では、第1圧縮部を出た圧縮気体に冷却水を噴射して直接冷却するため、冷却効率を向上できる。このとき、第1回転翼車の外周端から第1スクロールの出口までの間の流路内で冷却水を噴霧するから、第1スクロールの出口で圧縮気体が集まるまでの過程で冷却水が気体に十分に混合し、この点でも冷却効率を向上できる。これに対して、気体に冷却水を噴射する上記従来の圧縮装置では、冷却水を噴射する位置から見て冷却水が気体に十分に混合されず、この点で冷却効率が悪い。
また、上記第1の観点による圧縮装置では、第1圧縮部を経て高温となった圧縮気体が冷却されてから第2圧縮部に入ることになるから、第2圧縮部での圧縮効率を向上することが出来る。
さらに、第2圧縮部に入る圧縮気体に水滴が残っていると、第2回転翼車の翼車の吸い込み部表面に水滴が付着し、翼車の入口側の前縁に付着した水滴は、ガス流に沿って翼の表面を流れ、ガス流が滞留するような箇所に溜まってしまい翼表面に長い時間付着し続けるので、第2回転翼車の回転アンバランスに起因する振動を引き起こす可能性があるが、上記第1の観点による圧縮装置では、第1スクロールの出口までの間の流路内で冷却水を噴霧し、連結流路内では冷却水を噴霧しないから、連結流路内を流れる間に圧縮気体から水滴が脱落し、第2圧縮部には回転に支障を与えるような水滴を含まない圧縮気体が入ることになり、水滴の付着による回転アンバランスに起因する第2回転翼車の振動を回避することも出来る。
【0006】
第2の観点では、本発明は、上記構成の圧縮装置において、前記冷却水は、前記第1回転翼車の背面に供給され、前記第1回転翼車の回転による遠心力で微細化され気体中に飛散することを特徴とする圧縮装置を提供する。
上記第2の観点による圧縮装置では、第1回転翼車の回転を利用して冷却水を微細化し飛散するため、特別な噴射装置を必要とせずに、冷却水を圧縮気体に十分に混合することが出来る。また、第1回転翼車を冷却できる。
【0007】
第3の観点では、本発明は、上記構成の圧縮装置において、前記第1回転翼車の回転軸が水軸受で支承され、前記水軸受に供給された水が前記第1回転翼車の背面に供給されることを特徴とする圧縮装置を提供する。
上記第3の観点による圧縮装置では、水軸受に対する水経路と圧縮気体に噴射する水経路とを統一することが出来るため、構成の小型化に好適となる。
【0008】
第4の観点では、本発明は、上記構成の圧縮装置において、前記連結流路が、前記第1圧縮部を出た圧縮気体を旋回流とする旋回流形成構造と、前記旋回流を囲む周壁に付着した水滴を排出する排水構造と、前記周壁部分を経た旋回流を前記第2圧縮部に導く導出構造とを有することを特徴とする圧縮装置を提供する。
上記第4の観点による圧縮装置では、圧縮気体が連結流路内で旋回運動をすることで、旋回流を囲む周壁に水滴が遠心力により付着し、圧縮気体から水滴が十分に除去される。このため、第2圧縮部には水滴を含まない圧縮気体が入ることになり、水滴の付着による回転アンバランスに起因する第2回転翼車の振動を回避することが出来る。
【0009】
第5の観点では、本発明は、上記構成の圧縮装置において、前記第2回転翼車の外周端から前記第2スクロールの出口までの間の流路内で気体中に冷却水を噴霧する第2冷却水噴霧手段を具備したことを特徴とする圧縮装置を提供する。
上記第5の観点による圧縮装置では、第2圧縮部を出た圧縮気体に冷却水を噴射して直接冷却するため、冷却効率を向上できる。このとき、第2回転翼車の外周端から第2スクロールの出口までの間の流路内で冷却水を噴霧するから、第2スクロールの出口で圧縮気体が集まるまでの過程で冷却水が気体に十分に混合し、この点でも冷却効率を向上できる。これに対して、気体に冷却水を噴射する上記従来の圧縮装置では、冷却水を噴射する位置から見て冷却水が気体に十分に混合されず、この点で冷却効率が悪い。
【0010】
第6の観点では、本発明は、上記構成の圧縮装置において、前記冷却水は、前記第2回転翼車の背面に供給され、前記第2回転翼車の回転による遠心力で微細化され気体中に飛散することを特徴とする圧縮装置を提供する。
上記第6の観点による圧縮装置では、第2回転翼車の回転を利用して冷却水を微細化し飛散するため、特別な噴射装置を必要とせずに、冷却水を圧縮気体に十分に混合することが出来る。また、第2回転翼車を冷却できる。
【0011】
第7の観点では、本発明は、上記構成の圧縮装置において、前記第2回転翼車の回転軸が水軸受で支承され、前記水軸受に供給された水が前記第2回転翼車の背面に供給されることを特徴とする圧縮装置を提供する。
上記第7の観点による圧縮装置では、水軸受に対する水経路と圧縮気体に噴射する水経路とを統一することが出来るため、構成の小型化に好適となる。
【0012】
【発明の実施の形態】
以下、図に示す実施の形態により本発明を詳細に説明する。なお、これにより本発明が限定されるものではない。
【0013】
図1は、本発明の一実施形態にかかる圧縮装置100を示す一部破断正面図である。
この圧縮装置100は、第1吸込口IN1から吸入した気体(例えば、水蒸気)を周方向に流出させる第1回転翼車1aと流出した気体を減速させ圧縮気体に変換する第1ディフーザ1bと圧縮気体を集めて第1スクロール出口OUT1から吐出する第1スクロール1cからなる第1圧縮部1と、第2吸込口IN2から吸入した気体を周方向に流出させる第2回転翼車2aと流出した気体を減速させ圧縮気体に変換する第2ディフーザ2bと圧縮気体を集めて第2スクロール出口OUT2から吐出する第2スクロール2cからなる第2圧縮部2と、第1圧縮部1を出た圧縮気体を第2圧縮部2に導くための連結流路3とを具備して構成される。なお、この図では連結流路の流路断面積を便宜上細く示しているが、実体は適切な流路面積が維持されているものとする。
【0014】
第1回転翼車1aおよび第2回転翼車2aは、回転軸4の両端に取り付けられている。その回転軸4は、水軸受5で支承されている。また、回転軸4には、モータロータRが一体的に構成されている。従って、モータステータSに通電することで、モータロータRが回転し、回転軸4が回転し、第1回転翼車1aおよび第2回転翼車2aが回転する。
【0015】
モータステータSの周囲には、水冷ジャケットMjが構成されている。
また、第1回転翼車1aおよび第2回転翼車2aの背面と水軸受5の間には、水軸封パッキン6が形成されている。
【0016】
連結流路3は、第1圧縮部1の第1スクロール出口OUT1に連結された配管3aと、第2圧縮部2の第2吸入口IN2に連結された配管3bと、配管3aと配管3bの間に設けられた除水部31とを有している。
【0017】
冷却水Wは、図示せぬ外部から水冷ジャケットMjに供給され、モータステータSを冷却する。次に、水冷ジャケットMjから水軸受5に供給され、回転軸4を支承する。次に、水軸受5から水軸封パッキン6に供給され、回転軸4の端部と中央部とを気密にシールする。次に、水軸封パッキン6から第1回転翼車1aおよび第2回転翼車2aの背面へ漏れ、第1回転翼車1aおよび第2回転翼車2aを冷却する。
【0018】
さらに、第1回転翼車1aの背面へ漏れた冷却水Wは、第1回転翼車1aの回転による遠心力で微細化されながら第1回転翼車1aの外周端へ流れ、外周端から飛散され、第1ディフーザ1bおよび第1スクロール1cで圧縮気体と十分に混合し、第1圧縮部1で圧縮され高温(例えば100℃〜200℃)となった圧縮気体を冷却水Wの気化熱により冷却する。
【0019】
他方、第2回転翼車2aの背面へ漏れた冷却水Wは、第2回転翼車2aの回転による遠心力で微細化されながら第2回転翼車2aの外周端へ流れ、外周端から飛散され、第2ディフーザ2bおよび第2スクロール2cで圧縮気体と十分に混合し、第2圧縮部2で圧縮され高温(例えば100℃〜200℃)となった圧縮気体を冷却水Wの気化熱により冷却する。
【0020】
図2は、連結流路3の除水部31を示す上面図である。また、図3は、図2のA−A’断面図である。
第1圧縮部1を出た圧縮気体は、配管3aから除水部31に入るが、除水部31の周壁31aに対して偏心して入るため、周壁31a内で旋回流cyとなる。そして、旋回流cyの中央から配管3bへ出て行く。
第1圧縮部1を出た圧縮気体には、冷却水Wの水滴が含まれるが、旋回流cyの遠心力で周壁31aに水滴が付着し、圧縮気体から水滴が十分に除去される。このため、第2圧縮部2には水滴を含まない圧縮気体が入ることになり、第2回転翼車2aへの水滴の付着による回転アンバランスに起因する第2回転翼車2aの振動を回避することが出来る。
なお、周壁31aに付着した水滴は、除水部31の底部の排水管31bから排水wとして排出される。
【0021】
以上の圧縮装置100によれば次の効果が得られる。
(1)第1圧縮部1を出た圧縮気体に冷却水Wを噴射して直接冷却するため、冷却効率を向上できる。また、第1回転翼車1aの外周端から第1スクロール出口OUT1までの間の流路内で冷却水Wを噴霧するから、第1スクロール出口OUT1で圧縮気体が集まるまでの過程で冷却水Wが気体に十分に混合し、この点でも冷却効率を向上できる。
(2)第1圧縮部1を経て高温となった圧縮気体が冷却されてから第2圧縮部2に入るから、第2圧縮部2での圧縮効率を向上することが出来る。
(3)第1回転翼車1aの回転を利用して冷却水Wを微細化し飛散するため、特別な噴射装置を必要とせずに、冷却水Wを圧縮気体に十分に混合することが出来る。また、第1回転翼車1aを冷却できる。
