JP2004331766A - Thermoplastic resin composition - Google Patents

Thermoplastic resin composition Download PDF

Info

Publication number
JP2004331766A
JP2004331766A JP2003128029A JP2003128029A JP2004331766A JP 2004331766 A JP2004331766 A JP 2004331766A JP 2003128029 A JP2003128029 A JP 2003128029A JP 2003128029 A JP2003128029 A JP 2003128029A JP 2004331766 A JP2004331766 A JP 2004331766A
Authority
JP
Japan
Prior art keywords
component
resin composition
thermoplastic resin
weight
compound polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003128029A
Other languages
Japanese (ja)
Other versions
JP4951196B2 (en
Inventor
Kiyoji Takagi
喜代次 高木
Mitsuji Iwaki
光地 岩木
Mitsuru Nakamura
充 中村
Masami Suzuki
政巳 鈴木
Shigeru Muramatsu
繁 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Engineering Plastics Corp
Original Assignee
Mitsubishi Engineering Plastics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Engineering Plastics Corp filed Critical Mitsubishi Engineering Plastics Corp
Priority to JP2003128029A priority Critical patent/JP4951196B2/en
Publication of JP2004331766A publication Critical patent/JP2004331766A/en
Application granted granted Critical
Publication of JP4951196B2 publication Critical patent/JP4951196B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoplastic resin composition which exhibits good chemical and heat resistance, particularly an improved dimensional stability by lowering the linear expansion coefficient to avoid problems liable to occur, when it is used in combination with metallic parts and is excellent in impact resistance, rigidity and appearance. <P>SOLUTION: The thermoplastic resin composition is obtained by blending, in a specific ratio, component (A): a polyamide resin, component (B): a hydrogenated product of the block copolymer of a vinyl aromatic compound polymer block (a) and a conjugated diene-based compound polymer block (b) and/or an ethylene-α-olefin-based copolymer, component (C): a modified hydrogenated block copolymer in which 0.3-2.5 pts.wt. of an unsaturated acid and/or its derivative is added to 100 pts.wt. of the hydrogenated product of the block copolymer of the vinyl aromatic compound polymer block (a) and the conjugated diene-based compound polymer block (b), and component (D): a tabular and/or needle-shaped inorganic filler with an average particle diameter of ≤8 μm. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、特に耐衝撃性及び寸法安定性、剛性に優れ、かつ、外観、流動性に優れた熱可塑性樹脂組成物に関するものであり、電機、電子、自動車をはじめとする広範囲の分野に利用できるものであり、特に自動車外装部品用製造材料として有用な熱可塑性樹脂組成物に関するものである。
【0002】
【従来の技術】
ポリアミドは、成形性、耐薬品性、引っ張り強さ、曲げ強さ等の機械的性質、耐摩耗性等に優れているので、電気・電子部品、機械部品、自動車部品等広範な分野で使用されている。しかし、得られる成形品の寸法安定性(線膨張係数)に難があり、例えば、樹脂組成物から得られる成形品を金属部品と組み合わせて使用する場合に、樹脂製成形品の線膨張係数が金属部品のものより大きすぎて、高温使用環境下では寸法差や噛み合い不良といった不具合を生じるという欠点があった。さらに、プラスチック成形品表面に塗料を塗装し、このプラスチック成形品を高温環境下で使用する場合には、塗料とプラスチック材料の熱膨張率が異なるために、成形品表面の塗装膜が剥離したり、塗装面に微細な亀裂が生じたりして、外観や意匠性が悪化するという問題があった。特に、フェンダー、ドアパネル、ボンネット、ルーフパネル等の自動車外装部品において、軽量化やデザインの自由度、モジュールアッセンブリー化が可能な点から、従来は金属製であったところでプラスチック化が進んでおり、従来のプラスチック部品と比較して、耐衝撃性、寸法安定性(線膨張係数)、剛性、流動性、外観等で高いレベルの材料が要求されるようになってきた。ポリアミドの寸法安定性や剛性を改良するために、ポリアミドに無機フィラーを配合する手法があるが、耐衝撃性が著しく低下し、外観も悪化するため、その用途が著しく限定されていた。
【0003】
このような問題の改善策として、ポリアミド樹脂の耐衝撃性を向上させる手段としてゴム状重合体を添加することが広く行われており、相溶性を高めるために不飽和カルボン酸又はその誘導体でゴム状重合体を変性することが公知の技術として知られている。例えば、ポリアミド樹脂と変性水素化ブロック共重合体からなる組成物が開示されており、無機フィラーを任意成分として配合できることが記載されている(特許文献1)。また、ポリアミド樹脂、無機充填剤、変性スチレン・オレフィン系共重合体からなる金属メッキ性又は塗装密着性に優れたポリアミド樹脂組成物の記載がある(特許文献2)。しかしながら、上記のような従来技術では、耐衝撃性と寸法安定性、剛性のバランスは十分とは言えず、耐衝撃性を向上させるためにゴム状重合体の配合量を増やすと、寸法安定性や剛性が大きく低下するため、耐衝撃性と寸法安定性、剛性のバランスを向上させる必要があった。
【0004】
また、(A)ポリアミド樹脂、(B)ビニル芳香族化合物重合体ブロックaとオレフィン化合物重合体ブロックbとの水素化ブロック共重合体、(C)前記水素化ブロック共重合体にカルボン酸又はその誘導体基が付加した変性ブロック共重合体より成り、耐衝撃性に優れ、かつ弾性率、耐熱性、ウェルド部強度等の物性バランスが良好で、成形性及び成形品外観の改良されたポリアミド樹脂組成物(特許文献3)や、(A)特定の末端基のポリアミド樹脂、(B)ビニル芳香族化合物と共役ジエン化合物との水素化ブロック共重合体、(C)ビニル芳香族化合物と共役ジエン化合物との水素化ブロック共重合体にカルボン酸基又はその誘導体基が結合されている変性ブロック共重合体、(D)エチレン−α−オレフィン系共重合体、(E)末端のみに酸無水基を有するオレフィン系ポリマーからなる低温衝撃性の改良されたポリアミド樹脂組成物(特許文献4)の記載があり、これらの組成物に無機フィラーを任意成分として配合できることが記載されている。しかし、これらの発明は、いづれも前記特定成分の組み合わせ範囲内での配合効果を開示するに止まり、実施例等において無機フィラーを配合した具体例もなく、従って耐衝撃性と寸法安定性、剛性のバランスの改善という、外観の良好なものを得るために小粒子径の無機フィラーを配合した場合の問題点及びその解決策については何らの言及も示唆もない。
【0005】
さらに、ポリミアド、官能化されたトリブロックコポリマー、官能化されていないエチレン−プロピレンコポリマー、繊維質の充填材からなる耐衝撃性ポリアミド組成物が開示されている(特許文献5)。しかし、この発明では、繊維質の充填材を用いているため外観が悪化するという問題があり、外観の良好なものを得るために小粒子径の無機フィラーを配合した場合の問題点や耐衝撃性と寸法安定性、剛性のバランスの改良技術については何ら言及されておらず、耐衝撃性と寸法安定性、剛性のバランスに優れ、かつ外観に優れた熱可塑性樹脂組成物の提供が強く求められていた。
【0006】
【特許文献1】特公昭63−44784号公報
【特許文献2】特公平8−11782号公報
【特許文献3】特公平7−26019号公報
【特許文献4】特許第3330398号公報
【特許文献5】特公平7−49522号公報
【0007】
【発明が解決しようとする課題】
本発明の目的は、従来技術の有する前記問題点を解決して、良好な耐薬品性、耐熱性を示し、特に、金属部品と組み合わせて使用しても不具合を生じないように線膨張係数を低くして寸法安定性を改善し、かつ耐衝撃性、剛性、外観に優れた熱可塑性樹脂組成物を提供することにある。
【0008】
【課題を解決するための手段】
上記課題を解決するために鋭意検討した結果、次の樹脂組成物は、寸法安定性、剛性、耐衝撃性、外観ともに優れていることを見出し、本発明を完成させた。すなわち、本発明の第1発明は、成分(A):ポリアミド樹脂、成分(B):ビニル芳香族化合物重合体ブロックaと共役ジエン系化合物重合体ブロックbとのブロック共重合体の水素添加物及び/又はエチレン−α−オレフィン系共重合体、成分(C):ビニル芳香族化合物重合体ブロックaと共役ジエン系化合物重合体ブロックbとのブロック共重合体の水素添加物に、不飽和酸及び/又はその誘導体をブロック重合体100重量部に対し、0.3〜2.5重量部付加させた変性水素化ブロック共重合体、並びに、成分(D):平均粒子径が8μm以下の板状、及び/又は、針状の無機フィラーからなる組成物において、上記各成分を、成分(A)と成分(B)、(C)の重量比(A)/((B)+(C))が90/10〜60/40であり、かつ 成分(B)と成分(C)の重量比(B)/(C)が10/90〜90/10であり、かつ 成分(D)の量が成分(A)、(B)、(C)の合計100重量部に対して5〜60重量部の比率で配合した熱可塑性樹脂組成物を提供するものである。
【0009】
