JP2004327739A - Laminated electronic component and manufacturing method therefor - Google Patents

Laminated electronic component and manufacturing method therefor Download PDF

Info

Publication number
JP2004327739A
JP2004327739A JP2003120776A JP2003120776A JP2004327739A JP 2004327739 A JP2004327739 A JP 2004327739A JP 2003120776 A JP2003120776 A JP 2003120776A JP 2003120776 A JP2003120776 A JP 2003120776A JP 2004327739 A JP2004327739 A JP 2004327739A
Authority
JP
Japan
Prior art keywords
electronic component
internal electrode
electrode layer
capacitance
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003120776A
Other languages
Japanese (ja)
Inventor
Katsuyoshi Yamaguchi
勝義 山口
Nobuhiro Higashihara
伸浩 東原
Hideto Sakoda
秀人 佐古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003120776A priority Critical patent/JP2004327739A/en
Priority to KR1020040020097A priority patent/KR101053079B1/en
Priority to US10/809,251 priority patent/US6898069B2/en
Priority to TW093108200A priority patent/TWI240289B/en
Priority to CNB2004100332249A priority patent/CN100472677C/en
Publication of JP2004327739A publication Critical patent/JP2004327739A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminated electronic component, capable of increasing a connectivity between an internal electrode layer and an external electrode, thinning a layer of the internal electrode layer, and increasing the capacitance and decreasing the variations in its capacitance. <P>SOLUTION: The laminated electronic component is provided with a capacitive part 9, comprising a dielectric layer 5 and the internal electrode layer 7 laminated alternately, to exhibit electric capacitance, an electronic component body 1 having a non-capacitive part 11 formed on the periphery of the capacitive part 9 by the dielectric layer 5 and exhibiting no electric capacitance, and a pair of external electrodes 3 provided at the both end faces 2 of the electronic component body 1 and alternately connecting with the internal electrode layer 7. There are provided extension parts 13, continuing from the internal electrode layer 7 at both the end faces 2 of the electronic component body 1. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、積層型電子部品およびその製法に関し、特に、積層セラミックコンデンサのように、内部電極層が薄層化された積層型電子部品およびその製法に関する。
【0002】
【従来技術】
近年、積層型電子部品の一つである積層セラミックコンデンサは、小型、高容量化のために、誘電体層および内部電極層は薄層化が図られている。
【0003】
こうした誘電体層および内部電極層の薄層化に対して、例えば、下記の特許文献1に開示されるようなものが知られているが、この公報には、内部電極層となる金属膜を、スパッタや蒸着のような物理的薄膜形成法、あるいは無電解めっきのような化学的薄膜形成法を用いることにより極めて薄い金属膜をフィルム上に形成でき、これを誘電体グリーンシート上に転写するという工法を用いていることから薄層高積層化した内部電極層を有する積層セラミックコンデンサを形成できると記載されている。
【0004】
【特許文献1】
特開2000−243650号公報
【0005】
【発明が解決しようとする課題】
しかしながら、上記特許文献1に開示された積層型電子部品では、内部電極層の薄層化は実現できるものの、内部電極層の薄層化に伴い、外部電極との接触面積が減少することから、外部電極との間で十分な接続部を形成できず、このため設計どおりの静電容量が発現しにくく、また、そのばらつきが大きくなるという問題があった。
【0006】
本発明は、内部電極層の薄層化とともに、内部電極層と外部電極との接続性を高め、高容量化とそのばらつきの低減を図ることのできる積層型電子部品およびその製法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明の積層型電子部品は、誘電体層と内部電極層とを交互に積層してなり静電容量を発現する容量部と、該容量部の周囲に前記誘電体層により形成され静電容量を発現しない非容量部とを有する電子部品本体と、該電子部品本体の両端面にそれぞれ設けられ、前記内部電極層と交互に接続する一対の外部電極とを具備する積層型電子部品であって、前記電子部品本体の両端面に前記内部電極層から連続して延出部を有することを特徴とする。
【0008】
このような構成によれば、内部電極層の薄層化とともに外部電極との接触面積を大きくできることから、このため内部電極層と外部電極との接続性が向上し、このため設計どおりの静電容量が発現しやすくなり、またそのばらつきも抑制できる。
【0009】
上記積層型電子部品では、内部電極層が電気めっき膜からなることが望ましい。内部電極層を電気めっき膜で形成すれば均質で厚みばらつきも小さくかつ有効面積を大きくでき、しかも薄層化が容易であることから、上記の延出部をさらに確実に形成できる。
【0010】
また、電気めっき膜を用いることにより内部電極層を極めて薄くできるため、誘電体層を薄層高積層化しても、デラミネーションやクラックなどの内部構造欠陥を低減することができる。
【0011】
上記積層型電子部品では、電子部品本体の端面における容量部の端面の面積をA0、延出部の面積をA1としたときに、A1/A0≧0.01%の関係を満足することが望ましい。容量部の片側端面における全面積に対して延出部の占める割合を0.01%以上とすることにより積層方向に隣合って形成されている内部電極層同士の接続を高くでき、これにより積層セラミックコンデンサの静電容量を高めることができる。また、外部電極との接続も高めることができる。
【0012】
上記積層型電子部品では、内部電極層の最大厚みが2μm以下であることが望ましい。本発明は、内部電極層の厚みが薄く外部電極との接続が困難な場合に好適である。
【0013】
上記積層型電子部品では、延出部同士が、電子部品本体の端面で接続されていることが望ましい。例えば、電子部品本体の一方の端面に露出している内部電極層は、同一の極性を有するものであることから、外部電極のみが各層の内部電極層同士を接続するのではなく延出部によって予め接続することにより内部電極層と外部電極との接続を確実にできるとともに、内部電極層同士の接続をも高めることができる。
【0014】
上記積層型電子部品では、内部電極層が卑金属材料を主成分とすることが望ましい。内部電極層として卑金属を用いることにより積層型電子部品を高積層化して、しかも内部電極層に充填率を高めた場合においても、従来の貴金属に比較して積層型電子部品を構成する部材全体に占める内部電極層のコストを安価にできる。