(4)第2圧縮部2に入る圧縮気体に水滴が残っていると、第2回転翼車2aの表面に水滴が付着し、第2回転翼車2aの回転アンバランスに起因する振動を引き起こす可能性があるが、連結流路3内では冷却水Wを噴霧せず、連結流路3の除水部31で圧縮気体から水滴が十分に除去されるため、第2圧縮部2には水滴を含まない圧縮気体が入ることになり、水滴の付着による回転アンバランスに起因する第2回転翼車2aの振動を回避することが出来る。
(5)第2圧縮部2を出た圧縮気体に冷却水Wを噴射して直接冷却するため、冷却効率を向上できる。また、第2回転翼車2aの外周端から第2スクロール出口OUT2までの間の流路内で冷却水Wを噴霧するから、第2スクロール出口OUT2で圧縮気体が集まるまでの過程で冷却水Wが気体に十分に混合し、この点でも冷却効率を向上できる。
(6)第2回転翼車2aの回転を利用して冷却水Wを微細化し飛散するため、特別な噴射装置を必要とせずに、冷却水Wを圧縮気体に十分に混合することが出来る。また、第2回転翼車2aを冷却できる。
(7)モータステータSを水冷する水経路と、水軸受5に対する水経路と、水軸封パッキン6に対する水経路と、圧縮気体に冷却水を噴射する水経路とを一系統にしているため、構成の小型化に好適となる。
【0022】
−他の実施形態−
図4に示すような除水部32を用いてもよい。
この除水部32では、配管3aにスクリュウ状のフィンFを入れて、圧縮気体を旋回流cyとし、周壁32aに遠心力で水滴を付着させ、旋回流cyの中央から圧縮気体を配管3bへ出す。また、水滴は排水管32bから排出する。
【0023】
【発明の効果】
本発明の圧縮装置によれば、圧縮気体の冷却効率および第2圧縮部での圧縮効率を向上することが出来る。
【図面の簡単な説明】
【図1】本発明の一実施形態にかかる圧縮装置を示す一部破断正面図である。
【図2】除水部を示す上面図である。
【図3】図2のA−A’断面図である。
【図4】除水部の他例を示す透視斜視図である。
【符号の説明】
1 第1圧縮部
1a 第1回転翼車
1b 第1ディフーザ
1c 第1スクロール
2 第2圧縮部
2a 第2回転翼車
2b 第2ディフーザ
2c 第2スクロール
3 連結流路
3a,3b 配管
4 回転軸
5 水軸受
6 水軸封パッキン
31,32 除水部
31a,32a 周壁
31b,32b 排水管
100 圧縮装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a compression device that compresses a gas in two stages by a first compression unit and a second compression unit, and more specifically, can improve the cooling efficiency of the compressed gas and the compression efficiency in the second compression unit. It relates to a compression device.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, there has been known a compression apparatus in which an intercooler is installed between a first compression section and a second compression section of a two-stage compressor and a discharge cooler is installed after the second compression section (for example, Patent Document 1) 1).
On the other hand, a compression device that injects cooling water into gas entering a first compression unit of a two-stage compressor and injects cooling water into gas discharged from a second compression unit is known (for example, see Patent Document 2). ).
[0003]
[Patent Document 1]
JP-A-11-201098 (FIG. 3)
[Patent Document 2]
JP 2001-165514 A (FIG. 3)
[0004]
[Problems to be solved by the invention]
In the above-described conventional compression device provided with an intercooler and a discharge cooler, indirect cooling for cooling the compressed gas through the partition of the heat exchanger is performed. However, indirect cooling has a problem in that the cooling efficiency is poor.
On the other hand, in the above-described conventional compression device that injects cooling water into the gas, although the cooling efficiency is high in terms of direct cooling, the compressed gas that has become high temperature (for example, 110 ° C.) through the first compression section is sufficiently mixed. Since there is no means for cooling from the beginning, a part of the compressed gas enters the second compression section at a high temperature without being cooled, and there is a problem that the compression efficiency in the second compression section is poor.
Therefore, an object of the present invention is to provide a compression device that can improve the cooling efficiency of the compressed gas and the compression efficiency in the second compression section.
[0005]
[Means for Solving the Problems]
In a first aspect, the present invention provides a first impeller that forms a rotational flow that includes a centrifugal direction and a velocity component in a circumferential direction by causing gas to flow out from a circumferential end, and decelerates the outflowing gas to a compressed gas. A first compression section comprising a first diffuser for conversion and a first scroll for collecting the compressed gas, and a second rotary blade for causing the gas to flow out from a circumferential end to form a rotary flow including centrifugal and circumferential velocity components. A vehicle, a second diffuser comprising a second diffuser for decelerating the outflowing gas and converting the compressed gas into a compressed gas, and a second compressor comprising a second scroll for collecting the compressed gas; And a first cooling water spraying means for spraying cooling water into gas in a flow path from an outer peripheral end of the first rotary wheel to an outlet of the first scroll. To provide a compression device characterized by .
