JP2004331480A - SiOX PARTICLE, ITS PRODUCTION METHOD AND APPLICATION - Google Patents

SiOX PARTICLE, ITS PRODUCTION METHOD AND APPLICATION Download PDF

Info

Publication number
JP2004331480A
JP2004331480A JP2003132866A JP2003132866A JP2004331480A JP 2004331480 A JP2004331480 A JP 2004331480A JP 2003132866 A JP2003132866 A JP 2003132866A JP 2003132866 A JP2003132866 A JP 2003132866A JP 2004331480 A JP2004331480 A JP 2004331480A
Authority
JP
Japan
Prior art keywords
film
siox
particles
powder
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003132866A
Other languages
Japanese (ja)
Other versions
JP3868396B2 (en
Inventor
Shinji Nozaki
真次 野崎
Kazuo Uchida
和男 内田
Hiroshi Morizaki
弘 森崎
Taku Kawasaki
卓 川崎
Masahiro Ibukiyama
正浩 伊吹山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2003132866A priority Critical patent/JP3868396B2/en
Publication of JP2004331480A publication Critical patent/JP2004331480A/en
Application granted granted Critical
Publication of JP3868396B2 publication Critical patent/JP3868396B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Silicon Compounds (AREA)
  • Physical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an insulation film used for various applications such as a gate oxidation film in a silicon integrated circuit, and having excellent dielectric breakdown voltage. <P>SOLUTION: The insulation film is an SiO<SB>y</SB>film (y=1.2-1.8) or an SiO<SB>z</SB>film (1.5≤z≤2.0) obtained by using SiO<SB>x</SB>powder containing an SiO<SB>x</SB>(x=1.2-2.0) particle including Si particle as a raw material and obtained by PVD vapor deposition. The SiO<SB>x</SB>powder is obtained by a method of supplying monosilane gas and an oxidizing gas alternately to a reaction vessel when the monosilane gas, the oxidizing gas for oxidizing the monosilane gas and if need, a diluting gas for diluting both gases are introduced into the reaction vessel. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、高純度・超微粒SiOx粒子・粉末及びその製造方法、並びにこれらを用いてなる半導体の保護膜又は絶縁膜等に関する。
【0002】
【従来の技術】
SiOx粒子又は粉末はその高い蒸気圧を利用し、食品包装用フィルムや光学部品にSiOx質の蒸着膜を形成させるための蒸着原料として用いられている。たとえば、水蒸気、酸素ガスの透過を防止して食品の劣化を防ぐため、食品包装用フィルムにSiOx膜からなるガスバリア膜を形成する原料に用いられている。
【0003】
従来、SiOx粒子又は粉末の製造方法としては、シリカと金属シリコン及び/又は炭素とを含む混合原料を、少なくとも8×10Pa以上の非窒化性雰囲気下で高温処理してSiO含有ガスを生成させ、それを1000℃/秒以下の冷却速度で冷却する方法(特許文献1参照)、SiO粉末を不完全燃焼炎中で加熱してSi蒸気を発生させ、それを亜酸化する方法(特許文献2参照)等、が知られている。
【0004】
【特許文献1】特開2001−158613号公報。
【0005】
【特許文献2】特開平5−213606号公報。
【0006】
前記の従来法で、SiOx粒子又は粉末の高純度化を行うには、原料の調製から製品の捕集までの間に不純物が混入しないようにしなければならない。しかしながら、原料の高純度化には精製等の特殊処理が必要となる問題がある。また、原料を加熱してSiO蒸気又はSi蒸気を発生させるには、1500〜2000℃程度での高温操作が必要となり、高純度原料を用いても、炉材等からNa、Al、Mg、Ca、Fe等の不純物が混入し、高純度SiOx粒子又は粉末を製造することが困難である。尚、本発明でいう「高純度」とは、Na、Fe、Al、Clの合計量が10ppm以下のことである。
【0007】
また、従来法のSiOx粒子又は粉末は、Si粒子をコア、SiOxをシェルとするようなコア・シェル構造は有しておらず、概ね均一な粒子又は粉末であり、蒸着原料として用いる場合には蒸気圧を高くするために通常、x値(O/Siモル比)が2.0よりも1.0に近いものが用いられる。従って蒸着膜も原料同様に、組成SiOyにおけるy値(O/Siモル比)は2.0よりも1.0に近くなる。但し蒸着膜においては、O/Si値が小さい(y値が2.0よりも1.0に近い)程絶縁性が低下するので、従来法の蒸着膜は絶縁性が充分ではなかった。蒸着膜の絶縁性を向上させるために、x値が2である二酸化珪素(SiO)粉末を原料に使用する試みもなされたが、蒸着に必要なほどの高い蒸気圧を有するSiO粉末は、これまで見出されていない。
【0008】
【発明が解決しようとする課題】
本発明は、上記状況に鑑み、いろいろな形態のSiOxを得るべく検討したところ、ある特定の条件下でSi粒子をコア、SiOxをシェルとするコア・シェル構造を有する高純度で超微粒なSiOx粒子とそれを含む粉末が得られること、そして、それを用いてPVDを行うときに、熱並びに光酸化性に優れるSiOy膜が得られ、更に、従来よりも電気絶縁性に優れるSiOz膜をも容易に得ることができるという新しい知見を得て、本発明に至ったものである。
【0009】
即ち、本発明の目的は、Si粒子をコア、SiOxをシェルとするコア・シェル構造を有する高純度・超微粒SiOx粒子・粉末を提供すること、また、前記原料を用いていろいろな保護膜や絶縁膜として利用し得るSiOy膜を提供すること、更に、良好な絶縁破壊電圧を有しシリコン集積回路におけるゲート酸化膜等を始めとするいろいろな用途に利用可能なSiOz膜を提供することにある。
【0010】
【課題を解決するための手段】
即ち、本発明は、Si粒子を内包していることを特徴とするSiOx(x=1.0〜2.0)粒子であり、好ましくは、粒径が50nm以下であることを特徴とする前記のSiOx粒子である。
【0011】
本発明は、前記のSiOx粒子を当該粉末の90質量%以上含有することを特徴とするSiOx粉末であり、好ましくは、前記のSiOx粒子を含有し、Si粒子が5〜50質量%、Si粒子を包囲するSiOxが95〜50質量%からなることを特徴とするSiOx粉末であり、更に好ましくは、比表面積値が10m/g以上であり、Na、Fe、Al、Clの合計量が10ppm以下であることを特徴とする前記のSiOx粉末である。
【0012】
本発明は、反応容器内に、モノシランガスと、前記モノシランガスを酸化するための酸化性ガスと、必要に応じて両者を希釈するための希釈ガスと、を導入してSiOx粉末を製造する方法であって、モノシランガスと酸化性ガスとを交互に前記反応容器内に供給することを特徴とするSiOx粉末の製造方法であり、好ましくは、反応容器内を、圧力が10〜1000kPa、温度が500〜1000℃の条件とすることを特徴とする前記のSiOx粉末の製造方法である。
【0013】
本発明は、前記のSiOx粉末を、光照射することなく、PVD蒸着して得られることを特徴とするSiOy(y=1.2〜1.8)膜であり、好ましくは、PVD蒸着時に基材を加熱することなく得られたSiOy膜であって、Si粒子含有量が0.1〜5質量%であることを特徴とする前記のSiOy膜であり、シリコン集積回路における保護膜若しくは層間絶縁膜、化合物半導体集積回路における保護膜、又はエレクトロルミネッセンス素子の保護膜であることを特徴とする前記のSiOy膜である。
【0014】
加えて、本発明は、前記のSiOx粉末を用いて、PVD蒸着しながら、又はPVD蒸着後に、光照射して得られることを特徴とするSiOz(zは1.5以上2.0未満)膜であり、好ましくは、光照射が100℃以下で行われ、しかも当該光照射時に酸化を伴って得られたSiOz膜であって、当該膜の絶縁破壊電圧が4MV/cm以上であることを特徴とする前記のSiOz膜であり、シリコン集積回路におけるゲート酸化膜、保護膜若しくは層間絶縁膜、化合物半導体集積回路における保護膜、薄膜トランジスタのゲート酸化膜若しくは絶縁性被膜、又はエレクトロルミネッセンス素子の保護膜であることを特徴とする前記のSiOz膜である。
【0015】
【発明の実施の形態】
まず、本発明に係るSiOx粉末の製造方法について、説明する。
本発明は、原料にモノシランガスを用いることによって、低温反応が可能となるので、従来法におけるような炉材等からの不純物混入を極限まで低下させることができ、その結果、生成するSiOx粉の高純度化と超微粉化が可能となるものである。
【0016】