【0015】
上記積層型電子部品では、誘電体層の厚みが4μm以下であることが望ましい。
【0016】
誘電体層を薄層化することにより積層セラミックコンデンサとしての静電容量を高めることができるとともに、積層方向に隣合う内部電極層同士の延出部による接続を生じやすくできる。
【0017】
本発明の積層型電子部品の製法は、基板プレート上に電気めっき法によって卑金属材料を含有する内部電極パターンを形成する工程と、該内部電極パターンを誘電体グリーンシート上に転写する工程と、前記内部電極パターンが形成された誘電体グリーンシートを複数積層して積層成形体を形成する工程と、該積層成形体を格子状に切断して電子部品本体成形体を形成する工程と、該電子部品本体成形体を焼成して電子部品本体を形成する工程と、を具備する積層型電子部品の製法において、前記電子部品本体成形体の端面に前記内部電極パターンから連続した延出部を有するように切断することを特徴とする。
【0018】
このように内部電極パターンが電気めっき法により形成されたものであれば従来の導体ペーストを用いて形成した内部電極パターンとは異なり、内部電極パターンが焼成前においても箔状で連続性を有するために、切断した際にも金属の延性により上記のような延出部を容易に形成できる。
【0019】
【発明の実施の形態】
本発明の積層型電子部品である積層セラミックコンデンサの一形態について、詳細に説明する。
【0020】
図1は本発明の積層型電子部品の代表例である積層セラミックコンデンサの概略断面図である。本発明の積層型電子部品は、電子部品本体1の両方の端面2に外部電極3が形成されている。
【0021】
電子部品本体1は、誘電体層5と内部電極層7とを交互に積層し静電容量を発現する容量部9と、この容量部9の周囲に誘電体層5と同一材料から形成され静電容量を発現しない非容量部11とから構成されている。
【0022】
内部電極層7は、電子部品本体1の同一の端面2において外部電極3と交互に接続されている。そして、本発明では、内部電極層7が前記電子部品本体1の端面2において内部から連続した延出部13を有していることが重要である。この場合の延出部13とは、電子部品本体1の端面2から内部電極層7が少なくとも1μm以上突出している場合をいう。
【0023】
また、延出部13は電子部品本体1の端面2において少なくとも隣接する延出部13同士が接続されていることが望ましい。
【0024】
また、内部電極層7の最大厚みは2μm以下であることが望ましく、特に、内部電極層7の破断や穴の形成を抑制し、有効面積を確保するという理由から、厚みは0.4〜1.8μmの範囲であることが望ましい。
【0025】
図2は、電子部品本体の端面における前記容量部を示す概略断面図である。
【0026】
電子部品本体1の端面2における容量部9の面積をA0、延出部13の面積をA1としたときに、A1/A0≧0.01%の関係を満足することが望ましいが、外部電極3と内部電極層7から延びた延出部13との接合とともに、外部電極3と電子部品本体1の端面2の非容量部11とも強固に接合するという点で、A1/A0は0.05〜60%、特に、0.1〜10%の範囲であることがより望ましい。ここで、延出部13の面積とは容量部9に突出した延出部13の片面の面積の総和のことをいう。
【0027】
内部電極層7は電気めっき膜により形成されていることが望ましく、さらに、そのめっき膜は卑金属材料を主成分とすることが望ましく、特に、Ni、Cuのうちのいずれか1種、若しくはこれらの合金であることがより望ましい。
【0028】
また、誘電体層5の厚みは4μm以下であることが望ましく、特に、3μm以下、さらには、2μm以下である場合に、内部電極層7の端部に形成した本発明の延出部13同士の接続を確実にできる。
【0029】
次に、本発明の積層型電子部品の一つの適用例である積層セラミックコンデンサの製法について説明する。
【0030】
図3は、本発明の内部電極パターンの作製工程を示す概略図である。
【0031】
(a)内部電極パターンは電気めっき法により作製する。
【0032】
まず、基板プレート31の表面の全面に感光性レジスト樹脂を塗布し、内部電極パターンを形成する部分を感光させないようにマスクを当て、露光、現像を行う。基板プレート31は金属である場合には、そのままの状態で用いることができる。基板プレート31がプラスチックでできている場合には、一旦、薄い金属膜を形成した後に電気めっきを行う。
【0033】
その後、未硬化のレジストを洗浄除去することにより、内部電極パターンが形成される部分のレジストが除かれた電気めっき用のマスクパターン33を形成する。
【0034】
この場合、基板プレート31上においてマスクパターン33は、内部電極パターンとなる金属膜が形成される領域は切り立った凹部35状になるように形成されることが好ましく、特に、その凹部35の傾斜角度θは60〜100°、特に、70〜90°であることが好ましい。
【0035】
次に、図3(b)に示すように、上記のマスクパターン33が形成された基板プレート31に対して、Ni板36を浸したNiメッキ液を用いて電気メッキを行う。
【0036】
(c)その後、洗浄によりマスクパターン33の除去を行うことによって、基板プレート31上に内部電極パターン41となるNi金属膜が形成される。この場合、内部電極パターン41となる金属膜の平均厚みは2μm以下であることが望ましく、特に、1.8μm以下がより望ましい。
【0037】
本発明では、このように内部電極パターン41を電気めっき法を用いて形成することにより、例えば、平均厚み2μm以下に極めて薄層化しても穴などの欠陥が殆ど無い金属膜を作製することが可能となる。また、電気めっき膜は、従来用いられていた無電界メッキ膜や蒸着膜あるいはスパッタ膜等に比較して、金属膜としての延性が高い。
【0038】
図4は、本発明の積層型電子部品を製造する工程図である。
【0039】
(a)まず、BaTiOと焼結助剤とを混合して誘電体粉末にバインダおよび溶媒を添加してセラミックスラリを調製し、この後、セラミックスラリをキャリアフィルム51上に塗布して誘電体グリーンシート43を形成する。
【0040】
その方法としては、ダイコータ、ドクターブレード法、引き上げ法、リバースロールコータ法、グラビアコータ法、スクリーン印刷法の群から選ばれる少なくとも一種が好適に用いられる。
【0041】
このような工法で形成された誘電体グリーンシート43の厚みは12μm以下であり、特に、積層型電子部品の小型、大容量化という理由から1.5〜5μmの範に形成されることが望ましい。
【0042】
(b)次に、誘電体グリーンシート43上に、上記工程で作製した内部電極パターン41を熱圧着して転写する。
【0043】
この場合、誘電体グリーンシート43上に形成された内部電極パターン41による段差を解消するために、その内部電極パターン41の周囲に沿って有機樹脂などを塗布してもよい。なお、この有機樹脂の塗布厚みは内部電極パターン41の厚みに相当するように形成されることが望ましい。
【0044】
(c)次に、この内部電極パターン41を形成した誘電体グリーンシート53を複数積層し、次いで、この上下面に、さらに、内部電極パターン41が形成されていない誘電体グリーンシート53を複数積層し、加熱加圧によって積層成形体47を作製する。
【0045】
この場合、内部電極パターン41は各層ごとに内部電極パターン41の長辺方向の半分の間隔だけずらして積層されている。
【0046】
次に、この積層成形体47を格子状に切断して、電子部品本体成形体49を作製する。この場合、上記のように積層した内部電極層7は長辺方向の半分の間隔のところ(切断線C)で切断する。
【0047】
また、本発明では、電子部品本体成形体49の端面に内部電極パターン41から連続した延出部51を有するように切断することが重要である。具体的には、積層成形体47を回転刃を用いて切断するときの速度を変えて行うが、回転数を高くすると延出部51が大きくなり、一方、回転数が低いと延出部が小さくなる。
【0048】
(d)即ち、高速で切断することにより、電気めっき膜のせん断応力に対する延性を利用して、内部電極パターン41の端部を電子部品本体成形体49の端部よりも長い状態で切断でき、これにより電子部品本体成形体49の内部から連続した延出部51を容易に形成できる。
【0049】
次に、この電子部品本体成形体49を大気中250〜300℃または酸素分圧0.1〜1Paの低酸素雰囲気中500〜800℃で脱バイした後、非酸化性雰囲気で1250〜1350℃で2〜3時間焼成し、電子部品本体1を作製する。この場合、焼成後の電子部品本体1の端面2には内部電極層7から連続した延出部13が形成されている。
【0050】
さらに、所望の誘電特性を得るために、酸素分圧が0.1〜10−4Pa程度の低酸素分圧下、900〜1100℃で5〜15時間熱処理を行う。
【0051】
最後に、得られた電子部品本体1の端面11に外部電極ペーストを塗布し、焼き付けて外部電極3を形成する。尚、外部電極ペーストを電子部品本体成形体49の端面に塗布し、同時焼成して外部電極3を形成しても良い。
【0052】
本発明では、電子部品本体1の端面に導出された内部電極層7の端部に延出部13が形成され、その延出部13が電子部品本体1の内部から突出するように形成されているために、内部電極層7をより薄層化した場合においても外部電極3との接続を確実にできる。
【0053】
なお、外部電極ペーストは、Cu粉末、粘結剤、および溶剤を用いて調製される。より薄層化した内部電極層5との接続性を高めるために、このCu粉末には、内部電極層5の厚みよりも小さい平均粒径を有するCuの微粉末がCu粉末全量中に10重量%以上含まれることが望ましい。
【0054】
さらに、このような外部電極3では、金属粉末や有機樹脂以外に、ペースト中に焼結助剤としてガラスを含むことが、電子部品本体1と外部電極3との接着接合性を高める上で望ましい。
【0055】
さらに、この外部電極3上にNiめっき膜およびSnめっき膜を形成し、積層セラミックコンデンサを作製する。
【0056】
【実施例】
積層型電子部品の一つである積層セラミックコンデンサを以下のようにして作製した。先ず、BaTiOを主成分とする誘電体粉末と有機粘結剤と溶剤とからなるセラミックスラリを調製した。このセラミックスラリを用いてダイコータによりポリエステルよりなるキャリアフィルム上に厚み3.5μmの誘電体グリーンシートを成形した。
【0057】
次に、内部電極パターン31は、鏡面加工を施したステンレス板製の基板プレートを用いて、その表面に感光性レジスト樹脂を塗布し、露光、洗浄後にマスクパターンを形成した。
【0058】
その後、このステンレス板製の基板プレートをNiめっき浴に浸漬した状態で電気めっき処理を行い、4mm×1mm角、平均厚みが1.8μmのNiを主成分とする金属膜を形成した。また、同様に、同じNiめっき膜を無電界めっき法により作製した。
【0059】
この後、この誘電体グリーンシート上に、前記電気めっき法および無電界めっき法により作製したNiめっき膜からなる内部電極パターンを80℃、80kg/cmの条件で熱圧着転写し、内部電極パターンを形成した誘電体グリーンシートを作製した。
【0060】
次に、この内部電極パターンを転写した誘電体グリーンシートを200枚積層し、温度100℃、圧力80kgf/cmの条件での積層プレスにより積層成形体を作製した。
【0061】
この後、この積層成形体を回転刃を用いて表1に示す回転数で格子状に切断して電子部品本体成形体を得た。この電子部品本体成形体の端面には、内部電極パターンの一端が交互に露出し、しかも一部には内部電極パターンから連続した延出部が形成され、しかも、隣接する延出部同士が容量部の端面において接続されていた。また、厚み方向に重畳して積層された内部電極パターンは、位置ずれもなく形成されていた。
【0062】
次に、この電子部品本体成形体を大気中300℃または酸素分圧0.1〜1Paの低酸素雰囲気中500℃で脱バイした後、酸素分圧10−7Paの非酸化性雰囲気中1300℃で2時間焼成し、さらに、酸素分圧が0.01Paの低酸素分圧下1000℃で10時間の再酸化処理を施し電子部品本体を得た。
【0063】
最後に、このようにして得られた電子部品本体に対し、内部電極層が露出し、延出部が形成された各端面にガラス粉末を含んだCuペーストを塗布した後、窒素雰囲気中、900℃で焼き付けを行った。その後、Niめっき層およびSnめっき層を形成し、内部電極層と電気的に接続された外部電極を形成して積層セラミックコンデンサを作製した。
【0064】
このようにして得られた積層セラミックコンデンサの外形寸法は、幅1.25mm、長さ2.0mm、厚さ1.25mmであり、内部電極層9間に介在する誘電体層の厚みは2.5μmであった。
【0065】
得られた積層セラミックコンデンサについて、100個の試料について静電容量を測定した。測定条件は1V、1kHzとした。
【0066】
また、作製した積層セラミックコンデンサを評価用のプリント基板に実装し、側面側より500gの荷重を負荷して、外部電極の剥離の有無を評価(外部電極固着強度測定)した。それぞれの測定結果を表1に示した。
【0067】
一方、比較例として、内部電極層を従来の導体ペーストで形成した試料を作製して、本発明と同様の方法にて評価した。
【0068】
【表1】

Figure 2004327739
表1の結果から明らかなように、電子部品本体の端面に内部電極層から延出部を有する試料No.1〜8では、静電容量が9.1μF以上、静電容量のばらつきが0.1μF以下で、外部電極との固着力評価での剥離も3/20個以下と良好な結果を得た。
【0069】
また、内部電極層として、電気めっき膜を用いた試料No.1〜7では、静電容量が9.2μF以上、静電容量のばらつきが0.09μF以下で、外部電極との固着力評価での剥離も2/20個以下とさらに良好な結果を得た。
【0070】
さらに、延出部の面積比を0.01〜60%の範囲とした試料No.2〜6では、静電容量が9.5以上、静電容量のばらつきが0.06%以下で、外部電極との固着力評価における剥離が1/20個以下となり、特に、この延出部の面積比を0.1〜10%の範囲とした試料No.3〜5では、静電容量が9.7以上、静電容量のばらつきが0.05%以下で、外部電極との固着力評価において剥離したものが無かった。
【0071】
一方、本発明の対象外の試料No.9では、静電容量が低くかつばらつきが大きく、固着力評価における剥離数も5/20個と多かった。
【0072】
【発明の効果】
以上、詳述したように、本発明の積層型電子部品は、電子部品本体の両方の端面に内部電極層から連続して延出部を形成することにより、内部電極層を薄層化しても外部電極との接続性を高めることができ、設計どおりの静電容量を発現させることができるとともに、そのばらつきも低減できできる。また、外部電極とも固着力も高めることができる。
【図面の簡単な説明】
【図1】本発明の積層型電子部品の代表例である積層セラミックコンデンサの概略断面図である。
【図2】電子部品本体の端面における容量部を示す概略断面図である。
【図3】本発明の内部電極パターンの作製工程を示す概略図である。
【図4】本発明の積層型電子部品を製造する工程図である。
【符号の説明】
1 電子部品本体
2 端面
3 外部電極
5 誘電体層
7 内部電極層
9 容量部
11 非容量部
13、51 延出部
31 基板プレート
41 内部電極パターン
43 誘電体グリーンシート
47 積層成形体
49 電子部品本体成形体[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a multilayer electronic component and a method of manufacturing the same, and more particularly, to a multilayer electronic component having a thin internal electrode layer, such as a multilayer ceramic capacitor, and a method of manufacturing the same.
[0002]
[Prior art]
2. Description of the Related Art In recent years, in a multilayer ceramic capacitor, which is one of multilayer electronic components, the dielectric layers and internal electrode layers have been reduced in thickness in order to reduce the size and increase the capacity.
[0003]
For such thinning of the dielectric layer and the internal electrode layer, for example, the one disclosed in the following Patent Document 1 is known. In this publication, a metal film to be an internal electrode layer is described. By using a physical thin film forming method such as sputtering or vapor deposition, or a chemical thin film forming method such as electroless plating, an extremely thin metal film can be formed on a film and transferred to a dielectric green sheet. It is described that a multilayer ceramic capacitor having internal electrode layers that are thin and highly laminated can be formed by using the method described above.
[0004]
[Patent Document 1]
JP 2000-243650 A
[Problems to be solved by the invention]
However, in the multilayer electronic component disclosed in Patent Document 1, although the thickness of the internal electrode layer can be reduced, the contact area with the external electrode decreases with the reduction in the thickness of the internal electrode layer. There was a problem that a sufficient connection portion could not be formed with the external electrode, so that it was difficult to develop a capacitance as designed, and the variation became large.
[0006]
An object of the present invention is to provide a multilayer electronic component capable of improving the connectivity between an internal electrode layer and an external electrode while increasing the thickness of the internal electrode layer and increasing the capacity and reducing variations thereof, and a method of manufacturing the same. With the goal.
[0007]
[Means for Solving the Problems]
The multilayer electronic component according to the present invention includes a capacitance portion formed by alternately laminating dielectric layers and internal electrode layers to exhibit capacitance, and a capacitance formed by the dielectric layer around the capacitance portion. A multilayer electronic component comprising: an electronic component main body having a non-capacitance portion that does not exhibit the above, and a pair of external electrodes provided on both end surfaces of the electronic component main body and alternately connected to the internal electrode layers. In addition, the electronic component main body has extending portions on both end surfaces thereof continuously from the internal electrode layer.
[0008]
According to such a configuration, since the contact area between the internal electrode layer and the external electrode can be increased as well as the thickness of the internal electrode layer is reduced, the connectivity between the internal electrode layer and the external electrode is improved. Capacitance is easily developed, and its variation can be suppressed.
[0009]
In the above-mentioned multilayer electronic component, it is desirable that the internal electrode layer be made of an electroplated film. If the internal electrode layer is formed of an electroplated film, the above-mentioned extension can be formed more reliably because it is uniform, the thickness variation is small, the effective area can be increased, and the thickness can be easily reduced.
[0010]
Further, since the internal electrode layer can be made extremely thin by using an electroplating film, internal structural defects such as delamination and cracks can be reduced even when the dielectric layers are made thin and highly laminated.
[0011]
In the multilayer electronic component, when the area of the end face of the capacitor portion on the end face of the electronic component body is A0 and the area of the extension portion is A1, it is preferable that the relationship of A1 / A0 ≧ 0.01% is satisfied. . By setting the proportion of the extending portion to 0.01% or more of the total area of one end surface of the capacitor portion, the connection between the internal electrode layers formed adjacent to each other in the laminating direction can be increased. The capacitance of the ceramic capacitor can be increased. Further, the connection with the external electrode can be enhanced.
[0012]
In the multilayer electronic component, the maximum thickness of the internal electrode layer is desirably 2 μm or less. The present invention is suitable for the case where the thickness of the internal electrode layer is small and connection with an external electrode is difficult.
[0013]
In the multilayer electronic component, it is preferable that the extending portions are connected to each other at an end surface of the electronic component body. For example, since the internal electrode layers exposed on one end surface of the electronic component body have the same polarity, only the external electrodes connect the internal electrode layers of each layer with each other without extending. By connecting in advance, the connection between the internal electrode layers and the external electrodes can be ensured, and the connection between the internal electrode layers can be enhanced.