In the compression device according to the first aspect, the cooling gas is directly cooled by injecting the cooling water into the compressed gas that has exited the first compression section, so that cooling efficiency can be improved. At this time, since the cooling water is sprayed in the flow path from the outer peripheral end of the first rotary impeller to the outlet of the first scroll, the cooling water becomes gaseous in the process until the compressed gas collects at the outlet of the first scroll. In this respect, the cooling efficiency can be improved. On the other hand, in the conventional compression device that injects cooling water into the gas, the cooling water is not sufficiently mixed with the gas when viewed from the position where the cooling water is injected, and the cooling efficiency is poor in this respect.
Further, in the compression device according to the first aspect, since the compressed gas that has become high temperature through the first compression section is cooled and then enters the second compression section, the compression efficiency in the second compression section is improved. You can do it.
Further, if water droplets remain in the compressed gas entering the second compression unit, the water droplets adhere to the suction surface of the impeller of the second rotary impeller, and the water droplets adhere to the front edge on the inlet side of the impeller, The gas flows along the surface of the wing along the gas flow, accumulates in places where the gas flow stagnates, and continues to adhere to the wing surface for a long time, which may cause vibration due to the rotational imbalance of the second impeller. However, in the compression device according to the first aspect, the cooling water is sprayed in the flow path up to the outlet of the first scroll, and the cooling water is not sprayed in the connection flow path. Water drops drop from the compressed gas while flowing, and the compressed gas that does not contain water drops that impedes rotation enters into the second compression section, and the second rotor blade caused by rotation imbalance due to the adhesion of the water drops. It can also avoid car vibration.
[0006]
In a second aspect, the present invention provides the compression device having the above-described configuration, wherein the cooling water is supplied to a back surface of the first impeller, and is cooled by the centrifugal force generated by the rotation of the first impeller. A compression device characterized in that the compression device is scattered inside.
In the compression device according to the second aspect, the cooling water is finely dispersed and scattered by utilizing the rotation of the first impeller, so that the cooling water is sufficiently mixed with the compressed gas without requiring a special injection device. I can do it. Further, the first impeller can be cooled.
[0007]
According to a third aspect of the present invention, in the compression device having the above-described configuration, a rotation shaft of the first rotor is supported by a water bearing, and water supplied to the water bearing is provided on a back surface of the first rotor. And a compression device.
In the compression device according to the third aspect, the water path for the water bearing and the water path for injecting the compressed gas can be unified, which is suitable for downsizing the configuration.
[0008]
According to a fourth aspect of the present invention, in the compression device having the above-described configuration, the connection flow path includes a swirl flow forming structure that uses the compressed gas that has exited the first compression unit as a swirl flow, and a peripheral wall that surrounds the swirl flow. And a lead-out structure for guiding a swirling flow passing through the peripheral wall portion to the second compression section.