本発明の第2発明は、予め成分(A)、(B)及び(C)を溶融反応させ、その溶融反応物に成分(D)を配合し混練させて製造した熱可塑性樹脂組成物を提供するものである。また、本発明の第3発明は、第1発明の熱可塑性樹脂組成物に、さらに成分(E)として、導電性カーボンブラック及び/又は中空炭素フィブリルを、成分(A)100重量部に対し、1〜15重量部の比率で配合した熱可塑性樹脂組成物を提供するものである。
【0010】
【発明の実施の形態】
以下、本発明を詳細に説明する。
ポリアミド樹脂
本発明の熱可塑性樹脂組成物で用いられる成分(A)のポリアミド樹脂は、主鎖に−CONH−結合を有し、加熱溶融できるものである。その代表的なものとしては、ナイロン−4、ナイロン−6、ナイロン−6・6、ナイロン−4・6、ナイロン−12、ナイロン−6・10、その他公知の芳香族ジアミン、芳香族ジカルボン酸等の単量体成分を含む結晶性又は非晶性のポリアミド樹脂が挙げられる。好ましいポリアミド樹脂は、ナイロン−6、ナイロン−6・6、半芳香族ナイロンであり、これらと非晶性ポリアミド樹脂を併用することもできる。
【0011】
ポリアミド樹脂は、温度23℃、98重量%濃硫酸中濃度1重量%で測定した相対粘度が2.1〜3.5の範囲のものが好ましい。相対粘度が2.1未満であると剛性、寸法安定性、耐衝撃性、外観が劣り、3.5を超えると成形性が劣り外観が悪化するので、いずれも好ましくない。また、末端基の濃度としては、末端カルボキシル基含量が100μeq/g以下のものが好ましく、末端カルボキシル基含量と末端アミノ基含量の比(末端カルボキシル基含量/末端アミノ基含量)が0.8〜4の範囲のものが好ましい。この比が0.8未満では流動性や外観が不充分となり、4を超えると耐衝撃性や剛性が不充分となるので好ましくない。
【0012】
ブロック共重合体の水素添加物
本発明の熱可塑性樹脂組成物で用いられる成分(B)及び成分(C)のブロック共重合体の水素添加物とは、ビニル芳香族化合物重合体ブロックaと共役ジエン系化合物重合体ブロックbとのブロック共重合体の水素添加物で、主にブロックb中の脂肪族不飽和結合数が水素化により減少したブロック共重合体である。また、成分(B)及び成分(C)のブロック共重合体の水素添加物は同じであっても、異なっていてもよく、成分(B)のブロック共重合体の水素添加物は、官能基で変性されていないものである。ブロックa及びブロックbの配列は、線状構造のもの、又は分岐構造(ラジアルテレブロック)のものを含む。また、これらの構造のうちで一部にビニル芳香族化合物と共役ジエン系化合物とのランダム共重合部分に由来するランダム鎖を含んでいてもよい。これら構造のうちでも線状構造のものが好ましく、a−b−a型のトリブロック構造のものが、耐衝撃性の点で特に好ましく、a−b型のジブロック構造のものを含んでいてもよい。
【0013】
成分(B)及び成分(C)のビニル芳香族化合物重合体ブロックaを構成する単量体、ビニル芳香族化合物は、好ましくはスチレン、α−メチルスチレン、パラメチルスチレン、ビニルトルエン、ビニルキシレン等であり、更に好ましくは、スチレンである。また、共役ジエン系化合物重合体ブロックbを構成する単量体、共役ジエン系化合物は、好ましくは1,3−ブタジエン、2−メチル−1,3−ブタジエンである。これらブロック共重合体の水素添加物における、ビニル芳香族化合物に由来する繰り返し単位の占める割合は、10〜70重量%の範囲が好ましく、10〜40重量%の範囲がより好ましい。該ブロック共重合体の水素添加物が有する不飽和結合をみるに、共役ジエン系化合物に由来する脂肪族性不飽和結合のうち、水素添加されずに残存している割合は、20%以下が好ましく、10%以下がより好ましい。また、ビニル芳香族化合物に由来する芳香族性不飽和結合の約25%以下が水素添加されていてもよい。このようなブロック共重合体の水素添加物としては、共役ジエン系化合物重合体ブロックbを構成する単量体、共役ジエン系化合物が、1,3−ブタジエンの場合は、スチレン−エチレン/ブチレン−スチレン共重合体(SEBS)と称され、また2−メチル−1,3−ブタジエンの場合は、スチレン−エチレン/プロピレン−スチレン共重合体(SEPS)と称され、種々のa−b−a型のトリブロック構造のものが市販されていて、容易に入手可能である。
【0014】
これら成分(B)及び成分(C)において、ブロック共重合体の水素添加物の数平均分子量は、180,000以下のものが好ましく、120,000のものがより好ましい。分子量が180,000を超えると、成形加工性が劣り、外観も悪化するので好ましくない。
【0015】
エチレン−α−オレフィン系共重合体
本発明の熱可塑性樹脂組成物で用いられる成分(B)のエチレン−α−オレフィン系共重合体は、エチレン及びα−オレフィンを必須成分とするゴム状共重合体であり、官能基で変性されていないものをさす。エチレンとα−オレフィンとの共重合の割合(重量比)は、95:5〜5:95であり、好ましくは90:10〜40:60の範囲のものである。共重合に用いられるα−オレフィンは、炭素数3〜20個を有する不飽和炭化水素化合物であり、具体例としては、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−オクテン、1−デセン、3−メチルブテン−1、4−メチルペンテン−1等が挙げられ、好ましくは炭素数3〜10の直鎖状のα−オレフィンであり、特に好ましいのはプロピレン、1−ブテン、1−オクテンである。
また、本発明の熱可塑性樹脂組成物で用いられる成分(B)のエチレン−α−オレフィン系共重合体としては、エチレンと上記α−オレフィンの他にジエン化合物を共重合した重合体中に不飽和基を導入したものを用いることができる。用いられるジエン化合物の種類は、アルケニルノルボルネン類、環状ジエン類、脂肪族ジエン類であり、好ましくは5−エチリデン−2−ノルボルネンおよびジシクロペンタジエンである。
これらエチレン−α−オレフィン系共重合体としては、メルトフローレート(MFR)(230℃、荷重2.16kg)は、0.05〜150g/10分の範囲が好ましく、0.1〜50g/10分の範囲がより好ましい。MFRの値が0.05より低いと成形加工性に劣り、150以上では耐衝撃性に劣るので好ましくない。
【0016】
変性水素化ブロック共重合体
本発明の熱可塑性樹脂組成物で用いられる成分(C)の変性水素化ブロック共重合体を得るためのグラフト変性剤、不飽和酸及び/又はその誘導体のうち、不飽和酸としては、具体的には、アクリル酸、メタクリル酸、マレイン酸、フマル酸、テトラヒドロフタル酸、イタコン酸、シトラコン酸、クロトン酸、ナジック酸等のα,β−不飽和カルボン酸が挙げられる。また、その誘導体としては、上記各種不飽和酸の酸無水物、酸ハライド、アミド、イミド、エステル等があり、具体的には、塩化マレニル、マレイミド、無水マレイン酸、無水イタコン酸、無水シトラコン酸、マレイン酸モノメチル、マレイン酸ジメチル等が挙げられる。これらの中では、不飽和ジカルボン酸又はその酸無水物が好ましく、特にマレイン酸、イタコン酸又はこれらの酸無水物が好適である。これらの不飽和酸又はその誘導体は、1種又は2種以上で使用される。
【0017】
前述の成分(C)のブロック共重合体の水素添加物に、上記のグラフト変性剤、不飽和酸及び/又はその誘導体を付加させて、効率的に変性水素化ブロック共重合体を得るには、ラジカル発生剤を使用することが好ましい。ラジカル発生剤としては、有機過酸化物、アゾ化合物等を挙げることができる。
具体的には、有機過酸化物としては、(イ)ハイドロパーオキサイド類:例えば、t−ブチル−ハイドロパーオキサイド、キュメン−ハイドロパーオキサイド、2,5−ジメチルヘキサン−2,5−ジハイドロパーオキサイド、1,1,3,3−テトラメチルブチル−ハイドロパーオキサイド、p−メンタン−ハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド等;(ロ)ジ−アルキルパーオキサイド類:例えば、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキシン−3、ジ−t−ブチル−パーオキサイド、t−ブチル−キュミル−パーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン、ジ−キュミルパーオキサイド等;(ハ)パーオキシケタール類:例えば、2,2−ビス−t−ブチルパーオキシ−ブタン、2,2−ビス−t−ブチル−パーオキシ−オクタン、1,1−ビス−t−ブチルパーオキシ−シクロヘキサン、1,1−ビス−t−ブチルパーオキシ−3,3,5−トリメチルシクロヘキサン等;(ニ)パーオキシエステル類:例えば、ジ−t−ブチルパーオキシイソフタレート、t−ブチルパーオキシベンゾエート、t−ブチルパーオキシアセテート、2,5−ジ−メチル−2,5−ジ−ベンゾイルパーオキシ−ヘキサン、t−ブチルパーオキシイソプロピルカーボネート、t−ブチルパーオキシイソブチレート等;(ホ)ジアシルパーオキサイド類:例えば、ベンゾイルパーオキサイド、m−トルオイルパーオキサイド、アセチルパーオキサイド、ラウロイルパーオキサイド等がある。
【0018】
また、アゾ化合物としては、2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス(2−メチルブチロニトリル)、1,1’−アゾビス(シクロヘキサン−1−カルボニトリル)、1−〔(1−シアノ−1−メチルエチル)アゾ〕ホルムアミド、2−フェニルアゾ−4−メトキシ−2,4−ジメチルバレロニトリル、2,2’−アゾビス(2,4,4−トリメチルペンタン)、2,2’−アゾビス(2−メチルプロパン)等がある。その他のラジカル発生剤としてジクミルを挙げることができる。これらのラジカル発生剤のうちでも特に好ましいのは、10時間での半減期温度が120℃以上のラジカル発生剤である。10時間での半減期温度が120℃未満のものでは、寸法安定性や耐衝撃性の点で好ましくない。
【0019】
無機フィラー
本発明の熱可塑性樹脂組成物で用いられる成分(D)の無機フィラーは、平均粒子径が8μm以下の板状、針状のものであり、ガラス繊維、炭素繊維といった繊維状のもの及びシリカ、ガラスビーズ、カーボンブラックといった球状のもの以外のものをさす。すなわち、無機フィラーの形状が、繊維状の場合は、最終的に得られる組成物の外観が悪化し、球状の場合は寸法安定性、剛性に劣るので、好ましくない。しかして、本発明において、無機フィラーの形状は、以下のように球状、板状、針状、繊維状とに明確に区別される。球状の場合は、真球状だけでなくある程度楕円状のものも含み、アスペクト比が1に近いものをさす。板状の場合は、板状の形状を呈してアスペクト比(板状粉の板状面における最長の長さ/板状粉の厚み)が2〜100の範囲のものをさす。針状の場合は、長さが100μm以下でアスペクト比が2〜20の範囲のものをさし、繊維状の場合は、長さが100μmを超えるものをさす。これらは、電子顕微鏡写真により容易に区別することができる。
このような無機フィラーの具体例を挙げれば、板状フィラーとしては、タルク等の珪酸マグネシウム、クレー、マイカ、黒鉛、セリサイト、モンモリロナイト、板状炭酸カルシウム、板状アルミナ、ガラスフレーク等があり、針状フィラーとしては、ウォラストナイト等の珪酸カルシウム、モスハイジ、ゾノトライト、チタン酸カルシウム、硼酸アルミニウム、針状炭酸カルシウム、針状酸化チタン、テトラポット型酸化亜鉛等がある。これら無機フィラーの中で、耐衝撃性、寸法安定性、剛性、外観のバランスの点で好ましいのは珪酸マグネシウム、珪酸カルシウムであり、特に好ましいのはタルク、ウォラストナイトである。これら無機フィラーであれば、1種類を単独使用することも、2種類以上を併用することもできる。
【0020】
ここで、本発明でいう平均粒子径とは、X線透過による液相沈隆方式で測定されたD50をいう。かかる測定を行う装置の具体例としては、Sedigraph粒子径分析器(Micromeritics Instruement社製、モデル5100)等を挙げることができる。