[0014]
In the above-mentioned multilayer electronic component, it is desirable that the internal electrode layer contains a base metal material as a main component. Even when the laminated electronic component is highly laminated by using a base metal as the internal electrode layer and the filling rate of the internal electrode layer is increased, compared to the conventional noble metal, the entire component constituting the laminated electronic component is reduced. The cost of the occupied internal electrode layer can be reduced.
[0015]
In the multilayer electronic component, the thickness of the dielectric layer is desirably 4 μm or less.
[0016]
By reducing the thickness of the dielectric layer, the capacitance of the multilayer ceramic capacitor can be increased, and the connection between the internal electrode layers adjacent to each other in the laminating direction can be easily caused by the extension.
[0017]
The method for producing a laminated electronic component of the present invention includes the steps of: forming an internal electrode pattern containing a base metal material on a substrate plate by electroplating; and transferring the internal electrode pattern onto a dielectric green sheet. A step of forming a multilayer molded body by laminating a plurality of dielectric green sheets on which internal electrode patterns are formed, a step of forming the electronic component body molded body by cutting the laminated molded body into a lattice shape, Baking the main body molded body to form an electronic component main body, wherein the electronic component main body molded body has an extended portion continuous from the internal electrode pattern on an end face of the electronic component main body molded body. It is characterized by cutting.
[0018]
If the internal electrode pattern is formed by electroplating in this way, unlike an internal electrode pattern formed using a conventional conductive paste, the internal electrode pattern has a foil-like continuity even before firing. In addition, even when cut, the extended portion as described above can be easily formed due to the ductility of the metal.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
One embodiment of a multilayer ceramic capacitor which is a multilayer electronic component of the present invention will be described in detail.
[0020]
FIG. 1 is a schematic sectional view of a multilayer ceramic capacitor which is a typical example of the multilayer electronic component of the present invention. In the multilayer electronic component of the present invention, external electrodes 3 are formed on both end surfaces 2 of the electronic component body 1.
[0021]
The electronic component body 1 has a capacitance portion 9 that alternately laminates dielectric layers 5 and internal electrode layers 7 to exhibit capacitance, and has a capacitance around the capacitance portion 9 made of the same material as the dielectric layer 5. And a non-capacitance part 11 which does not exhibit a capacitance.
[0022]
The internal electrode layers 7 are alternately connected to the external electrodes 3 on the same end surface 2 of the electronic component body 1. In the present invention, it is important that the internal electrode layer 7 has the extension 13 continuous from the inside on the end face 2 of the electronic component body 1. The extension 13 in this case refers to a case where the internal electrode layer 7 projects at least 1 μm or more from the end face 2 of the electronic component body 1.
[0023]
Further, it is desirable that at least the extending portions 13 adjacent to each other on the end surface 2 of the electronic component body 1 are connected to each other.
[0024]
The maximum thickness of the internal electrode layer 7 is desirably 2 μm or less. In particular, the thickness is preferably 0.4 to 1 for suppressing breakage of the internal electrode layer 7 and formation of holes and securing an effective area. It is preferably in the range of 0.8 μm.
[0025]
FIG. 2 is a schematic cross-sectional view showing the capacitance section on the end face of the electronic component body.
[0026]
When the area of the capacitance section 9 on the end face 2 of the electronic component body 1 is A0 and the area of the extension section 13 is A1, it is preferable that the relationship of A1 / A0 ≧ 0.01% is satisfied. A1 / A0 is 0.05 to 0.05 in that the external electrode 3 and the non-capacity part 11 on the end face 2 of the electronic component body 1 are strongly bonded together with the external electrode 3 and the extended part 13 extending from the internal electrode layer 7. More preferably, it is in the range of 60%, especially 0.1 to 10%. Here, the area of the extension 13 refers to the sum of the areas on one side of the extension 13 protruding from the capacitor 9.
[0027]
The internal electrode layer 7 is desirably formed of an electroplated film, and the plated film is desirably composed mainly of a base metal material. More preferably, it is an alloy.
[0028]
It is desirable that the thickness of the dielectric layer 5 is 4 μm or less, and particularly when the thickness is 3 μm or less, and more preferably 2 μm or less, the extension portions 13 of the present invention formed at the ends of the internal electrode layers 7 Connection can be ensured.
[0029]
Next, a method of manufacturing a multilayer ceramic capacitor as one application example of the multilayer electronic component of the present invention will be described.
[0030]
FIG. 3 is a schematic view showing a process of manufacturing an internal electrode pattern according to the present invention.
[0031]
(A) The internal electrode pattern is produced by an electroplating method.
[0032]
First, a photosensitive resist resin is applied to the entire surface of the substrate plate 31, and a portion where an internal electrode pattern is to be formed is exposed and developed by applying a mask so as not to expose the portion. When the substrate plate 31 is made of metal, it can be used as it is. If the substrate plate 31 is made of plastic, a thin metal film is formed once and then electroplating is performed.
[0033]
Thereafter, the uncured resist is washed and removed to form a mask pattern 33 for electroplating in which the resist in the portion where the internal electrode pattern is to be formed is removed.
[0034]
In this case, it is preferable that the mask pattern 33 on the substrate plate 31 is formed such that the region where the metal film to be the internal electrode pattern is formed has a shape of a steep concave portion 35, and in particular, the inclination angle of the concave portion 35. θ is preferably from 60 to 100 °, particularly preferably from 70 to 90 °.
[0035]
Next, as shown in FIG. 3B, electroplating is performed on the substrate plate 31 on which the mask pattern 33 is formed, using a Ni plating solution in which a Ni plate 36 is immersed.
[0036]
(C) After that, the mask pattern 33 is removed by washing, whereby a Ni metal film to be the internal electrode pattern 41 is formed on the substrate plate 31. In this case, the average thickness of the metal film serving as the internal electrode pattern 41 is desirably 2 μm or less, and particularly desirably 1.8 μm or less.
[0037]
In the present invention, by forming the internal electrode pattern 41 by using the electroplating method in this way, for example, it is possible to produce a metal film having almost no defects such as holes even if it is extremely thinned to an average thickness of 2 μm or less. It becomes possible. Further, the electroplated film has a higher ductility as a metal film than a conventionally used electroless plated film, vapor-deposited film, sputtered film, or the like.
[0038]
FIG. 4 is a process chart for manufacturing the multilayer electronic component of the present invention.
[0039]
(A) First, a ceramic slurry is prepared by mixing BaTiO 3 and a sintering aid, adding a binder and a solvent to the dielectric powder, and then coating the ceramic slurry on the carrier film 51 to form a dielectric slurry. A green sheet 43 is formed.
[0040]
As the method, at least one selected from the group consisting of a die coater, a doctor blade method, a lifting method, a reverse roll coater method, a gravure coater method, and a screen printing method is suitably used.
[0041]
The thickness of the dielectric green sheet 43 formed by such a method is 12 μm or less, and it is particularly preferable that the thickness be in the range of 1.5 to 5 μm from the viewpoint of reducing the size and the capacity of the multilayer electronic component. .
[0042]
(B) Next, on the dielectric green sheet 43, the internal electrode pattern 41 produced in the above process is transferred by thermocompression bonding.
[0043]
In this case, an organic resin or the like may be applied along the periphery of the internal electrode pattern 41 in order to eliminate a step due to the internal electrode pattern 41 formed on the dielectric green sheet 43. It is desirable that the thickness of the applied organic resin is formed so as to correspond to the thickness of the internal electrode pattern 41.
[0044]
(C) Next, a plurality of dielectric green sheets 53 on which the internal electrode patterns 41 are formed are laminated, and a plurality of dielectric green sheets 53 on which the internal electrode patterns 41 are not formed are further laminated on the upper and lower surfaces. Then, a laminated molded body 47 is produced by heating and pressing.
[0045]
In this case, the internal electrode patterns 41 are stacked so as to be shifted by a half interval in the long side direction of the internal electrode patterns 41 for each layer.
[0046]
Next, the laminated molded body 47 is cut into a lattice shape to produce an electronic component main body molded body 49. In this case, the internal electrode layers 7 stacked as described above are cut at a half interval (cut line C) in the long side direction.
[0047]
Further, in the present invention, it is important to cut the end face of the electronic component body molded body 49 so as to have the extending portion 51 continuous from the internal electrode pattern 41. Specifically, the cutting is performed by changing the speed at which the laminated molded body 47 is cut using a rotary blade. However, when the rotation speed is increased, the extension portion 51 is increased, while when the rotation speed is low, the extension portion is reduced. Become smaller.
[0048]
(D) That is, by cutting at high speed, the end of the internal electrode pattern 41 can be cut longer than the end of the electronic component body molded body 49 by utilizing the ductility of the electroplated film against the shear stress, This makes it possible to easily form the continuous extension 51 from the inside of the electronic component body molded body 49.
[0049]
Next, the electronic component body molded body 49 is deburied at 250 to 300 ° C. in the air or at 500 to 800 ° C. in a low oxygen atmosphere having an oxygen partial pressure of 0.1 to 1 Pa. For 2 to 3 hours to produce the electronic component body 1. In this case, an extended portion 13 continuous from the internal electrode layer 7 is formed on the end face 2 of the electronic component body 1 after firing.
[0050]
Furthermore, in order to obtain desired dielectric properties, heat treatment is performed at 900 to 1100 ° C. for 5 to 15 hours under a low oxygen partial pressure of about 0.1 to 10 −4 Pa.
[0051]
Finally, an external electrode paste is applied to the end face 11 of the obtained electronic component body 1 and baked to form the external electrode 3. The external electrode paste may be applied to the end surface of the electronic component body molded body 49 and fired simultaneously to form the external electrode 3.
[0052]
In the present invention, the extension 13 is formed at the end of the internal electrode layer 7 led out to the end face of the electronic component body 1, and the extension 13 is formed so as to protrude from the inside of the electronic component body 1. Therefore, even when the internal electrode layer 7 is made thinner, the connection with the external electrode 3 can be ensured.
[0053]
The external electrode paste is prepared using Cu powder, a binder, and a solvent. In order to enhance the connectivity with the thinner internal electrode layer 5, this Cu powder contains 10% by weight of Cu fine powder having an average particle diameter smaller than the thickness of the internal electrode layer 5 in the total amount of the Cu powder. % Is desirable.
[0054]
Furthermore, in such an external electrode 3, it is desirable to include glass as a sintering aid in the paste, in addition to the metal powder and the organic resin, in order to enhance the adhesive bonding property between the electronic component body 1 and the external electrode 3. .
[0055]
Further, a Ni-plated film and a Sn-plated film are formed on the external electrodes 3 to produce a multilayer ceramic capacitor.
[0056]
【Example】
A multilayer ceramic capacitor, which is one of multilayer electronic components, was manufactured as follows. First, a ceramic slurry comprising a dielectric powder mainly composed of BaTiO 3 , an organic binder and a solvent was prepared. Using this ceramic slurry, a dielectric green sheet having a thickness of 3.5 μm was formed on a carrier film made of polyester by a die coater.
[0057]
Next, a photosensitive resist resin was applied to the surface of the internal electrode pattern 31 using a mirror-finished stainless steel substrate plate, and after exposure and washing, a mask pattern was formed.
[0058]
Thereafter, electroplating was performed while the substrate plate made of stainless steel was immersed in a Ni plating bath to form a metal film mainly composed of Ni and having a size of 4 mm × 1 mm square and an average thickness of 1.8 μm. Similarly, the same Ni plating film was produced by an electroless plating method.
[0059]
Thereafter, an internal electrode pattern made of the Ni plating film prepared by the electroplating method and the electroless plating method is thermocompression-transferred onto the dielectric green sheet at 80 ° C. and 80 kg / cm 2 , and the internal electrode pattern is formed. To form a dielectric green sheet.
[0060]
Next, 200 dielectric green sheets to which the internal electrode patterns were transferred were laminated, and a laminated molded body was produced by a laminating press at a temperature of 100 ° C. and a pressure of 80 kgf / cm 2 .
[0061]
Thereafter, the laminated molded body was cut into a lattice shape at a rotation speed shown in Table 1 using a rotary blade to obtain an electronic component body molded body. One end of the internal electrode pattern is alternately exposed on the end face of the molded body of the electronic component, and furthermore, an extension part continuous from the internal electrode pattern is formed in a part, and the adjacent extension parts are connected to each other by a capacitance. Was connected at the end face of the part. In addition, the internal electrode patterns stacked so as to overlap in the thickness direction were formed without displacement.
[0062]
Next, after removing the molded body of the electronic component main body at 300 ° C. in the air or at 500 ° C. in a low oxygen atmosphere having an oxygen partial pressure of 0.1 to 1 Pa, 1300 in a non-oxidizing atmosphere having an oxygen partial pressure of 10 −7 Pa. C. for 2 hours, and further subjected to a reoxidation treatment at 1000.degree. C. for 10 hours under a low oxygen partial pressure of 0.01 Pa at an oxygen partial pressure to obtain an electronic component body.
[0063]
Finally, a Cu paste containing glass powder is applied to each end face of the thus obtained electronic component body where the internal electrode layer is exposed and the extended portion is formed. Baking was performed at ℃. Thereafter, a Ni plating layer and a Sn plating layer were formed, and external electrodes electrically connected to the internal electrode layers were formed to produce a multilayer ceramic capacitor.
[0064]
The external dimensions of the multilayer ceramic capacitor thus obtained are 1.25 mm in width, 2.0 mm in length, and 1.25 mm in thickness, and the thickness of the dielectric layer interposed between the internal electrode layers 9 is 2. It was 5 μm.
[0065]
With respect to the obtained multilayer ceramic capacitor, the capacitance was measured for 100 samples. The measurement conditions were 1 V and 1 kHz.
[0066]
In addition, the produced multilayer ceramic capacitor was mounted on a printed circuit board for evaluation, and a load of 500 g was applied from the side surface to evaluate the presence or absence of peeling of the external electrode (external electrode fixing strength measurement). Table 1 shows the measurement results.
[0067]
On the other hand, as a comparative example, a sample in which an internal electrode layer was formed using a conventional conductive paste was prepared and evaluated by the same method as in the present invention.
[0068]
[Table 1]
Figure 2004327739
As is clear from the results in Table 1, Sample No. 1 having an extended portion from the internal electrode layer on the end face of the electronic component body. In Nos. 1 to 8, good results were obtained in which the capacitance was 9.1 μF or more, the variation in the capacitance was 0.1 μF or less, and the peeling in the evaluation of the adhesion to the external electrode was 3/20 or less.
[0069]
Further, Sample No. using an electroplated film as the internal electrode layer. In Examples 1 to 7, the capacitance was 9.2 μF or more, the variation of the capacitance was 0.09 μF or less, and the peeling in the evaluation of the fixing force with the external electrode was 2/20 or less. .
[0070]
Further, Sample No. having an extended area ratio of 0.01 to 60% was used. In Nos. 2 to 6, the capacitance was 9.5 or more, the variation of the capacitance was 0.06% or less, and the peeling in the evaluation of the adhesion to the external electrode was 1/20 or less. The sample No. having an area ratio of 0.1 to 10% was used. In Nos. 3 to 5, the capacitance was 9.7 or more, and the variation in the capacitance was 0.05% or less, and none of the samples was peeled off in the evaluation of the adhesion to the external electrode.
[0071]
On the other hand, sample Nos. In No. 9, the capacitance was low and the dispersion was large, and the number of peelings in the evaluation of the adhesion was as large as 5/20.
[0072]
【The invention's effect】
As described above in detail, the multilayer electronic component of the present invention can be formed such that the internal electrode layer is thinned by forming the extended portions continuously from the internal electrode layer on both end faces of the electronic component body. The connectivity with the external electrodes can be improved, the capacitance as designed can be exhibited, and the variation can be reduced. In addition, the fixing force can be increased with the external electrodes.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view of a multilayer ceramic capacitor which is a typical example of a multilayer electronic component of the present invention.
FIG. 2 is a schematic cross-sectional view showing a capacitance section on an end face of the electronic component body.
FIG. 3 is a schematic view showing a step of manufacturing an internal electrode pattern of the present invention.
FIG. 4 is a process chart for manufacturing the multilayer electronic component of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Electronic component main body 2 End face 3 External electrode 5 Dielectric layer 7 Internal electrode layer 9 Capacitance part 11 Non-capacitance part 13, 51 Extension part 31 Substrate plate 41 Internal electrode pattern 43 Dielectric green sheet 47 Laminate molding 49 Electronic component main body Molded body

Claims (8)

誘電体層と内部電極層とを交互に積層してなり静電容量を発現する容量部と、該容量部の周囲に前記誘電体層により形成され静電容量を発現しない非容量部とを有する電子部品本体と、該電子部品本体の両端面にそれぞれ設けられ、前記内部電極層と交互に接続する一対の外部電極とを具備する積層型電子部品であって、前記電子部品本体の両端面に前記内部電極層から連続して延出部を有することを特徴とする積層型電子部品。It has a capacitance part which is formed by alternately laminating dielectric layers and internal electrode layers and develops a capacitance, and a non-capacity part which is formed by the dielectric layer and does not develop a capacitance around the capacitance part. An electronic component main body, a laminated electronic component comprising a pair of external electrodes provided on both end surfaces of the electronic component main body and connected alternately to the internal electrode layers, wherein the electronic component main body has both ends. A multilayer electronic component having an extended portion continuously from the internal electrode layer. 内部電極層が電気めっき膜からなることを特徴とする請求項1に記載の積層型電子部品。The multilayer electronic component according to claim 1, wherein the internal electrode layer is made of an electroplated film. 電子部品本体の端面における容量部の端面の面積をA0、延出部の面積をA1としたときに、A1/A0≧0.01%の関係を満足することを特徴とする請求項1または2に記載の積層型電子部品。3. The relationship of A1 / A0 ≧ 0.01%, wherein A1 is the area of the end face of the capacitor section and A1 is the area of the extension section on the end face of the electronic component body. 3. The laminated electronic component according to item 1. 内部電極層の最大厚みが2μm以下であることを特徴とする請求項1乃至3のうちいずれか記載の積層型電子部品。4. The multilayer electronic component according to claim 1, wherein the maximum thickness of the internal electrode layer is 2 μm or less. 延出部同士が、電子部品本体の端面で接続されていることを特徴とする請求項1乃至4のうちいずれか記載の積層型電子部品。The multilayer electronic component according to any one of claims 1 to 4, wherein the extending portions are connected at an end surface of the electronic component body. 内部電極層が卑金属材料を主成分とすることを特徴とする請求項1乃至5のうちいずれか記載の積層型電子部品。The multilayer electronic component according to any one of claims 1 to 5, wherein the internal electrode layer contains a base metal material as a main component. 誘電体層の厚みが4μm以下であることを特徴とする請求項1乃至6のうちいずれか記載の積層型電子部品。7. The multilayer electronic component according to claim 1, wherein the thickness of the dielectric layer is 4 [mu] m or less. 基板プレート上に電気めっき法によって卑金属材料を含有する内部電極パターンを形成する工程と、該内部電極パターンを誘電体グリーンシート上に転写する工程と、前記内部電極パターンが形成された誘電体グリーンシートを複数積層して積層成形体を形成する工程と、該積層成形体を格子状に切断して電子部品本体成形体を形成する工程と、該電子部品本体成形体を焼成して電子部品本体を形成する工程と、を具備する積層型電子部品の製法において、前記電子部品本体成形体の端面に前記内部電極パターンから連続した延出部を有するように切断することを特徴とする積層型電子部品の製法。Forming an internal electrode pattern containing a base metal material on a substrate plate by electroplating; transferring the internal electrode pattern onto a dielectric green sheet; and forming a dielectric green sheet on which the internal electrode pattern is formed. Forming a laminated molded body by laminating a plurality of the molded parts, a step of cutting the laminated molded body into a lattice to form an electronic component main body molded body, and firing the electronic component main body molded body to form an electronic component main body. Forming the electronic component main body, wherein the electronic component body molded body is cut so as to have a continuous extension from the internal electrode pattern on an end surface thereof. Recipe.
JP2003120776A 2003-03-26 2003-04-24 Laminated electronic component and manufacturing method therefor Pending JP2004327739A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003120776A JP2004327739A (en) 2003-04-24 2003-04-24 Laminated electronic component and manufacturing method therefor
KR1020040020097A KR101053079B1 (en) 2003-03-26 2004-03-24 Multilayer Electronic Components and Manufacturing Method Thereof
US10/809,251 US6898069B2 (en) 2003-03-26 2004-03-25 Multilayer electronic component and manufacturing method thereof
TW093108200A TWI240289B (en) 2003-03-26 2004-03-25 Laminated type parts for electronics and manufacturing method thereof
CNB2004100332249A CN100472677C (en) 2003-03-26 2004-03-26 Laminated electronic element and its producing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003120776A JP2004327739A (en) 2003-04-24 2003-04-24 Laminated electronic component and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2004327739A true JP2004327739A (en) 2004-11-18

Family

ID=33499517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003120776A Pending JP2004327739A (en) 2003-03-26 2003-04-24 Laminated electronic component and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2004327739A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006147901A (en) * 2004-11-22 2006-06-08 Murata Mfg Co Ltd Stacked electronic component, its manufacturing method, and measuring method of its characteristics
JP2006287063A (en) * 2005-04-01 2006-10-19 Murata Mfg Co Ltd Electronic part
JP2010021523A (en) * 2008-06-11 2010-01-28 Murata Mfg Co Ltd Multilayer electronic component and method for manufacturing the same
JP2014220517A (en) * 2008-06-11 2014-11-20 株式会社村田製作所 Laminated electronic component and method for manufacturing the same
JP2017162956A (en) * 2016-03-09 2017-09-14 株式会社村田製作所 Electronic component and manufacturing method for the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006147901A (en) * 2004-11-22 2006-06-08 Murata Mfg Co Ltd Stacked electronic component, its manufacturing method, and measuring method of its characteristics
JP2006287063A (en) * 2005-04-01 2006-10-19 Murata Mfg Co Ltd Electronic part
JP4687205B2 (en) * 2005-04-01 2011-05-25 株式会社村田製作所 Electronic components
JP2010021523A (en) * 2008-06-11 2010-01-28 Murata Mfg Co Ltd Multilayer electronic component and method for manufacturing the same
JP2014220517A (en) * 2008-06-11 2014-11-20 株式会社村田製作所 Laminated electronic component and method for manufacturing the same
JP2017162956A (en) * 2016-03-09 2017-09-14 株式会社村田製作所 Electronic component and manufacturing method for the same
KR20170105414A (en) * 2016-03-09 2017-09-19 가부시키가이샤 무라타 세이사쿠쇼 Electronic component and manufacturing method for the same
KR102015809B1 (en) * 2016-03-09 2019-08-29 가부시키가이샤 무라타 세이사쿠쇼 Electronic component and manufacturing method for the same
US10418180B2 (en) 2016-03-09 2019-09-17 Murata Manufacturing Co., Ltd. Electronic component and manufacturing method for the same

Similar Documents

Publication Publication Date Title
KR101053079B1 (en) Multilayer Electronic Components and Manufacturing Method Thereof
CN100511507C (en) Ceramic electronic component and manufacturing method thereof
JP2005285801A (en) Method of manufacturing stacked electronic component
TW452805B (en) Laminated ceramic electronic component
CN113380544B (en) Multilayer ceramic capacitor
JP4574267B2 (en) Manufacturing method of multilayer electronic component and multilayer electronic component
JP2023030050A (en) Multilayer ceramic capacitor
EP0485176B1 (en) Metal thin film having excellent transferability and method of preparing the same
JP2004327739A (en) Laminated electronic component and manufacturing method therefor
JP2005072452A (en) Laminated electronic component and its manufacturing method
JP4213978B2 (en) Multilayer electronic component and manufacturing method thereof
JP2004179348A (en) Method for manufacturing ceramic laminated body
JP2003045740A (en) Laminated electronic component
JPH1097948A (en) Laminated capacitor
JP4429130B2 (en) Manufacturing method of ceramic electronic component
JP2002198255A (en) Laminated electronic component
JPH08191034A (en) Laminated capacitor
JP3367184B2 (en) Manufacturing method of multilayer ceramic electronic component
JP4663706B2 (en) Manufacturing method of electronic parts
JP2002198250A (en) Laminated electronic component
JPH06302469A (en) Formation method of internal electrode for multilayer ceramic capacitor
JP4084785B2 (en) Manufacturing method of electronic parts
JP4436634B2 (en) Manufacturing method of multilayer electronic components
JP2005101302A (en) Laminated ceramic electronic component and method of manufacturing the same
JP4638184B2 (en) Manufacturing method of laminated electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080905

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090707