In the compression device according to the fourth aspect, since the compressed gas makes a swirling motion in the connection flow path, water droplets adhere to the peripheral wall surrounding the swirling flow by centrifugal force, and the water droplets are sufficiently removed from the compressed gas. For this reason, the compressed gas which does not contain water droplets enters the second compression portion, and vibration of the second rotor wheel caused by rotation imbalance due to adhesion of water droplets can be avoided.
[0009]
In a fifth aspect, the present invention provides the compression device having the above-described configuration, wherein the cooling water is sprayed into the gas in a flow path between an outer peripheral end of the second rotary impeller and an outlet of the second scroll. (2) A compression device provided with cooling water spraying means.
In the compression device according to the fifth aspect, since the cooling water is directly cooled by injecting the cooling water into the compressed gas that has exited the second compression section, the cooling efficiency can be improved. At this time, since the cooling water is sprayed in the flow path from the outer peripheral end of the second rotary impeller to the outlet of the second scroll, the cooling water becomes gaseous in the process until the compressed gas collects at the outlet of the second scroll. In this respect, the cooling efficiency can be improved. On the other hand, in the conventional compression device that injects cooling water into the gas, the cooling water is not sufficiently mixed with the gas when viewed from the position where the cooling water is injected, and the cooling efficiency is poor in this respect.
[0010]
According to a sixth aspect of the present invention, in the compression device having the above-described configuration, the cooling water is supplied to a back surface of the second impeller, and is cooled by the centrifugal force generated by the rotation of the second impeller. A compression device characterized in that the compression device is scattered inside.
In the compression device according to the sixth aspect, the cooling water is finely dispersed and scattered by utilizing the rotation of the second rotary impeller. Therefore, the cooling water is sufficiently mixed with the compressed gas without requiring a special injection device. I can do it. Further, the second impeller can be cooled.
[0011]
According to a seventh aspect of the present invention, in the compression device having the above-described configuration, a rotation shaft of the second rotary impeller is supported by a water bearing, and water supplied to the water bearing is provided on a back surface of the second rotary impeller. And a compression device.
In the compression device according to the seventh aspect, the water path for the water bearing and the water path for injecting the compressed gas can be unified, which is suitable for downsizing the configuration.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings. Note that the present invention is not limited by this.
[0013]
FIG. 1 is a partially broken front view showing a compression device 100 according to an embodiment of the present invention.
The compression device 100 includes a first impeller 1a that allows gas (for example, water vapor) sucked in from the first suction port IN1 to flow out in the circumferential direction, a first diffuser 1b that decelerates the gas that has flowed out, and converts the gas into compressed gas. A first compressor 1 composed of a first scroll 1c that collects gas and discharges it from a first scroll outlet OUT1, a second rotary wheel 2a that discharges gas sucked from a second suction port IN2 in a circumferential direction, and gas that flows out The second compressor 2 is composed of a second diffuser 2b for decelerating the compressed gas into a compressed gas, a second scroll 2c for collecting the compressed gas and discharging it from a second scroll outlet OUT2, and a compressed gas exiting the first compressor 1. And a connection channel 3 for leading to the second compression section 2. In this figure, the cross-sectional area of the connecting flow path is shown thin for convenience, but it is assumed that an appropriate flow path area is maintained.