本発明において用いるモノシラン(SiH)ガスは市販品を用いることができる。モノシランガスは、塩素を構成成分としていない点でトリクロルシラン等のシラン系ガスよりも環境に及ぼす負荷が低く、優れている。また、モノシランの酸化性ガス(以下、単に「酸化性ガス」という。)としては、酸素ガス、乾燥空気の他に、モノシランに対して酸化性を有する例えばNO、CO、HO等のガスを用いることができる。これらの酸化性ガスは、不純物が極限まで除去されていることが好ましい。
【0017】
モノシランガスと酸化性ガスの反応は、圧力10〜1000kPaの非酸化性ガス雰囲気下、温度500〜1000℃で行わせることが好ましい。圧力が10kPa未満であると、生成したSiOx膜が反応容器壁面に付着成長し、排出部を閉塞するので長期操業が容易でなくなることがあるし、1000kPaをこえると、反応装置の耐圧を高めるのに大がかりな設備が必要になるうえ、不純物が増加する傾向となるからである。好ましい圧力は、50〜300kPaである。
【0018】
一方、反応場の温度が500℃未満であると主としてSiOが生成し易く、また1000℃をこえると単体のSiが生成し易くなると共に、炉材等からの不純物がより多く混入する恐れが高くなることから、いずれの場合も高純度・超微粉SiOx粉の製造が容易でなくなる。前記温度範囲の中で、550〜950℃が好ましく、更に650〜850℃が一層好ましい範囲である。
【0019】
本発明において、モノシランガスと酸化性ガスは、一度にではなく、それぞれが別々の時期に交互に反応容器内へ導入される。これよってSi粒子を内包するSiOx粒子、条件によっては、Si粒子をコア、SiOxをシェルとするコア・シェル構造の粒子が形成される。その理由は、先ずモノシランガス導入時に、モノシランが熱分解してSi粒子のコアが形成され、その後、酸化性ガスが導入された際にSiコアの外周が酸化されてSiOxシェルが形成されるためであると考えられる。
【0020】
本発明において、モノシランガスと酸化性ガスの反応は、必要に応じて、非酸化性ガスからなる希釈ガスの存在下で行われる。これによって、生成したSiOx粉の容器壁への付着をより少なくすることができる。希釈ガス(以下、非酸化性ガスともいう)としては、アルゴン、ヘリウムのような不活性ガスが最適であるが、反応を妨げない範囲で、H、N、NH、CO等を用いることもできる。酸化性ガスとして乾燥空気を用いた場合、非酸化性ガスと酸化性ガスの両方を用いたことになる。非酸化性ガスの量は、モノシランガス量と酸化性ガスの酸化反応に与る酸素量との合計量よりも多くすることが好ましく、モル比で2倍以上、特に10倍以上であることが好ましい。ここで、酸化性ガスの酸化反応に与る酸素量とは、たとえば乾燥空気の場合には、それに含まれる酸素量であり、NOとCOの場合は、それを構成する酸素原子分の酸素量である。
【0021】
反応容器としては、石英ガラス等の高純度材料で製作されたものが使用できる。その形状は、底付きのコップ形状とすることもできるが、管状が好ましく、その向きは縦型設置、横型設置のいずれであっても良い。反応容器の加熱方法については、抵抗加熱発熱体、高周波加熱、赤外輻射加熱等の手段を用いることができる。
【0022】
反応容器内で生成したSiOx粉は、非酸化性ガス及び副成ガスと共に系外に排出され、バッグフィルター等の従来公知の粉末回収装置を用いて回収される。
【0023】
本発明の製造方法においては、モノシランガスと酸化性ガスの比率を変えることによって、x値すなわちO/Siモル比の異なるSiOx粉を制御して製造できる。
【0024】
本発明に係るSiOx粒子のx値は1.0〜2.0である。x値が1.0未満であると、PVD等の蒸着原料としたときに、蒸着速度が低下し、蒸着温度をあげる必要が生じるので、望ましくなく、本発明者の実験的検討に基づけば、好ましいx値は1.2〜1.8である。尚、x値は、SiOx中のSiモル量をJIS−R;6124(炭化けい素質研削材の化学分析)に準じて測定し、また酸素モル量をO/N同時分析装置(例えばLECO社「TC−136」)を用いて測定し、それらのモル比から算出することができる。
【0025】
前記した通りに、本発明のSiOx粉の製造方法によって、Si粒子を内包し、またはSi粒子をコア、SiOxをシェルとするコア・シェル構造を有し、粒径が50nm以下のSiOx粒子、そして前記SiOx粒子を当該粉末の90質量%以上含有する、比表面積が10m/g以上であり、Na,Fe,Al,Clの合計量が10ppm以下である高純度で超微粉のSiOx粉末を容易に得ることができる。更に、前記SiOx粉末は、前記特有な構造のSiOx粒子を含有し、Si粒子が5〜50質量%、Si粒子を包囲するSiOxが95〜50質量%からなるSiOx粉末をも得ることができる。
【0026】
本発明に係る高純度、超微粉のSiOx粉の粒径は、透過型電子顕微鏡(TEM)観察によって測定できる。またSiOx粉がSi粒子を内包すること、またはSi粒子をコア、SiOxをシェルとするコア・シェル構造を有することは、TEM観察並びにラマン分光分析におけるSi粒子に帰属されるピークの位置及び形態によって確認できる。SiOx粉に内包されるかコアとして存在するSi粒子の量は、SiOx粉を加熱したフッ化水素酸中で煮沸後、残留物をSi粒子とみなし、質量を測定して求められる。
【0027】
本発明のSiOx粉において、Na、Fe、Al、Clの合計量が10ppmをこえると、これを用いて層間絶縁膜等を形成した場合に、絶縁不良、腐食の原因となることがあるので好ましくなく、5ppm以下であることが一層好ましい。尚、これらの不純物は、ICP等の発光分析法によって測定することができる。また、比表面積が10m/g未満であると、前述した通りに、蒸着開始温度が高くなることがある。比表面積は50m/g以上であることが一層好ましい。
【0028】
本発明の高純度、超微粉のSiOxを蒸着原料に用いて、光照射することなくPVD蒸着すると、y=1.2〜1.8のSiOy膜が得られ、このSiOy膜は酸化されやすい特徴を有している。特に、前記SiOx粉末を原料にして、基材を加熱することなく得られたSiOy膜であって、Si粒子含有量が0.1〜5質量%であるSiOy膜は、そのものが適度の絶縁破壊特性を有していて、シリコン高集積回路における保護膜若しくは層間絶縁膜、化合物半導体集積回路における保護膜、又はエレクトロルミネッセンス素子の保護膜等に好適に用いることができると共に、後述する通りに、更に容易に酸化されて絶縁破壊特性が一層優れるSiOz膜(1.5≦z<2.0)を提供できる特徴を有している。y値は1.5以上、2.0未満に達する。SiOy膜中のSi粒子含有量は、X線光電子スペクトル(XPS)におけるSi2pスペクトルの、SiOyに帰属されるピークとSi粒子に帰属されるピークの強度比(面積比)より求められる。
【0029】
前記の酸化性に優れるSiOy膜がSiOx粉末を用いて容易に得られることの原因について、本発明者は、SiOx粒子中にSi粒子が内在されているが、この構造が蒸発後の蒸着膜中に取り残されるように蒸着が行われ、前記の構造が存在することにより、蒸着膜中のSi粒子が活性化されており、熱酸化或いは光酸化されやすいためであると考えている。
【0030】
つまり、本発明のSiOy膜は、蒸着後に例えば酸素を含む雰囲気中400℃で2時間程度加熱すること等によって、酸化の程度をさらに進めることも可能である。そして、SiOy膜は酸化の度合いが大きくなると、それにつれて絶縁性が向上する特徴を有している。
【0031】
また、本発明は、前述のSiOx粉末を蒸着原料に用い、蒸着中もしくは蒸着後に得られる蒸着膜に光照射を行うことにより得られるSiOz膜(1.5≦z<2.0)である。特に、前記光照射が100℃以下で酸化を現象を伴って行われた前記SiOz膜は、絶縁破壊電圧が4MV/cm以上の極めて優れた電気絶縁特性を有するので、シリコン集積回路におけるゲート酸化膜、保護膜若しくは層間絶縁膜、化合物半導体集積回路における保護膜、薄膜トランジスタのゲート酸化膜若しくは絶縁性被膜、又はエレクトロルミネッセンス素子の保護膜として好適に使用することができる特徴がある。
【0032】
【実施例】
以下、実施例、比較例をあげて更に詳細に本発明を説明する。
【0033】
(実施例1〜5、比較例1〜4)
図1に例示する装置を用いてSiOx粉末を作製した。
まず、モノシランガス、窒素ガス、酸素ガス(いずれも、純度が99.999質量%以上)を用意し、それぞれのガスを、質量流量計を通じて石英ガラス製反応容器(内径60mm×長さ1500mm)1に導入した。
モノシランガスは、石英ガラス製のモノシランガス導入管4(内径5mm)を通し、窒素ガスと混合して反応容器1内に吹き出すようにして供給した。また酸素ガスは、石英ガラス製の酸化性ガス導入管3(内径5mm)を通し、窒素ガスと混合して反応容器1内に吹き出すようにして供給した。この際、モノシランガス導入管4および酸化性ガス導入管3の途中にタイマーで動作する電磁式バルブ7を設け、(1)モノシランガスを2秒間導入、(2)ガス導入を2秒間遮断、(3)酸化性ガスを2秒間導入、(4)ガス導入を2秒間遮断のサイクルを繰り返して反応させた。
【0034】
ここで、反応容器1は、その外周を巻回させたニクロム線ヒーター2に通電を行い、所定の反応温度(表1参照)に保たれるように加熱されている。温度調整は、反応容器中央部中心に設置された熱電対で測温し、ニクロム線ヒーター2の電力を制御して行った。
【0035】
反応容器1内の圧力は、多くの実験では大気圧下とほぼ同等の101kPaで実施した。反応容器内の大気圧未満の減圧は、排出側に設けた真空ポンプで減圧しつつバルブの開度を調節することによって行い、大気圧をこえる加圧は、反応容器1の外側にステンレス製容器をかぶせ2重構造にして行った。この際、ニクロム線ヒーター2とステンレスの間には繊維質断熱材を埋め込むと共に、反応容器1とステンレスの間には、反応容器1内の圧力と同等になるように窒素ガスを導入し、反応容器1の内外でのガス圧を均衡させた。
【0036】
生成したSiOx粉は、副生ガス、窒素ガスと共に、排出管8から排出され、途中に設けられたバグフィルター9で回収された。回収した粉末について、SiOx粉のx値、比表面積、不純物を測定した。Si粒子の質量分率は、生成物を加熱したフッ化水素酸中で煮沸後、残留物をSi粒子とみなし、質量を測定して求めた。SiOの質量分率は、生成物を真空中1100℃で加熱してSiOx分を揮発させた後の残留物を、さらに加熱したフッ化水素酸中で煮沸し、この時の質量減少分をSiOとみなして求めた。SiOx分の質量分率は、全体の質量からSi粒子とSiOの質量を差し引いて算出した。また、透過型電子顕微鏡(TEM)観察及びラマン分光分析を行い、粒径及び粒子内のSi粒子内包(Siコア)有無を確認した。それらの結果を表2に示す。
【0037】
反応容器1内の圧力を5kPaとした比較例3では、少量の生成物しか回収できず、大部分が反応容器の排出部に付着していた。また、回収粉末の色調も実施例で得られた薄茶色ないしは茶褐色に対し白いものであった。一方、反応容器1内の圧力を1200kPaに高めた比較例4では、比表面積、純度ともに目的とするものが得られなかった。
【0038】
【表1】