すなわち、最終的に得られる樹脂組成物の寸法安定性、剛性を向上させ、良好な外観のものを得るためには、上記のようにして測定した平均粒子径が、8μm以下であることが必要であり、5μm以下のものが好ましく、さらに好ましくは平均粒子径が5μm以下の珪酸マグネシウム及び/又は珪酸カルシウムであり、特に好ましくは平均粒子径が4μm以下の珪酸マグネシウム及び/又は珪酸カルシウムである。
【0021】
本発明で好ましく用いられる珪酸マグネシウムとは、滑石を微粉砕した不定形板状結晶で、化学組成は含水珪酸マグネシウムであり、通常SiOを58〜66重量%、MgOを28〜35重量%、HOを約5重量%含んでおりタルクと呼ばれる。その他少量成分として、Feを0.03〜1.2重量%、Alを0.05〜1.5重量%、CaOを0.05〜1.2重量%、KOを0.2重量%以下、NaOを0.2重量%以下等含有しており、比重は約2.7である。アスペクト比は、通常5〜20である。
次に、本発明で好ましく用いられる珪酸カルシウムとは、針状結晶をもつ天然白色鉱物であり、化学式CaSiOで表され、通常SiOを50重量%、CaOを47重量%、その他少量成分として、Fe、Al等を含有しており、比重は2.9である。かかる珪酸カルシウム無水塩を主成分とする無機フィラーは、通常ウォラストナイトといわれ、川鉄鉱業から、PH330、PH450として、ナイコ社からナイグロス4、ナイグロス5として市販されているものであり、平均アスペクト比が3〜20のものが好ましい。
【0022】
上記の無機フィラーは、無処理のままであってもよいが、樹脂成分との親和性又は界面結合力を高める目的で、無機表面処理剤、高級脂肪酸又はそのエステル塩等の誘導体、カップリング剤等で処理したものが好ましい。表面処理する際に非イオン・陽イオン・陰イオン型等の各種の界面活性剤や、各種の樹脂等の分散剤による処理を併せて行ったものが、機械的強度及び混練性の向上の観点からさらに好ましい。
【0023】
導電性カーボンブラック及び/又は中空炭素フィブリル
本発明においては、上記成分(A)、(B)、(C)及び(D)からなる熱可塑性樹脂組成物に、導電性を付与するためにさらに成分(E)として、導電性カーボンブラック及び/又は中空炭素フィブリルを配合することができる。これら両種の導電剤は、導電性と耐衝撃性のバランスの点で、好ましく用いられる。
導電性カーボンブラックは、ASTM D2414に準拠して測定されるジブチルフタレー卜(DBP)吸油量が、200ml/100g以上のものが導電性の点で好ましく、300ml/100g以上のものがより好ましい。この様な物性を備えた導電性カーボンブラックとしては、ペイント等に着色目的で加える顔料用カーボンブラックとは違って、微細な粒子が連なった形態のものある。好ましい導電性カーボンブラックとしては、アセチレンガスを熱分解して得られるアセチレンブラック、原油を原料としファーネス式不完全燃焼によって製造されるケッチェンブラック等が挙げられる。
【0024】
中空炭素フィブリルは、規則的に配列した炭素原子の本質的に連続的な多数層からなる外側領域と、内部中空領域とを有し、各層と中空領域とが実質的に同心に配置されている、本質的に円柱状のフィブリルである。さらに、上記外側領域の規則的に配列した炭素原子が黒鉛状であり、上記中空領域の直径が2〜20nmの範囲のものが好ましい。このような中空炭素フィブリルは、特表昭62−500943号公報や、米国特許第4,663,230号明細書等に詳細に記載されている。その製法は、後者の米国特許明細書に詳細に記載されているように、例えば、アルミナを支持体とする鉄、コバルト、ニッケル含有粒子等の遷移金属含有粒子を、一酸化炭素、炭化水素等の炭素含有ガスと、850〜1200℃の高温で接触させ、熱分解によって生じた炭素を、遷移金属を起点として、繊維状に成長させる方法が挙げられる。また、この種の中空炭素フィブリルは、ハイペリオン・カタルシス社が、グラファイト・フィブリルという商品名で販売しており、容易に入手することができる。
【0025】
熱可塑性樹脂組成物
本発明の熱可塑性樹脂組成物は、成分(A):ポリアミド樹脂、成分(B):ビニル芳香族化合物重合体ブロックaと共役ジエン系化合物重合体ブロックbとのブロック共重合体の水素添加物、及び/又は、エチレン−α−オレフィン系共重合体、成分(C):ビニル芳香族化合物重合体ブロックaと共役ジエン系化合物重合体ブロックbとのブロック共重合体の水素添加物に、不飽和酸及び/又はその誘導体をブロック重合体100重量部に対し、0.3〜2.5重量部付加させた変性水素化ブロック共重合体、並びに、成分(D):平均粒子径が8μm以下の板状、及び/又は、針状の無機フィラーからなる組成物において、上記各成分を、成分(A)と成分(B)、(C)の重量比(A)/((B)+(C))が90/10〜60/40であり、成分(B)と成分(C)の重量比(B)/(C)が10/90〜90/10であり、かつ、成分(D)の量が成分(A)、(B)、(C)の合計100重量部に対して5〜60重量部の比率で配合したものである。さらに、熱可塑性樹脂組成物に導電性を付与する必要がある場合は、成分(E)として、導電性カーボンブラック及び/又は中空炭素フィブリルを、成分(A)100重量部に対し、1〜15重量部の比率で配合したものが好ましい。
【0026】
成分(A)、(B)、(C)の合計100重量部中で、(A)が90重量部を超え、(B)+(C)が10重量部未満の場合、熱可塑性樹脂組成物の耐衝撃性が劣り、逆に、(A)が60重量部未満で(B)+(C)が40重量部を超えると熱可塑性樹脂組成物の外観や流動性が低下し、寸法安定性も低下する。成分(B)と(C)の合計100重量部中で、(B)が10重量部未満では寸法安定性に劣り、(C)が10重量部未満では耐衝撃性に劣る。従って、成分(B)と(C)は重量比10/90〜90/10の範囲内で併用されることが必須であり、より好ましくは成分(B)と(C)は重量比50/50〜90/10の範囲である。また、成分(A)、(B)、(C)の合計100重量部に対して成分(D)が5重量部未満では、熱可塑性樹脂組成物の寸法安定性や剛性(曲げ弾性率)に劣り、成分(D)が60重量部を超えると流動性や外観、耐衝撃性が低下するので好ましくない。また、成分(C)において、変性ブロック共重合体に付加した不飽和酸及び/又はその誘導体の付加量が0.3重量部未満では、熱可塑性樹脂組成物の耐衝撃性が劣り、2.5重量部を超えると寸法安定性や流動性が低下するので好ましくない。
【0027】
次に、導電性を付与するためにさらに成分(E)を配合する場合は、成分(A)100重量部に対する成分(E)の配合比率が、1重量部未満では熱可塑性樹脂組成物の導電性の改善効果が低く、15重量部を超えると流動性や耐衝撃性が低下するので好ましくない。
【0028】
本発明の熱可塑性樹脂組成物の製造は、溶融混合法が好ましく、溶融混合の代表的な方法として、熱可塑性樹脂について一般に実用化されている溶融混練機を使用する方法が挙げられる。溶融混練機としては、例えば、一軸又は多軸混練押出機、ロール、バンバリーミキサー等が挙げられる。
【0029】
混練押出機を使用する方法によるときは、好ましくは、成分(A)、(B)及び(C)を予め混合して、混練押出機の上流部分に一括投入し、溶融状態で反応させ、続けて混練押出機の中流部分で成分(D)を投入して溶融反応物と混合させ、さらに、必要に応じて下流部分から導電剤の成分(E)を投入して溶融物と混合し、熱可塑性樹脂組成物のペレットとする方法がある。あるいは、成分(A)、(B)及び(C)を予め混合して、混練押出機に一括投入し、溶融状態で反応させ、ペレットを得る。次に、成分(D)を、このペレットと混練押出機に投入し、成分(A)〜(C)の溶融反応物と混合させ、必要に応じて下流部分から成分(E)を投入して溶融反応物と混合し、熱可塑性樹脂組成物のペレットとする方法が挙げられる。また、別の方法として、成分(A)の一部又は全量の溶融反応物と成分(E)とを予め混合してマスターバッチを作成し、このマスターバッチと成分(A)〜(C)とを混合して混練押出機に投入し、溶融状態で反応させ、続けて混練押出機の中流部分で成分(D)を投入して溶融反応物と混合させ熱可塑性樹脂組成物のペレットとする方法や、このマスターバッチと成分(A)〜(C)とを混合して混練押出機に投入し溶融状態で反応させてペレットを得て、次に、ペレット化したものと成分(D)を混練押出機に投入し、成分(A)〜(C)の溶融反応物と混合させ熱可塑性樹脂組成物のペレットとする方法が挙げられる。
このような、予め成分(A)、成分(B)及び成分(C)を溶融反応させ、その溶融反応物に成分(D)を配合し溶融混合することにより、特に優れた耐衝撃性、寸法安定性(線膨張係数)、剛性、及び外観に優れた樹脂組成物が得られるので好ましい。
【0030】
本発明の熱可塑性樹脂組成物には、上記の成分以外に他の各種樹脂添加剤を含有させることができる。各種樹脂添加剤としては、例えば、熱安定剤、酸化防止剤、耐性改良剤、造核剤、発泡剤、難燃剤、耐衝撃改良剤、滑剤、可塑剤、流動性改良剤、染料、顔料、有機充填剤、補強剤、分散剤等が挙げられる。なお、液晶ポリマーを含有させると、剛性、耐熱性、寸法精度等の向上に有効である。
【0031】
本発明の熱可塑性樹脂組成物から成形品を製造する方法は、特に限定されるものではなく、熱可塑性樹脂について一般に採用されている成形法、すなわち射出成形法、中空成形法、押出成形法、シート成形法、熱成形法、回転成形法、積層成形法、プレス成形法等を採用することができる。
本発明の熱可塑性樹脂組成物は、電気機器部品、電子機器部品、自動車部品等の製造用原料として広範囲な分野に利用でき、特に自動車外装部品製造用原料として有用である。
【0032】
【実施例】
以下に、本発明を実施例によって、詳しく説明するが、本発明はこれらの範囲内に限定されるものではない。なお、以下の実施例、比較例において配合量は重量部を意味する。
【0033】
実施例及び比較例の各樹脂組成物を得るに当たり、次に示す原料を準備した。
1.成分(A):ポリアミド樹脂
ナイロン−6: 三菱エンジニアリングプラスチックス社製、製品名−ノバミッド1010J、23℃98%濃硫酸中濃度1重量%で測定したときの相対粘度が2.5、末端カルボキシル基含量/末端アミノ基含量比2.6(以下、PA6−1と略す)
ナイロン−6: 三菱エンジニアリングプラスチックス社製、製品名−ノバミッド1020J、23℃98%濃硫酸中濃度1重量%で測定したときの相対粘度が3.5、末端カルボキシル基含量/末端アミノ基含量比1.0(以下、PA6−2と略す)
【0034】
2.成分(B):ブロック共重合体の水素添加物、エチレン−α−オレフィン系共重合体
スチレン−エチレン/ブチレン−スチレン共重合体(SEBS): クレイトンポリマー社製、製品名−クレイトンG1652、スチレン含量29重量%、数平均分子量49,000(以下、SEBSと略す)
エチレン−ブテン共重合体: 三井石油化学工業社製、製品名−タフマーA−4085(以下、EBRと略す)
エチレン−オクテン共重合体: デュポン・ダウ・エラストマー・ジャパン社製、製品名−エンゲージ8180(以下、EORと略す)
【0035】
3.成分(C):変性水素化ブロック共重合体
[変性水素化ブロック共重合体の調製]
SEBS、無水マレイン酸及びラジカル発生剤の各成分を、表1に示す割合にてヘンシェルミキサーで均一に混合した後、二軸押出機(スクリュウ径30mm、L/D=42)を用いて、シリンダー温度230℃、スクリュー回転数300rpmにて溶融反応させ、ペレット化して、無水マレイン酸の付加量の異なる4種の変性水素化ブロック共重合体C−1〜C−4を得た。なお、無水マレイン酸としては、三菱化学(株)製の無水マレイン酸を使用し、ラジカル発生剤としては、1,3−ビス(2−t−ブチルパーオキシイソプロピル)ベンゼン(化薬アクゾ社製、製品名−パーカドックス14、10時間での半減期温度121℃)を使用した。
このようにして得られた変性水素化ブロック共重合体を加熱減圧乾燥した後、ナトリウムメチラートによる滴定で無水マレイン酸の付加量を求め、併せて表1に示した。
【0036】
【表1】

Figure 2004331766
【0037】
4.成分(D):無機フィラー
珪酸マグネシウム(タルク): 松村産業社製、製品名−ハイフィラー#5000PJ、平均粒子径1.8μm、平均アスペクト比6の板状結晶品(以下、D−1と略す)
珪酸カルシウム(ウォラストナイト): 川鉄鉱業社製、製品名−PH450、平均粒子径3.8μm、長さ19μm、平均アスペクト比7の針状結晶品(以下、D−2と略す)
比較例用珪酸カルシウム(ウォラストナイト): 川鉄鉱業社製、製品名−KH15、平均粒子径9.6μm、長さ83μm、平均アスペクト比10の針状結晶品(以下、D−3と略す)
比較例用ガラス繊維: 旭ファイバーグラス社製、製品名−JA FT516、径10μm、長さ3mmの繊維状品(以下、D−4と略す)
【0038】
5.成分(E):導電性カーボンブラック、中空炭素フィブリル
導電性カーボンブラック: ライオン社製、製品名−ケッチェンブラックEC600JD、BET法表面積1270m/g、DBP吸油量495ml/100g(以下、CBと略す)
中空炭素フィブリル: ハイペリオン・カタリシス社製、製品名−PA6/20BN、ポリアミド6を80重量%と中空炭素フィブリルを20重量%とを含有するマスターバッチ(以下、20BNと略す)
【0039】
[試験片の作製]
熱可塑性樹脂組成物を、射出成形機(東芝IS150)を用い、シリンダー温度280℃、金型温度80℃の条件で射出成形して、ASTM試験片及び100mmφ×3mmtの円盤状成形品を作製した。
【0040】
[評価方法]
(1)流動性(MFR)
JIS K7210に準拠し、温度280℃、荷重5kgの条件でMFR(単位:g/10分)を測定した。
(2)曲げ弾性率
ASTM D790に準拠して曲げ弾性率(単位:MPa)を測定した。
(3)耐衝撃性(面衝撃)
100mmφ円盤シート(厚さ3mmt)について、ハイレート衝撃試験機(島津製作所製)を用いて、ポンチ径1/2インチ、サポート径3インチ、打ち抜き速度1m/sにて打ち抜き衝撃試験を行った。破壊エネルギー(単位:J)が大きい程、耐衝撃性に優れている。
(4)寸法安定性(線膨張係数)
ASTM D696に準拠して線膨張係数(単位:K−1)を測定した。ただし、測定温度範囲は23〜80℃とした。
(5)外観
円盤状成形品の表面外観を目視にて観察し、蛍光灯の像が極めてくっきりと写るものを◎、くっきりと写るものを○、少し揺らいで写るものを△、揺らいで写るものを×として評価した。
(6)体積抵抗率
ASTM2号ダンベル試験片(厚さ3mm)の平行部分を長さ50mmとなるように両端を切断し、切断により生じた両端面に銀ペーストを全面塗布し、室温で乾燥した後に、テスターで該両端面間の抵抗値(RL:単位Ω)を測定し、体積抵抗率R(単位:Ωcm)を、次式より算出した。
R=RL×AL/L
(式中、ALは、試験片の断面積(単位:cm )を、Lは、試験片の長さ(単位:cm)を意味する。)
【0041】
[実施例1〜4及び比較例1〜8]
二軸押出機(日本製鋼所製、TEX30XCT、L/D=42、バレル数12)を用いて、シリンダー温度230℃、スクリュー回転数400rpmの条件にて、表2に示す割合にて成分(A)(B)(C)をタンブラーミキサーにて均一に混合した後、バレル1よりフィードし溶融反応させた後、バレル5より成分(D)をフィードして溶融混合させて組成物を作成した。得られた物性を表2に示す。
実施例1〜4の組成物は、比較例の組成物と比較して、耐衝撃性と寸法安定性、剛性のバランスに優れている。無機フィラーを添加しなかった比較例1、2の組成物は、未変性のSEBSを添加しても、耐衝撃性と剛性、寸法安定性のバランスは改善されず、剛性、寸法安定性に劣る。未変性SEBSを添加しなかった比較例3〜5の組成物は、実施例の組成物と比較して、寸法安定性、剛性に劣り、本特許の範囲から外れる比較例6、8の組成物は、耐衝撃性に劣るものであり、比較例7の組成物は、寸法安定性、剛性に劣る。
【0042】
【表2】
Figure 2004331766
【0043】
[実施例5〜6]
実施例1の成分(B)をEBR、EORとした以外は実施例1と同様にして組成物を作成し、得られた物性を表3に示す。実施例5、6の組成物は、実施例1と同様に、耐衝撃性と寸法安定性、剛性のバランスに優れている。
【0044】
[実施例7及び比較例9〜13]
実施例1、比較例3の成分(D)を変えた以外は、実施例1と同様にして組成物を作成し、得られた物性を表3に示す。実施例7の組成物は、未変性SEBSを添加しなかった比較例9の組成物に比べ、耐衝撃性と寸法安定性、剛性のバランスに優れている。粒子径の大きいウォラストナイト及びガラス繊維を用いた比較例10〜13の組成物は、未変性のSEBSを添加しても、耐衝撃性と剛性、寸法安定性のバランスは改善されず、いずれの組成物も外観に劣る。
【0045】
【表3】
Figure 2004331766
【0046】
[実施例8及び比較例14〜15]
実施例1で用いた二軸押出機を用いて、シリンダー温度230℃、スクリュー回転数400rpmの条件にて、表4に示す割合にて成分(A)(B)(C)をタンブラーミキサーにて均一に混合した後、バレル1よりフィードし溶融反応させた後、バレル4より成分(D)、バレル7より成分(E)をフィードして溶融混合させて組成物を作成した。得られた物性を表4に示す。実施例8の組成物は、未変性SEBSを添加しなかった比較例14〜15の組成物に比べ、耐衝撃性と寸法安定性、剛性及び導電性のバランスに優れている。
【0047】
[実施例9及び比較例16〜17]
実施例1で用いた二軸押出機を用いて、シリンダー温度230℃、スクリュー回転数400rpmの条件にて、表4に示す割合にて成分(A)(B)(C)(E)をタンブラーミキサーにて均一に混合した後、バレル1よりフィードし溶融反応させた後、バレル5より成分(D)をフィードして溶融混合させて組成物を作成した。得られた物性を表4に示す。実施例9の組成物は、未変性SEBSを添加しなかった比較例16〜17の組成物に比べ、耐衝撃性と寸法安定性、剛性及び導電性のバランスに優れている。
【0048】
【表4】
Figure 2004331766
【0049】
【発明の効果】
本発明の熱可塑性樹脂組成物は、耐衝撃性と寸法安定性、剛性のバランスに優れ、かつ外観に優れているので、電気・電子部品、機械部品、自動車部品等広範な分野で使用でき、特に自動車外装部品用材料として有用である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention particularly relates to a thermoplastic resin composition having excellent impact resistance, dimensional stability, rigidity, and excellent appearance and fluidity, and is used in a wide range of fields including electric machines, electronics, and automobiles. The present invention relates to a thermoplastic resin composition particularly useful as a production material for automotive exterior parts.
[0002]
[Prior art]
Polyamides are used in a wide range of fields, including electrical and electronic parts, mechanical parts, and automotive parts, because they have excellent moldability, chemical resistance, mechanical properties such as tensile strength and bending strength, and wear resistance. ing. However, there is a difficulty in the dimensional stability (linear expansion coefficient) of the obtained molded product. For example, when a molded product obtained from a resin composition is used in combination with a metal component, the linear expansion coefficient of the resin molded product is reduced. There is a drawback in that it is too large compared to that of metal parts and causes problems such as dimensional differences and poor meshing in a high-temperature use environment. Furthermore, when a paint is applied to the surface of a plastic molded product and this plastic molded product is used in a high-temperature environment, the paint film on the molded product surface may peel off due to the difference in the coefficient of thermal expansion between the paint and the plastic material. In addition, there has been a problem that a fine crack is generated on the painted surface, and the appearance and the design are deteriorated. In particular, for automotive exterior parts such as fenders, door panels, bonnets, and roof panels, plastics are now being used instead of metal because of their lighter weight, freedom of design, and the possibility of module assembly. Compared with plastic parts, high-level materials are required in terms of impact resistance, dimensional stability (linear expansion coefficient), rigidity, fluidity, appearance, and the like. In order to improve the dimensional stability and rigidity of the polyamide, there is a method of blending an inorganic filler with the polyamide. However, the impact resistance is remarkably reduced and the appearance is deteriorated, so that the use thereof has been significantly limited.
[0003]
As a measure for solving such a problem, it has been widely practiced to add a rubber-like polymer as a means for improving the impact resistance of a polyamide resin, and to improve the compatibility with an unsaturated carboxylic acid or a derivative thereof with a rubber. Modification of a dendritic polymer is known as a known technique. For example, a composition comprising a polyamide resin and a modified hydrogenated block copolymer is disclosed, and it is described that an inorganic filler can be blended as an optional component (Patent Document 1). There is also a description of a polyamide resin composition comprising a polyamide resin, an inorganic filler, and a modified styrene / olefin copolymer and having excellent metal plating properties or coating adhesion (Patent Document 2). However, in the prior art as described above, the balance between impact resistance, dimensional stability, and rigidity cannot be said to be sufficient, and when the blending amount of the rubber-like polymer is increased to improve the impact resistance, the dimensional stability is reduced. Therefore, it was necessary to improve the balance between impact resistance, dimensional stability, and rigidity.
[0004]
Further, (A) a polyamide resin, (B) a hydrogenated block copolymer of a vinyl aromatic compound polymer block a and an olefin compound polymer block b, and (C) a carboxylic acid or a carboxylic acid thereof in the hydrogenated block copolymer. Polyamide resin composition consisting of a modified block copolymer to which a derivative group is added, having excellent impact resistance, good balance of physical properties such as elastic modulus, heat resistance, and weld strength, and improved moldability and appearance of molded products (Patent Document 3), (A) a polyamide resin having a specific terminal group, (B) a hydrogenated block copolymer of a vinyl aromatic compound and a conjugated diene compound, (C) a vinyl aromatic compound and a conjugated diene compound A modified block copolymer in which a carboxylic acid group or a derivative thereof is bonded to a hydrogenated block copolymer with (D) an ethylene-α-olefin-based copolymer, (E) There is a description of a polyamide resin composition comprising an olefin polymer having an acid anhydride group at only one end and having improved low-temperature impact properties (Patent Document 4). It is described that an inorganic filler can be blended as an optional component in these compositions. ing. However, these inventions only disclose the compounding effect within the combination range of the specific components, and there is no specific example in which the inorganic filler is compounded in Examples and the like, and therefore, impact resistance, dimensional stability, rigidity There is no mention or suggestion about the problem of improving the balance of the case where an inorganic filler having a small particle size is blended in order to obtain a good appearance and a solution thereto.
[0005]
Furthermore, an impact-resistant polyamide composition comprising a polyad, a functionalized triblock copolymer, an unfunctionalized ethylene-propylene copolymer, and a fibrous filler is disclosed (Patent Document 5). However, in the present invention, there is a problem that the appearance is deteriorated due to the use of the fibrous filler, and the problem and the impact resistance when an inorganic filler having a small particle diameter is blended in order to obtain a good appearance. No mention is made of a technique for improving the balance between properties, dimensional stability and rigidity, and there is a strong demand for the provision of a thermoplastic resin composition having an excellent balance of impact resistance, dimensional stability and rigidity and excellent appearance. Had been.
[0006]
[Patent Document 1] Japanese Patent Publication No. 63-44784
[Patent Document 2] Japanese Patent Publication No. 8-11782
[Patent Document 3] Japanese Patent Publication No. Hei 7-26019
[Patent Document 4] Japanese Patent No. 3330398
[Patent Document 5] Japanese Patent Publication No. 7-49522
[0007]
[Problems to be solved by the invention]
An object of the present invention is to solve the above problems of the prior art, exhibit good chemical resistance and heat resistance, and particularly to increase the coefficient of linear expansion so as not to cause problems even when used in combination with metal parts. It is an object of the present invention to provide a thermoplastic resin composition which is reduced to improve dimensional stability, and is excellent in impact resistance, rigidity and appearance.
[0008]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the following resin composition was found to be excellent in dimensional stability, rigidity, impact resistance, and appearance, and completed the present invention. That is, the first invention of the present invention relates to a hydrogenated product of a component (A): a polyamide resin, and a component (B): a block copolymer of a vinyl aromatic compound polymer block a and a conjugated diene compound polymer block b. And / or an ethylene-α-olefin copolymer, component (C): a hydrogenated product of a block copolymer of a vinyl aromatic compound polymer block a and a conjugated diene compound polymer block b, and an unsaturated acid And / or a derivative thereof obtained by adding 0.3 to 2.5 parts by weight to 100 parts by weight of the block polymer, and a component (D): a plate having an average particle diameter of 8 μm or less And / or a composition comprising an acicular inorganic filler, the above-mentioned components are combined with the component (A) and the components (B), (C) in a weight ratio of (A) / ((B) + (C) ) Is 90/10 to 60/40 And the weight ratio (B) / (C) between component (B) and component (C) is 10/90 to 90/10, and the amount of component (D) is equal to components (A), (B), An object of the present invention is to provide a thermoplastic resin composition blended at a ratio of 5 to 60 parts by weight with respect to a total of 100 parts by weight of (C).
[0009]
The second invention of the present invention provides a thermoplastic resin composition produced by preliminarily melting and reacting the components (A), (B) and (C), and compounding and kneading the component (D) with the molten reactant. Is what you do. Further, the third invention of the present invention provides the thermoplastic resin composition of the first invention, further comprising, as component (E), conductive carbon black and / or hollow carbon fibril, relative to 100 parts by weight of component (A). An object of the present invention is to provide a thermoplastic resin composition blended in a ratio of 1 to 15 parts by weight.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
Polyamide resin
The polyamide resin of the component (A) used in the thermoplastic resin composition of the present invention has a -CONH- bond in the main chain and can be heated and melted. Typical examples thereof include nylon-4, nylon-6, nylon-6 / 6, nylon-4.6, nylon-12, nylon-6 / 10, and other known aromatic diamines and aromatic dicarboxylic acids. And a crystalline or amorphous polyamide resin containing the above monomer component. Preferred polyamide resins are nylon-6, nylon-6-6, and semi-aromatic nylon, and an amorphous polyamide resin can be used in combination with these.
[0011]
The polyamide resin preferably has a relative viscosity in the range of 2.1 to 3.5 measured at a temperature of 23 ° C. and a concentration of 1% by weight in 98% by weight concentrated sulfuric acid. If the relative viscosity is less than 2.1, the rigidity, dimensional stability, impact resistance, and appearance are poor, and if it exceeds 3.5, the moldability is poor and the appearance is deteriorated. The concentration of the terminal group is preferably a terminal carboxyl group content of 100 μeq / g or less, and the ratio of the terminal carboxyl group content to the terminal amino group content (terminal carboxyl group content / terminal amino group content) is 0.8 to 0.8%. A range of 4 is preferred. When the ratio is less than 0.8, the fluidity and appearance are insufficient, and when it exceeds 4, the impact resistance and the rigidity become insufficient, which is not preferable.
[0012]
Hydrogenated block copolymer
The hydrogenated product of the block copolymer of the component (B) and the component (C) used in the thermoplastic resin composition of the present invention includes a vinyl aromatic compound polymer block a and a conjugated diene compound polymer block b. Which is a hydrogenated product of the block copolymer (a), in which the number of aliphatic unsaturated bonds in the block (b) is mainly reduced by hydrogenation. The hydrogenated product of the block copolymer of the component (B) and the component (C) may be the same or different, and the hydrogenated product of the block copolymer of the component (B) Is not denatured. The arrangement of the blocks a and b includes a linear structure or a branched structure (radial teleblock). Further, in these structures, a random chain derived from a random copolymerized portion of a vinyl aromatic compound and a conjugated diene compound may be partially contained. Among these structures, those having a linear structure are preferable, and those having an aba triblock structure are particularly preferable in terms of impact resistance, including those having an ab diblock structure. Is also good.
[0013]