[0014]
The first impeller 1 a and the second impeller 2 a are attached to both ends of the rotating shaft 4. The rotating shaft 4 is supported by a water bearing 5. Further, a motor rotor R is integrally formed on the rotating shaft 4. Therefore, when the motor stator S is energized, the motor rotor R rotates, the rotating shaft 4 rotates, and the first rotating wheel 1a and the second rotating wheel 2a rotate.
[0015]
A water cooling jacket Mj is formed around the motor stator S.
Further, a water shaft sealing gasket 6 is formed between the back surfaces of the first rotating wheel 1 a and the second rotating wheel 2 a and the water bearing 5.
[0016]
The connection flow path 3 includes a pipe 3a connected to the first scroll outlet OUT1 of the first compression section 1, a pipe 3b connected to the second suction port IN2 of the second compression section 2, and a pipe 3a and a pipe 3b. And a water removing unit 31 provided therebetween.
[0017]
The cooling water W is supplied from outside (not shown) to the water cooling jacket Mj to cool the motor stator S. Next, the water is supplied from the water cooling jacket Mj to the water bearing 5 to support the rotating shaft 4. Next, the water is supplied from the water bearing 5 to the water shaft sealing gasket 6, and the end and the center of the rotary shaft 4 are hermetically sealed. Next, it leaks from the water seal 6 to the back surface of the first impeller 1a and the second impeller 2a, and cools the first impeller 1a and the second impeller 2a.
[0018]
Further, the cooling water W that has leaked to the back surface of the first impeller 1a flows to the outer peripheral end of the first impeller 1a while being miniaturized by centrifugal force caused by the rotation of the first impeller 1a, and scatters from the outer peripheral end. Then, the first diffuser 1b and the first scroll 1c sufficiently mix the compressed gas with the compressed gas, and the compressed gas which has been compressed by the first compression unit 1 and has become high temperature (for example, 100 ° C. to 200 ° C.) by the heat of vaporization of the cooling water W. Cooling.
[0019]
On the other hand, the cooling water W that has leaked to the back of the second impeller 2a flows to the outer peripheral end of the second impeller 2a while being miniaturized by centrifugal force due to the rotation of the second impeller 2a, and scatters from the outer peripheral end. The compressed gas is sufficiently mixed with the compressed gas by the second diffuser 2b and the second scroll 2c, and is compressed by the second compression unit 2 and becomes high temperature (for example, 100 ° C. to 200 ° C.) by the heat of vaporization of the cooling water W. Cooling.
[0020]
FIG. 2 is a top view showing the water removing section 31 of the connection flow path 3. FIG. 3 is a sectional view taken along line AA ′ of FIG.
The compressed gas that has exited the first compression unit 1 enters the water removal unit 31 from the pipe 3a, but enters the water removal unit 31 eccentrically with respect to the peripheral wall 31a, so that a swirling flow cy occurs in the peripheral wall 31a. And it goes out to the pipe 3b from the center of the swirling flow cy.
The compressed gas that has flowed out of the first compression unit 1 contains water droplets of the cooling water W. The water droplets adhere to the peripheral wall 31a due to the centrifugal force of the swirling flow cy, and the water droplets are sufficiently removed from the compressed gas. For this reason, the compressed gas which does not contain water droplets enters the second compression unit 2, thereby avoiding vibration of the second impeller 2 a due to rotational imbalance caused by the attachment of the water droplets to the second impeller 2 a. You can do it.
The water droplets adhering to the peripheral wall 31a are discharged as drainage w from a drain pipe 31b at the bottom of the water removing unit 31.
[0021]
According to the compression apparatus 100 described above, the following effects can be obtained.
(1) Since the cooling water W is injected into the compressed gas that has exited the first compression unit 1 and directly cooled, the cooling efficiency can be improved. Further, since the cooling water W is sprayed in the flow path from the outer peripheral end of the first rotary impeller 1a to the first scroll outlet OUT1, the cooling water W is generated in the process until the compressed gas is collected at the first scroll outlet OUT1. Is sufficiently mixed with the gas, and the cooling efficiency can be improved also in this respect.
(2) Since the compressed gas that has become high temperature through the first compression section 1 is cooled before entering the second compression section 2, the compression efficiency in the second compression section 2 can be improved.
(3) Since the cooling water W is miniaturized and scattered by utilizing the rotation of the first impeller 1a, the cooling water W can be sufficiently mixed with the compressed gas without requiring a special injection device. Further, the first impeller 1a can be cooled.
(4) If water droplets remain in the compressed gas entering the second compression unit 2, the water droplets adhere to the surface of the second impeller 2a, causing vibration due to rotational imbalance of the second impeller 2a. Although there is a possibility, the cooling water W is not sprayed in the connection flow path 3 and the water drops are sufficiently removed from the compressed gas in the water removal section 31 of the connection flow path 3. Compressed gas containing no water is introduced, and vibration of the second impeller 2a due to rotation imbalance due to the attachment of water droplets can be avoided.
(5) Cooling efficiency can be improved because the cooling water W is injected to the compressed gas that has exited the second compression section 2 to directly cool the compressed gas. Further, since the cooling water W is sprayed in the flow path between the outer peripheral end of the second rotary impeller 2a and the second scroll outlet OUT2, the cooling water W is collected in the process until the compressed gas is collected at the second scroll outlet OUT2. Is sufficiently mixed with the gas, and the cooling efficiency can be improved also in this respect.
(6) Since the cooling water W is miniaturized and scattered by utilizing the rotation of the second rotary impeller 2a, the cooling water W can be sufficiently mixed with the compressed gas without requiring a special injection device. Further, the second impeller 2a can be cooled.
(7) Since a water path for water-cooling the motor stator S, a water path for the water bearing 5, a water path for the water shaft seal 6, and a water path for injecting cooling water into the compressed gas are formed as one system. This is suitable for downsizing the configuration.
[0022]
-Other embodiments-
You may use the water removal part 32 as shown in FIG.
In the water removing section 32, screw-shaped fins F are inserted into the pipe 3a to make the compressed gas a swirling flow cy, and water droplets are attached to the peripheral wall 32a by centrifugal force. put out. The water drops are discharged from the drain pipe 32b.
[0023]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the compression apparatus of this invention, the cooling efficiency of a compressed gas and the compression efficiency in a 2nd compression part can be improved.
[Brief description of the drawings]
FIG. 1 is a partially broken front view showing a compression device according to an embodiment of the present invention.
FIG. 2 is a top view showing a water removing unit.
FIG. 3 is a sectional view taken along line AA ′ of FIG. 2;
FIG. 4 is a perspective view showing another example of the water removing unit.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 1st compression part 1a 1st impeller 1b 1st diffuser 1c 1st scroll 2 2nd compression part 2a 2nd impeller 2b 2nd diffuser 2c 2nd scroll 3 Connecting channel 3a, 3b Piping 4 Rotating shaft 5 Water bearing 6 Water shaft seals 31, 32 Water removal parts 31a, 32a Peripheral walls 31b, 32b Drain pipe 100 Compressor

