JP2004325189A - Thermal degradation measuring method for sulfur vulcanized rubber - Google Patents

Thermal degradation measuring method for sulfur vulcanized rubber Download PDF

Info

Publication number
JP2004325189A
JP2004325189A JP2003118863A JP2003118863A JP2004325189A JP 2004325189 A JP2004325189 A JP 2004325189A JP 2003118863 A JP2003118863 A JP 2003118863A JP 2003118863 A JP2003118863 A JP 2003118863A JP 2004325189 A JP2004325189 A JP 2004325189A
Authority
JP
Japan
Prior art keywords
sulfur
rubber
thermal degradation
value
vulcanized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003118863A
Other languages
Japanese (ja)
Inventor
Makio Mori
麻樹夫 森
Kazumasa Nakakita
一誠 中北
Takuei Tsuji
拓衛 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2003118863A priority Critical patent/JP2004325189A/en
Publication of JP2004325189A publication Critical patent/JP2004325189A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method by which the thermal degradation of a sulfur-vulcanized rubber can be nondestructively, conveniently and accurately predicted without performing a heat aging test. <P>SOLUTION: In measurement of the thermal degradation of a sulfur-vulcanized natural rubber composition, signal strength is determined on a sensitivity condition of an amplitude ratio (S/N) of 1,000:1 of the maximum signal strength in unreacted rubber compounds to noise comprising a baseline, and a representative value of the quantity of coupling sulfur coupled to a rubber molecule is found by formula in direct excitation measurement of a carbon nucleus (<SP>13</SP>C) by a solid high resolution nuclear magnetic resonance method using a magic angle spinning method (i), a representative value Gg of a sulfur bridge coupled between two rubber molecules is found by formula (I) based on a modulus (Gf) when the vulcanized rubber is extended to 100% in a tension test, the composition quantity (a volume fraction ϕ)of carbon black and the adsorption quantity of DBP (dibutyl phthalate) of the carbon black (ii), and the thermal degradation of the sulfur-vulcanized natural rubber composition is predicted based on a coupled S/Gg value (iii). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は硫黄加硫ゴムの熱劣化の測定方法に関し、更に詳しくは加硫ゴムの核磁気共鳴(NMR)分化法と引張り試験によるゴムポリマーと硫黄との結合量及び加硫ゴム中の実際に架橋に寄与している硫黄の量の測定による硫黄加硫ゴムの熱劣化を予測する方法に関する。
【0002】
【従来の技術】
従来タイヤ用ゴム材料の熱劣化評価方法としては、オーブンに入れて加速劣化させてゴム材料の伸長時の最大伸び率やモジュラスの変化率を求めて推定したり、或いは実際にタイヤを走行させて測定することが一般的であった。しかしながら、これらの方法では時間がかかるという問題があり、実用的ではなかった。
【0003】
【特許文献1】
特開平8−122284号公報
【0004】
【発明が解決しようとする課題】
従って、本発明は硫黄加硫ゴムの熱劣化を熱老化試験を行なうことなく、非破壊的に、簡便かつ正確に予測できる方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明に従えば、
硫黄加硫された天然ゴム組成物の熱劣化を測定するにあたり、(i)マジックアングル・スピニング法を用いた固体高分解能核磁気共鳴法による炭素核(13C)の直接励起測定にて、未反応ゴム成分のうちで最も高強度なシグナルの強度とベースラインを構成するノイズの振幅の比(S/N比)が1000対1以上の感度条件におけるシグナル強度の定量によりゴム分子に結合した結合硫黄の量を代表する値(結合S)を以下の式:
【0006】
【数3】

Figure 2004325189
【0007】
によって求め、一方(ii)加硫ゴムの引張り試験における100%伸長時のモジュラス(Gf)、カーボンブラックの配合量(体積分率φ)及びカーボンブラックのDBP(フタル酸ジブチル)吸収量より式(I):
【0008】
【数4】
Figure 2004325189
【0009】
より2個のゴム分子間に結合した硫黄架橋の量を代表する値Ggを求め、そして(iii)結合S/Ggの値によって熱劣化を予測する熱劣化の測定方法が提供される。
【0010】
炭素核の核磁気共鳴法(13C−NMR)でのppm 値は化学シフトと呼ばれ下記式によって算出される値であり、共鳴周波数の異なる装置を使用しても同一サンプル測定では固有の値を示すものである。
【0011】
Figure 2004325189
ここで、TMSはテトラメチルシランである。
【0012】
【発明の実施の形態】
本発明者らは硫黄加硫ゴムの熱劣化を予測する方法について検討を進めていく過程で、(i)核磁気共鳴(NMR)によって加硫ゴム中のポリマーと硫黄の結合量を測定すること、並びに(ii)加硫ゴム伸長モジュラスや膨潤度等から実際の架橋(ポリマー分子とポリマー分子との間に介在する硫黄を主成分とした橋かけ構造)の量を測定することによって加硫ゴムの熱劣化を予測できることを見出した。
【0013】
ゴムを硫黄により加硫(架橋)させることによってゴムポリマー間に硫黄(S又はSx)が結合し、加硫ゴムが得られる。しかし、実際には加硫ゴム中には、架橋に寄与しない硫黄が多数存在する。例えば硫黄が一個のゴム分子と結合してブランチ状になったり、同一のゴム分子に結合してループ状になったりしている。これらの結合硫黄はゴム製品が使用状態で熱が加わると、架橋反応が起こり、ゴム製品の硬化が進んで硬くなったり、脆くなったりして製品寿命を低下させる原因となる。
【0014】
かかる観点から、初期に実際に二つのゴム分子間に結合している硫黄量と二つのゴム分子の間の結合に関与していない硫黄量の比率を測定することにより、製品の熱劣化が予測できると推測し、NMRによりポリマーと硫黄の結合数を測定し、伸長モジュラスや膨潤度により実際の架橋量を測定して、加硫ゴムの熱劣化を予測することに成功した。
【0015】
本発明の方法は、天然ゴム(NR)および/またはポリイソブチレンゴム(IR)をゴム成分として用い、カーボンブラック(及び必要であればシリカ)、その他の各種添加剤(例えば老化防止剤、可塑剤、軟化剤、加硫促進剤、しゃっ解剤)を添加した系を硫黄を用いて加硫した加硫ゴムに適用できる。
【0016】
本発明に従えば、先ず核磁気共鳴(NMR)法を用いて、具体的には以下の条件で加硫ゴムの炭素−硫黄結合に由来したピークから合計共鳴強度を求める。
NMR測定は、 H核(プロトン)の共鳴周波数が100MHz以上であり、マジックアングル・スピニング法による固体測定機能を備え、13C核(炭素核)の測定時に H核(プロトン)によるデカップリング電磁波を照射することのできる高分解能核磁気共鳴装置にて実施される。ここで、 H核(プロトン)の共鳴周波数が100MHz以下の装置であると13C核(炭素核)の共鳴シグナルの分解能が不充分であるために好ましくない。 H核(プロトン)の共鳴周波数はより好ましくは200MHzから500MHzの範囲であり、共鳴周波数が高くなるほど分解能が高くなり好ましい。また、 H核(プロトン)によるデカップリング電磁波を照射することができないと、13C核(炭素数)の測定時に十分な分解能が得られないために好ましくない。
13C核(炭素数)の測定は、シングルパルス法と呼ばれる13C核(炭素数)を直接に励起させて13C核(炭素数)の信号を検出する方法を用いることが、ゴム組成物の加硫物を高感度に解析する上で好ましい。硫黄結合構造によるシグナルの強度を定量するためには、励起された13C核(炭素数)の信号をコンピューターに記録する時間内に H核(プロトン)を照射することによって13C核(炭素数)と H核(プロトン)の結合情報を消去し、かつ信号の取込みを終了してから積算測定用の次の励起用13C核(炭素数)用電磁波を照射するまでの間の待ち時間を5秒以上あけることが好ましい。この時間が5秒を満たないと、積算用の次の13C核(炭素数)の励起が不十分となり、定量測定の精度が低くなるために好ましくない。この待ち時間は長いほど定量測定の精度が高くなるが、必要以上に長くすると測定の効率が低下するため、長くても15秒を超えない範囲が好ましい。
NMR測定時に固体状のサンプルにて良好な分解能を得るために、サンプル管の軸を外部磁場に対して約54度傾けた状態で1秒間に2000回転から5000回転の速度にて回転を行う(マジックアングル・スピニング)。この回転速度は、スペクトル上の未反応ゴム成分(主成分)のシグナルに対するサイドバンドシグナルの発生位置を決定するため、回転速度はこのサイドバンドシグナルが硫黄結合構造によるシグナルと重複しないように設定するのが好ましい。
NMRの測定は、電磁波の照射とシグナルの取込みによってなされるが、この後に上述の待ち時間を入れた後に、この操作を繰り返す(積算)ことにより、測定の感度は向上する。この積算の回数は測定の感度と効果の両立を考慮すると3000回から30000回であることが好ましい。積算の回数は、スペクトル上にて未反応ゴム(主成分)によるシグナルのうちで最も大きいシグナルのベースラインからの高さ(シグナル強度)とベースラインのノイズの平均振幅の比(S/N比)が1000以上あることが解析を行う上で必須である。S/N比が1000以下であると、硫黄結合によるシグナルがノイズと区別しにくくなるために好ましくない。S/N比は高いほど分析の精度が上がって好ましい。
本発明でのNMR測定での硫黄結合の定量には13C核(炭素数)の化学シフト値にて、44ppm 、50ppm 、57ppm 、64ppm 付近のシグナルを用いる。これら4つの位置のシグナルの強度の和を未反応ゴム成分(主成分)のシグナルの平均強度で除算することによって硫黄結合の濃度が求められる。未反応ゴム成分(主成分)のシグナル強度は23ppm 、26ppm 、32.5ppm に現れるシグナルの強度の平均値を用いる。ここで、化学シフトのppm 値とは、対象シグナルの共鳴周波数とテトラメチルシラン(TMS)の共鳴周波数の差を装置固有の13C核(炭素数)の共鳴周波数で除算し、10 をかけた値として定義され、同一のサンプルを測定した場合に、 H核(プロトン)の共鳴周波数値で決められる外部磁場の大きさが異なっても、装置間で一定の値となる。
【0017】
NMRによる測定は、添加した硫黄のうち、2個のゴム分子間に橋かけ状態で架橋した硫黄(C−Sx−C)の数と、1個のゴム分子にブランチ状やループ状に結合したのみで架橋に寄与していない硫黄(C−Sx−)の数の合計数が求められる。これを本発明では結合硫黄量という。この硫黄のうち、後者(即ち、2個のゴム分子間に橋かけ状態で結合していない硫黄)は熱が加わると、ゴム分子間の架橋により熱老化を起すこととなる。
【0018】
一方、加硫ゴムの引張り試験での100%モジュラスに基づくGgの値は、主に架橋密度の値、即ち結合硫黄総数のうちのゴム2分子間に架橋した硫黄の量に相関する。参考文献A. Ahagon, Rubbe Chem, Technol, 59, 187(1986)
【0019】
本発明に従えば、或る加硫ゴムについて、NMRの測定により求めた「結合S」と引張り試験における100%モジュラスの測定に基づく式(I)から求めた「Gg」の値の比、即ち結合S/Ggの値により熱劣化の予測をすることができる。具体的には、
Gg値の適値は引張り試験での破断伸びの老化による低下率を参考にして求められるものであり、配合内容や加硫の条件によって適値は変化する。実施例で示される配合では50以下が好ましく、より好ましくは40以下である。実施例において、Gg値が50を越えた場合は、硫黄の結合が分子間の架橋に使われる比率が低いためにゴム組成物を加硫後に熱老化させると硫黄の再架橋による破断伸びの低下が著しくなり、好ましくない。
【0020】
【実施例】
以下、実施例によって本発明を更に説明するが、本発明の範囲をこれらの実施例に限定するものでないことはいうまでもない。
【0021】
例1〜6
表Iに示す配合(重量部)において、硫黄及び加硫促進剤、加硫遅延剤(PVI)を除く成分を、1.7リットルの密閉式バンバリーミキサーを用いて5分間混合し、温度160℃で放出した。次に得られた混合物にオープンロールにて表Iに示す硫黄及び加硫促進剤、加硫遅延剤を添加し、70℃で3分間混合した。
【0022】
得られた加硫ゴムの結合S及び100%モジュラス(M100)を以下の条件で測定した。結果は表Iに示す。
結合S:日本電子製GSX270( Hの共鳴周波数270MHz、13Cの共鳴周波数67.5MHz)にてパルスサチュレーション・マジックアングル・スピニング法にて、13Cの励起電磁波のパルス幅を90度相当とし、積算サイクル間の待ち時間を5秒とし、10000回の積算を行った。硫黄結合の量は上述の方法にて定量し、実施例中には天然ゴムの未反応イソプレン単位の数を1000とした時の炭素−硫黄の結合の数として配載した。
100%モジュラス:JIS−K6251に従って500m/min の伸長条件にて室温で引っぱり試験を行い、100%の伸長比での応力をMPa単位で計測し、これを100%モジュラスとした。
なお、この100%モジュラスの値(即ち式(I)のGf)と、表Iに示すφ及びVの値から式(I)及び(II)よりGgを求め、更に結合S/Ggの値を表Iに示した。
【0023】
一方、JIS−K6251に従って破断伸び(EB)の初期値と老化(80℃×96時間)後の値を求め、その比を伸び保持率として表Iに示した。
【0024】
【表1】
Figure 2004325189
【0025】
表I脚注
*1:天然ゴム(RSS#3グレード)
*2:東海カーボン社製 カーボンブラック(DBP=74cc/g)
*3:昭和キャボット社製 カーボンブラック(DBP=119cc/g)
*4:不溶性硫黄:アクゾカシマ(株)製、20%オイル含有
*5:FLEXSIS製 Santocure TBBS
*6:FLEXSIS製 Flectol TMQ
*7:FLEXSIS製 Santoflex 6PPD
*8:大内新興化学(株)製 サンノック
*9:FLEXSIS製 Santoguard PVI
【0026】
例7〜9
表IIに示す配合(重量部)において、硫黄及び加硫促進剤、加硫遅延剤を除く成分を、1.7リットルの密閉式バンバリーミキサーを用いて5分間混合し、温度160℃で放出した。次に得られた混合物にオープンロールにて表IIに示す硫黄及び加硫促進剤、加硫遅延剤を添加し、70℃で3分間混合した。
【0027】
得られた加硫ゴムの結合S及び100%モジュラス(M100)を以下の条件で測定した。結果は表IIに示す。
【0028】
結合S:日本電子製GSX270( Hの共鳴周波数270MHz、13Cの共鳴周波数67.5MHz)にてパルスサチュレーション・マジックアングル・スピニング法にて、13Cの励起電磁波のパルス幅を90度相当とし、積算サイクル間の待ち時間を5秒とし、10000回の積算を行った。硫黄結合の量は上述の方法にて定量し、実施例中には天然ゴムの未反応イソプレン単位の数を1000として時の炭素−硫黄の結合の数として配載した。
【0029】
100%モジュラス:JIS K−6251に従って500m/min の伸長条件にて室温で引っぱり試験を行い、100%の伸長比での応力をMPa単位で計測し、これを100%モジュラスとした。
なお、この100%モジュラスの値(即ち式(I)のGf)と、表IIに示すφ及びVの値から式(I)及び(II)よりGgを求め、更に結合S/Ggの値を表IIに示した。
【0030】
一方、JIS K−6251に従って破断伸び(EB)の初期値と老化(80℃×96時間)後の値を求め、その比を伸び保持率として表IIに示した。
【0031】
【表2】
Figure 2004325189
【0032】
II 脚注
*1:天然ゴム(RSS#3グレード)
*2:東海カーボン社製 カーボンブラック(DBP=74cc/g)
*3:東海カーボン社製 カーボンブラック(DBP=101cc/g)
*4:昭和キャボット社製 カーボンブラック(DBP=119cc/g)
*5:不溶性硫黄:アクゾカシマ(株)製、20%オイル含有
*6:FLEXSIS製 Santocure TBBS
*7:FLEXSIS製 Flectol TMQ
*8:FLEXSIS製 Santoflex 6PPD
*9:大内新興化学(株)製 サンノック
*10:FLEXSIS製 Santoguard PVI
【0033】
【発明の効果】
以上の結果から、初期に結合硫黄量が高く且つモジュラスが低い加硫ゴムは、初期に結合硫黄量が低く且つモジュラスが高い加硫ゴムに比べて、初期の加硫ゴムにおいて、ゴム分子間の結合に関与しない硫黄量が多く、従って、熱劣化後の実測物性では、モジュラスが上昇すると共に伸びが低下し、熱劣化の進行度合いが大きいことが分かる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for measuring the thermal deterioration of sulfur vulcanized rubber, and more particularly to the method of nuclear magnetic resonance (NMR) differentiation of a vulcanized rubber and the bond amount between a rubber polymer and sulfur by a tensile test and the actual amount in the vulcanized rubber. The present invention relates to a method for predicting thermal deterioration of a sulfur vulcanized rubber by measuring the amount of sulfur contributing to crosslinking.
[0002]
[Prior art]
Conventional methods for evaluating the thermal deterioration of rubber materials for tires include: estimating the maximum elongation rate and the rate of change of modulus when elongating the rubber material by accelerating it in an oven, or by actually running the tire. It was common to measure. However, these methods have a problem that it takes time, and are not practical.
[0003]
[Patent Document 1]
JP-A-8-122284
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a method for predicting the thermal deterioration of a sulfur vulcanized rubber non-destructively, simply and accurately without conducting a heat aging test.
[0005]
[Means for Solving the Problems]
According to the present invention,
In measuring the thermal deterioration of the sulfur-vulcanized natural rubber composition, (i) direct excitation measurement of carbon nucleus ( 13 C) by solid-state high-resolution nuclear magnetic resonance using magic angle spinning was not performed. Bonds bonded to rubber molecules by quantification of signal intensity under the sensitivity condition where the ratio (S / N ratio) of the intensity of the signal having the highest intensity and the amplitude of noise constituting the baseline among the reactive rubber components is 1000 to 1 or more. A value representing the amount of sulfur (bond S) is calculated by the following formula:
[0006]
[Equation 3]
Figure 2004325189
[0007]
On the other hand, (ii) the modulus (Gf) at 100% elongation in the tensile test of the vulcanized rubber, the blending amount of carbon black (volume fraction φ), and the absorption amount of DBP (dibutyl phthalate) of carbon black are represented by the following formula: I):
[0008]
(Equation 4)
Figure 2004325189
[0009]
A method for measuring thermal degradation is provided which determines a value Gg representative of the amount of sulfur bridges bonded between two rubber molecules and predicts thermal degradation based on the value of (iii) bonded S / Gg.
[0010]
The ppm value of the carbon nucleus in the nuclear magnetic resonance method ( 13C -NMR) is called a chemical shift and is a value calculated by the following equation. It is shown.
[0011]
Figure 2004325189
Here, TMS is tetramethylsilane.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
In the course of studying a method for predicting thermal deterioration of a sulfur vulcanized rubber, the present inventors (i) measure the bond amount between the polymer and the sulfur in the vulcanized rubber by nuclear magnetic resonance (NMR). And (ii) vulcanized rubber by measuring the actual amount of cross-linking (crosslinked structure mainly composed of sulfur interposed between polymer molecules) based on elongation modulus, swelling degree, etc. of vulcanized rubber. It has been found that the thermal degradation of the steel can be predicted.
[0013]
By vulcanizing (crosslinking) the rubber with sulfur, sulfur (S or Sx) is bonded between the rubber polymers to obtain a vulcanized rubber. However, there are actually many sulfurs that do not contribute to crosslinking in the vulcanized rubber. For example, sulfur bonds to one rubber molecule to form a branch, or bonds to the same rubber molecule to form a loop. When heat is applied to the rubber product in a used state, a cross-linking reaction occurs, and the hardening of the rubber product progresses, and the bonded sulfur becomes hard or brittle, resulting in a reduction in product life.
[0014]
From this point of view, by measuring the ratio of the amount of sulfur actually bound between the two rubber molecules and the amount of sulfur not involved in the bond between the two rubber molecules at the beginning, thermal degradation of the product is predicted. We speculated that it could be done, measured the number of bonds between the polymer and sulfur by NMR, measured the actual amount of cross-linking by elongation modulus and swelling degree, and succeeded in predicting the thermal degradation of the vulcanized rubber.
[0015]
The method of the present invention uses natural rubber (NR) and / or polyisobutylene rubber (IR) as a rubber component, and uses carbon black (and, if necessary, silica) and other various additives (for example, an antioxidant, a plasticizer). , A softener, a vulcanization accelerator, a peptizer) can be applied to a vulcanized rubber vulcanized with sulfur.
[0016]
According to the present invention, first, the total resonance intensity is determined from the peak derived from the carbon-sulfur bond of the vulcanized rubber using the nuclear magnetic resonance (NMR) method, specifically under the following conditions.
NMR measurements, 1 resonance frequency of the H nuclei (protons) is not less than 100 MHz, comprising a solid measuring with magic angle-spinning method, 13 C nuclear decoupling by 1 H nuclear when measuring (carbon nuclear) (proton) It is carried out by a high-resolution nuclear magnetic resonance apparatus capable of irradiating an electromagnetic wave. Here, an apparatus having a resonance frequency of 1 H nucleus (proton) of 100 MHz or less is not preferable because the resolution of the resonance signal of 13 C nucleus (carbon nucleus) is insufficient. The resonance frequency of the 1 H nucleus (proton) is more preferably in the range of 200 MHz to 500 MHz, and the higher the resonance frequency, the higher the resolution. In addition, if the decoupling electromagnetic wave from the 1 H nucleus (proton) cannot be irradiated, a sufficient resolution cannot be obtained when measuring the 13 C nucleus (carbon number), which is not preferable.
Measurement of 13 C nucleus (carbon number) may be used a method of detecting the signal of 13 C nuclei called single pulse method is directly excite (carbon number) of 13 C nucleus (carbon number), the rubber composition This is preferable for analyzing the vulcanizate of high sensitivity. To quantify the intensity of the signal due to sulfur bond structure, excited 13 C nuclei 13 C nuclei by irradiating of 1 H nuclei within a time to record the signals (carbon number) to the computer (protons) (carbon waiting until the irradiation the following electromagnetic wave for excitation 13 C nuclei (carbon number) for integrating the measurement from the binding information to erase, and then terminates the signal acquisition in number) and 1 H nuclear (proton) It is preferable to leave time for 5 seconds or more. If this time is less than 5 seconds, the excitation of the next 13 C nucleus (carbon number) for integration becomes insufficient, and the accuracy of the quantitative measurement is lowered, which is not preferable. The longer the waiting time, the higher the accuracy of the quantitative measurement. However, if the waiting time is longer than necessary, the efficiency of the measurement is reduced. Therefore, it is preferable that the waiting time does not exceed 15 seconds at the longest.
In order to obtain a good resolution with a solid sample during NMR measurement, the sample tube is rotated at a speed of 2,000 to 5,000 rotations per second while the axis of the sample tube is inclined at about 54 degrees with respect to an external magnetic field ( Magic angle spinning). Since this rotation speed determines the position of generation of a sideband signal with respect to the signal of the unreacted rubber component (main component) on the spectrum, the rotation speed is set so that this sideband signal does not overlap with the signal due to the sulfur bond structure. Is preferred.
The NMR measurement is performed by irradiating an electromagnetic wave and capturing a signal. After the above-described waiting time has been entered, this operation is repeated (integrated) to improve the measurement sensitivity. The number of times of the integration is preferably 3,000 to 30,000 times in consideration of both the sensitivity of the measurement and the effect. The number of times of integration is determined by the ratio (S / N ratio) of the height (signal intensity) of the largest signal from the unreacted rubber (main component) on the spectrum from the baseline to the average amplitude of the baseline noise. ) Is essential for analysis. If the S / N ratio is 1000 or less, it is difficult to distinguish a signal due to a sulfur bond from noise, which is not preferable. The higher the S / N ratio, the higher the accuracy of the analysis, which is preferable.
For the determination of the sulfur bond in the NMR measurement in the present invention, signals near 44 ppm, 50 ppm, 57 ppm and 64 ppm in the chemical shift value of 13 C nucleus (carbon number) are used. The sulfur bond concentration is determined by dividing the sum of the signal intensities at these four positions by the average intensity of the signal of the unreacted rubber component (main component). As the signal intensity of the unreacted rubber component (main component), the average value of the signal intensity appearing at 23 ppm, 26 ppm, and 32.5 ppm is used. Here, the ppm value of the chemical shift is obtained by dividing the difference between the resonance frequency of the target signal and the resonance frequency of tetramethylsilane (TMS) by the resonance frequency of the 13 C nucleus (carbon number) unique to the apparatus, and multiplying by 10 6 . When the same sample is measured, even if the magnitude of the external magnetic field determined by the resonance frequency value of the 1 H nucleus (proton) is different, the value is constant between apparatuses.
[0017]
The NMR measurement showed that, among the added sulfur, the number of sulfur (C-Sx-C) cross-linked between two rubber molecules in a bridged state, and the sulfur bonded to one rubber molecule in a branch or loop shape. The total number of sulfur (C-Sx-) that does not contribute to crosslinking by itself is determined. This is referred to as the amount of bound sulfur in the present invention. Of the sulfur, the latter (i.e., sulfur that is not bonded in a bridge state between two rubber molecules) causes heat aging due to crosslinking between rubber molecules when heat is applied.
[0018]
On the other hand, the value of Gg based on the 100% modulus in the tensile test of the vulcanized rubber is mainly correlated with the value of the crosslink density, that is, the amount of sulfur crosslinked between two rubber molecules in the total number of bonded sulfur. Reference A. Ahagon, Ruby Chem, Technology, 59, 187 (1986)
[0019]
According to the present invention, for a vulcanized rubber, the ratio of the value of "bond S" determined by NMR measurement to the value of "Gg" determined from formula (I) based on measurement of 100% modulus in a tensile test, that is, Thermal degradation can be predicted from the value of the combined S / Gg. In particular,
The appropriate value of the Gg value is determined by referring to the rate of decrease in the elongation at break in the tensile test due to aging, and the appropriate value varies depending on the content of the composition and the vulcanization conditions. In the formulations shown in the examples, it is preferably 50 or less, more preferably 40 or less. In the examples, when the Gg value exceeds 50, the ratio of sulfur bonds used for cross-linking between molecules is low, so that when the rubber composition is heat-aged after vulcanization, the elongation at break due to re-crosslinking of sulfur decreases. Becomes remarkable, which is not preferable.
[0020]
【Example】
Hereinafter, the present invention will be further described with reference to Examples, but it goes without saying that the scope of the present invention is not limited to these Examples.
[0021]
Examples 1 to 6
In the composition (parts by weight) shown in Table I, components other than sulfur, a vulcanization accelerator, and a vulcanization retarder (PVI) were mixed for 5 minutes using a 1.7-liter closed Banbury mixer, and the temperature was 160 ° C. Released at Next, the sulfur, the vulcanization accelerator, and the vulcanization retarder shown in Table I were added to the obtained mixture using an open roll, followed by mixing at 70 ° C. for 3 minutes.
[0022]
The bond S and 100% modulus (M100) of the obtained vulcanized rubber were measured under the following conditions. The results are shown in Table I.
Bond S: Nippon at Denshi GSX270 (1 H resonance frequency 270 MHz, 13 C resonance frequency 67.5 MHz) in pulse saturation Magic Angle Spinning method, the pulse width of the excitation electromagnetic wave 13 C and 90 degrees corresponds The waiting time between the integration cycles was 5 seconds, and the integration was performed 10,000 times. The amount of sulfur bonds was quantified by the above-described method, and in Examples, the number of carbon-sulfur bonds when the number of unreacted isoprene units in the natural rubber was 1,000 was placed.
100% modulus: A tensile test was performed at room temperature under an elongation condition of 500 m / min according to JIS-K6251. A stress at an elongation ratio of 100% was measured in MPa, and this was defined as a 100% modulus.
From the value of the 100% modulus (that is, Gf in the formula (I)) and the values of φ and V shown in Table I, Gg was calculated from the formulas (I) and (II). The results are shown in Table I.
[0023]
On the other hand, the initial value of the elongation at break (EB) and the value after aging (80 ° C. × 96 hours) were determined according to JIS-K6251, and the ratio was shown in Table I as the elongation retention.
[0024]
[Table 1]
Figure 2004325189
[0025]
Table I Footnote * 1: Natural rubber (RSS # 3 grade)
* 2: Tokai Carbon Co., Ltd. carbon black (DBP = 74cc / g)
* 3: Showa Cabot carbon black (DBP = 119cc / g)
* 4: Insoluble sulfur: manufactured by Akzo Kashima Co., Ltd., containing 20% oil * 5: Santocure TBBS manufactured by FLEXSIS
* 6: FLEXSIS Flectol TMQ
* 7: FLEXSIS Santoflex 6PPD
* 8: Sannoc manufactured by Ouchi Shinko Chemical Co., Ltd. * 9: Santoguard PVI manufactured by FLEXSIS
[0026]
Examples 7 to 9
In the composition (parts by weight) shown in Table II, components other than sulfur, the vulcanization accelerator, and the vulcanization retarder were mixed for 5 minutes using a 1.7-liter closed Banbury mixer, and released at a temperature of 160 ° C. . Next, the sulfur, the vulcanization accelerator, and the vulcanization retarder shown in Table II were added to the obtained mixture using an open roll, followed by mixing at 70 ° C. for 3 minutes.
[0027]
The bond S and 100% modulus (M100) of the obtained vulcanized rubber were measured under the following conditions. The results are shown in Table II.
[0028]
Bond S: Nippon at Denshi GSX270 (1 H resonance frequency 270 MHz, 13 C resonance frequency 67.5 MHz) in pulse saturation Magic Angle Spinning method, the pulse width of the excitation electromagnetic wave 13 C and 90 degrees corresponds The waiting time between the integration cycles was 5 seconds, and the integration was performed 10,000 times. The amount of sulfur bonds was quantified by the above-described method, and in the examples, the number of unreacted isoprene units in the natural rubber was set to 1,000, and the number was set as the number of carbon-sulfur bonds.
[0029]
100% modulus: A tensile test was performed at room temperature under an elongation condition of 500 m / min according to JIS K-6251, and a stress at an elongation ratio of 100% was measured in MPa, and this was defined as a 100% modulus.
From the value of the 100% modulus (that is, Gf in the formula (I)) and the values of φ and V shown in Table II, Gg was obtained from the formulas (I) and (II). The results are shown in Table II.
[0030]
On the other hand, the initial value of the elongation at break (EB) and the value after aging (80 ° C. × 96 hours) were determined according to JIS K-6251, and the ratio was shown in Table II as the elongation retention.
[0031]
[Table 2]
Figure 2004325189
[0032]
Table II Footnote * 1: Natural rubber (RSS # 3 grade)
* 2: Tokai Carbon Co., Ltd. carbon black (DBP = 74cc / g)
* 3: Tokai Carbon Co., Ltd. carbon black (DBP = 101cc / g)
* 4: Carbon black manufactured by Showa Cabot Corporation (DBP = 119cc / g)
* 5: Insoluble sulfur: manufactured by Akzo Kashima Co., Ltd., containing 20% oil * 6: Santocure TBBS manufactured by FLEXSIS
* 7: Flexol TMQ manufactured by FLEXSIS
* 8: FLEXSIS Santoflex 6PPD
* 9: Sannoc manufactured by Ouchi Shinko Chemical Co., Ltd. * 10: Santoguard PVI manufactured by FLEXSIS
[0033]
【The invention's effect】
From the above results, the vulcanized rubber having a high amount of bonded sulfur and a low modulus at the beginning is lower in the initial vulcanized rubber than the vulcanized rubber having a low amount of bonded sulfur and a high modulus in the initial stage. The amount of sulfur that does not participate in the bonding is large, and therefore, in the measured physical properties after thermal degradation, it is understood that the modulus increases and the elongation decreases, and the degree of progress of thermal degradation is large.

Claims (1)

硫黄加硫された天然ゴム組成物の熱劣化を測定するにあたり、(i)マジックアングル・スピニング法を用いた固体高分解能核磁気共鳴法による炭素核(13C)の直接励起測定にて、未反応ゴム成分のうちで最も高強度なシグナルの強度とベースラインを構成するノイズの振幅の比(S/N比)が1000対1以上の感度条件におけるシグナル強度の定量によりゴム分子に結合した結合硫黄の量を代表する値(結合S)を以下の式:
Figure 2004325189
によって求め、一方(ii)加硫ゴムの引張り試験における100%伸長時のモジュラス(Gf)、カーボンブラックの配合量(体積分率φ)及びカーボンブラックのDBP(フタル酸ジブチル)吸収量より式(I):
Figure 2004325189
より2個のゴム分子間に結合した硫黄架橋の量を代表する値Ggを求め、そして(iii)結合S/Ggの値によって熱劣化を予測する熱劣化の測定方法。
In measuring the thermal deterioration of the sulfur-vulcanized natural rubber composition, (i) direct excitation measurement of carbon nucleus ( 13 C) by solid-state high-resolution nuclear magnetic resonance using magic angle spinning was not performed. Bonds bonded to rubber molecules by quantification of signal intensity under the sensitivity condition where the ratio (S / N ratio) of the intensity of the signal having the highest intensity and the amplitude of noise constituting the baseline among the reactive rubber components is 1000 to 1 or more. A value representing the amount of sulfur (bond S) is calculated by the following formula:
Figure 2004325189
On the other hand, (ii) the modulus (Gf) at 100% elongation in the tensile test of the vulcanized rubber, the blending amount of carbon black (volume fraction φ), and the absorption amount of DBP (dibutyl phthalate) of carbon black are represented by the following formula: I):
Figure 2004325189
More specifically, a method of determining a value Gg representing the amount of sulfur cross-linking bonded between two rubber molecules, and (iii) a method of measuring thermal degradation by predicting thermal degradation based on the value of the bonded S / Gg.
JP2003118863A 2003-04-23 2003-04-23 Thermal degradation measuring method for sulfur vulcanized rubber Pending JP2004325189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003118863A JP2004325189A (en) 2003-04-23 2003-04-23 Thermal degradation measuring method for sulfur vulcanized rubber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003118863A JP2004325189A (en) 2003-04-23 2003-04-23 Thermal degradation measuring method for sulfur vulcanized rubber

Publications (1)

Publication Number Publication Date
JP2004325189A true JP2004325189A (en) 2004-11-18

Family

ID=33498281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003118863A Pending JP2004325189A (en) 2003-04-23 2003-04-23 Thermal degradation measuring method for sulfur vulcanized rubber

Country Status (1)

Country Link
JP (1) JP2004325189A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007218697A (en) * 2006-02-15 2007-08-30 Sumitomo Rubber Ind Ltd Rubber specimen tension tool, molecular structure/molecular motility property analyzer for rubber specimen in stretched state, and analysis method
JP2013257239A (en) * 2012-06-13 2013-12-26 Sumitomo Rubber Ind Ltd Method for predicting heat deterioration resistance of isoprene rubber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007218697A (en) * 2006-02-15 2007-08-30 Sumitomo Rubber Ind Ltd Rubber specimen tension tool, molecular structure/molecular motility property analyzer for rubber specimen in stretched state, and analysis method
JP2013257239A (en) * 2012-06-13 2013-12-26 Sumitomo Rubber Ind Ltd Method for predicting heat deterioration resistance of isoprene rubber
US9488707B2 (en) 2012-06-13 2016-11-08 Sumitomo Rubber Industries, Ltd. Method for predicting resistance to heat deterioration of isoprene rubber

Similar Documents

Publication Publication Date Title
George et al. Effect of nature and extent of crosslinking on swelling and mechanical behavior of styrene–butadiene rubber membranes
Dick et al. Quality assurance of natural rubber using the rubber process analyzer
WO2013118801A1 (en) Method for quantifying strength of interface bonding between silica and modified polymer, rubber composition adjusted by said method, and pneumatic tire using same
JP6348295B2 (en) How to determine the chemical state of sulfur
JP6501636B2 (en) Method of measuring amount of silanol group of silica, and method of evaluating reaction of silane coupling agent
JP2004325189A (en) Thermal degradation measuring method for sulfur vulcanized rubber
Ma et al. Comparison of structure and properties of two styrene–butadiene rubbers filled with carbon black, carbon–silica dual-phase filler, and silica
JP6135971B2 (en) Test method for crosslink density
JP2006317414A (en) Vulcanized rubber and method for evaluating crosslinking structure of same
JP2002071595A (en) Method for evaluating degree of crosslinking of rubber
Baccaro et al. Interaction between reinforce carbon black and polymeric matrix for industrial applications
JP2004323737A (en) Rubber composition
JP5580856B2 (en) Prediction method of heat resistant degradation performance of isoprene rubber
Kimoto et al. Pulsed NMR study of the curing process of epoxy resin
JP2022503669A (en) tire
JP2017110977A (en) Method for analyzing crosslinked state
Baldwin et al. Accelerated aging of tires, Part II
CN107389717B (en) Method for analyzing length of sulfur crosslink in vulcanized rubber
JP6473123B2 (en) Rubber composition for tire
Li et al. Vulcanization characteristics of natural rubber coagulated by microorganisms
EP3312233B1 (en) Polymer composite material for 1h dynamic nuclear polarization experiments and method for producing the same, and polymer composite material for 1h dynamic nuclear polarization contrast variation neutron scattering experiments
JP2022500520A (en) Rubber composition
Yang et al. An efficient method for the synthesis of a polymer brush via click chemistry and its ultrasensitive electrochemical detection of AFP
JP2006133167A (en) Method for evaluating heat resistance of rubber composition and method for producing heat resisting rubber composition
JP2014074697A (en) Deterioration analysis method