The monomer and vinyl aromatic compound constituting the vinyl aromatic compound polymer block a of the component (B) and the component (C) are preferably styrene, α-methylstyrene, paramethylstyrene, vinyltoluene, vinylxylene and the like. And more preferably styrene. Further, the monomer constituting the conjugated diene compound polymer block b and the conjugated diene compound are preferably 1,3-butadiene and 2-methyl-1,3-butadiene. The proportion of the repeating units derived from the vinyl aromatic compound in the hydrogenated product of these block copolymers is preferably in the range of 10 to 70% by weight, more preferably 10 to 40% by weight. Looking at the unsaturated bonds of the hydrogenated product of the block copolymer, the proportion of the aliphatic unsaturated bonds derived from the conjugated diene-based compound remaining without hydrogenation is 20% or less. It is preferably at most 10%. Further, about 25% or less of the aromatic unsaturated bond derived from the vinyl aromatic compound may be hydrogenated. As the hydrogenated product of such a block copolymer, a monomer constituting the conjugated diene-based compound polymer block b, and when the conjugated diene-based compound is 1,3-butadiene, styrene-ethylene / butylene- It is called a styrene copolymer (SEBS), and in the case of 2-methyl-1,3-butadiene, it is called a styrene-ethylene / propylene-styrene copolymer (SEPS), and various aba types are used. Is commercially available and easily available.
[0014]
In these components (B) and (C), the number average molecular weight of the hydrogenated product of the block copolymer is preferably 180,000 or less, more preferably 120,000. If the molecular weight exceeds 180,000, molding processability is inferior and appearance is deteriorated, which is not preferable.
[0015]
Ethylene-α-olefin copolymer
The ethylene-α-olefin copolymer used as the component (B) in the thermoplastic resin composition of the present invention is a rubbery copolymer containing ethylene and α-olefin as essential components, and is modified with a functional group. Refers to things that are not. The copolymerization ratio (weight ratio) of ethylene and α-olefin is from 95: 5 to 5:95, preferably from 90:10 to 40:60. The α-olefin used for the copolymerization is an unsaturated hydrocarbon compound having 3 to 20 carbon atoms, and specific examples thereof include propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, -Decene, 3-methylbutene-1, 4-methylpentene-1 and the like, preferably a straight-chain α-olefin having 3 to 10 carbon atoms, particularly preferably propylene, 1-butene, 1- Octen.
Further, the ethylene-α-olefin-based copolymer of the component (B) used in the thermoplastic resin composition of the present invention is not included in a copolymer obtained by copolymerizing a diene compound in addition to ethylene and the above-mentioned α-olefin. Those into which a saturated group has been introduced can be used. The types of diene compounds used are alkenyl norbornenes, cyclic dienes, and aliphatic dienes, and preferably 5-ethylidene-2-norbornene and dicyclopentadiene.
As these ethylene-α-olefin-based copolymers, the melt flow rate (MFR) (230 ° C., load 2.16 kg) is preferably in the range of 0.05 to 150 g / 10 min, and 0.1 to 50 g / 10 min. The range of minutes is more preferred. If the MFR value is lower than 0.05, the moldability is poor, and if it is 150 or more, the impact resistance is poor, which is not preferable.
[0016]
Modified hydrogenated block copolymer
Of the graft modifier, unsaturated acid and / or derivative thereof for obtaining the modified hydrogenated block copolymer of component (C) used in the thermoplastic resin composition of the present invention, specific examples of the unsaturated acid include: And α, β-unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic acid, fumaric acid, tetrahydrophthalic acid, itaconic acid, citraconic acid, crotonic acid and nadic acid. Examples of the derivatives include acid anhydrides, acid halides, amides, imides, and esters of the above-mentioned various unsaturated acids. Specific examples thereof include maleenyl chloride, maleimide, maleic anhydride, itaconic anhydride, and citraconic anhydride. , Monomethyl maleate, dimethyl maleate and the like. Among these, unsaturated dicarboxylic acids or acid anhydrides thereof are preferable, and maleic acid, itaconic acid or acid anhydrides thereof are particularly preferable. These unsaturated acids or derivatives thereof are used alone or in combination of two or more.
[0017]
In order to obtain a modified hydrogenated block copolymer efficiently by adding the above-mentioned graft modifier, unsaturated acid and / or derivative thereof to a hydrogenated product of the above-mentioned component (C) block copolymer. It is preferable to use a radical generator. Examples of the radical generator include organic peroxides and azo compounds.
Specifically, as the organic peroxide, (a) hydroperoxides: for example, t-butyl-hydroperoxide, cumene-hydroperoxide, 2,5-dimethylhexane-2,5-dihydroperoxide Oxide, 1,1,3,3-tetramethylbutyl-hydroperoxide, p-menthane-hydroperoxide, diisopropylbenzene hydroperoxide and the like; (b) di-alkyl peroxides: for example, 2,5-dimethyl -2,5-di (t-butylperoxy) hexyne-3, di-t-butyl-peroxide, t-butyl-cumyl-peroxide, 2,5-dimethyl-2,5-di (t-butyl (Peroxy) hexane, di-cumyl peroxide and the like; (c) peroxyketals: for example, 2,2- St-butylperoxy-butane, 2,2-bis-t-butyl-peroxy-octane, 1,1-bis-t-butylperoxy-cyclohexane, 1,1-bis-t-butylperoxy- 3,3,5-trimethylcyclohexane and the like; (d) peroxyesters: for example, di-t-butylperoxyisophthalate, t-butylperoxybenzoate, t-butylperoxyacetate, 2,5-di- Methyl-2,5-di-benzoylperoxy-hexane, t-butylperoxyisopropyl carbonate, t-butylperoxyisobutyrate, etc .; (e) diacyl peroxides: for example, benzoyl peroxide, m-toluoyl There are peroxide, acetyl peroxide, lauroyl peroxide and the like.
[0018]
Examples of the azo compound include 2,2′-azobisisobutyronitrile, 2,2′-azobis (2-methylbutyronitrile), 1,1′-azobis (cyclohexane-1-carbonitrile), -[(1-cyano-1-methylethyl) azo] formamide, 2-phenylazo-4-methoxy-2,4-dimethylvaleronitrile, 2,2′-azobis (2,4,4-trimethylpentane), , 2'-azobis (2-methylpropane) and the like. Dicumyl can be mentioned as another radical generator. Among these radical generators, particularly preferred are those having a half-life temperature at 10 hours of 120 ° C. or higher. If the half-life temperature at 10 hours is less than 120 ° C., it is not preferable in terms of dimensional stability and impact resistance.
[0019]
Inorganic filler
The inorganic filler of the component (D) used in the thermoplastic resin composition of the present invention is a plate-like or needle-like material having an average particle diameter of 8 μm or less, and is a fibrous material such as glass fiber and carbon fiber, silica, It refers to things other than spherical, such as glass beads and carbon black. That is, when the shape of the inorganic filler is fibrous, the appearance of the finally obtained composition is deteriorated, and when the shape is spherical, the dimensional stability and rigidity are poor. Thus, in the present invention, the shape of the inorganic filler is clearly distinguished into a sphere, a plate, a needle, and a fiber as described below. In the case of a spherical shape, not only a true spherical shape but also an elliptical shape to some extent is used, and an aspect ratio is close to 1. In the case of a plate-like shape, it refers to a plate-like shape having an aspect ratio (the longest length of the plate-like powder on the plate-like surface / the thickness of the plate-like powder) in the range of 2 to 100. In the case of a needle shape, the length is 100 μm or less and the aspect ratio is in the range of 2 to 20. In the case of a fibrous shape, the length is more than 100 μm. These can be easily distinguished by electron micrographs.
If specific examples of such an inorganic filler are given, examples of the plate-like filler include magnesium silicate such as talc, clay, mica, graphite, sericite, montmorillonite, plate-like calcium carbonate, plate-like alumina, glass flake, and the like. Examples of the acicular filler include calcium silicate such as wollastonite, moss heidi, zonotolite, calcium titanate, aluminum borate, acicular calcium carbonate, acicular titanium oxide, and tetrapot type zinc oxide. Among these inorganic fillers, magnesium silicate and calcium silicate are preferable in terms of balance of impact resistance, dimensional stability, rigidity, and appearance, and talc and wollastonite are particularly preferable. With these inorganic fillers, one type may be used alone, or two or more types may be used in combination.
[0020]
Here, the average particle diameter in the present invention refers to D50 measured by a liquid phase sedimentation method by X-ray transmission. As a specific example of an apparatus for performing such measurement, a Sedigraph particle size analyzer (Model 5100, manufactured by Micromeritics Instrument) can be mentioned.
That is, in order to improve the dimensional stability and rigidity of the finally obtained resin composition and obtain a good appearance, the average particle diameter measured as described above needs to be 8 μm or less. And preferably 5 μm or less, more preferably magnesium silicate and / or calcium silicate having an average particle diameter of 5 μm or less, and particularly preferably magnesium silicate and / or calcium silicate having an average particle diameter of 4 μm or less.
[0021]
Magnesium silicate preferably used in the present invention is an amorphous plate-like crystal obtained by finely pulverizing talc, its chemical composition is hydrous magnesium silicate, and is usually SiO 2.258-66% by weight, MgO 28-35% by weight, H2It contains about 5% by weight of O and is called talc. Other minor components include Fe2O30.03 to 1.2% by weight of Al2O30.05-1.5% by weight, CaO 0.05-1.2% by weight, K2O at 0.2% by weight or less, Na2O is contained at 0.2% by weight or less, and the specific gravity is about 2.7. The aspect ratio is usually 5 to 20.
Next, calcium silicate preferably used in the present invention is a natural white mineral having needle-like crystals, and has the chemical formula CaSiO 23And usually represented by SiO250% by weight, 47% by weight of CaO, and Fe2O3, Al2O3And the specific gravity is 2.9. Such an inorganic filler containing calcium silicate anhydrous as a main component is usually called wollastonite, and is commercially available as PH330 and PH450 from Kawatetsu Mining Co., Ltd. as Nigros 4 and Nigros 5 from Nyco, and has an average aspect ratio of Is preferably 3 to 20.
[0022]
The above-mentioned inorganic filler may be left untreated, but for the purpose of increasing the affinity or interfacial bonding force with the resin component, an inorganic surface treating agent, a derivative such as a higher fatty acid or an ester salt thereof, and a coupling agent. Etc. are preferred. When surface treatment,It is more preferable to perform treatment with various surfactants such as nonionic, cationic and anionic types and dispersants such as various resins from the viewpoint of improving mechanical strength and kneading properties.
[0023]
Conductive carbon black and / or hollow carbon fibrils
In the present invention, in order to impart conductivity to the thermoplastic resin composition comprising the above components (A), (B), (C) and (D), conductive carbon black and And / or hollow carbon fibrils. These two types of conductive agents are preferably used in terms of the balance between conductivity and impact resistance.
The conductive carbon black preferably has a dibutyl phthalate (DBP) oil absorption of 200 ml / 100 g or more in terms of conductivity, more preferably 300 ml / 100 g or more, as measured according to ASTM D2414. Conductive carbon black with such physical properties is different from carbon black for pigments added to paints and the like for coloring purposes, in the form of a series of fine particles.sois there. Preferable examples of the conductive carbon black include acetylene black obtained by thermally decomposing acetylene gas, and Ketjen black produced by furnace-type incomplete combustion using crude oil as a raw material.
[0024]
Hollow carbon fibrils have an outer region consisting of an essentially continuous multiple layer of regularly arranged carbon atoms, and an inner hollow region, with each layer and the hollow region being substantially concentrically arranged. , Essentially cylindrical fibrils. Further, it is preferable that the regularly arranged carbon atoms in the outer region have a graphite shape, and the hollow region has a diameter of 2 to 20 nm. Such hollow carbon fibrils are described in detail in JP-T-62-500943 and U.S. Pat. No. 4,663,230. As described in detail in the latter U.S. Patent Specification, for example, transition metal-containing particles such as iron-, cobalt-, and nickel-containing particles having an alumina support as a support, carbon monoxide, hydrocarbon, etc. With a carbon-containing gas at a high temperature of 850 to 1200 ° C. to grow carbon generated by thermal decomposition into a fibrous form starting from a transition metal. This kind of hollow carbon fibrils is sold by Hyperion Catharsis under the trade name of graphite fibrils and can be easily obtained.
[0025]
Thermoplastic resin composition
The thermoplastic resin composition of the present invention comprises a component (A): a polyamide resin, and a component (B): a hydrogenated product of a block copolymer of a vinyl aromatic compound polymer block a and a conjugated diene-based compound polymer block b. And / or an ethylene-α-olefin copolymer, component (C): a hydrogenated product of a block copolymer of a vinyl aromatic compound polymer block a and a conjugated diene compound polymer block b, A modified hydrogenated block copolymer obtained by adding 0.3 to 2.5 parts by weight of a saturated acid and / or a derivative thereof to 100 parts by weight of a block polymer, and component (D): the average particle diameter is 8 μm or less. In the composition comprising a plate-like and / or acicular inorganic filler, the above-mentioned components are combined with the component (A) and the components (B), (C) in a weight ratio of (A) / ((B) + ( C)) is 90/10 to 60/40 Wherein the weight ratio (B) / (C) of the component (B) to the component (C) is 10/90 to 90/10, and the amount of the component (D) is equal to the components (A) and (B). , (C) in a ratio of 5 to 60 parts by weight based on 100 parts by weight in total. Further, when it is necessary to impart conductivity to the thermoplastic resin composition, conductive carbon black and / or hollow carbon fibrils are used as component (E) in an amount of 1 to 15 parts by weight based on 100 parts by weight of component (A). Those blended in a ratio of parts by weight are preferred.
[0026]
In the case where (A) exceeds 90 parts by weight and (B) + (C) is less than 10 parts by weight in a total of 100 parts by weight of the components (A), (B) and (C), the thermoplastic resin composition When (A) is less than 60 parts by weight and (B) + (C) exceeds 40 parts by weight, the appearance and fluidity of the thermoplastic resin composition deteriorate, and the dimensional stability is reduced. Also decrease. When the total amount of the components (B) and (C) is 100 parts by weight, if (B) is less than 10 parts by weight, the dimensional stability is poor, and if (C) is less than 10 parts by weight, the impact resistance is poor. Therefore, it is essential that the components (B) and (C) be used together in a weight ratio of 10/90 to 90/10, and more preferably, the weight ratio of the components (B) and (C) is 50/50. 9090/10. Further, when the component (D) is less than 5 parts by weight based on 100 parts by weight of the total of the components (A), (B) and (C), the dimensional stability and rigidity (flexural modulus) of the thermoplastic resin composition are reduced. When the amount of the component (D) exceeds 60 parts by weight, the fluidity, appearance, and impact resistance are undesirably reduced. If the amount of the unsaturated acid and / or its derivative added to the modified block copolymer in the component (C) is less than 0.3 parts by weight, the impact resistance of the thermoplastic resin composition is poor, and Exceeding 5 parts by weight is not preferred because dimensional stability and fluidity decrease.
[0027]
Next, when the component (E) is further blended for imparting conductivity, when the blending ratio of the component (E) is less than 1 part by weight with respect to 100 parts by weight of the component (A), the conductivity of the thermoplastic resin composition is reduced. When the amount exceeds 15 parts by weight, the fluidity and impact resistance are undesirably reduced.
[0028]
The production of the thermoplastic resin composition of the present invention is preferably performed by a melt mixing method. As a typical method of the melt mixing, a method using a melt kneading machine generally used for thermoplastic resins can be mentioned. Examples of the melt kneading machine include a single-screw or multi-screw kneading extruder, a roll, and a Banbury mixer.
[0029]
When using the method using a kneading extruder, preferably, the components (A), (B) and (C) are preliminarily mixed, and the mixture is charged all at once into an upstream portion of the kneading extruder, and reacted in a molten state. In the middle part of the kneading extruder, the component (D) is charged and mixed with the molten reactant, and if necessary, the component (E) of the conductive agent is charged from the downstream portion and mixed with the molten material. There is a method of forming pellets of the plastic resin composition. Alternatively, the components (A), (B) and (C) are preliminarily mixed and charged into a kneading extruder at a time to react in a molten state to obtain pellets. Next, the component (D) is charged into the kneading extruder with the pellets, mixed with the molten reactants of the components (A) to (C), and the component (E) is charged from a downstream portion as necessary. A method of mixing with a molten reactant to form a pellet of a thermoplastic resin composition is exemplified. Further, as another method, a master batch is prepared by previously mixing the component (E) with a part or all of the molten reactant of the component (A), and the master batch is mixed with the components (A) to (C). Is mixed and charged into a kneading extruder, and reacted in a molten state. Subsequently, the component (D) is charged in the middle part of the kneading extruder and mixed with the molten reactant to form a thermoplastic resin composition pellet. Alternatively, the masterbatch and the components (A) to (C) are mixed, charged into a kneading extruder and reacted in a molten state to obtain pellets. Next, the pelletized material and the component (D) are kneaded. A method in which the mixture is charged into an extruder and mixed with a molten reactant of components (A) to (C) to form a thermoplastic resin composition pellet.
Such a component (A), a component (B) and a component (C) are melt-reacted in advance, and the component (D) is blended with the molten reactant and melt-mixed to obtain particularly excellent impact resistance and dimensions. It is preferable because a resin composition having excellent stability (linear expansion coefficient), rigidity, and appearance can be obtained.
[0030]
The thermoplastic resin composition of the present invention may contain various other resin additives in addition to the above components. Various resin additives include, for example, heat stabilizers, antioxidants,WeatherAnd a nucleating agent, a foaming agent, a flame retardant, an impact modifier, a lubricant, a plasticizer, a fluidity improver, a dye, a pigment, an organic filler, a reinforcing agent, and a dispersant. Including a liquid crystal polymer is effective in improving rigidity, heat resistance, dimensional accuracy, and the like.
[0031]
The method for producing a molded article from the thermoplastic resin composition of the present invention is not particularly limited, and a molding method generally used for thermoplastic resins, that is, an injection molding method, a hollow molding method, an extrusion molding method, A sheet molding method, a thermoforming method, a rotational molding method, a lamination molding method, a press molding method, or the like can be employed.
INDUSTRIAL APPLICABILITY The thermoplastic resin composition of the present invention can be used in a wide range of fields as a raw material for producing electrical equipment parts, electronic equipment parts, automobile parts and the like, and is particularly useful as a raw material for producing automobile exterior parts.
[0032]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these ranges. In addition, in the following Examples and Comparative Examples, the compounding amount means parts by weight.
[0033]
In obtaining each of the resin compositions of Examples and Comparative Examples, the following raw materials were prepared.
1. Component (A): polyamide resin
Nylon-6: manufactured by Mitsubishi Engineering-Plastics Co., Ltd., product name-Novamid 1010J, relative viscosity is 2.5 when measured at 23 ° C. and 1% by weight in 98% concentrated sulfuric acid, ratio of terminal carboxyl group / terminal amino group content. 2.6 (hereinafter abbreviated as PA6-1)
Nylon-6: manufactured by Mitsubishi Engineering-Plastics Co., Ltd., product name-Novamid 1020J, a relative viscosity of 3.5 at a concentration of 1% by weight in 23% at 98% concentrated sulfuric acid, and a terminal carboxyl group / terminal amino group content ratio. 1.0 (hereinafter abbreviated as PA6-2)
[0034]
2. Component (B): hydrogenated block copolymer, ethylene-α-olefin copolymer
Styrene-ethylene / butylene-styrene copolymer (SEBS): manufactured by Clayton Polymer Co., Ltd., product name: Clayton G1652, styrene content 29% by weight, number average molecular weight 49,000 (hereinafter abbreviated as SEBS)
Ethylene-butene copolymer: manufactured by Mitsui Petrochemical Co., Ltd., product name-Toughmer A-4085,(Hereinafter abbreviated as EBR)
Ethylene-octene copolymer: manufactured by DuPont Dow Elastomers Japan, product name-Engage 8180 (hereinafter abbreviated as EOR)
[0035]
3. Component (C): modified hydrogenated block copolymer
[Preparation of modified hydrogenated block copolymer]
After each component of SEBS, maleic anhydride and radical generator was uniformly mixed in a Henschel mixer at the ratios shown in Table 1, the mixture was fed to a cylinder using a twin-screw extruder (screw diameter 30 mm, L / D = 42). The mixture was melt-reacted at a temperature of 230 ° C. and a screw rotation speed of 300 rpm, and pelletized to obtain four types of modified hydrogenated block copolymers C-1 to C-4 having different addition amounts of maleic anhydride. The maleic anhydride used was maleic anhydride manufactured by Mitsubishi Chemical Corporation, and the radical generator was 1,3-bis (2-t-butylperoxyisopropyl) benzene (manufactured by Kayaku Akzo). , Product name-Parkadox 14, half-life temperature at 10 hours, 121 ° C).
The modified hydrogenated block copolymer thus obtained was dried by heating under reduced pressure, and the addition amount of maleic anhydride was determined by titration with sodium methylate.
[0036]
[Table 1]
Figure 2004331766
[0037]
4. Component (D): inorganic filler
Magnesium silicate (talc): manufactured by Matsumura Sangyo Co., Ltd., product name-High Filler # 5000PJ, average particle size 1.8 μm, plate-like crystal product with average aspect ratio 6 (hereinafter abbreviated as D-1)
Calcium silicate (Wollastonite): manufactured by Kawatetsu Mining Co., Ltd., product name -PH450, needle-like crystal product having an average particle diameter of 3.8 μm, a length of 19 μm, and an average aspect ratio of 7 (hereinafter abbreviated as D-2)
Calcium silicate (Wollastonite) for comparative example: manufactured by Kawatetsu Mining Co., Ltd., product name-KH15, needle-like crystal product having an average particle diameter of 9.6 μm, a length of 83 μm, and an average aspect ratio of 10 (hereinafter abbreviated as D-3)
Glass fiber for comparative example: Asahi Fiberglass Co., Ltd., product name-JA FT516, fibrous product having a diameter of 10 μm and a length of 3 mm (hereinafter abbreviated as D-4)
[0038]
5. Component (E): conductive carbon black, hollow carbon fibrils
Conductive carbon black: manufactured by Lion Corporation, product name-Ketjen Black EC600JD, BET surface area 1270m2/ G, DBP oil absorption 495ml / 100g (hereinafter abbreviated as CB)
Hollow carbon fibrils: manufactured by Hyperion Catalysis Co., Ltd., product name-PA6 / 20BN, a masterbatch containing 80% by weight of polyamide 6 and 20% by weight of hollow carbon fibrils (hereinafter abbreviated as 20BN)
[0039]
[Preparation of test piece]
The thermoplastic resin composition was injection molded using an injection molding machine (Toshiba IS150) under the conditions of a cylinder temperature of 280 ° C. and a mold temperature of 80 ° C. to produce an ASTM test piece and a 100 mmφ × 3 mmt disk-shaped molded product. .
[0040]
[Evaluation method]
(1) Liquidity (MFR)
According to JIS K7210, MFR (unit: g / 10 minutes) was measured under the conditions of a temperature of 280 ° C. and a load of 5 kg.
(2) Flexural modulus
The flexural modulus (unit: MPa) was measured according to ASTM D790.
(3) Impact resistance (surface impact)
A 100 mmφ disk sheet (thickness 3 mmt) was subjected to a punch impact test using a high-rate impact tester (manufactured by Shimadzu Corporation) at a punch diameter of 1/2 inch, a support diameter of 3 inches and a punching speed of 1 m / s. The greater the breaking energy (unit: J), the better the impact resistance.
(4) Dimensional stability (linear expansion coefficient)
Coefficient of linear expansion (unit: K in accordance with ASTM D696)-1) Was measured. However, the measurement temperature range was 23 to 80 ° C.
(5) Appearance
The surface appearance of the disk-shaped molded product was visually observed, and the fluorescent lamp image was marked as ◎, sharply marked as 、, slightly sharper as △, and shaker as ×, did.
(6) Volume resistivity
A parallel portion of an ASTM No. 2 dumbbell test piece (thickness: 3 mm) is cut at both ends so as to have a length of 50 mm, silver paste is applied to both end surfaces generated by the cutting, dried at room temperature, and then dried with a tester. The resistance value between the surfaces (RL: unit Ω) was measured, and the volume resistivity R (unit: Ωcm) was calculated by the following equation.
R = RL × AL / L
(Where AL is the cross-sectional area of the test piece (unit: cm2  ) And L means the length (unit: cm) of the test piece. )
[0041]
[Examples 1 to 4 and Comparative Examples 1 to 8]
Using a twin-screw extruder (manufactured by Nippon Steel Works, TEX30XCT, L / D = 42, number of barrels: 12) at a cylinder temperature of 230 ° C. and a screw rotation speed of 400 rpm, the components (A) in the proportions shown in Table 2 ) After (B) and (C) were uniformly mixed by a tumbler mixer, the mixture was fed from barrel 1 to cause a melt reaction, and then component (D) was fed from barrel 5 to be melt-mixed to prepare a composition. Table 2 shows the obtained physical properties.
The compositions of Examples 1 to 4 are more excellent in the balance between impact resistance, dimensional stability, and rigidity than the compositions of Comparative Examples. The compositions of Comparative Examples 1 and 2, in which no inorganic filler was added, did not improve the balance between impact resistance, rigidity, and dimensional stability, and were inferior in rigidity and dimensional stability, even when unmodified SEBS was added. . The compositions of Comparative Examples 3 to 5 to which the unmodified SEBS was not added were inferior in dimensional stability and rigidity as compared with the compositions of the Examples, and were the compositions of Comparative Examples 6 and 8, which were out of the scope of the present patent. Is inferior in impact resistance, and the composition of Comparative Example 7 is inferior in dimensional stability and rigidity.
[0042]
[Table 2]
Figure 2004331766
[0043]
[Examples 5 to 6]
A composition was prepared in the same manner as in Example 1 except that EBR and EOR were used as the component (B) in Example 1, and the obtained physical properties are shown in Table 3. As in Example 1, the compositions of Examples 5 and 6 have an excellent balance of impact resistance, dimensional stability, and rigidity.
[0044]
[Example 7 and Comparative Examples 9 to 13]
A composition was prepared in the same manner as in Example 1 except that the component (D) in Example 1 and Comparative Example 3 was changed, and the obtained physical properties are shown in Table 3. The composition of Example 7 is superior in the balance of impact resistance, dimensional stability, and rigidity as compared with the composition of Comparative Example 9 in which unmodified SEBS was not added. The compositions of Comparative Examples 10 to 13 using wollastonite and glass fiber having a large particle diameter did not improve the balance between impact resistance, rigidity, and dimensional stability even when unmodified SEBS was added. Is also inferior in appearance.
[0045]
[Table 3]
Figure 2004331766
[0046]
[Example 8 and Comparative Examples 14 to 15]
Using the twin-screw extruder used in Example 1, the components (A), (B) and (C) were mixed at a cylinder temperature of 230 ° C. and a screw rotation speed of 400 rpm at a ratio shown in Table 4 using a tumbler mixer. After mixing uniformly, the mixture was fed from barrel 1 to cause a melt reaction, and then component (D) was fed from barrel 4 and component (E) was fed from barrel 7 to be melt-mixed to prepare a composition. Table 4 shows the obtained physical properties. The composition of Example 8 has an excellent balance of impact resistance, dimensional stability, rigidity, and conductivity, as compared with the compositions of Comparative Examples 14 to 15 to which no unmodified SEBS was added.
[0047]
[Example 9 and Comparative Examples 16 to 17]
Using the twin-screw extruder used in Example 1, the components (A), (B), (C), and (E) were tumbled at the ratios shown in Table 4 under the conditions of a cylinder temperature of 230 ° C. and a screw rotation speed of 400 rpm. After uniformly mixing with a mixer, the mixture was fed from barrel 1 to cause a melt reaction, and then component (D) was fed from barrel 5 to be melt-mixed to prepare a composition. Table 4 shows the obtained physical properties. The composition of Example 9 has an excellent balance of impact resistance, dimensional stability, rigidity, and conductivity as compared with the compositions of Comparative Examples 16 to 17 in which unmodified SEBS was not added.
[0048]
[Table 4]
Figure 2004331766
[0049]
【The invention's effect】
The thermoplastic resin composition of the present invention has excellent balance of impact resistance and dimensional stability, rigidity, and is excellent in appearance, so that it can be used in a wide range of fields such as electric / electronic parts, mechanical parts, and automobile parts. It is particularly useful as a material for automotive exterior parts.

Claims (10)

成分(A):ポリアミド樹脂
成分(B):ビニル芳香族化合物重合体ブロックaと共役ジエン系化合物重合体ブロックbとのブロック共重合体の水素添加物及び/又はエチレン−α−オレフィン系共重合体
成分(C):ビニル芳香族化合物重合体ブロックaと共役ジエン系化合物重合体ブロックbとのブロック共重合体の水素添加物に、不飽和酸及び/又はその誘導体をブロック重合体100重量部に対し、0.3〜2.5重量部付加させた変性水素化ブロック共重合体、並びに、
成分(D):平均粒子径が8μm以下の板状、及び/又は、針状の無機フィラーからなる組成物において、
上記各成分を、成分(A)と成分(B)、(C)の重量比(A)/((B)+(C))が90/10〜60/40であり、成分(B)と成分(C)の重量比(B)/(C)が10/90〜90/10であり、かつ、成分(D)の量が成分(A)、(B)、(C)の合計100重量部に対して5〜60重量部の比率で配合したものであることを特徴とする熱可塑性樹脂組成物。
Component (A): Polyamide resin Component (B): Hydrogenated product of a block copolymer of vinyl aromatic compound polymer block a and conjugated diene compound polymer block b and / or ethylene-α-olefin copolymer Coalescing component (C): A hydrogenated product of a block copolymer of a vinyl aromatic compound polymer block a and a conjugated diene compound polymer block b, and an unsaturated acid and / or a derivative thereof, 100 parts by weight of a block polymer With respect to 0.3 to 2.5 parts by weight of a modified hydrogenated block copolymer, and
Component (D): In a composition comprising a plate-like and / or acicular inorganic filler having an average particle diameter of 8 μm or less,
Each of the above components has a weight ratio (A) / ((B) + (C)) of the component (A) to the components (B) and (C) of 90/10 to 60/40. The weight ratio (B) / (C) of the component (C) is 10/90 to 90/10, and the amount of the component (D) is a total of 100 weight of the components (A), (B), and (C). A thermoplastic resin composition characterized by being blended at a ratio of 5 to 60 parts by weight per part by weight.
成分(B)及び成分(C)のブロック共重合体の水素添加物は、いずれも、ビニル芳香族化合物重合体ブロックaと共役ジエン系化合物重合体ブロックbとが、a−b−a型のトリブロック構造を有することを特徴とする請求項1記載の熱可塑性樹脂組成物。In each of the hydrogenated products of the block copolymers of the component (B) and the component (C), the vinyl aromatic compound polymer block a and the conjugated diene-based compound polymer block b are aba type. 2. The thermoplastic resin composition according to claim 1, having a triblock structure. 成分(C)が、ラジカル発生剤の存在下で不飽和酸及び/又はその誘導体を付加させた変性水素化ブロック共重合体であることを特徴とする請求項1記載の熱可塑性樹脂組成物。The thermoplastic resin composition according to claim 1, wherein the component (C) is a modified hydrogenated block copolymer to which an unsaturated acid and / or a derivative thereof is added in the presence of a radical generator. 成分(A)が、温度23℃、98重量%濃硫酸中濃度1重量%で測定した相対粘度が2.1〜3.5であり、かつ、末端カルボキシル基含量と末端アミノ基含量の比(末端カルボキシル基含量/末端アミノ基含量)が0.8〜4のポリアミド樹脂であることを特徴とする請求項1記載の熱可塑性樹脂組成物。Component (A) has a relative viscosity of 2.1 to 3.5 measured at a temperature of 23 ° C. and a concentration of 1% by weight in 98% by weight concentrated sulfuric acid, and has a ratio of the terminal carboxyl group content to the terminal amino group content ( The thermoplastic resin composition according to claim 1, wherein the polyamide resin has a terminal carboxyl group content / terminal amino group content of 0.8 to 4. 成分(D)の平均粒子径が5μm以下であることを特徴とする請求項1記載の熱可塑性樹脂組成物。The thermoplastic resin composition according to claim 1, wherein the average particle size of the component (D) is 5 µm or less. 成分(D)が、珪酸マグネシウム及び/又は珪酸カルシウムであることを特徴とする請求項5記載の熱可塑性樹脂組成物。The thermoplastic resin composition according to claim 5, wherein the component (D) is magnesium silicate and / or calcium silicate. 成分(D)の平均粒子径が3.5μm以下であることを特徴とする請求項6記載の熱可塑性樹脂組成物。The thermoplastic resin composition according to claim 6, wherein the average particle diameter of the component (D) is 3.5 µm or less. 組成物が、予め成分(A)、(B)及び(C)を溶融反応させ、その溶融反応物に成分(D)を配合し混練させて得られたものであることを特徴とする請求項1〜7のいずれか1項に記載の熱可塑性樹脂組成物。The composition is obtained by preliminarily melting and reacting the components (A), (B) and (C), and blending and kneading the component (D) with the molten reaction product. The thermoplastic resin composition according to any one of claims 1 to 7. 請求項1記載の熱可塑性樹脂組成物に、さらに成分(E)として、導電性カーボンブラック及び/又は中空炭素フィブリルを、成分(A)100重量部に対し、1〜15重量部の比率で配合したことを特徴とする熱可塑性樹脂組成物。2. The thermoplastic resin composition according to claim 1, further comprising, as component (E), conductive carbon black and / or hollow carbon fibril in a ratio of 1 to 15 parts by weight based on 100 parts by weight of component (A). A thermoplastic resin composition comprising: 成分(E)が、ジブチルフタレート吸油量が200ml/100g以上の導電性カーボンブラックであることを特徴とする請求項9記載の熱可塑性樹脂組成物。The thermoplastic resin composition according to claim 9, wherein the component (E) is a conductive carbon black having a dibutyl phthalate oil absorption of 200 ml / 100 g or more.
JP2003128029A 2003-05-06 2003-05-06 Thermoplastic resin composition Expired - Lifetime JP4951196B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003128029A JP4951196B2 (en) 2003-05-06 2003-05-06 Thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003128029A JP4951196B2 (en) 2003-05-06 2003-05-06 Thermoplastic resin composition

Publications (2)

Publication Number Publication Date
JP2004331766A true JP2004331766A (en) 2004-11-25
JP4951196B2 JP4951196B2 (en) 2012-06-13

Family

ID=33504332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003128029A Expired - Lifetime JP4951196B2 (en) 2003-05-06 2003-05-06 Thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JP4951196B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006006535A1 (en) * 2004-07-12 2006-01-19 Mitsubishi Engineering-Plastics Corporation Thermoplastic resin composition
JP2006342278A (en) * 2005-06-10 2006-12-21 Mitsubishi Engineering Plastics Corp Polyamide resin composition and molded article
JP2007302819A (en) * 2006-05-12 2007-11-22 Mitsubishi Engineering Plastics Corp Thermoplastic resin composition for producing automotive exterior part
JP2007302817A (en) * 2006-05-12 2007-11-22 Mitsubishi Engineering Plastics Corp Thermoplastic resin composition for producing automotive exterior part
JP2007302818A (en) * 2006-05-12 2007-11-22 Mitsubishi Engineering Plastics Corp Resin composition for producing automotive exterior part
JP2011241287A (en) * 2010-05-18 2011-12-01 Asahi Kasei Chemicals Corp Lightweight resin composition and its molding
JP2012031410A (en) * 2010-07-30 2012-02-16 Ems-Patent Ag Polyamide molding compound for producing molding having soft-touch surface, and the molding
JP2015040300A (en) * 2013-08-23 2015-03-02 旭化成ケミカルズ株式会社 Polyamide resin composition, and molded product
JP2017014397A (en) * 2015-07-01 2017-01-19 旭化成株式会社 Polyamide composition, molding, and reflection plate for led
WO2017144279A1 (en) * 2016-02-24 2017-08-31 Solvay Specialty Polymers Usa, Llc Impact-modified polymer compositions and articles made therefrom

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001294760A (en) * 2000-04-11 2001-10-23 Asahi Kasei Corp Thermoplastic resin composition having high strength and high rigidity
WO2001081473A1 (en) * 2000-04-26 2001-11-01 Asahi Kasei Kabushiki Kaisha Conductive resin composition and process for producing the same
JP2003064254A (en) * 2001-08-23 2003-03-05 Mitsubishi Engineering Plastics Corp Thermoplastic resin composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001294760A (en) * 2000-04-11 2001-10-23 Asahi Kasei Corp Thermoplastic resin composition having high strength and high rigidity
WO2001081473A1 (en) * 2000-04-26 2001-11-01 Asahi Kasei Kabushiki Kaisha Conductive resin composition and process for producing the same
JP2003064254A (en) * 2001-08-23 2003-03-05 Mitsubishi Engineering Plastics Corp Thermoplastic resin composition

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006006535A1 (en) * 2004-07-12 2006-01-19 Mitsubishi Engineering-Plastics Corporation Thermoplastic resin composition
US8193282B2 (en) 2004-07-12 2012-06-05 Dsm Ip Assets B.V. Thermoplastic resin composition
JP2006342278A (en) * 2005-06-10 2006-12-21 Mitsubishi Engineering Plastics Corp Polyamide resin composition and molded article
JP2007302817A (en) * 2006-05-12 2007-11-22 Mitsubishi Engineering Plastics Corp Thermoplastic resin composition for producing automotive exterior part
WO2007132554A1 (en) 2006-05-12 2007-11-22 Mitsubishi Engineering-Plastics Corporation Thermoplastic resin composition for producing automobile exterior part
JP2007302818A (en) * 2006-05-12 2007-11-22 Mitsubishi Engineering Plastics Corp Resin composition for producing automotive exterior part
US8062557B2 (en) 2006-05-12 2011-11-22 Dsm Ip Assets B.V. Thermoplastic resin composition for producing automobile exterior parts
JP2007302819A (en) * 2006-05-12 2007-11-22 Mitsubishi Engineering Plastics Corp Thermoplastic resin composition for producing automotive exterior part
JP2011241287A (en) * 2010-05-18 2011-12-01 Asahi Kasei Chemicals Corp Lightweight resin composition and its molding
JP2012031410A (en) * 2010-07-30 2012-02-16 Ems-Patent Ag Polyamide molding compound for producing molding having soft-touch surface, and the molding
KR101517535B1 (en) 2010-07-30 2015-05-04 이엠에스-패턴트 에이지 Polyamide moulding compound for producing moulded articles with a soft-touch surface and also corresponding moulded articles
JP2015040300A (en) * 2013-08-23 2015-03-02 旭化成ケミカルズ株式会社 Polyamide resin composition, and molded product
JP2017014397A (en) * 2015-07-01 2017-01-19 旭化成株式会社 Polyamide composition, molding, and reflection plate for led
WO2017144279A1 (en) * 2016-02-24 2017-08-31 Solvay Specialty Polymers Usa, Llc Impact-modified polymer compositions and articles made therefrom

Also Published As

Publication number Publication date
JP4951196B2 (en) 2012-06-13

Similar Documents

Publication Publication Date Title
EP1767578B1 (en) Thermoplastic resin composition
US7919013B2 (en) Thermoplastic moulding compositions with high stiffness
US5206284A (en) Thermoplastic resin composition
US5091462A (en) Thermoplastic resin composition
JP4725118B2 (en) Conductive polyamide resin composition
JPH02214773A (en) Multiphase composition and its preparation
JP4951196B2 (en) Thermoplastic resin composition
JP5281228B2 (en) Thermoplastic resin composition
JP2885507B2 (en) High rigidity parts made of polypropylene resin composition
JP2885492B2 (en) Polypropylene composition for high impact parts
JPH07316428A (en) Thermoplastic resin composition
JP2004346234A (en) Electroconductive thermoplastic resin composition
JP2005179547A (en) Resin composition for manufacturing automotive exterior part
JP4204887B2 (en) Thermoplastic resin composition
JP2831786B2 (en) Thermoplastic resin composition
JP2004182866A (en) Conductive polyamide resin composition
JP5276248B2 (en) Conductive thermoplastic resin composition
JP4323202B2 (en) Process for producing thermoplastic resin composition pellets or injection molded products
JP3385107B2 (en) Resin composition and method for producing the same
JP2003277555A (en) Resin composition and method for producing the same
JP4283625B2 (en) Thermoplastic resin molding for painting
JP2001172499A (en) Thermoplastic resin composition
JPH0496956A (en) Polypropylene composition
JPH0688012A (en) High-specific-gravity thermoplastic resin composition
JP2005179544A (en) Resin composition for manufacturing automotive exterior part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051226

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20051226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090518

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090622

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090828

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20120105

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120111

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120312

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4951196

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term