Claims (7)

気体を円周端から流出させ遠心方向と周方向の速度成分が含まれる回転流を形成する第1回転翼車と前記流出した気体を減速させ圧縮気体に変換する第1ディフューザと前記圧縮気体を集める第1スクロールからなる第1圧縮部と、気体を円周端から流出させ遠心方向と周方向の速度成分が含まれる回転流を形成する第2回転翼車と前記流出した気体を減速させ圧縮気体に変換する第2ディフューザと前記圧縮気体を集める第2スクロールからなる第2圧縮部と、前記第1圧縮部を出た圧縮気体を前記第2圧縮部に導くための連結流路と、前記第1回転翼車の外周端から前記第1スクロールの出口までの間の流路内で気体中に冷却水を噴霧する第1冷却水噴霧手段とを具備したことを特徴とする圧縮装置。A first rotating wheel that causes a gas to flow out from a circumferential end to form a rotational flow including centrifugal and circumferential velocity components, a first diffuser that decelerates the outflowing gas and converts it to a compressed gas, and the compressed gas. A first compression section comprising a first scroll to be collected, a second impeller for discharging gas from a circumferential end to form a rotating flow including centrifugal and circumferential velocity components, and a deceleration and compression of the discharged gas. A second diffuser configured to convert the gas into a second diffuser and a second scroll that collects the compressed gas, a connection flow path for guiding the compressed gas that has exited the first compressed portion to the second compressed portion, A first cooling water spraying means for spraying cooling water into gas in a flow path from an outer peripheral end of the first rotary impeller to an outlet of the first scroll. 請求項1に記載の圧縮装置において、前記冷却水は、前記第1回転翼車の背面に供給され、前記第1回転翼車の回転による遠心力で微細化され気体中に飛散することを特徴とする圧縮装置。2. The compression device according to claim 1, wherein the cooling water is supplied to a back surface of the first impeller, is minuted by centrifugal force generated by rotation of the first impeller, and is scattered in gas. 3. Compression device. 請求項2に記載の圧縮装置において、前記第1回転翼車の回転軸が水軸受で支承され、前記水軸受に供給された水が前記第1回転翼車の背面に供給されることを特徴とする圧縮装置。3. The compression device according to claim 2, wherein a rotation shaft of the first impeller is supported by a water bearing, and water supplied to the water bearing is supplied to a back surface of the first impeller. Compression device. 請求項1から請求項3のいずれかに記載の圧縮装置において、前記連結流路が、前記第1圧縮部を出た圧縮気体を旋回流とする旋回流形成構造と、前記旋回流を囲む周壁に付着した水滴を排出する排水構造と、前記周壁部分を経た旋回流を前記第2圧縮部に導く導出構造とを有することを特徴とする圧縮装置。4. The compression device according to claim 1, wherein the connection flow path has a swirl flow forming structure that uses the compressed gas that has exited the first compression section as a swirl flow, and a peripheral wall that surrounds the swirl flow. 5. A compression device comprising: a drainage structure for discharging water droplets adhered to a surface; and a lead-out structure for guiding a swirling flow passing through the peripheral wall portion to the second compression portion. 請求項1から請求項4のいずれかに記載の圧縮装置において、前記第2回転翼車の外周端から前記第2スクロールの出口までの間の流路内で気体中に冷却水を噴霧する第2冷却水噴霧手段を具備したことを特徴とする圧縮装置。5. The compression device according to claim 1, wherein the cooling water is sprayed into the gas in a flow path between an outer peripheral end of the second rotary impeller and an outlet of the second scroll. 6. (2) A compression device comprising cooling water spraying means. 請求項5に記載の圧縮装置において、前記冷却水は、前記第2回転翼車の背面に供給され、前記第2回転翼車の回転による遠心力で微細化され気体中に飛散することを特徴とする圧縮装置。6. The compression device according to claim 5, wherein the cooling water is supplied to a back surface of the second impeller, and is micronized by centrifugal force due to rotation of the second impeller and scatters in gas. Compression device. 請求項6に記載の圧縮装置において、前記第2回転翼車の回転軸が水軸受で支承され、前記水軸受に供給された水が前記第2回転翼車の背面に供給されることを特徴とする圧縮装置。7. The compression device according to claim 6, wherein a rotating shaft of the second impeller is supported by a water bearing, and water supplied to the water bearing is supplied to a back surface of the second impeller. Compression device.
JP2003131841A 2003-05-09 2003-05-09 Compression device Expired - Fee Related JP4432360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003131841A JP4432360B2 (en) 2003-05-09 2003-05-09 Compression device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003131841A JP4432360B2 (en) 2003-05-09 2003-05-09 Compression device

Publications (2)

Publication Number Publication Date
JP2004332666A true JP2004332666A (en) 2004-11-25
JP4432360B2 JP4432360B2 (en) 2010-03-17

Family

ID=33506912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003131841A Expired - Fee Related JP4432360B2 (en) 2003-05-09 2003-05-09 Compression device

Country Status (1)

Country Link
JP (1) JP4432360B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022131168A1 (en) * 2020-12-15 2022-06-23 三相電機株式会社 Canned motor pump
WO2022233603A1 (en) 2021-05-06 2022-11-10 IFP Energies Nouvelles Two-compression-stage electric gas compressor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106870121B (en) * 2017-03-08 2019-04-16 嘉兴德燃动力系统有限公司 Fuel cell car two-stage pressurization air compressor system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022131168A1 (en) * 2020-12-15 2022-06-23 三相電機株式会社 Canned motor pump
WO2022233603A1 (en) 2021-05-06 2022-11-10 IFP Energies Nouvelles Two-compression-stage electric gas compressor
FR3122708A1 (en) 2021-05-06 2022-11-11 IFP Energies Nouvelles Electrified Gas Compressor with Dual Compression Stage

Also Published As

Publication number Publication date
JP4432360B2 (en) 2010-03-17

Similar Documents

Publication Publication Date Title
JP4949702B2 (en) Compressor apparatus having air-cooled electric motor
EP0994258B1 (en) Scroll fluid machine
KR100487591B1 (en) Turbo compressor
US8807971B2 (en) Turbo compressor and compressor system comprising such a turbo compressor
US20150159674A1 (en) Turbo compressor system having at least two driving motors
JPH09112268A (en) Engine cooling device and construction equipment
US8727628B2 (en) Dual mode scavenge scoop
JP2008157235A (en) Low-restriction turbine outlet housing
RU2156929C1 (en) Air refrigerating plant, turbo-expander - electric compressor and turbine wheel of turbo-expander
US8313282B1 (en) Compact air-plus-liquid thermal management module
KR101315910B1 (en) Cooling structure for motor in turbo blower or turbo compressor
TWI703268B (en) Fluid machinery
JP2004332666A (en) Compression device
JP3470410B2 (en) Turbo compressor
JP3773443B2 (en) Packaged oil-cooled compressor
JP2005312272A (en) Turbo refrigerator and motor for the turbo refrigerator
JP2006291961A (en) Large-sized engine
JP2005171957A (en) Package type compressor
JPH09308189A (en) Turbo type air compressor
JPH06281274A (en) Turbo refrigerator
EP2624419A1 (en) Paper shredder
JPH0736144Y2 (en) Belt-driven air-cooled oilless scroll compressor cooling device
JP3054869B1 (en) Supercharger for diesel engine
CN220118264U (en) Vehicle-mounted oil-free air compressor with filtering structure
RU2723469C2 (en) Compressor, steam compression plant and methods of their operation and assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050809

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090309

A131 Notification of reasons for refusal

Effective date: 20090407

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20090522

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20091214

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees