JP2004332037A - Electroless gold plating method - Google Patents

Electroless gold plating method Download PDF

Info

Publication number
JP2004332037A
JP2004332037A JP2003128294A JP2003128294A JP2004332037A JP 2004332037 A JP2004332037 A JP 2004332037A JP 2003128294 A JP2003128294 A JP 2003128294A JP 2003128294 A JP2003128294 A JP 2003128294A JP 2004332037 A JP2004332037 A JP 2004332037A
Authority
JP
Japan
Prior art keywords
gold plating
electroless
gold
plating solution
electroless gold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003128294A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamamoto
弘 山本
昭男 ▲高▼橋
Akio Takahashi
Kanji Murakami
敢次 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2003128294A priority Critical patent/JP2004332037A/en
Publication of JP2004332037A publication Critical patent/JP2004332037A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electroless gold plating method which sufficiently prevents deposition irregularity of plating in an electroless gold plating step and forms an electroles gold plating film having a uniform thickness and adequate adhesiveness to a plating film arranged thereunder. <P>SOLUTION: The electroless gold plating method comprises the steps of displacement gold plating and electroless gold plating. In the method, a gold salt contained in a displacement gold plating solution is the same as that contained in an electroless gold-plating solution; a complexing agent contained in the displacement gold-plating solution is the same as that contained in the electroless gold-plating solution; and after the displacement gold-plating step, the electroless gold plating step is conducted while skipping a rinsing step. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は無電解金めっき方法に関するものである。
【0002】
【従来の技術】
従来から、プリント配線板上に形成された例えば銀又は銅等からなる導体パターン上にのみ選択的に金めっき皮膜を形成する方法として、電解めっき法と無電解めっき法が広く知られている。これらのうち、電解めっき法が、処理コスト及び浴安定性の観点で有利であることから、主として採用されている。
【0003】
一方、近年においては、半導体デバイス等の配線基板への電子回路の実装を、より高集積化及び/又は極微細化する必要性が生じてきている。しかし、上記電解めっき法は、電源リードに対する設計上の制約があり、また、孤立パターン上へのめっき皮膜の形成が比較的困難であるため、上記要求に対応できない場合が生じている。従って、今後はこのような点で有利である無電解めっき法に対する必要性が高まるものと予想される。
【0004】
この無電解めっき法による金めっきは、従来、概して以下のような工程で行われていた。まず、金属導体部を形成したプリント配線板を、脱脂液に浸漬し、続いて酸洗浄した後、無電解めっきの核となる例えばパラジウム系の触媒を吸着させ、次に該配線板を無電解ニッケルめっき液に浸漬して無電解ニッケル皮膜を形成する。その後、該配線板を置換金めっき液及び無電解金めっき液に順次浸漬して、所望の金めっき皮膜で金属導体部を被覆したプリント配線板を得る。そして、先の工程で用いられた液が後の工程で用いられる液に混入すると、後の工程で用いられる液の安定性が低下したり、或いは先の工程で用いられた液中の成分が後の工程における触媒毒となったりするので、従来は各工程の合間には数分間の流水洗浄処理が行われていた。
【0005】
このような無電解金めっき方法において、従来はシアン化合物を含む金めっき液が主として用いられていた。しかし、シアン化合物はその毒性が強いため、取り扱いが困難である上に、シアン化合物を含有した無電解金めっき液のほとんどは比較的高いpHを有していたため、レジストが溶解してパターンめっき性が低下するという問題点があった。
【0006】
かかる問題点を解決するために、例えば特許文献1では、無電解金めっき液に、金塩として非シアン系化合物である亜硫酸金塩もしくは塩化金酸塩を含有し、更にチオ硫酸塩及び亜硫酸塩、尿素系化合物及びフェニル化合物等を含有し、pH調整剤でそのpHを6.5〜8.5に調整することが提案されている。
【0007】
また、特許文献2では、置換金めっき液に、金塩(金イオン源)として非シアン化化合物である水溶性亜硫酸金化合物を含有させ、更に亜硫酸塩及び水溶性ポリアミノポリカルボン酸塩又はその塩等を適量含有させることにより、パターンめっき性を良好にすると共に、めっき表面の析出むらを解消し、又は各めっき皮膜間の密着性を改善することを意図した、置換無電解金めっき液の調製方法について提案されている。
【0008】
【特許文献1】
特許第3152008号公報
【特許文献2】
特許第3030113号公報
【0009】
【発明が解決しようとする課題】
しかしながら、本発明者らは、かかる従来の無電解金めっき方法について詳細に検討を行った結果、特許文献1に記載のような無電解金めっき方法により得られた導体パターン上のめっき皮膜は、めっきの下地である導体部の表面又はめっき皮膜の表面が上記水洗処理により酸化されるため、該導体部又はめっき皮膜上に更にめっきを析出させる際に析出むらが発生してしまい、下地の導体部又はめっき皮膜とその上に析出するめっき皮膜との密着性が低下してしまうことを見出した。そして、このような析出むら及び密着性の低下は、特に無電解金めっきを析出させる際に発生しやすいことも本発明者らは見出した。その原因について、詳細には解明されていないが、概ね以下の通りと考えられている。
【0010】
すなわち、該無電解金めっきは置換金めっき皮膜上に析出するが、置換金めっき皮膜はその他の金属皮膜と比較して概して薄く、その下地であるニッケルめっき皮膜の表面全体を被覆していない状態にある。すなわち、置換金めっき工程終了時においても、導体パターン上にはニッケルめっき皮膜が一部露出しており、この状態で水洗処理を行うと、特に該ニッケルめっき皮膜の表面が酸化されてしまう。その酸化されためっき皮膜は、金めっき析出反応の進行のための触媒(核)としては十分に機能しないものと考えられる。その結果、続いて行われる無電解金めっき工程において、置換金めっき皮膜と表面を酸化されたニッケルめっき皮膜とが露出した導体パターン上へ無電解金めっき皮膜を形成しようとすると、該酸化されたニッケルめっき皮膜上への無電解金めっきの析出が不十分となる場合、或いは該酸化されたニッケルめっき皮膜上への無電解金めっき皮膜の密着性が良好でない場合が生じるものと考えられている。なお、このようなニッケルめっき皮膜表面が酸化される傾向は、水洗処理に用いる水の温度が比較的高い場合、又は水洗時間が比較的長い場合に顕著になることが既に明らかになっている。
【0011】
更に特許文献2に記載のような無電解金めっき方法では、置換金めっきを析出させる際に発生しうる析出むらを防止でき、無電解ニッケルめっき皮膜と置換金めっき皮膜との間の密着性を向上できるが、無電解金めっきを析出させる際に発生する析出むらを防止することはできず、無電解金めっき皮膜とその下側にあるめっき皮膜との間の密着性を向上させることはできないことを、本発明者らは見出した。
【0012】
上記無電解金めっきの析出むらは、該金めっきの外観を損なうばかりでなく、該金めっき皮膜の膜厚を不均一にしてしまい、その膜厚を調整することを困難にさせてしまう。また、上記無電解金めっきの密着性の低下は、製品の歩留まり及び寿命の低下につながり好ましくない。
【0013】
そこで、本発明は上記事情に鑑みてなされたものであり、無電解金めっき工程時におけるめっきの析出むらを十分に防止することができ、得られる金めっき皮膜の膜厚が均一で、しかも無電解金めっき皮膜とその下側に配置されるめっき皮膜との間の良好な密着性を得ることのできる無電解金めっき方法を提供することを目的とする。
【0014】
【課題を解決するための手段】
本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、置換金めっき液の成分組成と無電解金めっき液の成分組成との関係に着目することにより、工程間で行う必要のあった水洗処理を省略することができることを見出し、本発明を完成するに至った。
【0015】
すなわち、本発明の無電解金めっき方法は、基体の導体部上に形成された無電解ニッケルめっき皮膜上に置換金めっき液を用いて置換金めっき皮膜を形成する置換金めっき工程と、該置換金めっき皮膜上に無電解金めっき液を用いて無電解金めっき皮膜を形成する無電解金めっき工程とを含む無電解金めっき方法であって、前記置換金めっき液に含有させる金塩と前記無電解金めっき液に含有させる金塩とを同一種類とし、且つ、前記置換金めっき液に含有させる錯化剤と前記無電解金めっき液に含有させる錯化剤とを同一種類とし、置換金めっき工程の後に水洗処理工程を経ずに無電解金めっき工程を行うことを特徴とする。
【0016】
本発明の無電解金めっき方法では、置換金めっき液の主成分である金塩(金イオン源)と金イオンに対する錯化剤とを無電解金めっき液のものと同一種類とするので、配線板などの被めっき物に付着した置換金めっき液が無電解金めっき液に混入しても何ら悪影響を及ぼすことはない。この原因は、詳細には解明されていないが、本発明者らは以下のように考えている。
【0017】
すなわち、従来の無電解金めっき方法では、無電解金めっき液中には置換金めっき液に含有されているものとは異なる金塩及び錯化剤が含有されているため、無電解金めっき工程において、被めっき物に付着した置換金めっき液中の諸成分が無電解金めっき液中に大量に混入すると、無電解金めっき液のpH変動を引き起こしたり、或いは無電解金めっき液のめっき性が低下する傾向にあった。そこでこれを防止するために置換金めっき工程と無電解金めっき工程との間で被めっき物の水洗処理を必要な時間行っていた。
しかし、本発明者らは、本発明の無電解金めっき方法においては、置換金めっき液の主成分である金塩及び錯化剤が無電解金めっき液中のものと同一種類であるため、無電解金めっき液の組成変動は発生し難く、そのpH変動或いはめっき性の低下は少ないため、無電解金めっき皮膜の形成を阻害することが抑制されるものと考えている。
【0018】
また、本発明にかかる無電解金めっき工程において、非シアン系金塩と、錯化剤と、還元剤と、pH調整剤とを含有させ、pHを6〜9に調整した無電解金めっき液を用いることが好ましい。
非シアン系金塩を含有した無電解金めっき液は、シアン系金塩を含有した無電解金めっき液と比較して、ニッケルイオンが混入しても液安定性が低下しない傾向にあるため、置換金めっき工程と無電解金めっき工程との間の水洗処理を省略しても不具合が生じ難い。
【0019】
更に、上記無電解金めっき方法の置換金めっき工程において、同一の成分組成である置換金めっき液で二段処理することが好ましい。これにより、無電解金めっき液へのニッケルイオン等の持ち込みは更に抑制され、無電解金めっき液を長時間連続的に使用することができる。
【0020】
また、上記無電解金めっき方法において、錯化剤として亜硫酸塩及び/又はチオ硫酸塩を含有する置換金めっき液及び無電解金めっき液を用いることが好ましい。
【0021】
【発明の実施の形態】
以下、本発明の好適な実施形態について詳細に説明する。
【0022】
本発明の無電解金めっき方法は、上述したように、基体の導体部上に形成された無電解ニッケルめっき皮膜上に、置換金めっき液を用いて置換金めっき皮膜を形成する置換金めっき工程と、該置換金めっき皮膜上に、無電解金めっき液を用いて無電解金めっき皮膜を形成する無電解金めっき工程とを含み、前記置換金めっき液に含有させる金塩と前記無電解金めっき液に含有させる金塩とを同一種類とし、且つ、前記置換金めっき液に含有させる錯化剤と前記無電解金めっき液に含有させる錯化剤とを同一種類とし、置換金めっき工程の後に水洗処理工程を経ずに無電解金めっき工程を行う。なお、本明細書において、「無電解金めっき」とは、「無電解金めっき方法」として用いる場合を除いて、還元剤の作用により金イオン又は該金イオンを含む錯イオンを金に還元して配線板上に金めっき皮膜を析出させることであり、上述した置換金めっきを除外する概念である。
【0023】
(前処理)
本発明の無電解金めっき方法では、従来のめっき方法と同様に、前処理として脱脂、酸洗浄、触媒付与及び無電解ニッケルめっき皮膜形成を行うことができる。従って、以下のような前処理を行った後に各金めっき工程を行ってもよい。すなわち、セラミックス製又は樹脂製等の基板上に銀又は銅等の材料を用いた導体パターンを印刷法又はエッチング法等により形成して得られた配線板を、まず脱脂液浸漬して、表面の油脂汚れ等を除去する。続いて水洗後、導体パターンの表面を均一化するために、通常は、硫酸過酸化水素水溶液等のエッチング液で該表面をマイルドエッチングする。更に水洗後、希硫酸水溶液等を用いて表面を洗浄する。次に水洗後、例えば置換タイプのパラジウム触媒液等で導体パターン上にのみ触媒を形成させる。そして水洗後、該配線板を無電解ニッケルめっき液に浸漬し、該導体パターン領域に無電解ニッケルめっき皮膜を形成させる。
【0024】
(置換金めっき工程)
置換金めっき工程は、上述の無電解ニッケルめっきを施された配線板を水洗した後、置換金めっき液に浸漬することにより行われる。
【0025】
置換金めっき液は、めっき皮膜として形成されたニッケルと該金めっき液中の金イオンとの置換反応(Ni→Ni2++2e,2Au+2e→2Au)により、ニッケルめっき皮膜上に金めっき皮膜を形成するために従来用いられていたものであれば特に限定されない。従って該置換金めっき液は、例えば、シアン化金ナトリウム若しくはシアン化金カリウム等のシアン化金塩(シアン系金イオン源)、或いは亜硫酸金塩、チオ硫酸金塩若しくは塩化金酸塩等の非シアン系金塩(非シアン系金イオン源)、並びに、亜硫酸塩、チオ硫酸塩、チオリンゴ酸塩若しくはカルボン酸塩等の錯化剤を必須成分として含有し、更に置換金めっき液に通常用いるその他の各種添加剤を適量含むこともできる。
【0026】
但し、本発明の無電解金めっき方法においては、置換金めっき液に含有される金塩及び錯化剤を、後述する無電解金めっき液に含有される金塩及び錯化剤と同一種類にする必要があり、このことが本発明の大きな特徴の一つである。これにより、置換金めっき工程時に配線板に付着した置換金めっき液が、その後の無電解金めっき工程時に無電解金めっき液に持ち込まれても、無電解金めっき液の液安定性等の特性が大きく変動することがないので、従来置換金めっき工程後に行われていた水洗処理を省略することが可能となる。
【0027】
上記金塩としては、非シアン系金塩である亜硫酸金塩又は塩化金酸塩を用いることが好ましい。シアン化金塩は、非シアン系金塩と比較して、概して毒性が強く、取り扱いが比較的困難である。更に、シアン化金塩を含有した置換金めっき液は、該液中に導体である銅又はめっき皮膜を形成していたニッケル等の不純物が溶け込み易く、それにより置換金めっき皮膜のニッケルめっき皮膜への密着性が低下する傾向にある。
【0028】
また、該金塩の置換金めっき液中の濃度は、金イオンとして1〜4g/Lの範囲になるように調整されることが好ましい。金塩の濃度が金イオンとして1g/Lより低いと、置換金めっき被膜の膜厚が薄くなりすぎる傾向にあり、該置換金めっきの無電解金めっき皮膜形成のための触媒としての活性が低下する傾向にある。また、金塩の濃度が金イオンとして4g/Lより高くても置換金めっき皮膜の膜厚はさほど変化せず経済的ではない。
【0029】
置換金めっき工程において置換金めっき液に含有される錯化剤としては、亜硫酸塩若しくはチオ硫酸塩又はそれらの混合物を用いることが好ましい。錯化剤は置換金めっき中の金イオン(Au)を安定的に錯体化し、Auの不均化反応(3Au→2Au+Au3+)を抑制し、該めっき液の安定性を高める作用を有する。
【0030】
また、該錯化剤の置換金めっき液中の含有量は、金塩中の金イオン1モルに対し4〜10モルとなるように調整されることが好ましい。金は4配位金属であるため、金イオンを錯体化させるための錯化剤は、該金イオン1モルに対し4モル以上必要であり、更に、置換金めっき液の安定性を高めるために、ある程度過剰量の錯化剤が該液中に含有されていることが好ましい。なお該金イオン1モルに対し10モルを越える量の錯化剤を置換金めっき液に添加しても、更なる液安定性の向上はほとんど認められない。
【0031】
置換金めっき液のpHは、(1)シアン化金塩を含有する場合は5〜7、(2)非シアン系金塩を含有する場合は6〜9となるように調整されることが好ましい。該pHが(1),(2)のそれぞれの下限値未満であると成分組成中の亜硫酸イオン等が分解して置換金めっき液の安定性が低下する傾向にある。また、該pHが(1),(2)のそれぞれの上限値を超えると、置換金めっき皮膜の膜厚が薄くなりすぎてしまい、該置換金めっきの無電解金めっき皮膜形成のための触媒としての活性が低下する傾向にある。更に、該pHが(1),(2)のそれぞれの上限値を超えると、めっきレジストを該置換金めっき液に溶解させる傾向もあり、そのような場合はパターンめっき性も低下させてしまい好ましくない。
【0032】
そして、該pHの調整は、塩酸、硫酸、水酸化ナトリウム又は水酸化カリウム等を用いて行うことが好ましい。
【0033】
配線板浸漬時の置換金めっき液の温度は、所望の膜厚の置換金めっき皮膜を得ることができるように適宜設定することができるが、80〜90℃程度とすることが好ましい。置換金めっき液の温度が80℃より低いと、金の析出速度が遅くなりすぎる傾向にあり、90℃より高いと、置換金めっき液が速やかに揮発してしまう、又は該金めっき液中の成分が熱分解してしまうため、該金めっき液中の金イオンの安定性が著しく低下する傾向にある。
【0034】
そして該金めっき液への配線板の浸漬時間は、所望の膜厚の置換金めっき皮膜を得ることができるように、適宜設定することができる。すなわち、置換金めっき皮膜を比較的厚くしたい場合は、配線板の該めっき液への浸漬時間を長くすればよい。逆に、置換金めっき皮膜を比較的薄くしたい場合は、配線板の該めっき液への浸漬時間を短くすればよい。但し、置換金めっき工程を行う際は、ある程度の膜厚(30〜100nm程度)の金めっき皮膜が形成された後は、それ以上の時間浸漬しても該皮膜の膜厚はほとんど変化しない傾向にあるため、これを考慮して製造コスト削減の観点から浸漬時間を設定することが好ましい。
【0035】
更に、該置換金めっき工程において、配線板が、同一の成分組成である置換金めっき液で二段処理されることが好ましい。具体的には、例えば、まず1段目の置換金めっき液に配線板を所定時間浸漬した後、続いて、1段目の置換金めっき液と同一の成分組成であるが別に用意された2段目の置換金めっき液に10〜30秒程度の短時間の間浸漬することも可能である。これにより、1段目の置換金めっき液浸漬時に該液中に溶出し配線板に付着したニッケルイオンを、その後の無電解金めっき工程の際に、無電解金めっき液に持ち込むことを抑制することができるので、無電解金めっき液を長時間連続的に使用することが可能となる。
【0036】
(無電解金めっき工程)
無電解金めっき工程は、上述の置換金めっき皮膜を施された配線板を無電解金めっき液に浸漬することにより行われる。
【0037】
無電解金めっき液は、還元剤の作用により該金めっき液中の金イオンを金に還元して配線板上にめっき皮膜を析出させることができるものであれば特に限定されない。従って、例えば、該無電解金めっき液は、シアン化金カリウム、亜硫酸金ナトリウム若しくは塩化金酸ナトリウム等の金塩、シアン化塩、亜硫酸塩、チオ硫酸塩若しくは塩素塩等の水溶性イオンを供給する錯化剤、及び、水素化ホウ素ナトリウム、ジメチルアミンボラン、ヒドラジン、チオ尿素、アスコルビン酸ナトリウム等の還元剤を必須成分として含有し、更に、その他のpH調整剤等の無電解金めっき液に通常用いる各種添加剤を適量含むこともできる。
【0038】
但し、上述したとおり、本発明の無電解金めっき方法においては、無電解金めっき液に含有される金塩及び錯化剤を、置換金めっき液に含有される金塩及び錯化剤と同一種類とする必要があり、このことが本発明の大きな特徴の一つである。
【0039】
従って、上記金塩としては、置換金めっき液に含有されるものと同様に、非シアン系金塩である亜硫酸金塩又は塩化金酸塩を用いることが好ましい。
【0040】
該金塩の無電解金めっき液中の濃度は、金イオンとして1.5〜3g/Lの範囲となるように調整されることが好ましい。該金塩の濃度が金イオンとして1.5g/Lよりも低い場合は、金の析出速度が遅くなる傾向にあるため作業効率が低下してしまう。該金塩の濃度が金イオンとして3g/Lよりも高い場合は、無電解金めっき液の液安定性が低下する傾向にある。
【0041】
また、金の錯化剤としても、置換金めっき液に含有されるものと同様に、亜硫酸塩若しくはチオ硫酸塩又はそれらの混合物を用いることが好ましい。
【0042】
そして、該錯化剤の無電解金めっき液中の含有量は、金塩中の金イオン1モルに対し4〜10モルとなるように調整されることが好ましい。金は4配位金属であるため、金イオンを錯体化させるための錯化剤は、該金イオン1モルに対し4モル以上必要であり、これより少ないと液安定性が低下してしまう。更に、無電解金めっき液の安定性を高めるために、ある程度過剰量の錯化剤が該液中に含有されていることが好ましい。なお該金イオン1モルに対し10モルを越える量の錯化剤を無電解金めっき液に添加すると、金の析出速度が遅くなる傾向にあるため、生産性の低下に繋がる。
【0043】
上記還元剤としては、チオ尿素、メチルチオ尿素、ジメチルチオ尿素等の尿素系化合物を用いることが好ましい。
【0044】
該還元剤の無電解金めっき液への添加量は、金塩中の金イオンと等モルであることが好ましい。該還元剤の添加量がこれより少ない場合は、金の析出速度が遅くなってしまう傾向にあるため、生産性の低下に繋がる。また、該還元剤の添加量がこれより多い場合は、無電解金めっき液の液安定性が低下する傾向にある。
【0045】
更に、無電解金めっき液に還元促進剤として、ヒドロキノン、メチルヒドロキノン、カテコール、ピロガロール、アミノフェノール、フェニレンジアミン等のフェニル系化合物を添加することもできる。還元促進剤は、還元剤の還元効率を向上させる物質であり、金の析出速度を速める効果があるので、生産性の向上に繋がる。該還元促進剤の無電解金めっき液への添加量については、上記還元剤2モルに対して該還元促進剤を1モル添加することが好ましい。還元促進剤の添加量が少なすぎると、金の析出速度を速めることができない傾向にあり、還元促進剤の添加量が多すぎると、無電解金めっき液の液安定性が低下する傾向にある。
【0046】
配線板浸漬時の無電解金めっき液の温度は、所望の膜厚の無電解金めっき皮膜を得ることができるように適宜設定することができるが、60〜80℃程度となるように調整されることが好ましい。無電解金めっき液の温度が60℃より低いと、金の析出速度が遅くなりすぎる傾向にあり、80℃より高いと、該めっき液の液安定性が著しく低下する傾向にある。
【0047】
また、無電解金めっき液のpHは、シアン化金塩を含有する場合であっても、非シアン系金塩を含有する場合であっても、6〜9となるように調整されることが好ましい。pHが6未満であると、無電解金めっき液中に存在する亜硫酸イオン等が分解する傾向にあるため、該めっき液の液安定性が低下する。またpHが9を越えると、該めっき液中に存在する金イオンが不均一反応を起こしてしまう傾向にあるので、やはり液安定性が低下する。
【0048】
更に、該無電解金めっき液のpHは、置換金めっき液のpHと同程度となるように調整されることが特に好ましい。本発明の無電解金めっき方法は、置換金めっき工程が終了した後、水洗処理を行うことなく無電解金めっき工程に移行するので、無電解金めっき液のpHと置換金めっき液のpHとが異なると、置換金めっき液の持ち込みにより、無電解金めっき液のpHが変動してしまい、液安定性の低下等に繋がる傾向にある。
【0049】
無電解金めっき液の上記pHは、塩酸又は硫酸等をpH調整剤として添加することによって、6〜9の範囲に調整される。
【0050】
本発明の無電解金めっき方法は、置換金めっき液に含有させる金塩と無電解金めっき液に含有させる金塩とを同一種類とし、且つ、置換金めっき液に含有させる錯化剤と無電解金めっき液に含有させる錯化剤とを同一種類とするので、上述したように、従来置換金めっき工程後に行われていた水洗処理を介することなく、無電解金めっき工程を行うことができる。これにより、特に該水洗処理に用いる水の温度が高すぎる場合、或いは該水洗処理時間が長すぎる場合に顕著に生じていた該水洗処理起因の導体パターン表面の酸化が抑制される。
【0051】
従って、従来の無電解金めっき方法においては、導体パターン表面の酸化が原因で無電解金めっき終了後に置換金めっき皮膜と無電解金めっき皮膜との間に密着不良が発生していたが、本発明の無電解金めっき方法においては、かかる密着不良を抑制することが可能となる。更に、従来の無電解金めっき方法において、無電解金めっき時の初期の金めっきの析出が均一に起こらないため、無電解金めっき皮膜の膜厚のばらつきが大きくなる傾向にあったが、本発明の無電解金めっき方法によると、かかる金めっき皮膜の膜厚の不均一性も解消することができる。
【0052】
そして、本発明の無電解金めっき方法においては、水洗処理のみではなく、置換金めっき工程と無電解金めっき工程との間で、例えば水以外の溶媒に配線板を浸漬して洗浄を行う処理、或いは気相で配線板を乾燥させる処理等をも省略することができるので、工程の短縮化に繋がり、生産効率を向上させることもできる。
【0053】
【実施例】
以下、実施例により本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
【0054】
(実施例1)
実施例及び比較例にかかる無電解金めっき方法は、エッチング法により銅配線を形成した25cm×25cm×1mmの厚さを有するプリント配線板を用いて行われた。
【0055】
実施例1ではまず、該プリント配線板の表面の油脂や汚れ等を除去するために、50℃に調整された酸性脱脂液CLC−5000(日立化成工業株式会社製、製品名)に該プリント配線板を浸漬し4分間処理した。次に、該プリント配線板に付着した余分な界面活性剤を除去するために、該プリント配線板を50℃の純水に浸漬して1分間湯洗し、続いて、水洗処理を2分間行った。次に、該プリント配線板の表面形状を均一にするために、該プリント配線板を過硫酸ナトリウム水溶液(100g/L)に浸漬した状態のまま、室温で1分間維持するソフトエッチング処理を行った後、水洗処理を1分間行った。続いて、プリント配線板の表面の酸化膜を除去するために、該プリント配線板を希硫酸水溶液(100mL/L)に浸漬し、室温で1分間酸化膜除去処理を行い、その後、水洗処理を1分間行った。次に、置換パラジウム触媒液SA−100(日立化成工業株式会社製、製品名)に該プリント配線板を浸漬し、室温で5分間触媒形成処理を行った後、水洗処理を1分間行った。
【0056】
続いて、該プリント配線板を無電解ニッケル−リンめっき液NIPS−100(日立化成工業株式会社製、製品名)に浸漬し、85℃で25分間ニッケルめっき処理をし、約5μmのニッケル−リンの合金めっき皮膜を形成した。
【0057】
そして、水洗処理を1分間行った後、非シアン系金塩である亜硫酸金ナトリウムと錯化剤である亜硫酸ナトリウムとを含有し、pHを8に調整した置換金めっき液HGS−100(日立化成工業株式会社製、製品名)に該プリント配線板を浸漬し、85℃で10分間置換金めっき処理することによって、0.03〜0.1μm程度の膜厚の置換金めっき皮膜を形成した。
【0058】
最後に、該置換金めっき皮膜が形成されたプリント配線板を、水洗することなく、そのまま非シアン系金塩である亜硫酸金ナトリウムと、錯化剤である亜硫酸ナトリウムと、還元剤とを含有し、pHを7.5に調整した無電解金めっき液HGS−2000(日立化成工業株式会社製、製品名)に浸漬し、65℃で40分間無電解金めっき処理を行い、0.4〜0.6μm程度の膜厚を有する無電解金めっき皮膜を形成した。
【0059】
[無電解金めっき皮膜の膜厚測定]
得られた金めっき皮膜の膜厚の測定は蛍光X線膜厚計を用いて行われ、該皮膜の任意の50箇所の膜厚を測定することによって、該金めっき皮膜の平均膜厚及び標準偏差(3σ)が算出された。
【0060】
[金めっき皮膜の密着性確認試験]
得られた金めっき皮膜の密着性確認試験は、無電解めっき工程が終了した後、50mm角のパターン部にセロハンテープを貼り、該セロハンテープを素早く剥離して、金めっきの剥がれた部分の有無を目視で確認することにより行われた。
【0061】
なお、上記無電解金めっき皮膜の膜厚測定及び金めっき皮膜の密着性確認試験は、各実施例及び比較例で得られた金めっき皮膜について行われた。
【0062】
実施例1の無電解金めっき方法により得られた無電解金めっきは、均一に析出し、色合いもきれいな黄色を呈していた。その金めっき皮膜の平均膜厚は、0.52μmであった。また、その標準偏差(3σ)は0.02であり、該皮膜の膜厚のばらつきは比較的小さく、均一な無電解金めっき皮膜が得られたことが確認された。また金めっき皮膜の密着性確認試験でも、金めっき皮膜の剥離は認められず、良好な結果が得られた。
【0063】
(実施例2)
実施例2の無電解金めっき方法においては、置換金めっき工程を以下のように行った以外は、実施例1の無電解金めっき方法と同じ方法を行って、無電解金めっきを施されたプリント配線板を得た。該置換金めっき工程では、置換金めっき液HGS−100にプリント配線板を浸漬し、85℃で10分間置換金めっき処理を行った後に、同じ成分組成であるが別に用意された置換金めっき液HGS−100に、該プリント配線板を85℃で20秒間浸漬することにより置換金めっきの二段処理を行って、置換金めっき皮膜が形成されたプリント配線板を得た。
【0064】
実施例2の無電解金めっき方法により得られた無電解金めっきは、均一に析出し、色合いもきれいな黄色を呈していた。その金めっき皮膜の平均膜厚は、0.55μmであった。また、その標準偏差(3σ)は0.02であり、金めっき皮膜の膜厚のばらつきは小さく、均一な無電解金めっき皮膜が得られたことが確認された。また金めっき皮膜の密着性確認試験でも、金めっき皮膜の剥離は認められず、良好な結果が得られた。なお、この実施例2で用いた無電解金めっき液を約2ヶ月もの長期の間使用したが、該金めっき液が分解することはなかった。
【0065】
(比較例1)
比較例1の無電解金めっき方法においては、置換金めっき工程を行った後に、プリント配線板を3分間水洗処理し、続いて無電解金めっき工程を行った以外は、実施例1の無電解金めっき方法と同じ方法を行って、無電解金めっきを施されたプリント配線板を得た。
【0066】
比較例1の無電解金めっき方法により得られた無電解金めっきは、均一に析出し、色合いもきれいな黄色を呈していた。その金めっき皮膜の平均膜厚は、0.50μmであった。そして、その標準偏差(3σ)は0.10であり、金めっき皮膜の膜厚のばらつきが実施例1,2と比較して、大きくなっていることが確認された。また、金めっき皮膜の密着性確認試験では、金めっき皮膜の剥離は認められなかった。
【0067】
(比較例2)
比較例2の無電解金めっき方法においては、置換金めっき工程を行った後に、プリント配線板を40℃の湯で3分間湯洗処理を行い、続いて無電解金めっき工程を行った以外は、実施例1の無電解金めっき方法と同じ方法を行って、無電解金めっきを施されたプリント配線板を得た。
【0068】
比較例2の無電解金めっき方法により得られた無電解金めっきは、析出状態にむらがあり、色合いは部分的に茶褐色を呈していた。その金めっき皮膜の平均膜厚は、0.38μmであった。また、その標準偏差(3σ)は、0.21であり、金めっき皮膜の膜厚のばらつきが実施例1,2と比較して、大きくなっていることが確認された。また、金めっき皮膜の密着性確認試験では、わずかだが金めっき皮膜の剥離が確認された。
【0069】
【発明の効果】
以上説明したように、本発明の無電解金めっき方法によれば、無電解金めっき工程時におけるめっきの析出むらを十分に防止することができるので、得られる金めっき皮膜の膜厚が均一となる。しかも無電解金めっき皮膜とその下側に配置されるめっき皮膜との間の良好な密着性を得ることができる。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electroless gold plating method.
[0002]
[Prior art]
BACKGROUND ART Conventionally, electrolytic plating and electroless plating are widely known as methods for selectively forming a gold plating film only on a conductor pattern formed of, for example, silver or copper on a printed wiring board. Among these, the electrolytic plating method is mainly employed because it is advantageous in terms of processing cost and bath stability.
[0003]
On the other hand, in recent years, there has been a need to mount electronic circuits on wiring boards such as semiconductor devices with higher integration and / or ultrafineness. However, the above-mentioned electrolytic plating method has limitations in designing power supply leads, and it is relatively difficult to form a plating film on an isolated pattern. Therefore, it is expected that the need for an electroless plating method that is advantageous in this respect will increase in the future.
[0004]
Conventionally, gold plating by this electroless plating method has been generally performed in the following steps. First, the printed wiring board on which the metal conductors are formed is immersed in a degreasing solution, and then washed with an acid. Then, for example, a palladium-based catalyst serving as a core of electroless plating is adsorbed. It is immersed in a nickel plating solution to form an electroless nickel film. Thereafter, the wiring board is sequentially immersed in a replacement gold plating solution and an electroless gold plating solution to obtain a printed wiring board having a metal conductor portion covered with a desired gold plating film. When the liquid used in the previous step is mixed with the liquid used in the subsequent step, the stability of the liquid used in the subsequent step is reduced, or the components in the liquid used in the previous step are reduced. Conventionally, washing with running water for several minutes has been performed between each step, because it may cause catalyst poisoning in later steps.
[0005]
In such an electroless gold plating method, conventionally, a gold plating solution containing a cyanide has been mainly used. However, cyanide is highly toxic and difficult to handle, and most of the electroless gold plating solutions containing cyanide have a relatively high pH, dissolving the resist and causing pattern plating. However, there is a problem that the temperature is reduced.
[0006]
In order to solve such a problem, for example, in Patent Document 1, an electroless gold plating solution contains a gold salt containing a non-cyanide compound, gold sulfite or chloroaurate, and further contains thiosulfate and sulfite. , A urea-based compound, a phenyl compound and the like, and adjusting the pH to 6.5 to 8.5 with a pH adjuster has been proposed.
[0007]
Further, in Patent Document 2, a substituted gold plating solution contains a water-soluble gold sulfite compound which is a non-cyanating compound as a gold salt (gold ion source), and further contains a sulfite and a water-soluble polyaminopolycarboxylate or a salt thereof. Preparation of a substitutional electroless gold plating solution intended to improve the pattern plating property and eliminate uneven deposition on the plating surface, or to improve the adhesion between the plating films, by containing an appropriate amount of the like. A method has been proposed.
[0008]
[Patent Document 1]
Japanese Patent No. 3152008
[Patent Document 2]
Japanese Patent No. 3030113
[0009]
[Problems to be solved by the invention]
However, the present inventors have studied in detail such a conventional electroless gold plating method, and as a result, the plating film on the conductor pattern obtained by the electroless gold plating method as described in Patent Document 1, Since the surface of the conductor portion or the surface of the plating film, which is the base of the plating, is oxidized by the water washing treatment, uneven deposition occurs when further plating is deposited on the conductor portion or the plating film, and the underlying conductor It has been found that the adhesion between a portion or a plating film and a plating film deposited thereon is reduced. The present inventors have also found that such uneven deposition and reduced adhesion are likely to occur particularly when depositing electroless gold plating. Although the cause has not been elucidated in detail, it is generally considered as follows.
[0010]
That is, the electroless gold plating is deposited on the displacement gold plating film, but the displacement gold plating film is generally thinner than other metal films, and does not cover the entire surface of the underlying nickel plating film. It is in. That is, even at the end of the displacement gold plating step, the nickel plating film is partially exposed on the conductor pattern. If the washing process is performed in this state, the surface of the nickel plating film is particularly oxidized. It is considered that the oxidized plating film does not sufficiently function as a catalyst (nucleus) for the progress of the gold plating deposition reaction. As a result, in the subsequent electroless gold plating step, when an attempt was made to form an electroless gold plating film on the conductor pattern where the substituted gold plating film and the nickel plating film whose surface was oxidized were exposed, the oxidized It is believed that insufficient deposition of electroless gold plating on the nickel plating film or poor adhesion of the electroless gold plating film on the oxidized nickel plating film is considered to occur. . It has already been found that such a tendency that the nickel plating film surface is oxidized becomes remarkable when the temperature of the water used for the rinsing treatment is relatively high or when the rinsing time is relatively long.
[0011]
Further, in the electroless gold plating method as described in Patent Document 2, it is possible to prevent uneven deposition that may occur when depositing displacement gold plating, and to reduce the adhesion between the electroless nickel plating film and the displacement gold plating film. Although it can be improved, it is impossible to prevent the unevenness of deposition that occurs when depositing the electroless gold plating, and it is not possible to improve the adhesion between the electroless gold plating film and the plating film thereunder The present inventors have found that.
[0012]
The uneven deposition of the electroless gold plating not only impairs the appearance of the gold plating, but also makes the thickness of the gold plating film non-uniform, making it difficult to adjust the thickness. In addition, a decrease in the adhesion of the electroless gold plating is undesirable because it leads to a reduction in product yield and life.
[0013]
Therefore, the present invention has been made in view of the above circumstances, and it is possible to sufficiently prevent uneven deposition of plating during an electroless gold plating process, and to obtain a uniform gold plating film having a uniform thickness. An object of the present invention is to provide an electroless gold plating method capable of obtaining good adhesion between an electrolytic gold plating film and a plating film disposed thereunder.
[0014]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to achieve the above-mentioned object, and as a result, by focusing on the relationship between the component composition of the replacement gold plating solution and the component composition of the electroless gold plating solution, it is necessary to perform the process between steps. It has been found that the washing process can be omitted, and the present invention has been completed.
[0015]
That is, the electroless gold plating method of the present invention comprises a displacement gold plating step of forming a displacement gold plating film using a displacement gold plating solution on an electroless nickel plating film formed on a conductor portion of a substrate; An electroless gold plating step of forming an electroless gold plating film on the gold plating film using an electroless gold plating solution, wherein the gold salt contained in the replacement gold plating solution and The same kind of gold salt to be contained in the electroless gold plating solution, and the same kind of complexing agent to be contained in the replacement gold plating solution and the same complexing agent to be contained in the electroless gold plating solution, It is characterized in that the electroless gold plating step is performed after the plating step without passing through the water washing treatment step.
[0016]
In the electroless gold plating method of the present invention, the gold salt (gold ion source), which is the main component of the substitutional gold plating solution, and the complexing agent for gold ions are of the same type as that of the electroless gold plating solution. Even if the replacement gold plating solution adhering to the plate or the like to be plated is mixed into the electroless gold plating solution, there is no adverse effect. The reason for this has not been elucidated in detail, but the present inventors consider as follows.
[0017]
That is, in the conventional electroless gold plating method, since the electroless gold plating solution contains a gold salt and a complexing agent different from those contained in the replacement gold plating solution, the electroless gold plating step In the case where a large amount of various components of the replacement gold plating solution adhering to the object to be plated are mixed into the electroless gold plating solution, the pH of the electroless gold plating solution may fluctuate, or the plating property of the electroless gold plating solution Tended to decrease. Therefore, in order to prevent this, between the displacement gold plating step and the electroless gold plating step, the object to be plated is washed with water for a necessary time.
However, the present inventors, in the electroless gold plating method of the present invention, since the gold salt and the complexing agent, which are the main components of the replacement gold plating solution, are of the same type as those in the electroless gold plating solution, It is considered that the composition of the electroless gold plating solution hardly fluctuates, and the pH fluctuation or the decrease in plating property is small, so that the inhibition of the formation of the electroless gold plating film is suppressed.
[0018]
Further, in the electroless gold plating step according to the present invention, an electroless gold plating solution containing a non-cyanide-based gold salt, a complexing agent, a reducing agent, and a pH adjuster, and adjusting the pH to 6 to 9 is provided. It is preferable to use
Since the electroless gold plating solution containing a non-cyanide-based gold salt has a tendency that the stability of the solution does not decrease even if nickel ions are mixed, as compared with the electroless gold-plating solution containing a cyanide-based gold salt, Even if the washing process between the displacement gold plating process and the electroless gold plating process is omitted, no problem occurs.
[0019]
Furthermore, in the displacement gold plating step of the above electroless gold plating method, it is preferable to perform two-step treatment with a replacement gold plating solution having the same component composition. As a result, carry-in of nickel ions and the like into the electroless gold plating solution is further suppressed, and the electroless gold plating solution can be used continuously for a long time.
[0020]
In the above electroless gold plating method, it is preferable to use a substituted gold plating solution and an electroless gold plating solution containing a sulfite and / or a thiosulfate as a complexing agent.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail.
[0022]
As described above, the electroless gold plating method of the present invention includes a displacement gold plating step of forming a displacement gold plating film using a displacement gold plating solution on an electroless nickel plating film formed on a conductor portion of a substrate. And an electroless gold plating step of forming an electroless gold plating film on the replacement gold plating film using an electroless gold plating solution, wherein a gold salt to be contained in the replacement gold plating solution and the electroless gold The same type of gold salt to be contained in the plating solution, and the same type of complexing agent to be contained in the replacement gold plating solution and the same complexing agent to be contained in the electroless gold plating solution, Thereafter, an electroless gold plating step is performed without passing through a water washing processing step. In the present specification, “electroless gold plating” means reducing gold ions or complex ions containing the gold ions to gold by the action of a reducing agent, except when used as an “electroless gold plating method”. Is to deposit a gold plating film on the wiring board by the above method, and is a concept excluding the above-described replacement gold plating.
[0023]
(Preprocessing)
In the electroless gold plating method of the present invention, degreasing, acid cleaning, catalyst application, and electroless nickel plating film formation can be performed as pretreatments, similarly to the conventional plating method. Therefore, each gold plating step may be performed after performing the following pretreatment. That is, a wiring board obtained by forming a conductor pattern using a material such as silver or copper on a substrate made of ceramics or resin by a printing method, an etching method, or the like, is first immersed in a degreasing solution, Removes oil and dirt. Subsequently, after washing with water, the surface of the conductor pattern is usually mildly etched with an etching solution such as an aqueous solution of sulfuric acid and hydrogen peroxide in order to make the surface of the conductor pattern uniform. After washing with water, the surface is washed with a dilute sulfuric acid aqueous solution or the like. Next, after washing with water, a catalyst is formed only on the conductor pattern using, for example, a substitution-type palladium catalyst solution. After washing with water, the wiring board is immersed in an electroless nickel plating solution to form an electroless nickel plating film in the conductor pattern region.
[0024]
(Displacement gold plating process)
The replacement gold plating step is performed by washing the wiring board on which the above-described electroless nickel plating has been performed with water, and then immersing the board in a replacement gold plating solution.
[0025]
The replacement gold plating solution is a replacement reaction between nickel formed as a plating film and gold ions in the gold plating solution (Ni → Ni 2+ + 2e , 2Au + + 2e → 2Au) is not particularly limited as long as it has been conventionally used for forming a gold plating film on a nickel plating film. Therefore, the replacement gold plating solution may be, for example, a gold cyanide salt (cyanide gold ion source) such as sodium gold cyanide or potassium potassium cyanide, or a non-gold salt such as gold sulfite, gold thiosulfate or chloroaurate. It contains a cyanide-based gold salt (non-cyanide-based gold ion source) and a complexing agent such as sulfite, thiosulfate, thiomalate, or carboxylate as essential components, and is also commonly used in substituted gold plating solutions. Of various additives can also be contained in appropriate amounts.
[0026]
However, in the electroless gold plating method of the present invention, the gold salt and the complexing agent contained in the displacement gold plating solution are the same as the gold salt and the complexing agent contained in the electroless gold plating solution described below. This is one of the major features of the present invention. As a result, even if the replacement gold plating solution adhering to the wiring board during the replacement gold plating process is brought into the electroless gold plating solution during the subsequent electroless gold plating process, the characteristics such as the solution stability of the electroless gold plating solution can be maintained. Does not greatly change, so that the water washing process conventionally performed after the replacement gold plating step can be omitted.
[0027]
As the gold salt, it is preferable to use a gold salt of non-cyanide gold or a chloroaurate. Gold cyanide salts are generally more toxic than non-cyanide gold salts and are relatively difficult to handle. Further, in the displacement gold plating solution containing a gold cyanide salt, impurities such as copper serving as a conductor or nickel forming the plating film are easily dissolved in the solution, whereby the nickel plating film of the displacement gold plating film is formed. Tend to decrease the adhesion.
[0028]
Further, the concentration of the gold salt in the replacement gold plating solution is preferably adjusted so as to be in the range of 1 to 4 g / L as gold ions. When the concentration of the gold salt is lower than 1 g / L as gold ions, the thickness of the substituted gold plating film tends to be too thin, and the activity of the substituted gold plating as a catalyst for forming an electroless gold plating film decreases. Tend to. Further, even if the concentration of the gold salt is higher than 4 g / L as gold ions, the thickness of the substituted gold plating film does not change so much, which is not economical.
[0029]
As the complexing agent contained in the displacement gold plating solution in the displacement gold plating step, it is preferable to use a sulfite, a thiosulfate, or a mixture thereof. The complexing agent is the gold ion (Au) in the displacement gold plating. + ) Is stably complexed to form Au + Disproportionation reaction (3Au + → 2Au + Au 3+ ) To increase the stability of the plating solution.
[0030]
Further, the content of the complexing agent in the substituted gold plating solution is preferably adjusted so as to be 4 to 10 mol per 1 mol of gold ions in the gold salt. Since gold is a four-coordinate metal, a complexing agent for complexing gold ions is required to be at least 4 mol per 1 mol of the gold ions. Further, in order to enhance the stability of the substituted gold plating solution, It is preferable that a somewhat excessive amount of complexing agent is contained in the liquid. Even if the complexing agent is added to the substituted gold plating solution in an amount of more than 10 moles per 1 mole of the gold ion, further improvement in the solution stability is hardly recognized.
[0031]
The pH of the displacement gold plating solution is preferably adjusted so as to be (1) 5 to 7 when containing a cyanide gold salt and (2) to 6 to 9 when containing a non-cyanide gold salt. . If the pH is less than the lower limit of each of (1) and (2), sulfite ions and the like in the component composition tend to decompose and the stability of the substituted gold plating solution tends to decrease. If the pH exceeds the upper limit of each of (1) and (2), the thickness of the replacement gold plating film becomes too thin, and the catalyst for forming the electroless gold plating film of the replacement gold plating is used. Activity tends to decrease. Further, when the pH exceeds the upper limit of each of (1) and (2), there is a tendency that the plating resist is dissolved in the replacement gold plating solution, and in such a case, the pattern plating property is reduced, which is preferable. Absent.
[0032]
The adjustment of the pH is preferably performed using hydrochloric acid, sulfuric acid, sodium hydroxide, potassium hydroxide, or the like.
[0033]
The temperature of the replacement gold plating solution during immersion in the wiring board can be appropriately set so as to obtain a replacement gold plating film having a desired film thickness, but is preferably about 80 to 90 ° C. When the temperature of the replacement gold plating solution is lower than 80 ° C., the deposition rate of gold tends to be too slow. When the temperature is higher than 90 ° C., the replacement gold plating solution is quickly volatilized, or in the gold plating solution. Since the components are thermally decomposed, the stability of gold ions in the gold plating solution tends to be significantly reduced.
[0034]
The immersion time of the wiring board in the gold plating solution can be appropriately set so that a substituted gold plating film having a desired film thickness can be obtained. That is, when the replacement gold plating film is desired to be relatively thick, the immersion time of the wiring board in the plating solution may be lengthened. Conversely, when the replacement gold plating film is to be made relatively thin, the immersion time of the wiring board in the plating solution may be shortened. However, when performing the displacement gold plating step, after a gold plating film having a certain thickness (about 30 to 100 nm) is formed, the film thickness of the film hardly changes even if it is immersed for a longer time. In view of this, it is preferable to set the immersion time from the viewpoint of manufacturing cost reduction.
[0035]
Further, in the replacement gold plating step, the wiring board is preferably subjected to two-stage treatment with a replacement gold plating solution having the same component composition. Specifically, for example, first, after immersing the wiring board in the first-stage replacement gold plating solution for a predetermined time, subsequently, the same component composition as that of the first-stage replacement gold plating solution but separately prepared 2 It is also possible to immerse in the replacement gold plating solution of the stage for a short time of about 10 to 30 seconds. This suppresses nickel ions eluted in the first-stage replacement gold plating solution and adhering to the wiring board during the subsequent electroless gold plating step from being carried into the electroless gold plating solution. Therefore, the electroless gold plating solution can be used continuously for a long time.
[0036]
(Electroless gold plating process)
The electroless gold plating step is performed by immersing the wiring board provided with the above-described displacement gold plating film in an electroless gold plating solution.
[0037]
The electroless gold plating solution is not particularly limited as long as it can reduce gold ions in the gold plating solution to gold by the action of a reducing agent and deposit a plating film on a wiring board. Thus, for example, the electroless gold plating solution supplies water-soluble ions such as gold salts such as potassium potassium cyanide, sodium gold sulfite or sodium chloroaurate, cyanide salts, sulfites, thiosulfates or chlorides. Complexing agent, and contains a reducing agent such as sodium borohydride, dimethylamine borane, hydrazine, thiourea, sodium ascorbate, etc. as an essential component, and further contains an electroless gold plating solution such as another pH adjuster. Suitable amounts of various commonly used additives can also be included.
[0038]
However, as described above, in the electroless gold plating method of the present invention, the gold salt and the complexing agent contained in the electroless gold plating solution are the same as the gold salt and the complexing agent contained in the replacement gold plating solution. Type, which is one of the major features of the present invention.
[0039]
Therefore, as the gold salt, it is preferable to use a non-cyanide gold salt, such as a gold sulfite or a chloroaurate, similar to those contained in the substituted gold plating solution.
[0040]
The concentration of the gold salt in the electroless gold plating solution is preferably adjusted so as to be in the range of 1.5 to 3 g / L as gold ions. If the concentration of the gold salt is lower than 1.5 g / L as gold ions, the deposition rate of gold tends to be slow, resulting in a decrease in working efficiency. When the concentration of the gold salt is higher than 3 g / L as gold ions, the stability of the electroless gold plating solution tends to decrease.
[0041]
Also, as the gold complexing agent, it is preferable to use a sulfite or a thiosulfate, or a mixture thereof, similarly to the one contained in the substituted gold plating solution.
[0042]
The content of the complexing agent in the electroless gold plating solution is preferably adjusted so as to be 4 to 10 mol per 1 mol of gold ions in the gold salt. Since gold is a four-coordinate metal, a complexing agent for complexing gold ions is required in an amount of 4 mol or more per 1 mol of the gold ions. If the amount is less than 4 mol, the liquid stability decreases. Further, in order to enhance the stability of the electroless gold plating solution, it is preferable that a somewhat excessive amount of a complexing agent is contained in the solution. If a complexing agent is added to the electroless gold plating solution in an amount exceeding 10 moles per 1 mole of the gold ions, the deposition rate of gold tends to be slow, leading to a decrease in productivity.
[0043]
As the reducing agent, it is preferable to use a urea-based compound such as thiourea, methylthiourea, or dimethylthiourea.
[0044]
The amount of the reducing agent added to the electroless gold plating solution is preferably equimolar to the amount of gold ions in the gold salt. If the amount of the reducing agent is less than this, the deposition rate of gold tends to be slow, leading to a decrease in productivity. On the other hand, when the amount of the reducing agent added is larger than this, the solution stability of the electroless gold plating solution tends to decrease.
[0045]
Further, a phenyl compound such as hydroquinone, methylhydroquinone, catechol, pyrogallol, aminophenol, or phenylenediamine can be added to the electroless gold plating solution as a reduction accelerator. The reduction accelerator is a substance that improves the reduction efficiency of the reducing agent and has an effect of increasing the deposition rate of gold, which leads to an improvement in productivity. Regarding the amount of the reduction accelerator added to the electroless gold plating solution, it is preferable to add 1 mol of the reduction accelerator to 2 mol of the above-mentioned reducing agent. If the addition amount of the reduction accelerator is too small, the deposition rate of gold tends to be unable to be increased, and if the addition amount of the reduction accelerator is too large, the liquid stability of the electroless gold plating solution tends to decrease. .
[0046]
The temperature of the electroless gold plating solution during immersion of the wiring board can be appropriately set so as to obtain an electroless gold plating film having a desired film thickness, but is adjusted to be about 60 to 80 ° C. Preferably. If the temperature of the electroless gold plating solution is lower than 60 ° C., the deposition rate of gold tends to be too slow, and if it is higher than 80 ° C., the stability of the plating solution tends to be significantly reduced.
[0047]
Further, the pH of the electroless gold plating solution may be adjusted to be 6 to 9 regardless of whether the electroless gold plating solution contains a cyanide gold salt or a non-cyanide gold salt. preferable. When the pH is less than 6, the sulfite ions and the like present in the electroless gold plating solution tend to be decomposed, so that the solution stability of the plating solution decreases. When the pH exceeds 9, the gold ions present in the plating solution tend to cause a heterogeneous reaction, so that the stability of the solution also decreases.
[0048]
Further, it is particularly preferable that the pH of the electroless gold plating solution is adjusted to be substantially the same as the pH of the replacement gold plating solution. In the electroless gold plating method of the present invention, after the displacement gold plating step is completed, the process proceeds to the electroless gold plating step without performing a water-washing treatment, so that the pH of the electroless gold plating solution and the pH of the displacement gold plating solution are Is different, the pH of the electroless gold plating solution fluctuates due to the carry-in of the replacement gold plating solution, which tends to lead to a decrease in solution stability and the like.
[0049]
The pH of the electroless gold plating solution is adjusted to a range of 6 to 9 by adding hydrochloric acid or sulfuric acid as a pH adjuster.
[0050]
In the electroless gold plating method of the present invention, the gold salt to be contained in the substitutional gold plating solution and the gold salt to be contained in the electroless gold plating solution are of the same type, and the complexing agent to be contained in the substitutional gold plating solution is not used. Since the same type of complexing agent is contained in the electrolytic gold plating solution, as described above, the electroless gold plating step can be performed without the water washing treatment conventionally performed after the replacement gold plating step. . This suppresses the oxidation of the conductor pattern surface caused by the water-washing treatment, which has been particularly noticeable when the temperature of the water used for the water-washing treatment is too high or when the water-washing treatment time is too long.
[0051]
Therefore, in the conventional electroless gold plating method, poor adhesion occurred between the replacement gold plating film and the electroless gold plating film after the completion of the electroless gold plating due to oxidation of the conductor pattern surface. In the electroless gold plating method of the present invention, it is possible to suppress such poor adhesion. Furthermore, in the conventional electroless gold plating method, the initial gold plating deposition during the electroless gold plating does not occur uniformly, so that the thickness of the electroless gold plating film tends to vary widely. According to the electroless gold plating method of the present invention, the nonuniformity of the film thickness of the gold plating film can be eliminated.
[0052]
Then, in the electroless gold plating method of the present invention, not only the water washing process, but also a process in which the wiring board is immersed in a solvent other than water for washing between the displacement gold plating step and the electroless gold plating step, for example. Alternatively, a process of drying the wiring board in the gas phase can be omitted, which leads to a reduction in the number of steps and an improvement in production efficiency.
[0053]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
[0054]
(Example 1)
The electroless gold plating method according to Examples and Comparative Examples was performed using a printed wiring board having a thickness of 25 cm × 25 cm × 1 mm on which copper wiring was formed by an etching method.
[0055]
In Example 1, first, in order to remove grease and dirt on the surface of the printed wiring board, the printed wiring was applied to an acidic degreasing liquid CLC-5000 (product name, manufactured by Hitachi Chemical Co., Ltd.) adjusted to 50 ° C. The plate was dipped and treated for 4 minutes. Next, in order to remove excess surfactant adhering to the printed wiring board, the printed wiring board is immersed in pure water at 50 ° C., washed with hot water for 1 minute, and then subjected to a water washing treatment for 2 minutes. Was. Next, in order to make the surface shape of the printed wiring board uniform, a soft etching process was performed in which the printed wiring board was maintained at room temperature for 1 minute while being immersed in an aqueous solution of sodium persulfate (100 g / L). Thereafter, a water washing treatment was performed for one minute. Subsequently, in order to remove an oxide film on the surface of the printed wiring board, the printed wiring board is immersed in a dilute sulfuric acid aqueous solution (100 mL / L), subjected to an oxide film removal treatment at room temperature for 1 minute, and then washed with water. Performed for 1 minute. Next, the printed wiring board was immersed in a substituted palladium catalyst solution SA-100 (manufactured by Hitachi Chemical Co., Ltd., product name), subjected to a catalyst forming treatment at room temperature for 5 minutes, and then subjected to a water washing treatment for 1 minute.
[0056]
Subsequently, the printed wiring board was immersed in an electroless nickel-phosphorous plating solution NIPS-100 (product name, manufactured by Hitachi Chemical Co., Ltd.), and nickel-plated at 85 ° C. for 25 minutes to obtain a nickel-phosphorus solution of about 5 μm. An alloy plating film was formed.
[0057]
Then, after performing a water washing treatment for 1 minute, a replacement gold plating solution HGS-100 (Hitachi Chemical Co., Ltd.) containing gold sodium sulfite as a non-cyanide gold salt and sodium sulfite as a complexing agent and adjusting the pH to 8 was used. The printed wiring board was immersed in a product name (manufactured by Kogyo Co., Ltd.) and subjected to displacement gold plating at 85 ° C. for 10 minutes to form a displacement gold plating film having a thickness of about 0.03 to 0.1 μm.
[0058]
Finally, the printed wiring board on which the substituted gold plating film has been formed contains, as it is, without washing with water, non-cyanide gold sodium gold sulfite, complexing agent sodium sulfite, and a reducing agent. Immersed in an electroless gold plating solution HGS-2000 (product name, manufactured by Hitachi Chemical Co., Ltd.) whose pH was adjusted to 7.5, and subjected to electroless gold plating at 65 ° C. for 40 minutes to obtain 0.4 to 0. An electroless gold plating film having a thickness of about 0.6 μm was formed.
[0059]
[Measurement of film thickness of electroless gold plating film]
The thickness of the obtained gold-plated film is measured using a fluorescent X-ray film thickness meter. By measuring the film thickness at any 50 points of the film, the average film thickness of the gold-plated film and the standard thickness are measured. The deviation (3σ) was calculated.
[0060]
[Adhesion confirmation test of gold plating film]
After the completion of the electroless plating step, a cellophane tape was applied to the 50 mm square pattern portion, and the cellophane tape was quickly peeled off to determine whether or not the gold plating had peeled off. Was carried out by visual inspection.
[0061]
The measurement of the thickness of the electroless gold plating film and the test for confirming the adhesion of the gold plating film were performed on the gold plating films obtained in the respective Examples and Comparative Examples.
[0062]
The electroless gold plating obtained by the electroless gold plating method of Example 1 was uniformly precipitated and exhibited a beautiful yellow color. The average thickness of the gold plating film was 0.52 μm. Further, the standard deviation (3σ) was 0.02, and the variation in the film thickness of the film was relatively small, and it was confirmed that a uniform electroless gold plating film was obtained. In the test for confirming the adhesion of the gold plating film, no peeling of the gold plating film was observed, and good results were obtained.
[0063]
(Example 2)
In the electroless gold plating method of Example 2, the electroless gold plating was performed in the same manner as the electroless gold plating method of Example 1 except that the displacement gold plating step was performed as follows. A printed wiring board was obtained. In the replacement gold plating step, the printed wiring board is immersed in a replacement gold plating solution HGS-100, and subjected to a replacement gold plating process at 85 ° C. for 10 minutes, and then a replacement gold plating solution having the same composition but separately prepared. The printed wiring board was immersed in HGS-100 at 85 ° C. for 20 seconds to perform two-step displacement gold plating to obtain a printed wiring board on which a substituted gold plating film was formed.
[0064]
The electroless gold plating obtained by the electroless gold plating method of Example 2 was uniformly deposited and exhibited a beautiful yellow color. The average thickness of the gold plating film was 0.55 μm. The standard deviation (3σ) was 0.02, and the variation in the thickness of the gold plating film was small, and it was confirmed that a uniform electroless gold plating film was obtained. In the test for confirming the adhesion of the gold plating film, no peeling of the gold plating film was observed, and good results were obtained. Although the electroless gold plating solution used in Example 2 was used for a long period of about two months, the gold plating solution did not decompose.
[0065]
(Comparative Example 1)
In the electroless gold plating method of Comparative Example 1, the electroless gold plating method of Example 1 was performed except that the printed wiring board was washed with water for 3 minutes after the displacement gold plating step was performed, and then the electroless gold plating step was performed. By performing the same method as the gold plating method, a printed wiring board on which electroless gold plating was performed was obtained.
[0066]
The electroless gold plating obtained by the electroless gold plating method of Comparative Example 1 was uniformly deposited and exhibited a beautiful yellow color. The average thickness of the gold plating film was 0.50 μm. The standard deviation (3σ) was 0.10, and it was confirmed that the variation in the thickness of the gold plating film was larger than that in Examples 1 and 2. In the test for confirming the adhesion of the gold plating film, no peeling of the gold plating film was observed.
[0067]
(Comparative Example 2)
In the electroless gold plating method of Comparative Example 2, the printed wiring board was washed with hot water at 40 ° C. for 3 minutes after performing the displacement gold plating step, and then the electroless gold plating step was performed. The same method as the electroless gold plating method of Example 1 was performed to obtain a printed wiring board on which electroless gold plating was performed.
[0068]
The electroless gold plating obtained by the electroless gold plating method of Comparative Example 2 had unevenness in the deposited state, and the color was partially brownish. The average thickness of the gold plating film was 0.38 μm. Further, the standard deviation (3σ) was 0.21, and it was confirmed that the variation in the thickness of the gold plating film was larger than that in Examples 1 and 2. In the test for confirming the adhesion of the gold plating film, peeling of the gold plating film was confirmed, albeit slightly.
[0069]
【The invention's effect】
As described above, according to the electroless gold plating method of the present invention, it is possible to sufficiently prevent uneven deposition of plating during the electroless gold plating step, so that the thickness of the obtained gold plating film is uniform. Become. Moreover, good adhesion between the electroless gold plating film and the plating film disposed thereunder can be obtained.

Claims (5)

基体の導体部上に形成された無電解ニッケルめっき皮膜上に置換金めっき液を用いて置換金めっき皮膜を形成する置換金めっき工程と、該置換金めっき皮膜上に無電解金めっき液を用いて無電解金めっき皮膜を形成する無電解金めっき工程とを含む無電解金めっき方法であって、
前記置換金めっき液に含有させる金塩と前記無電解金めっき液に含有させる金塩とを同一種類とし、且つ、
前記置換金めっき液に含有させる錯化剤と前記無電解金めっき液に含有させる錯化剤とを同一種類とし、
置換金めっき工程の後に水洗処理工程を経ずに無電解金めっき工程を行うことを特徴とする無電解金めっき方法。
A replacement gold plating step of forming a replacement gold plating film on the electroless nickel plating film formed on the conductor portion of the base using a replacement gold plating solution, and using an electroless gold plating solution on the replacement gold plating film. An electroless gold plating method including an electroless gold plating step of forming an electroless gold plating film,
The same type of gold salt to be contained in the replacement gold plating solution and the gold salt to be contained in the electroless gold plating solution, and
The same type of complexing agent to be contained in the replacement gold plating solution and the complexing agent to be contained in the electroless gold plating solution,
An electroless gold plating method, wherein an electroless gold plating step is performed without passing through a water-washing treatment step after the displacement gold plating step.
前記無電解金めっき工程において、非シアン系金塩と、錯化剤と、還元剤と、pH調整剤とを含有させ、pHを6〜9に調整した無電解金めっき液を用いることを特徴とする請求項1記載の無電解金めっき方法。In the electroless gold plating step, a non-cyanide gold salt, a complexing agent, a reducing agent, and a pH adjuster are contained, and an electroless gold plating solution adjusted to a pH of 6 to 9 is used. The electroless gold plating method according to claim 1, wherein 前記置換金めっき工程において、同一の成分組成を有する置換金めっき液で二段処理することを特徴とする請求項1又は2記載の無電解金めっき方法。3. The electroless gold plating method according to claim 1, wherein in the replacement gold plating step, a two-step treatment is performed with a replacement gold plating solution having the same component composition. 前記金塩として亜硫酸金塩又は塩化金酸塩を含有する置換金めっき液及び無電解金めっき液を用いることを特徴とする請求項1〜3のいずれか一項に記載の無電解金めっき方法。The electroless gold plating method according to any one of claims 1 to 3, wherein a substituted gold plating solution containing a gold sulfite or a chloroaurate and an electroless gold plating solution are used as the gold salt. . 前記錯化剤として亜硫酸塩及び/又はチオ硫酸塩を含有する置換金めっき液及び無電解金めっき液を用いることを特徴とする請求項1〜4のいずれか一項に記載の無電解金めっき方法。The electroless gold plating according to any one of claims 1 to 4, wherein a substituted gold plating solution and an electroless gold plating solution containing a sulfite and / or a thiosulfate are used as the complexing agent. Method.
JP2003128294A 2003-05-06 2003-05-06 Electroless gold plating method Pending JP2004332037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003128294A JP2004332037A (en) 2003-05-06 2003-05-06 Electroless gold plating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003128294A JP2004332037A (en) 2003-05-06 2003-05-06 Electroless gold plating method

Publications (1)

Publication Number Publication Date
JP2004332037A true JP2004332037A (en) 2004-11-25

Family

ID=33504506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003128294A Pending JP2004332037A (en) 2003-05-06 2003-05-06 Electroless gold plating method

Country Status (1)

Country Link
JP (1) JP2004332037A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007023324A (en) * 2005-07-14 2007-02-01 Kanto Chem Co Inc Electroless hard gold plating liquid
JP2008019457A (en) * 2006-07-11 2008-01-31 National Institute Of Advanced Industrial & Technology Electroless gold-plating solution
JP2010100895A (en) * 2008-10-23 2010-05-06 Hitachi Chem Co Ltd Pretreatment liquid for reduction type electroless gold plating and electroless gold plating method
CN117580267A (en) * 2024-01-16 2024-02-20 珠海斯美特电子材料有限公司 Gold plating process of printed circuit board

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007023324A (en) * 2005-07-14 2007-02-01 Kanto Chem Co Inc Electroless hard gold plating liquid
JP2008019457A (en) * 2006-07-11 2008-01-31 National Institute Of Advanced Industrial & Technology Electroless gold-plating solution
JP4649666B2 (en) * 2006-07-11 2011-03-16 独立行政法人産業技術総合研究所 Electroless gold plating solution
JP2010100895A (en) * 2008-10-23 2010-05-06 Hitachi Chem Co Ltd Pretreatment liquid for reduction type electroless gold plating and electroless gold plating method
CN117580267A (en) * 2024-01-16 2024-02-20 珠海斯美特电子材料有限公司 Gold plating process of printed circuit board
CN117580267B (en) * 2024-01-16 2024-03-26 珠海斯美特电子材料有限公司 Gold plating process of printed circuit board

Similar Documents

Publication Publication Date Title
US6855191B2 (en) Electroless gold plating solution
US9072203B2 (en) Solderability enhancement by silver immersion printed circuit board manufacture
US6869637B2 (en) Bath and method of electroless plating of silver on metal surfaces
JP5570585B2 (en) Pretreatment method for electroless nickel plating
US5364459A (en) Electroless plating solution
JP3337802B2 (en) Direct plating method by metallization of copper (I) oxide colloid
JP2001519477A (en) Methods and solutions for producing a gold layer
JP2003013249A (en) Gold substitution plating solution
JP5371465B2 (en) Non-cyan electroless gold plating solution and conductor pattern plating method
JP2004332037A (en) Electroless gold plating method
WO2010023895A1 (en) Sensitizing solution for electroless plating and electroless plating method
TWI807443B (en) Electroless nickel plating bath
JP2006265648A (en) Electroless gold plating liquid repreparation method, electroless gold plating method and gold ion-containing liquid
JP2007246955A (en) Electroless gold-plating bath
JP4059133B2 (en) Electroless nickel-gold plating method
JP4842620B2 (en) Method for manufacturing printed wiring board having high-density copper pattern
JP2004332036A (en) Electroless plating method
JP2004149824A (en) Gold plating liquid, plating method using the gold plating liquid, method of producing electronic component, and electronic component
JP7316250B2 (en) Electroless gold plating bath and electroless gold plating method
JPH08291389A (en) Gold plating liquid not substituted with cyanide and gold plating method using this liquid
JP2004059998A (en) Electroless plating solution and electroless plating method
JPH09176864A (en) Thick-film formation in electroless gold plating
JP3206628B2 (en) Tin-lead alloy electroless plating method
EP0070061B1 (en) A solution for the electroless deposition of gold-alloys onto a substrate
JPH06228762A (en) Method for electroless gold plating