Figure 2004331480
【0039】
【表2】
Figure 2004331480
【0040】
(実施例6)
窒素ガスの代わりにアルゴンガスを用い、それ以外は実施例1と同様にして反応を行い、生成物を分析した結果を表2に示す。
【0041】
(実施例7)
モノシランガスおよび酸化性ガス導入の間隔を、(1)モノシランガスを1秒間導入、(2)ガス導入を1秒間遮断、(3)酸化性ガスを1秒間導入、(4)ガス導入を1秒間遮断のサイクルとし、それ以外は実施例1と同様にして反応を行い、生成物を分析した結果を表2に示す。
【0042】
(比較例5)
モノシランガスおよび酸化性ガスを、交互にではなく同時に反応容器に導入し、それ以外は実施例1と同様にして反応を行い、生成物を分析した結果を表2に示す。
【0043】
表1及び表2から、本発明の製造方法によって、Si粒子を内包し、またはSi粒子をコア、SiOxをシェルとするコア・シェル構造を有し、粒径が50nm以下のSiOx粒子が得られていること、また、比表面積が10m/g以上で、Na、Fe、Al、Clの合計量が10ppm以下である高純度・超微粉SiOx(x=1.0〜2.0)粉が製造できるが明瞭である。
【0044】
(実施例8〜10、比較例6〜8)
実施例1、実施例6、実施例7、比較例1、比較例5のそれぞれのSiOx粉、並びに市販のSiO粉末(Merck製、Patinal 7725)を蒸着用原料として用い、圧力1.3×10−5Pa、蒸発温度1100℃で、温度45℃の砒化ガリウム(GaAs)単結晶ウェハー上に20分間蒸着を行い、厚さ約300nmの蒸着膜を形成させた。
【0045】
得られた膜に含まれるSi粒子の量を、X線光電子スペクトル(XPS)におけるSi2pスペクトルの、SiOyに帰属されるピークとSi粒子に帰属されるピークの強度比(面積比)より求めた。また膜の組成(SiOyにおけるy値)、並びに前記膜について、酸素を含む雰囲気中でハロゲンランプを用い室温で光を照射した後の組成(SiOzにおけるz値)を、XPSのSi2p、O1sピークの強度比から求めた。また光照射後の膜の絶縁破壊電圧を測定した。これらの結果を表3に示した。
【0046】
【表3】
Figure 2004331480
【0047】
(実施例11、比較例9〜10)
実施例1、比較例5のSiOx粉、又比較例8で用いた市販のSiO粉末を蒸着用原料として用い、圧力1.3×10−5Pa、蒸発温度1100℃で、温度45℃の砒化ガリウム(GaAs)単結晶ウェハー上に20分間ハロゲンランプで光照射を行いながら蒸着を行って厚さ約300nmの蒸着膜を形成させた。得られた膜の組成(SiOzにおけるz値)をXPSのSi2p、O1sピークの強度比から求めた。また膜の絶縁破壊電圧を測定した。これらの結果を表3に示した。
【0048】
【発明の効果】
本発明によれば、Si粒子を内包し、またはSi粒子をコア、SiOxをシェルとするコア・シェル構造を有し、粒径が50nm以下、比表面積が10m/g以上、Na、Fe、Al、Clの合計量が10ppm以下である高純度で超微粉のSiOx(x=1.0〜2.0)粉が提供される。
【0049】
本発明のSiOx粉は、これを用いてPVD蒸着するときに絶縁破壊電圧の高いSiOy膜を容易に得ることができるし、更に、前記SiOy膜は光照射により酸化して一層絶縁破壊電圧の高いSiOz膜を容易に形成することができる特徴を有している。
【0050】
本発明のSiOy膜、SiOz膜は、絶縁破壊電圧が極めて高いので、シリコン高集積回路におけるゲート酸化膜、保護膜若しくは層間絶縁膜、化合物半導体集積回路における保護膜、薄膜トランジスタのゲート酸化膜若しくは絶縁性被膜、又はエレクトロルミネッセンス素子の保護膜等のいろいろな用途に好適に使用できるので、非常に有用である。
【図面の簡単な説明】
【図1】本発明の実施例に係るSiOx粉末の製造に用いた反応装置概略図。
【符号の説明】
1 反応容器
2 ニクロム線ヒーター
3 酸化性ガス導入管
4 モノシランガス導入管
5 希釈ガス(非酸化性ガス)導入管
6 流量コントローラー
7 タイマーで動作する電磁式バルブ
8 排出管
9 バグフィルター[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-purity ultra-fine SiOx particle / powder, a method for producing the same, and a semiconductor protective film or insulating film using the same.
[0002]
[Prior art]
SiOx particles or powders are used as vapor deposition raw materials for forming vapor-deposited SiOx films on food packaging films and optical components by utilizing their high vapor pressure. For example, it is used as a raw material for forming a gas barrier film made of a SiOx film on a food packaging film in order to prevent permeation of water vapor and oxygen gas to prevent food deterioration.
[0003]
Conventionally, as a method for producing SiOx particles or powder, a mixed raw material containing silica, metallic silicon, and / or carbon is subjected to high-temperature treatment in a non-nitriding atmosphere of at least 8 × 10 4 Pa or more to generate an SiO-containing gas. (See Patent Document 1), a method of heating SiO 2 powder in an incomplete combustion flame to generate Si vapor, and sub-oxidizing it (Patent Document 1). Reference 2) is known.
[0004]
[Patent Document 1] Japanese Patent Application Laid-Open No. 2001-158613.
[0005]
[Patent Document 2] JP-A-5-213606.
[0006]
In order to purify SiOx particles or powder by the above-mentioned conventional method, it is necessary to prevent impurities from being mixed between preparation of raw materials and collection of products. However, there is a problem that a high-purity raw material requires special treatment such as purification. In addition, in order to generate SiO vapor or Si vapor by heating the raw material, a high-temperature operation at about 1500 to 2000 ° C. is required. Even if a high-purity raw material is used, Na, Al, Mg, Ca , Fe and the like are mixed, and it is difficult to produce high-purity SiOx particles or powder. In the present invention, "high purity" means that the total amount of Na, Fe, Al, and Cl is 10 ppm or less.
[0007]
In addition, conventional SiOx particles or powders do not have a core-shell structure such as Si particles as a core and SiOx as a shell, and are generally uniform particles or powders. In order to increase the vapor pressure, one having an x value (O / Si molar ratio) closer to 1.0 than 2.0 is usually used. Therefore, the y value (O / Si molar ratio) in the composition SiOy is closer to 1.0 than 2.0 in the deposited film as in the raw material. However, as the O / Si value of the deposited film is smaller (the y value is closer to 1.0 than 2.0), the insulating property is reduced. Therefore, the insulating property of the conventional deposited film is not sufficient. Attempts have been made to use a silicon dioxide (SiO 2 ) powder having an x value of 2 as a raw material in order to improve the insulating properties of the deposited film. However, SiO 2 powder having a high vapor pressure necessary for vapor deposition has been used. , Has not been found so far.
[0008]
[Problems to be solved by the invention]
In view of the above situation, the present invention has been studied to obtain various forms of SiOx. Under certain conditions, a high-purity ultrafine SiOx having a core-shell structure in which Si particles are used as a core and SiOx is used as a shell is used. Particles and powders containing the particles can be obtained, and when PVD is performed using the particles, a SiOy film having excellent thermal and photooxidative properties can be obtained. The present inventors have obtained a new finding that they can be easily obtained, and have reached the present invention.
[0009]
That is, an object of the present invention is to provide high-purity, ultrafine SiOx particles and powder having a core-shell structure in which Si particles are used as a core and SiOx is used as a shell. An object of the present invention is to provide a SiOy film which can be used as an insulating film, and a SiOz film which has a good dielectric breakdown voltage and can be used for various uses such as a gate oxide film in a silicon integrated circuit. .
[0010]
[Means for Solving the Problems]
That is, the present invention provides SiOx (x = 1.0 to 2.0) particles containing Si particles, and preferably has a particle size of 50 nm or less. Are SiOx particles.
[0011]
The present invention is a SiOx powder characterized by containing the above-mentioned SiOx particles in an amount of 90% by mass or more of the powder, preferably containing the above-mentioned SiOx particles, 5 to 50% by mass of Si particles, and Si particles. Is a SiOx powder characterized by comprising 95 to 50% by mass of SiOx, more preferably having a specific surface area of 10 m 2 / g or more, and a total amount of Na, Fe, Al, and Cl of 10 ppm. It is the above-mentioned SiOx powder characterized by the following.
[0012]
The present invention is a method for producing SiOx powder by introducing a monosilane gas, an oxidizing gas for oxidizing the monosilane gas, and a diluting gas for diluting both as necessary, into a reaction vessel. A monosilane gas and an oxidizing gas are alternately supplied into the reaction vessel, wherein the pressure is preferably 10 to 1000 kPa and the temperature is 500 to 1000 kPa in the reaction vessel. The method for producing SiOx powder described above, wherein the temperature is set to ° C.
[0013]
The present invention is a SiOy (y = 1.2 to 1.8) film obtained by subjecting the above-mentioned SiOx powder to PVD deposition without irradiating light. A SiOy film obtained without heating a material, wherein the content of Si particles is 0.1 to 5% by mass, wherein the SiOy film is a protective film or an interlayer insulating film in a silicon integrated circuit. The SiOy film described above, which is a film, a protective film in a compound semiconductor integrated circuit, or a protective film of an electroluminescence element.
[0014]
In addition, the present invention provides a SiOz (z is 1.5 or more and less than 2.0) film obtained by irradiating light using the above-mentioned SiOx powder during PVD deposition or after PVD deposition. Preferably, the SiOz film is irradiated with light at a temperature of 100 ° C. or lower, and is oxidized during the light irradiation, and has a dielectric breakdown voltage of 4 MV / cm or more. A gate oxide film, a protective film or an interlayer insulating film in a silicon integrated circuit, a protective film in a compound semiconductor integrated circuit, a gate oxide film or an insulating film of a thin film transistor, or a protective film of an electroluminescence element. The above-described SiOz film is characterized in that there is a.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
First, a method for producing a SiOx powder according to the present invention will be described.
According to the present invention, the use of monosilane gas as a raw material enables a low-temperature reaction, so that the contamination of impurities from a furnace material or the like as in the conventional method can be reduced to the utmost, and as a result, a high SiOx powder generated can be obtained. Purification and ultra-fine pulverization become possible.
[0016]
As the monosilane (SiH 4 ) gas used in the present invention, a commercially available product can be used. A monosilane gas is superior to a silane-based gas such as trichlorosilane in that it does not use chlorine as a component, and thus has a lower load on the environment. Examples of the oxidizing gas of monosilane (hereinafter, simply referred to as “oxidizing gas”) include not only oxygen gas and dry air, but also NO 2 , CO 2 , H 2 O, and the like having an oxidizing property to monosilane. Can be used. These oxidizing gases preferably have impurities removed to the utmost.
[0017]
The reaction between the monosilane gas and the oxidizing gas is preferably performed at a temperature of 500 to 1000 ° C. in a non-oxidizing gas atmosphere at a pressure of 10 to 1000 kPa. If the pressure is less than 10 kPa, the formed SiOx film adheres and grows on the wall surface of the reaction vessel and closes the discharge portion, so that long-term operation may not be easy. If the pressure exceeds 1000 kPa, the pressure resistance of the reactor may be increased. This is because large-scale equipment is required, and impurities tend to increase. The preferred pressure is between 50 and 300 kPa.
[0018]
On the other hand, if the temperature of the reaction field is lower than 500 ° C., mainly SiO 2 is easily generated, and if the temperature exceeds 1000 ° C., single Si is easily generated and more impurities from the furnace material and the like may be mixed. In any case, it becomes difficult to produce high-purity, ultrafine SiOx powder. In the above-mentioned temperature range, 550-950 ° C is preferred, and 650-850 ° C is a more preferred range.
[0019]
In the present invention, the monosilane gas and the oxidizing gas are alternately introduced into the reaction vessel at different times, not at once. As a result, SiOx particles containing Si particles and, depending on conditions, particles having a core-shell structure in which the Si particles are a core and the SiOx is a shell are formed. The reason is that when monosilane gas is introduced, monosilane is thermally decomposed to form a core of Si particles, and then, when an oxidizing gas is introduced, the outer periphery of the Si core is oxidized to form a SiOx shell. It is believed that there is.
[0020]
In the present invention, the reaction between the monosilane gas and the oxidizing gas is performed, if necessary, in the presence of a diluent gas composed of a non-oxidizing gas. Thereby, the adhesion of the generated SiOx powder to the container wall can be further reduced. As a diluent gas (hereinafter also referred to as a non-oxidizing gas), an inert gas such as argon or helium is optimal, but H 2 , N 2 , NH 3 , CO or the like is used as long as the reaction is not hindered. You can also. When dry air is used as the oxidizing gas, both the non-oxidizing gas and the oxidizing gas are used. The amount of the non-oxidizing gas is preferably larger than the total amount of the monosilane gas and the amount of oxygen that contributes to the oxidation reaction of the oxidizing gas, and is preferably at least 2 times, particularly preferably at least 10 times the molar ratio. . Here, the amount of oxygen that contributes to the oxidation reaction of the oxidizing gas is, for example, the amount of oxygen contained in the case of dry air, and the amount of oxygen atoms contained in the case of NO 2 and CO 2 . It is the amount of oxygen.
[0021]
As the reaction vessel, a vessel made of a high-purity material such as quartz glass can be used. The shape may be a cup shape with a bottom, but a tubular shape is preferred, and the orientation may be either vertical installation or horizontal installation. With respect to the method of heating the reaction vessel, means such as a resistance heating heating element, high-frequency heating, and infrared radiation heating can be used.
[0022]
The SiOx powder generated in the reaction vessel is discharged out of the system together with the non-oxidizing gas and the by-product gas, and is recovered using a conventionally known powder recovery device such as a bag filter.
[0023]
In the production method of the present invention, by changing the ratio of the monosilane gas to the oxidizing gas, it is possible to control and produce SiOx powder having different x values, that is, different O / Si molar ratios.
[0024]
The x value of the SiOx particles according to the present invention is 1.0 to 2.0. When the x value is less than 1.0, when a deposition material such as PVD is used, the deposition rate is decreased, and the deposition temperature needs to be increased. Therefore, it is not desirable, and based on the experimental study of the present inventors, Preferred x values are 1.2 to 1.8. The x value is obtained by measuring the molar amount of Si in SiOx according to JIS-R; 6124 (chemical analysis of silicon carbide abrasives), and measuring the molar amount of oxygen by an O / N simultaneous analyzer (for example, LECO “ TC-136 ") and can be calculated from their molar ratios.
[0025]
As described above, according to the method for producing SiOx powder of the present invention, SiOx particles containing Si particles, or having a core-shell structure in which Si particles are used as a core and SiOx as shells, and have a particle size of 50 nm or less, and A high-purity, ultrafine SiOx powder containing 90% by mass or more of the SiOx particles and having a specific surface area of 10 m 2 / g or more and a total amount of Na, Fe, Al and Cl of 10 ppm or less is easily prepared. Can be obtained. Further, the SiOx powder contains the SiOx particles having the above-mentioned specific structure, and can provide a SiOx powder comprising 5 to 50% by mass of Si particles and 95 to 50% by mass of SiOx surrounding the Si particles.
[0026]
The particle size of the high-purity, ultrafine SiOx powder according to the present invention can be measured by transmission electron microscope (TEM) observation. The fact that the SiOx powder contains Si particles or has a core-shell structure in which the Si particles are a core and the SiOx is a shell depends on the position and form of the peaks attributed to the Si particles in TEM observation and Raman spectroscopic analysis. You can check. The amount of the Si particles contained in the SiOx powder or present as the core can be determined by boiling the SiOx powder in heated hydrofluoric acid, treating the residue as Si particles, and measuring the mass.
[0027]
In the SiOx powder of the present invention, when the total amount of Na, Fe, Al, and Cl exceeds 10 ppm, when using this to form an interlayer insulating film or the like, it may cause poor insulation or corrosion, which is preferable. And it is more preferable that the content be 5 ppm or less. In addition, these impurities can be measured by an emission analysis method such as ICP. Further, when the specific surface area is less than 10 m 2 / g, the deposition start temperature may increase as described above. The specific surface area is more preferably at least 50 m 2 / g.
[0028]
When the high-purity, ultrafine SiOx of the present invention is used as a deposition raw material and PVD deposition is performed without light irradiation, a SiOy film with y = 1.2 to 1.8 is obtained, and this SiOy film is easily oxidized. have. In particular, a SiOy film obtained from the above-mentioned SiOx powder as a raw material without heating the base material and having a Si particle content of 0.1 to 5% by mass has a moderate dielectric breakdown. It has characteristics and can be suitably used as a protective film or an interlayer insulating film in a silicon high integrated circuit, a protective film in a compound semiconductor integrated circuit, or a protective film of an electroluminescence element, and further, as described later. It is characterized by being able to provide a SiOz film (1.5 ≦ z <2.0) which is easily oxidized and has more excellent dielectric breakdown characteristics. The y value reaches 1.5 or more and less than 2.0. The content of Si particles in the SiOy film is determined from the intensity ratio (area ratio) of the peak attributed to SiOy and the peak attributed to the Si particles in the Si 2p spectrum in the X-ray photoelectron spectrum (XPS).
[0029]
Regarding the reason that the SiOx film having excellent oxidizability is easily obtained by using SiOx powder, the present inventor has reported that Si particles are contained in SiOx particles. It is considered that the vapor deposition is performed so as to be left behind, and the presence of the above structure activates the Si particles in the vapor-deposited film and easily causes thermal oxidation or photo-oxidation.
[0030]
That is, the degree of oxidation of the SiOy film of the present invention can be further increased by, for example, heating at 400 ° C. for about 2 hours in an atmosphere containing oxygen after vapor deposition. The SiOy film has a feature that as the degree of oxidation increases, the insulating property increases accordingly.
[0031]
Further, the present invention is an SiOz film (1.5 ≦ z <2.0) obtained by using the above-mentioned SiOx powder as a deposition material and irradiating a deposited film obtained during or after the deposition with light. In particular, the SiOz film in which the light irradiation is performed at a temperature of 100 ° C. or less with the phenomenon of oxidation has a very excellent electric insulation property of a dielectric breakdown voltage of 4 MV / cm or more. , A protective film or an interlayer insulating film, a protective film in a compound semiconductor integrated circuit, a gate oxide film or an insulating film of a thin film transistor, or a protective film of an electroluminescence element.
[0032]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.
[0033]
(Examples 1 to 5, Comparative Examples 1 to 4)
SiOx powder was produced using the apparatus illustrated in FIG.
First, a monosilane gas, a nitrogen gas, and an oxygen gas (all having a purity of 99.999% by mass or more) are prepared, and the respective gases are put into a quartz glass reaction vessel (inner diameter 60 mm × length 1500 mm) 1 through a mass flow meter. Introduced.
The monosilane gas was supplied through a monosilane gas introduction pipe 4 (inner diameter: 5 mm) made of quartz glass, mixed with nitrogen gas, and blown into the reaction vessel 1. The oxygen gas was supplied through a quartz glass oxidizing gas introduction pipe 3 (inner diameter 5 mm), mixed with nitrogen gas, and blown into the reaction vessel 1. At this time, an electromagnetic valve 7 operated by a timer is provided in the middle of the monosilane gas introduction pipe 4 and the oxidizing gas introduction pipe 3 to (1) introduce the monosilane gas for 2 seconds, (2) shut off the gas introduction for 2 seconds, and (3) Reaction was performed by repeating a cycle of introducing an oxidizing gas for 2 seconds and shutting off (4) gas introduction for 2 seconds.
[0034]
Here, the reaction vessel 1 is heated so as to maintain a predetermined reaction temperature (see Table 1) by energizing a nichrome wire heater 2 having its outer periphery wound. The temperature was adjusted by measuring the temperature with a thermocouple installed at the center of the reaction vessel and controlling the power of the nichrome wire heater 2.
[0035]
In many experiments, the pressure in the reaction vessel 1 was set at 101 kPa, which was almost equal to that under the atmospheric pressure. The pressure reduction below the atmospheric pressure in the reaction vessel is performed by adjusting the opening of the valve while reducing the pressure with a vacuum pump provided on the discharge side, and the pressure exceeding the atmospheric pressure is applied to the outside of the reaction vessel 1 by a stainless steel container. And a double structure. At this time, a fibrous heat insulating material is embedded between the nichrome wire heater 2 and the stainless steel, and a nitrogen gas is introduced between the reaction vessel 1 and the stainless steel so as to have a pressure equal to the pressure in the reaction vessel 1. The gas pressure inside and outside the container 1 was balanced.
[0036]
The generated SiOx powder was discharged from the discharge pipe 8 together with the by-product gas and the nitrogen gas, and was recovered by the bag filter 9 provided on the way. With respect to the recovered powder, the x value, specific surface area, and impurities of the SiOx powder were measured. The mass fraction of Si particles was determined by boiling the product in heated hydrofluoric acid, treating the residue as Si particles, and measuring the mass. The mass fraction of SiO 2 was determined by heating the product at 1100 ° C. in vacuum to evaporate the SiOx component, and then boiling the residue in heated hydrofluoric acid. It was determined regarded as SiO 2. The mass fraction of SiOx was calculated by subtracting the masses of Si particles and SiO 2 from the total mass. In addition, transmission electron microscope (TEM) observation and Raman spectroscopy were performed to confirm the particle size and the presence or absence of Si particles inclusion (Si core) in the particles. Table 2 shows the results.
[0037]
In Comparative Example 3 in which the pressure in the reaction vessel 1 was 5 kPa, only a small amount of the product could be recovered, and most of the product adhered to the discharge portion of the reaction vessel. Further, the color tone of the recovered powder was white with respect to the light brown or brown color obtained in the examples. On the other hand, in Comparative Example 4 in which the pressure in the reaction vessel 1 was increased to 1200 kPa, the desired product could not be obtained in both the specific surface area and the purity.
[0038]
[Table 1]
Figure 2004331480
[0039]
[Table 2]
Figure 2004331480
[0040]
(Example 6)
The reaction was carried out in the same manner as in Example 1 except that argon gas was used instead of nitrogen gas, and the results of analysis of the products are shown in Table 2.
[0041]
(Example 7)
The intervals between the introduction of the monosilane gas and the oxidizing gas were as follows: (1) introduction of the monosilane gas for 1 second, (2) interruption of the introduction of the gas for 1 second, (3) introduction of the oxidizing gas for 1 second, and (4) interruption of the introduction of the gas for 1 second. The reaction was carried out in the same manner as in Example 1 except for the cycle, and the results of analysis of the products are shown in Table 2.
[0042]
(Comparative Example 5)
Monosilane gas and oxidizing gas were introduced into the reaction vessel at the same time instead of alternately, and the reaction was carried out in the same manner as in Example 1 except that the results were analyzed.
[0043]
From Tables 1 and 2, according to the production method of the present invention, SiOx particles containing Si particles or having a core-shell structure in which Si particles are used as a core and SiOx is used as a shell and having a particle size of 50 nm or less can be obtained. In addition, a high-purity ultra-fine powder SiOx (x = 1.0 to 2.0) powder having a specific surface area of 10 m 2 / g or more and a total amount of Na, Fe, Al, and Cl of 10 ppm or less is obtained. Manufacturable but clear.
[0044]
(Examples 8 to 10, Comparative Examples 6 to 8)
The SiOx powder of each of Example 1, Example 6, Example 7, Comparative Example 1, and Comparative Example 5 and a commercially available SiO powder (Patinal 7725 manufactured by Merck) were used as raw materials for vapor deposition, and the pressure was 1.3 × 10 3. Evaporation was performed for 20 minutes on a gallium arsenide (GaAs) single crystal wafer at −5 Pa and an evaporation temperature of 1100 ° C. and a temperature of 45 ° C. to form an evaporated film having a thickness of about 300 nm.
[0045]
The amount of Si particles contained in the obtained film was determined from the intensity ratio (area ratio) of the peak attributed to SiOy and the peak attributed to the Si particles in the Si 2p spectrum in X-ray photoelectron spectrum (XPS). . The composition of the film (y value in SiOy) and the composition (z value in SiOz) of the film after irradiation with light using a halogen lamp in an atmosphere containing oxygen at room temperature (Si value of XPS) are represented by Si 2p and O 1s of XPS. It was determined from the peak intensity ratio. Further, the dielectric breakdown voltage of the film after light irradiation was measured. Table 3 shows the results.
[0046]
[Table 3]
Figure 2004331480
[0047]
(Example 11, Comparative Examples 9 to 10)
The SiOx powders of Example 1 and Comparative Example 5 and the commercially available SiO powder used in Comparative Example 8 were used as raw materials for vapor deposition, at a pressure of 1.3 × 10 −5 Pa, an evaporation temperature of 1100 ° C. and an arsenic temperature of 45 ° C. Evaporation was performed on a gallium (GaAs) single crystal wafer while irradiating light with a halogen lamp for 20 minutes to form an evaporated film having a thickness of about 300 nm. The composition (z value in SiOz) of the obtained film was determined from the intensity ratio of Si 2p and O 1s peaks in XPS. The dielectric breakdown voltage of the film was measured. Table 3 shows the results.
[0048]
【The invention's effect】
According to the present invention, it has a core-shell structure containing Si particles or having Si particles as a core and SiOx as a shell, and has a particle size of 50 nm or less, a specific surface area of 10 m 2 / g or more, Na, Fe, A high-purity, ultrafine SiOx (x = 1.0 to 2.0) powder having a total amount of Al and Cl of 10 ppm or less is provided.
[0049]
The SiOx powder of the present invention can easily obtain a SiOy film having a high dielectric breakdown voltage when performing PVD deposition using the same, and further, the SiOy film is oxidized by light irradiation to have a higher dielectric breakdown voltage. The feature is that the SiOz film can be easily formed.
[0050]
Since the SiOy film and the SiOz film of the present invention have a very high dielectric breakdown voltage, a gate oxide film, a protective film or an interlayer insulating film in a silicon highly integrated circuit, a protective film in a compound semiconductor integrated circuit, a gate oxide film or an insulating film of a thin film transistor. It is very useful because it can be suitably used for various applications such as a coating film or a protective film for an electroluminescence element.
[Brief description of the drawings]
FIG. 1 is a schematic view of a reaction apparatus used for producing SiOx powder according to an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Reaction container 2 Nichrome wire heater 3 Oxidizing gas introduction pipe 4 Monosilane gas introduction pipe 5 Diluent gas (non-oxidizing gas) introduction pipe 6 Flow controller 7 Timer operated electromagnetic valve 8 Discharge pipe 9 Bag filter

Claims (13)

Si粒子を内包していることを特徴とするSiOx(x=1.0〜2.0)粒子。SiOx (x = 1.0 to 2.0) particles containing Si particles. 粒径が50nm以下であることを特徴とする請求項1記載のSiOx粒子。2. The SiOx particles according to claim 1, wherein the particle diameter is 50 nm or less. 請求項1又は請求項2記載のSiOx粒子を当該粉末の90質量%以上含有することを特徴とするSiOx粉末。3. A SiOx powder comprising the SiOx particles according to claim 1 or 2 in an amount of 90% by mass or more of the powder. 請求項1、請求項2又は請求項3記載のSiOx粒子を含有し、Si粒子が5〜50質量%、Si粒子を包囲するSiOxが95〜50質量%からなることを特徴とするSiOx粉末。4. An SiOx powder comprising the SiOx particles according to claim 1, 2 or 3, wherein the Si particles comprise 5 to 50% by mass, and the SiOx surrounding the Si particles comprises 95 to 50% by mass. 比表面積値が10m/g以上であり、Na、Fe、Al、Clの合計量が10ppm以下であることを特徴とする請求項3又は請求項4記載のSiOx粉末。The SiOx powder according to claim 3 or 4, wherein the specific surface area value is 10 m 2 / g or more, and the total amount of Na, Fe, Al, and Cl is 10 ppm or less. 反応容器内に、モノシランガスと、前記モノシランガスを酸化するための酸化性ガスと、必要に応じて両者を希釈するための希釈ガスと、を導入してSiOx粉末を製造する方法であって、モノシランガスと酸化性ガスとを交互に前記反応容器内に供給することを特徴とするSiOx粉末の製造方法。A method for producing a SiOx powder by introducing a monosilane gas, an oxidizing gas for oxidizing the monosilane gas, and a diluting gas for diluting both as needed, into a reaction vessel, comprising: A method for producing SiOx powder, characterized by alternately supplying an oxidizing gas into the reaction vessel. 反応容器内を、圧力が10〜1000kPa、温度が500〜1000℃の条件とすることを特徴とする請求項6記載のSiOx粉末の製造方法。The method for producing SiOx powder according to claim 6, wherein the pressure inside the reaction vessel is 10 to 1000 kPa and the temperature is 500 to 1000C. 請求項3〜請求項5記載のいずれかのSiOx粉末を、光照射することなく、PVD蒸着して得られることを特徴とするSiOy(y=1.2〜1.8)膜。An SiOy (y = 1.2 to 1.8) film obtained by subjecting the SiOx powder according to any one of claims 3 to 5 to PVD deposition without light irradiation. PVD蒸着時に基材を加熱することなく得られたSiOy膜であって、Si粒子含有量が0.1〜5質量%であることを特徴とする請求項8記載のSiOy膜。The SiOy film according to claim 8, wherein the SiOy film is obtained without heating the substrate during the PVD deposition, and has a Si particle content of 0.1 to 5% by mass. シリコン集積回路における保護膜若しくは層間絶縁膜、化合物半導体集積回路における保護膜、又はエレクトロルミネッセンス素子の保護膜であることを特徴とする請求項8又は請求項9記載のSiOy膜。10. The SiOy film according to claim 8, which is a protective film or an interlayer insulating film in a silicon integrated circuit, a protective film in a compound semiconductor integrated circuit, or a protective film of an electroluminescence element. 請求項3〜請求項5記載のいずれかのSiOx粉末を用いて、PVD蒸着しながら、又はPVD蒸着後に、光照射して得られることを特徴とするSiOz(zは1.5以上2.0未満)膜。An SiOz (z is 1.5 or more and 2.0 or more) obtained by irradiating light with the use of any of the SiOx powders according to claim 3 during PVD deposition or after PVD deposition. Less) membrane. 光照射が100℃以下で行われ、しかも当該光照射時に酸化を伴って得られたSiOz膜であって、当該膜の絶縁破壊電圧が4MV/cm以上であることを特徴とする請求項11記載のSiOz膜。12. The SiOz film obtained by performing light irradiation at a temperature of 100 ° C. or lower and accompanied by oxidation during the light irradiation, wherein a dielectric breakdown voltage of the film is 4 MV / cm or more. SiOz film. シリコン集積回路におけるゲート酸化膜、保護膜若しくは層間絶縁膜、化合物半導体集積回路における保護膜、薄膜トランジスタのゲート酸化膜若しくは絶縁性被膜、又はエレクトロルミネッセンス素子の保護膜であることを特徴とする請求項11又は請求項12記載のSiOz膜。12. A gate oxide film, a protective film or an interlayer insulating film in a silicon integrated circuit, a protective film in a compound semiconductor integrated circuit, a gate oxide film or an insulating film of a thin film transistor, or a protective film of an electroluminescence element. Or the SiOz film according to claim 12.
JP2003132866A 2003-05-12 2003-05-12 Method for producing SiOx powder, film made of SiOx powder Expired - Fee Related JP3868396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003132866A JP3868396B2 (en) 2003-05-12 2003-05-12 Method for producing SiOx powder, film made of SiOx powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003132866A JP3868396B2 (en) 2003-05-12 2003-05-12 Method for producing SiOx powder, film made of SiOx powder

Publications (2)

Publication Number Publication Date
JP2004331480A true JP2004331480A (en) 2004-11-25
JP3868396B2 JP3868396B2 (en) 2007-01-17

Family

ID=33507580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003132866A Expired - Fee Related JP3868396B2 (en) 2003-05-12 2003-05-12 Method for producing SiOx powder, film made of SiOx powder

Country Status (1)

Country Link
JP (1) JP3868396B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007010736A1 (en) * 2005-07-19 2007-01-25 Pioneer Corporation Protection film manufacturing method and inorganic film manufacturing method
JP2009041080A (en) * 2007-08-09 2009-02-26 Univ Of Electro-Communications OXIDE FILM FORMATION METHOD, MOS DEVICE MANUFACTURING METHOD, MOS TRANSISTOR MANUFACTURING METHOD, SiOx POWDER AND SiOx POWDER PRODUCTION METHOD
WO2012000858A1 (en) * 2010-06-29 2012-01-05 Umicore Submicron sized silicon powder with low oxygen content
JP2013530919A (en) * 2010-06-30 2013-08-01 エボニック デグサ ゲーエムベーハー Modification of silicon layers composed of silane-containing compounds
JP2016530189A (en) * 2013-07-10 2016-09-29 ユミコア Silicon-based powder and electrode containing the same
WO2024049235A1 (en) * 2022-08-31 2024-03-07 주식회사 엘지에너지솔루션 Negative active material, method for preparing same, negative electrode composition, negative electrode comprising same for lithium secondary battery, and lithium secondary battery comprising negative electrode

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH059016A (en) * 1991-06-28 1993-01-19 Idemitsu Kosan Co Ltd Manufacture of silicon and silicon dioxide
JPH09143689A (en) * 1995-11-27 1997-06-03 Toppan Printing Co Ltd Porous vapor depositing material and its production
JP2001048699A (en) * 1999-08-06 2001-02-20 Japan Science & Technology Corp Production of silicon crystal nano-spherical body chain
WO2003026017A1 (en) * 2001-09-14 2003-03-27 The New Industry Research Organization Silicon cluster superlattice, method for preparing silicon cluster superlattice, method for preparing silicon cluster, silicon cluster superlattice structure, method for preparing silicon cluster superlattice structure, semiconductor device and quantum device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH059016A (en) * 1991-06-28 1993-01-19 Idemitsu Kosan Co Ltd Manufacture of silicon and silicon dioxide
JPH09143689A (en) * 1995-11-27 1997-06-03 Toppan Printing Co Ltd Porous vapor depositing material and its production
JP2001048699A (en) * 1999-08-06 2001-02-20 Japan Science & Technology Corp Production of silicon crystal nano-spherical body chain
WO2003026017A1 (en) * 2001-09-14 2003-03-27 The New Industry Research Organization Silicon cluster superlattice, method for preparing silicon cluster superlattice, method for preparing silicon cluster, silicon cluster superlattice structure, method for preparing silicon cluster superlattice structure, semiconductor device and quantum device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MORISAKI, H. ET AL.: "Above-band-gap photoluminescence from Si fine particles with oxide shell", J. APPL. PHYS., vol. 70, no. 3, JPN4006013320, 1991, pages 1869 - 1870, XP002602842, ISSN: 0000758125 *
MORISAKI, H. ET AL.: "Above-band-gap photoluminescence from Si fine particles with oxide shell", J. APPL. PHYS., vol. 70, no. 3, JPNX006046559, 1991, pages 1869 - 1870, XP002602842, ISSN: 0000780665 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007010736A1 (en) * 2005-07-19 2007-01-25 Pioneer Corporation Protection film manufacturing method and inorganic film manufacturing method
JPWO2007010736A1 (en) * 2005-07-19 2009-01-29 パイオニア株式会社 Protective film manufacturing method, inorganic film manufacturing method
JP4671201B2 (en) * 2005-07-19 2011-04-13 パイオニア株式会社 Protective film manufacturing method, inorganic film manufacturing method
JP2009041080A (en) * 2007-08-09 2009-02-26 Univ Of Electro-Communications OXIDE FILM FORMATION METHOD, MOS DEVICE MANUFACTURING METHOD, MOS TRANSISTOR MANUFACTURING METHOD, SiOx POWDER AND SiOx POWDER PRODUCTION METHOD
JP2013534899A (en) * 2010-06-29 2013-09-09 ユミコア Submicron size silicon powder with low oxygen content
CN102958835B (en) * 2010-06-29 2014-11-12 尤米科尔公司 Submicron sized silicon powder with low oxygen content
US20130136986A1 (en) * 2010-06-29 2013-05-30 Jean Scoyer Submicron Sized Silicon Powder with Low Oxygen Content
US11581529B2 (en) 2010-06-29 2023-02-14 Umicore Submicron sized silicon powder with low oxygen content
WO2012000858A1 (en) * 2010-06-29 2012-01-05 Umicore Submicron sized silicon powder with low oxygen content
TWI448428B (en) * 2010-06-29 2014-08-11 Umicore Nv Submicron sized silicon powder with low oxygen content
KR101439726B1 (en) * 2010-06-29 2014-09-12 유미코르 Submicron sized silicon powder with low oxygen content
CN102958835A (en) * 2010-06-29 2013-03-06 尤米科尔公司 Submicron sized silicon powder with low oxygen content
US10181600B2 (en) * 2010-06-29 2019-01-15 Umicore Submicron sized silicon powder with low oxygen content
US9153432B2 (en) 2010-06-30 2015-10-06 Evonik Degussa Gmbh Modification of silicon layers formed from silane-containing formulations
JP2013530919A (en) * 2010-06-30 2013-08-01 エボニック デグサ ゲーエムベーハー Modification of silicon layers composed of silane-containing compounds
JP2016530189A (en) * 2013-07-10 2016-09-29 ユミコア Silicon-based powder and electrode containing the same
KR101920975B1 (en) * 2013-07-10 2018-11-21 유미코아 Silicon-based powder and electrode containing the same
WO2024049235A1 (en) * 2022-08-31 2024-03-07 주식회사 엘지에너지솔루션 Negative active material, method for preparing same, negative electrode composition, negative electrode comprising same for lithium secondary battery, and lithium secondary battery comprising negative electrode

Also Published As

Publication number Publication date
JP3868396B2 (en) 2007-01-17

Similar Documents

Publication Publication Date Title
Hu et al. Characterization of zinc oxide crystal whiskers grown by thermal evaporation
Zheng et al. Plasma‐assisted approaches in inorganic nanostructure fabrication
KR100779177B1 (en) Slicondot forming method and apparatus
JP4529855B2 (en) Silicon object forming method and apparatus
Gao et al. ZnO nanorods/plates on Si substrate grown by low-temperature hydrothermal reaction
JP2012512119A (en) Polycrystalline Group III Metal Nitride by Getter and Method of Fabrication
WO2005093798A1 (en) Method and apparatus for forming silicon dots
JP2019529323A (en) Method and system for producing graphene on a copper substrate by improved chemical vapor deposition (AP-CVD)
US7585480B2 (en) Highly pure ultra-fine SiOx powder and method for production thereof
JP3868396B2 (en) Method for producing SiOx powder, film made of SiOx powder
He et al. The structure and thermal stability of TiO2 grown by the plasma oxidation of sputtered metallic Ti thin films
CN110438470A (en) A method of increasing graphene domain size
Chen et al. The effect of annealing temperatures on morphologies and photoluminescence properties of terbium-doped SiCN films
JP2006176859A (en) Method for producing silicon nano-crystal structure
JP5221075B2 (en) Oxide film forming method, MOS device manufacturing method, MOS transistor manufacturing method, SiOx powder, and SiOx powder manufacturing method
Cicala et al. Plasma deposition and characterization of photoluminescent fluorinated nanocrystalline silicon films
WO2013018292A1 (en) Film formation method
Teshima et al. Room-temperature deposition of high-purity silicon oxide films by RF plasma-enhanced CVD
Indutnyy et al. Effect of chemical and radiofrequency plasma treatment on photoluminescence of SiOx films
Joo Rhee et al. Growth and characterization of Y 2 O 3: Eu on Si and yttria-stabilized zirconia
JPH06321690A (en) Forming method and treating method of semiconductor diamond film
JP7080477B2 (en) How to grow carbon nanotubes
El-Sheikh et al. Metalorganic chemical vapor deposition of mesoporous SiTiOC nanostructured thin films
Xue et al. Growth of GaN nanowires through nitridation Ga2O3 films deposited by electrophoresis
Costa et al. Produiion of a-Si1-x Cx: H powders using radiofrequency glow discharges of silane and methane mixtures.

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061010

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees