JP2006317414A - Vulcanized rubber and method for evaluating crosslinking structure of same - Google Patents

Vulcanized rubber and method for evaluating crosslinking structure of same Download PDF

Info

Publication number
JP2006317414A
JP2006317414A JP2005143250A JP2005143250A JP2006317414A JP 2006317414 A JP2006317414 A JP 2006317414A JP 2005143250 A JP2005143250 A JP 2005143250A JP 2005143250 A JP2005143250 A JP 2005143250A JP 2006317414 A JP2006317414 A JP 2006317414A
Authority
JP
Japan
Prior art keywords
vulcanized rubber
rubber
nmr
evaluating
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005143250A
Other languages
Japanese (ja)
Inventor
Nita Ukawa
仁太 宇川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2005143250A priority Critical patent/JP2006317414A/en
Publication of JP2006317414A publication Critical patent/JP2006317414A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for evaluating the crosslinking structure of vulcanized rubber and capable of improving both the amount of information and analysis accuracy on the rubber physical properties of vulcanized rubber, molecular structures, composition analysis, etc. by NMR measurement using solid samples and provide vulcanized rubber. <P>SOLUTION: A narrow piece made of vulcanized rubber is used as a measurement sample. A solid high-resolution NMR device is used to perform NMR measurement with the measurement sample in a state of magic-angle spinning under solution NMR conditions. The chemical shifts and type (primary, secondary, tertiary, and quaternary) of carbon in the vulcanized rubber are identified in the method for evaluating the crosslinking structure of vulcanized rubber. The rubber physical properties of the vulcanized rubber are evaluated on the basis of a strength ratio of acquired crosslinking signals. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、加硫ゴムの架橋構造評価方法に関し、さらに詳しくは、加硫ゴムの固体試料を用いてNMR測定を行うことで、加硫ゴムのゴム物性、分子構造、組成分析などの分析情報を精度高く提供する加硫ゴムの架橋構造評価方法及びその評価結果により得られた加硫ゴムに関する。   The present invention relates to a method for evaluating a crosslinked structure of vulcanized rubber, and more specifically, by performing NMR measurement using a solid sample of vulcanized rubber, analysis information such as rubber physical properties, molecular structure, and composition analysis of vulcanized rubber. The present invention relates to a method for evaluating a crosslinked structure of a vulcanized rubber that provides high accuracy and a vulcanized rubber obtained from the evaluation result.

高分子化合物の分子構造、組成分析などの物理化学的性質の分析を行うために、近年では核磁気共鳴(NMR)等の機器分析装置が使用され多くの分析情報が提供されるようになり、ゴム工業においても加硫ゴムの架橋密度の評価や熱劣化の予測などに利用されるようになっている(例えば、特許文献1,2)。   In order to analyze physicochemical properties such as molecular structure and composition analysis of polymer compounds, instrumental analysis equipment such as nuclear magnetic resonance (NMR) has recently been used to provide a lot of analysis information. In the rubber industry, it is used for evaluation of the crosslinking density of vulcanized rubber and prediction of thermal deterioration (for example, Patent Documents 1 and 2).

NMRによる測定では、鮮明なNMRスペクトルを得るために測定対象となる試料が調整される。NMRによる測定対象は液体、固体、気体、ゲルなどの多様な測定試料を用いた分析が行われているが、一般的に加硫ゴムのような固体NMRは溶液NMRに比べて測定に多くの制限を受け、例えば、溶液NMRよりも分解能が低い、用いられるパルスプログラム数が少ない等の理由により得られる情報量が少ないという欠点がある。   In the measurement by NMR, a sample to be measured is adjusted in order to obtain a clear NMR spectrum. Analyzes using various measurement samples such as liquids, solids, gases, gels, etc. are performed on the measurement target by NMR, but generally solid NMR such as vulcanized rubber is much more for measurement than solution NMR. For example, there is a drawback that the amount of information obtained is small due to reasons such as lower resolution than solution NMR and fewer pulse programs used.

NMRによるゴム材料のミクロ構造などの分子構造の測定において、未架橋の生ゴムではクロロホルム等の有機溶媒に溶解し溶液化した試料を用いた分析を実施することができるが、架橋され固体化した加硫ゴムをNMRで分析する場合、固体高分解能NMR装置を用いた測定が試みられている(例えば、非特許文献1)。
特開2002−71595号公報 特開2004−325189号公報 森麻樹夫、J.L.Koenig 「高分解能NMRによるゴム架橋物の分析」 日本ゴム協会誌 第71巻 第2号(1998) P26〜35
In the measurement of molecular structure such as microstructure of rubber material by NMR, uncrosslinked raw rubber can be analyzed using a sample dissolved and dissolved in organic solvent such as chloroform. When analyzing vulcanized rubber by NMR, the measurement using a solid high resolution NMR apparatus is tried (for example, nonpatent literature 1).
JP 2002-71595 A JP 2004-325189 A Maki Mori, J. L. Koenig "Analysis of rubber cross-linked products by high resolution NMR" Journal of the Japan Rubber Association Vol. 71 No. 2 (1998) P26-35

ところが、上記の固体高分解能NMRは、加硫ゴムがクロロホルムなどのNMR用溶媒に溶解しないため13C−NMR法でしか測定できず、溶液NMRで測定できるH−NMR法、DEPT法、APT法、2D法などの測定は不可能とされ、加硫ゴムによる固体試料では正確な架橋構造の解析が行われていないのが実状である。 However, the above-mentioned high-resolution solid-state NMR can be measured only by 13 C-NMR method because vulcanized rubber is not dissolved in an NMR solvent such as chloroform, and can be measured by solution NMR. 1 H-NMR method, DEPT method, APT In fact, it is considered impossible to measure by the 2D method or the like, and the actual cross-linked structure is not analyzed in the solid sample of vulcanized rubber.

本発明は、上記の点に鑑みてなされたものであり、加硫ゴムの架橋構造の解析を従来では困難であった固体試料を用いたNMR測定により、加硫ゴムのゴム物性、分子構造、組成分析などの情報量や分析精度の向上を図る加硫ゴムの架橋構造評価方法、及びこの評価方法により測定される特定の架橋構造を有する加硫ゴムを提供することを目的とするものである。   The present invention has been made in view of the above points. By NMR measurement using a solid sample, which has been difficult to analyze the crosslinking structure of vulcanized rubber, the rubber physical properties, molecular structure of vulcanized rubber, An object of the present invention is to provide a method for evaluating the crosslinked structure of a vulcanized rubber for improving the amount of information such as composition analysis and analysis accuracy, and a vulcanized rubber having a specific crosslinked structure measured by this evaluation method. .

本発明者は、双極子相互作用が弱く加硫ゴム内の分子の運動性が高い特定範囲の弾性率を有する加硫ゴムにおいては、固体試料でありながら溶液NMR条件でのNMR測定が可能となることを見出し本発明の完成に至った。   The present inventor is able to perform NMR measurement under solution NMR conditions in a vulcanized rubber having a specific range of elastic modulus with weak dipole interaction and high molecular mobility in the vulcanized rubber. As a result, the present invention has been completed.

すなわち、本発明の加硫ゴムの架橋構造評価方法は、加硫ゴムからなる細片を測定試料として用い、固体高分解能NMR装置を使用してマジック角回転状態において溶液NMR条件によりNMR測定を行い、前記加硫ゴム中の炭素のケミカルシフトと種類(1級〜4級)を同定することを特徴とする。   That is, the method for evaluating the crosslinked structure of a vulcanized rubber according to the present invention uses a strip made of vulcanized rubber as a measurement sample, and performs NMR measurement under solution NMR conditions in a magic angle rotation state using a solid high-resolution NMR apparatus. The chemical shift and type (first to fourth grades) of carbon in the vulcanized rubber are identified.

また、本発明の加硫ゴムの架橋構造評価方法は、さらに、上記測定により得られた架橋シグナルの強度比から、前記加硫ゴムのゴム物性を評価するものである。   The method for evaluating the crosslinked structure of a vulcanized rubber according to the present invention further evaluates the rubber physical properties of the vulcanized rubber from the intensity ratio of the crosslinked signals obtained by the above measurement.

本発明の加硫ゴムの架橋構造評価方法においては、前記加硫ゴムの引張試験における100%伸張時の弾性率が、0.5〜4MPaである。   In the method for evaluating a crosslinked structure of vulcanized rubber according to the present invention, the elastic modulus at 100% elongation in the tensile test of the vulcanized rubber is 0.5 to 4 MPa.

また、前記溶液NMR条件は、H−NMR法、DEPT法、APT法、2D法のいずれかを適用することができる。 As the solution NMR conditions, any one of 1 H-NMR method, DEPT method, APT method, and 2D method can be applied.

また、本発明の加硫ゴムの架橋構造評価方法に用いられる測定試料の細片長さは、0.001〜0.5mmであることが好ましい。   Moreover, it is preferable that the strip length of the measurement sample used for the crosslinked-structure evaluation method of vulcanized rubber of this invention is 0.001-0.5 mm.

本発明の加硫ゴムの架橋構造評価方法は、特定範囲の弾性率を有す加硫ゴムを、固体試料でありながらH−NMR法、DEPT法、APT法、2D法などの溶液NMR条件でのNMR測定を行うものである。これにより、従来の固体試料を用いた固体NMRでは得られなかった加硫ゴム中の炭素のケミカルシフトと種類(1級〜4級)がシグナルの向きから同定され、加硫ゴムのゴム物性、分子構造、組成分析などの多くの分析情報を高精度で得ることができる。 The method for evaluating the crosslinked structure of a vulcanized rubber according to the present invention is a solution NMR condition such as 1 H-NMR method, DEPT method, APT method, 2D method, etc. while a vulcanized rubber having a specific range of elastic modulus is a solid sample The NMR measurement is performed at As a result, the chemical shift and type (first to fourth grades) of carbon in the vulcanized rubber, which could not be obtained by solid state NMR using a conventional solid sample, were identified from the direction of the signal, and the rubber physical properties of the vulcanized rubber, Many pieces of analysis information such as molecular structure and composition analysis can be obtained with high accuracy.

本発明においてNMR測定が可能な加硫ゴムは、引張試験における100%伸張時の弾性率が、0.5〜4MPaにあるもので、加硫ゴムであっても弾性率が4MPaを超えるとゴム分子内の運動性が低くなって溶液条件での測定が困難となり、0.5MPa未満では架橋シグナルの強度が低くなり正確な測定ができなくなる。なお、上記弾性率とは、JIS K6252に従って測定(3号ダンベル使用)された引張応力の測定値である。   In the present invention, the vulcanized rubber capable of NMR measurement has an elastic modulus at 100% elongation in a tensile test of 0.5 to 4 MPa, and even if it is a vulcanized rubber, the elastic modulus exceeds 4 MPa. Intramolecular mobility becomes low and measurement under solution conditions becomes difficult, and if it is less than 0.5 MPa, the intensity of the cross-linking signal becomes low and accurate measurement cannot be performed. The elastic modulus is a measured value of tensile stress measured according to JIS K6252 (using No. 3 dumbbell).

また、測定試料の細片長が、0.001〜0.5mmにあることで、加硫ゴムの固体試料を用いたNMR測定を正確にし、試料の前処理や複雑な調整を不要にして測定を容易に実施することができる。   In addition, since the length of the strip of the measurement sample is 0.001 to 0.5 mm, the NMR measurement using the solid sample of vulcanized rubber is made accurate, and the measurement is performed without the need for sample pretreatment and complicated adjustment. It can be easily implemented.

そして、本発明の加硫ゴムは、加硫ゴムの架橋構造評価方法によって得られた架橋シグナルの強度比が、0.1〜10であるもので、各種用途に適したゴム特性を有す加硫ゴムの設計を容易にすることができる。   The vulcanized rubber of the present invention has a crosslinking signal strength ratio obtained by the crosslinked structure evaluation method of vulcanized rubber of 0.1 to 10, and has rubber properties suitable for various applications. The design of vulcanized rubber can be facilitated.

本発明の加硫ゴムの架橋構造評価方法によると、固体状態にある加硫ゴムの架橋構造について精度高く評価を行うことができ、すなわち、加硫後のゴム物性、ミクロ構造などの分子構造、組成分析などの物理化学的性質を、NMR装置を用いた溶液条件で測定することにより従来の固体条件よりも格段の高精度で短時間に得られるようになり、従来の固体条件測定では入手できなかった新たな分析情報が多く得られることができるという優れた効果を有するもので、種々のゴム材料の高性能化研究に多くの指針を与えるものとなり、工業的有効性を具えたものである。   According to the crosslinked structure evaluation method for vulcanized rubber of the present invention, it is possible to accurately evaluate the crosslinked structure of the vulcanized rubber in a solid state, that is, rubber properties after vulcanization, molecular structure such as microstructure, By measuring physicochemical properties such as composition analysis under solution conditions using an NMR device, it can be obtained in a shorter time with much higher accuracy than conventional solid conditions. It has the excellent effect of being able to obtain a lot of new analytical information that was not available, and provides many guidelines for high performance research of various rubber materials, and has industrial effectiveness. .

また、固体試料を用いることで試料の調整が簡単になり、NMR測定に費用をかけず、短時間で行うことができる。   In addition, the use of a solid sample simplifies the preparation of the sample, and can be performed in a short time without costing the NMR measurement.

以下に、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本発明の加硫ゴムの架橋構造評価方法において、対象となるゴム材料としては、通常の固体状態で供給される固形ゴム、常温で液状を示す低分子量の液状ゴムが挙げられる。   In the method for evaluating a crosslinked structure of a vulcanized rubber according to the present invention, examples of the rubber material to be used include a solid rubber supplied in a normal solid state and a low molecular weight liquid rubber that is liquid at room temperature.

固形ゴムとしては、天然ゴム(NR)、及び溶液または乳化重合による各種スチレンブタジエンゴム(SBR)、各種ブタジエンゴム(BR)、イソプレンゴム(IR)、ニトリルゴム(NBR)、クロロプレンゴム(CR)等のジエン系合成ゴム、ブチルゴム(IIR)クロロブチルゴム(CIIR)、エチレンプロピレンゴム(EPM,EPDM)等のオレフィン系合成ゴム、ポリスルフィドゴム(T)、シリコーンゴム(Q)、ウレタンゴム(U)、フッ素ゴム(FKM)、アクリルゴム(ACM)、クロロスルフォン化ポリエチレン(CSM)などの各種合成ゴムが挙げられ、その1種類或いは2種類以上を任意の割合でブレンドしたものが挙げられる。   As solid rubber, natural rubber (NR), various styrene butadiene rubber (SBR) by solution or emulsion polymerization, various butadiene rubber (BR), isoprene rubber (IR), nitrile rubber (NBR), chloroprene rubber (CR), etc. Diene synthetic rubber, butyl rubber (IIR), chlorobutyl rubber (CIIR), olefin synthetic rubber such as ethylene propylene rubber (EPM, EPDM), polysulfide rubber (T), silicone rubber (Q), urethane rubber (U), fluorine Various synthetic rubbers such as rubber (FKM), acrylic rubber (ACM), chlorosulfonated polyethylene (CSM) and the like, and those obtained by blending one kind or two or more kinds at an arbitrary ratio are mentioned.

また、液状ゴムは常温では液状を示すが架橋されると高分子量化されて硬化し固体ゴムとなるもので、液状天然ゴム及び液状合成ゴムが挙げられ、液状合成ゴムとしては、液状IR、液状SBR、液状BR、液状NBRなど各種液状合成ゴムであり、その1種類或いは2種類以上を任意の割合でブレンドしたものが挙げられ、また上記固形ゴムとブレンドされたものでもよい。   In addition, liquid rubber is liquid at room temperature, but when it is cross-linked, it becomes high molecular weight and hardens to become solid rubber, and examples thereof include liquid natural rubber and liquid synthetic rubber. Examples of liquid synthetic rubber include liquid IR, liquid Various types of liquid synthetic rubbers such as SBR, liquid BR, and liquid NBR, including one or two or more of them blended at an arbitrary ratio, may be blended with the above solid rubber.

上記の固形ゴムや液状ゴム、或いはそれらのブレンドを用いた加硫ゴムは、硫黄系架橋剤、有機過酸化物などの架橋剤で架橋されるもので、硫黄系は通常のゴム架橋に使用されているゴム用粉末硫黄、オイル処理硫黄など、有機過酸化物としてはジクミルパーオキシド、2,4−ジクロロベンゾイルパーオキシド、ジ−テルト−ブチルパーオキシド、2,5−ジメチル−2,5ジ(テルト−パーオキシ)−ヘキサンなどが挙げられる。また、有機多価アミン、変性フェノール樹脂、酸化マグネシウム等の金属酸化物などの架橋剤を用いて架橋されたものも用いられる。   Vulcanized rubber using the above-mentioned solid rubber, liquid rubber, or a blend thereof is crosslinked with a crosslinking agent such as a sulfur-based crosslinking agent or organic peroxide, and the sulfur-based rubber is used for ordinary rubber crosslinking. Organic peroxides such as rubber powder sulfur and oil-treated sulfur include dicumyl peroxide, 2,4-dichlorobenzoyl peroxide, di-tert-butyl peroxide, 2,5-dimethyl-2,5 di (Tert-peroxy) -hexane and the like. Moreover, what was bridge | crosslinked using crosslinking agents, such as metal oxides, such as organic polyvalent amine, modified phenol resin, and magnesium oxide, is also used.

また、上記ゴム成分と架橋剤のほかに、カーボンブラックやシリカなどの補強剤、加硫促進剤、加硫促進助剤、亜鉛華、ステアリン酸、オイル、樹脂類、老化防止剤などのゴム用の各種配合剤が含まれるものであってもよい。   In addition to the above rubber components and crosslinking agents, reinforcing agents such as carbon black and silica, vulcanization accelerators, vulcanization accelerators, zinc white, stearic acid, oils, resins, anti-aging agents, etc. These various compounding agents may be included.

本発明の測定試料としての加硫ゴムは、実験室において研究用に配合、加硫されたもの、ゴム製品から採取されたものなどが用いられる。ここで、加硫ゴムは引張試験における100%伸張時の弾性率が、0.5〜4MPaにあるもの、好ましくは1〜3MPaのものが好適である。エボナイトのような多量硫黄加硫やカーボンブラックの多量配合ゴムなどの弾性率が4MPaを超えるものは、加硫ゴムであってもゴム分子内の運動性が低くなって溶液条件での測定が困難となり、また0.5MPa未満では架橋シグナルの強度が低くなり正確な測定ができなくなる。   As the vulcanized rubber as the measurement sample of the present invention, a vulcanized rubber compounded and vulcanized for research in a laboratory, a sample taken from a rubber product, or the like is used. Here, the vulcanized rubber preferably has an elastic modulus at 100% elongation in a tensile test of 0.5 to 4 MPa, preferably 1 to 3 MPa. When the elastic modulus exceeds 4 MPa, such as a large amount of sulfur vulcanized rubber such as ebonite or a large amount of rubber compounded with carbon black, even in the case of vulcanized rubber, the mobility in the rubber molecule is low, making it difficult to measure under solution conditions. If the pressure is less than 0.5 MPa, the strength of the cross-linking signal is lowered and accurate measurement cannot be performed.

上記の加硫ゴムは、次のような調整方法により細片からなるNMR測定用の固体試料に調整される。   Said vulcanized rubber is adjusted to the solid sample for NMR measurement which consists of a thin piece with the following adjustment methods.

[固体試料の調整方法]
(1)原料ゴムに硫黄などの架橋剤と亜鉛華、加硫促進剤などの配合剤を添加し、常法により混合して得た未加硫ゴム組成物をプレス加硫機などを用いて加硫し加硫ゴムを作製する。
(2)上記加硫ゴムを冷凍粉砕機、鋏やナイフなどにより粒径又は細片長が0.001〜0.5mmの細片に粉砕又は切断する。
(3)上記細片をアセトン抽出し、亜鉛華や加硫促進剤、脂肪酸などの添加物に由来する金属塩などの副生成物を濾過し、除去する。
(4)真空乾燥機等を用いてアセトンを除去し、乾燥させ、固体試料とする。
上記固体試料の細片が0.001mm未満であると飛散しやすくなり取扱いが困難であり、0.5mmを超えると固体NMR用MASプローブ内に平均的に収納し難くなり測定精度が低下するなど好ましくない。
[Preparation method of solid sample]
(1) Unvulcanized rubber composition obtained by adding a cross-linking agent such as sulfur and a compounding agent such as zinc white and vulcanization accelerator to raw rubber and mixing by a conventional method using a press vulcanizer or the like Vulcanized to produce vulcanized rubber.
(2) The vulcanized rubber is pulverized or cut into fine pieces having a particle size or a fine piece length of 0.001 to 0.5 mm by a freezing pulverizer, a scissors or a knife.
(3) The above-mentioned fine piece is extracted with acetone, and by-products such as metal salts derived from additives such as zinc white, vulcanization accelerator and fatty acid are filtered and removed.
(4) Acetone is removed using a vacuum dryer or the like and dried to obtain a solid sample.
If the solid sample strip is less than 0.001 mm, it will be easily scattered and difficult to handle, and if it exceeds 0.5 mm, it will be difficult to averagely store it in the solid NMR MAS probe and the measurement accuracy will decrease. It is not preferable.

冷凍粉砕機を用いる場合は、汎用の冷凍粉砕機を使用することができ、例えば、日本分析工業(株)製のJFC−300型が使用できる。冷凍媒体としては溶液窒素が好適であり、加硫ゴム10〜500mgを粉砕カプセル容器に仕込み、凍結状態で上記粒径の範囲になるまで粉砕処理される。   In the case of using a freeze pulverizer, a general-purpose freeze pulverizer can be used. For example, JFC-300 type manufactured by Nippon Analytical Industries, Ltd. can be used. Solution nitrogen is suitable as the freezing medium, and 10 to 500 mg of vulcanized rubber is charged into a pulverized capsule container, and pulverized until the particle diameter falls within the above range in a frozen state.

上記により得られた加硫ゴムの細片からなる固体試料は、固体高分解能NMR装置を使用し、次のようにして溶液NMR条件でNMR測定される。   The solid sample composed of the vulcanized rubber strip obtained as described above is subjected to NMR measurement under the solution NMR conditions using a solid high-resolution NMR apparatus as follows.

[溶液NMR条件での測定]
(1)NMR装置に固体NMR用MASプローブをセットし、プローブ内に固体試料を仕込む。
(2)上記試料をマジック角回転状態とする。
(3)NMR装置にDEPTなどの溶液用パルスプログラムを読み込ませる。
(4)90°パルスの最適化など、NMR装置の諸設定を行う。
(5)固体試料によるNMR測定を行い、NMRスペクトルを得て解析する。
[Measurement under solution NMR conditions]
(1) A solid NMR MAS probe is set in the NMR apparatus, and a solid sample is charged in the probe.
(2) The sample is in a magic angle rotation state.
(3) A pulse program for solution such as DEPT is read into the NMR apparatus.
(4) Various settings of the NMR apparatus such as optimization of 90 ° pulse are performed.
(5) An NMR measurement is performed on a solid sample, and an NMR spectrum is obtained and analyzed.

上記固体試料による溶液条件でのNMR測定によって、従来の固体条件NMR測定では得られなかった加硫ゴムの架橋形態やシス結合、トランス結合などの定量によるミクロ構造、ポリマーの分子量などの新たな分析情報を固体状態の加硫ゴムから直接入手することが可能となる。   New analysis of the vulcanized rubber's cross-linking morphology, cis bond, trans bond, and other microstructures, polymer molecular weight, etc., which were not obtained by conventional solid condition NMR measurement, by NMR measurement under the above-mentioned solid sample solution conditions Information can be obtained directly from the vulcanized rubber in the solid state.

このように加硫ゴムに関する新たな知見を得ることで、配合系や架橋系などの調整によって架橋構造を制御することで加硫ゴムの物性向上を図り、各種の用途に最適なゴム組成物の配合、架橋系の開発を行うことができる。   By obtaining new knowledge about vulcanized rubber in this way, the physical properties of vulcanized rubber can be improved by controlling the cross-linked structure by adjusting the compounding system and cross-linking system, and the optimal rubber composition for various applications. Formulation and cross-linking systems can be developed.

以下に実施例を用いて本発明を説明するが、本発明はこれらの実施例によってなんら限定されるものではない。   The present invention will be described below with reference to examples, but the present invention is not limited to these examples.

本実施例は、天然ゴムの硫黄架橋による架橋構造をNMR装置を用いて測定した例を示し、加硫ゴムの固体試料は下記のようにして調整した。   This example shows an example in which a crosslinked structure of natural rubber by sulfur crosslinking was measured using an NMR apparatus, and a solid sample of vulcanized rubber was prepared as follows.

天然ゴム(RSS#1)100重量部に対し、ゴム用粉末硫黄(JIS K6222に規定の1種)2重量部、架橋促進剤CBS(JIS K6202に規定)1重量部を試験用ロールを用いて混合し、得られたゴム組成物を150℃で30分間のプレス加硫を行い厚み1mmの加硫ゴムシートを作製した。この加硫ゴムの初期弾性率は1.1MPaである。   Using 100 parts by weight of natural rubber (RSS # 1), 2 parts by weight of powdered sulfur for rubber (a kind specified in JIS K6222) and 1 part by weight of a crosslinking accelerator CBS (specified in JIS K6202) are used for a test roll. After mixing, the obtained rubber composition was press vulcanized at 150 ° C. for 30 minutes to produce a vulcanized rubber sheet having a thickness of 1 mm. The initial elastic modulus of this vulcanized rubber is 1.1 MPa.

上記加硫ゴムシートを1辺が約0.1mm長さの立方体状に鋏を用いて切断した後、その1gをアセトン150ml内に8時間浸漬し、金属塩などの副生成物を抽出し、真空乾燥させNMR測定用の固体試料とした。   After cutting the vulcanized rubber sheet into a cube having a length of about 0.1 mm on one side using a scissors, 1 g of the vulcanized rubber sheet is immersed in 150 ml of acetone for 8 hours to extract a by-product such as a metal salt, Vacuum-dried to obtain a solid sample for NMR measurement.

核磁気共鳴(NMR)装置:BRUKER社製、DPX400型を使用し、固体試料300mgを固体NMR用7mmMASプローブに仕込み、公知の13C−NMR法(固体条件)、DEPT135法(溶液条件)、及びAPT法(溶液条件)でNMR測定を行った。そのNMRスペクトルを図1〜6に示す。 Nuclear magnetic resonance (NMR) apparatus: manufactured by BRUKER, DPX400 type, charged with 300 mg of solid sample into 7 mm MAS probe for solid NMR, known 13 C-NMR method (solid condition), DEPT135 method (solution condition), and NMR measurement was performed by APT method (solution conditions). The NMR spectrum is shown in FIGS.

図1は、従来の固体試料を用いた固体条件13C−NMR法(固体高分解能NMR)によるスペクトルで、図4は図1の要部拡大図である。図2は、固体試料による溶液条件DEPT135法(溶液高分解能NMR)によるスペクトル、図5はその要部拡大図、図3は固体試料による溶液条件APT法(溶液高分解能NMR)によるスペクトルで、図6はその要部拡大図である。 FIG. 1 is a spectrum obtained by a solid condition 13 C-NMR method (solid high-resolution NMR) using a conventional solid sample, and FIG. 4 is an enlarged view of a main part of FIG. 2 is a spectrum obtained by a solution condition DEPT135 method (solution high resolution NMR) using a solid sample, FIG. 5 is an enlarged view of the main part thereof, and FIG. 3 is a spectrum obtained by a solution condition APT method (solution high resolution NMR) using a solid sample. 6 is an enlarged view of the main part.

各スペクトルにおける各シグナルに付した符号1〜5は天然ゴムのイソプレン単位における各炭素元素のシグナルを示し(下記化学式参照)、スペクトル中に矢符で示す炭素、炭化水素6〜18(C、CH、CH,CH)は加硫によって現れるシグナルである。 Reference numerals 1 to 5 attached to each signal in each spectrum indicate signals of each carbon element in the isoprene unit of the natural rubber (see the following chemical formula), and carbon and hydrocarbons 6 to 18 (C, CH) indicated by arrows in the spectrum. , CH 2 , CH 3 ) are signals that appear upon vulcanization.

Figure 2006317414
Figure 2006317414

図1,4に示す従来の固体試料を用いた13C−NMR法によるスペクトルが全て上向きのシグナルであるのに対して、本発明に係る固体試料を用いたDEPT135法によるスペクトルでは、図2,5に示すようにCH(3)とCH(5)のシグナルが上向きに、CH(1,4)のシグナルが下向きに現れ、C(2)のシグナルは現れなくなる。 1 and 4, the spectra obtained by the 13 C-NMR method using the conventional solid sample are all upward signals, whereas the spectra obtained by the DEPT135 method using the solid sample according to the present invention are those shown in FIGS. As shown in FIG. 5, the signals of CH (3) and CH 3 (5) appear upward, the signal of CH 2 (1,4) appears downward, and the signal of C (2) does not appear.

図5の拡大図から、(7)、(9)、(15)〜(18)のシグナルは上向きに現れ、(11)〜(14)のシグナルは下向きに現れ、(6)、(8)、(10)のシグナルは現れなくなる。すなわち、(7)と(9)は3級炭素、(15)〜(18)は1級炭素、(11)〜(14)は2級炭素、(6)、(8)、(10)は4級炭素であることが分かる。   From the enlarged view of FIG. 5, the signals (7), (9), (15) to (18) appear upward, the signals (11) to (14) appear downward, and (6), (8) , (10) no longer appears. That is, (7) and (9) are tertiary carbons, (15)-(18) are primary carbons, (11)-(14) are secondary carbons, (6), (8), (10) are It turns out that it is a quaternary carbon.

また、図3,6に示すように、本発明に係る固体試料を用いたAPT法によるスペクトルでは、CH(1,4)とC(2)のシグナルが上向きに、CH(3)とCH(5)のシグナルが下向きに現れる。 As shown in FIGS. 3 and 6, in the spectrum by the APT method using the solid sample according to the present invention, the signals of CH 2 (1, 4) and C (2) are upward, and CH (3) and CH 3 (5) signal appears downward.

図6の拡大図から、(7)、(9)、(15)〜(18)のシグナルは下向きに現れ、(6)、(8)、(11)〜(14)のシグナルは上向きに現れる。すなわち、(15)〜(18)は1級炭素、(7)と(9)は3級炭素、(11)〜(14)は2級炭素、(6)、(8)、(10)は4級炭素であることが分かる。   From the enlarged view of FIG. 6, the signals (7), (9), (15) to (18) appear downward, and the signals (6), (8), (11) to (14) appear upward. . That is, (15) to (18) are primary carbon, (7) and (9) are tertiary carbon, (11) to (14) are secondary carbon, (6), (8), (10) are It turns out that it is a quaternary carbon.

このように、固体試料を用いた溶液条件でのDEPT135法やAPT法によるNMR測定では、炭素原子に結合している水素原子の数が分かり、すなわち加硫ゴムの架橋を構成する1級、2級、3級、4級の各炭素原子をスペクトルの強度から同定することでができる。   As described above, in the NMR measurement by the DEPT135 method or the APT method under the solution conditions using the solid sample, the number of hydrogen atoms bonded to the carbon atom is known, that is, the first grade, 2 constituting the vulcanized rubber crosslink. It is possible to identify the carbon atoms of grades 3, 3, and 4 from the intensity of the spectrum.

さらに、スペクトルから得られる架橋シグナルの強度比から、加硫ゴムのゴム物性を評価することができ、例えば、同一架橋密度の加硫ゴムにおいて、図4の(6)及び(8)のシグナル強度比(6)/(8)が大きいほど引張強度の大きい加硫ゴムが得られる。このシグナル強度比の式は、図5及び図6より(6)と(8)が同じ4級炭素の構造であることが分かったことから導き出されたものである。   Furthermore, the rubber physical properties of the vulcanized rubber can be evaluated from the intensity ratio of the crosslinking signal obtained from the spectrum. For example, in the vulcanized rubber having the same crosslinking density, the signal intensities of (6) and (8) in FIG. As the ratio (6) / (8) increases, a vulcanized rubber having a higher tensile strength can be obtained. This equation for the signal intensity ratio is derived from the fact that FIGS. 5 and 6 show that (6) and (8) have the same quaternary carbon structure.

このように、天然ゴムを始めとして各種合成ゴムの架橋により現れるシグナルの構造に関する情報が容易に得られるようになり、従来の固体試料では困難であった架橋形態の評価を簡単、短時間、低費用でかつ高い精度で行うことが可能となり、加硫ゴムの架橋構造の解析に多大に貢献するものとなる。   In this way, information on the signal structure that appears due to cross-linking of various synthetic rubbers including natural rubber can be easily obtained, and evaluation of the cross-linking form, which has been difficult with conventional solid samples, can be easily performed in a short time. It can be performed at high cost and with high accuracy, and greatly contributes to the analysis of the crosslinked structure of the vulcanized rubber.

そして、上記加硫ゴムの架橋構造評価方法によって測定された架橋シグナルの強度比が、0.1〜10である加硫ゴムは、各種用途に好適なゴム特性を発現させることができる。   And the vulcanized rubber whose intensity ratio of the crosslinking signal measured by the said crosslinked-structure evaluation method of vulcanized rubber is 0.1-10 can express a rubber characteristic suitable for various uses.

この架橋シグナルの強度比が低い加硫ゴムは、強度や弾性率、硬度等は低いが伸びを大きく設計することができ、逆に強度比の高い加硫ゴムは伸びを小さくして強度や弾性率等を高く設計することができ、加硫ゴム特性をコントロールし最適な加硫ゴムを得ることができる。   Vulcanized rubber with a low strength ratio of the cross-linking signal can be designed to have a large elongation although its strength, elastic modulus, hardness, etc. are low. The ratio and the like can be designed to be high, and the vulcanized rubber characteristics can be controlled to obtain an optimum vulcanized rubber.

本発明の加硫ゴムの架橋構造評価方法は、従来固体NMR条件でしか測定できなかった加硫ゴムの固体試料によるNMR測定を溶液NMR条件で測定を可能とし、加硫ゴムの架橋構造に関する新たな多くの情報を高い精度で、かつ簡単な評価方法で得ることができ、ゴム材料の研究開発に広く利用される。そして、加硫ゴムの物性向上により、各種の用途に最適なゴム材料や配合設計を提供することができる。   The method for evaluating the crosslinked structure of vulcanized rubber according to the present invention enables NMR measurement using a solid sample of a vulcanized rubber, which could only be measured under conventional solid NMR conditions, under solution NMR conditions. Can be obtained with high accuracy and a simple evaluation method, and is widely used for research and development of rubber materials. And by improving the physical properties of the vulcanized rubber, it is possible to provide rubber materials and compounding designs that are optimal for various applications.

13C−NMR法によるスペクトル図である。It is a spectrum figure by < 13 > C-NMR method. DEPT135法によるスペクトル図である。It is a spectrum figure by DEPT135 method. APT法よるスペクトル図である。It is a spectrum figure by APT method. 図1の要部拡大図である。It is a principal part enlarged view of FIG. 図2の要部拡大図である。FIG. 3 is an enlarged view of a main part of FIG. 2. 図3の要部拡大図である。It is a principal part enlarged view of FIG.

符号の説明Explanation of symbols

1,4……CHのシグナル
2……Cのシグナル
3……CHのシグナル
5……CHのシグナル
6,8,10……加硫により現れるCのシグナル
7,9……加硫により現れるCHのシグナル
11〜14……加硫により現れるCHのシグナル
15〜18……加硫により現れるCHのシグナル
1, 4 ... CH 2 signal 2 ... C signal 3 ... CH signal 5 ... CH 3 signal 6, 8, 10 ... C signal appearing by vulcanization 7, 9 ... By vulcanization Appearing CH signal 11-14 ... CH 2 signal appearing by vulcanization 15-18 ... CH 3 signal appearing by vulcanization

Claims (6)

加硫ゴムからなる細片を測定試料として用い、固体高分解能NMR装置を使用してマジック角回転状態において溶液NMR条件によりNMR測定を行い、前記加硫ゴム中の炭素のケミカルシフトと種類(1級〜4級)を同定する
ことを特徴とする加硫ゴムの架橋構造評価方法。
Using a strip made of vulcanized rubber as a measurement sample, using a solid high-resolution NMR device, NMR measurement is performed under solution NMR conditions in a magic angle rotation state, and the chemical shift and type of carbon in the vulcanized rubber (1 A method for evaluating a crosslinked structure of a vulcanized rubber, characterized by identifying a grade to a grade 4).
さらに、得られた架橋シグナルの強度比から、前記加硫ゴムのゴム物性を評価する
ことを特徴とする請求項1に記載の加硫ゴムの架橋構造評価方法。
The method for evaluating a crosslinked structure of a vulcanized rubber according to claim 1, further comprising evaluating the rubber physical properties of the vulcanized rubber from the intensity ratio of the obtained crosslinking signals.
前記加硫ゴムの引張試験における100%伸張時の弾性率が、0.5〜4MPaである
ことを特徴とする請求項1又は2に記載の加硫ゴムの架橋構造評価方法。
The method for evaluating a crosslinked structure of a vulcanized rubber according to claim 1 or 2, wherein an elastic modulus at 100% elongation in a tensile test of the vulcanized rubber is 0.5 to 4 MPa.
前記溶液NMR条件が、H−NMR法、DEPT法、APT法、2D法のいずれかである
ことを特徴とする請求項1又は2に記載の加硫ゴムの架橋構造評価方法。
The method for evaluating a crosslinked structure of a vulcanized rubber according to claim 1 or 2, wherein the solution NMR conditions are any one of 1 H-NMR method, DEPT method, APT method, and 2D method.
加硫ゴムの測定試料の細片長さが、0.001〜0.5mmである
ことを特徴とする請求項1又は2に記載の加硫ゴムの架橋構造評価方法。
The method for evaluating a crosslinked structure of a vulcanized rubber according to claim 1 or 2, wherein a strip length of the measurement sample of the vulcanized rubber is 0.001 to 0.5 mm.
請求項1〜5のいずれかに記載の加硫ゴムの架橋構造評価方法によって得られた架橋シグナルの強度比が、0.1〜10である
ことを特徴とする加硫ゴム。
A vulcanized rubber, wherein the strength ratio of the crosslinking signal obtained by the method for evaluating a crosslinked structure of a vulcanized rubber according to any one of claims 1 to 5 is 0.1 to 10.
JP2005143250A 2005-05-16 2005-05-16 Vulcanized rubber and method for evaluating crosslinking structure of same Withdrawn JP2006317414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005143250A JP2006317414A (en) 2005-05-16 2005-05-16 Vulcanized rubber and method for evaluating crosslinking structure of same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005143250A JP2006317414A (en) 2005-05-16 2005-05-16 Vulcanized rubber and method for evaluating crosslinking structure of same

Publications (1)

Publication Number Publication Date
JP2006317414A true JP2006317414A (en) 2006-11-24

Family

ID=37538202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005143250A Withdrawn JP2006317414A (en) 2005-05-16 2005-05-16 Vulcanized rubber and method for evaluating crosslinking structure of same

Country Status (1)

Country Link
JP (1) JP2006317414A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101214907B1 (en) * 2010-07-30 2012-12-24 세종대학교산학협력단 Method for measuring crosslink density of polymer and method for measuring degree of aging of polymer
JP2013257239A (en) * 2012-06-13 2013-12-26 Sumitomo Rubber Ind Ltd Method for predicting heat deterioration resistance of isoprene rubber
JP2014098620A (en) * 2012-11-14 2014-05-29 Sumitomo Rubber Ind Ltd Quantitative method of carbon black, rubber composition having carbon black content defined by quantitative method, and pneumatic tire using rubber composition
CN103901067A (en) * 2014-04-10 2014-07-02 扬州大学 Detection method for polycyclic aromatic hydrocarbons in rubber product
US10234408B2 (en) 2016-05-02 2019-03-19 Lg Chem, Ltd. Method for analyzing the length of sulfur crosslinking bonds in a vulcanized rubber

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101214907B1 (en) * 2010-07-30 2012-12-24 세종대학교산학협력단 Method for measuring crosslink density of polymer and method for measuring degree of aging of polymer
JP2013257239A (en) * 2012-06-13 2013-12-26 Sumitomo Rubber Ind Ltd Method for predicting heat deterioration resistance of isoprene rubber
CN103487454B (en) * 2012-06-13 2017-04-12 住友橡胶工业株式会社 Method for predicting resistance to heat deterioration of isoprene rubber
JP2014098620A (en) * 2012-11-14 2014-05-29 Sumitomo Rubber Ind Ltd Quantitative method of carbon black, rubber composition having carbon black content defined by quantitative method, and pneumatic tire using rubber composition
CN103901067A (en) * 2014-04-10 2014-07-02 扬州大学 Detection method for polycyclic aromatic hydrocarbons in rubber product
US10234408B2 (en) 2016-05-02 2019-03-19 Lg Chem, Ltd. Method for analyzing the length of sulfur crosslinking bonds in a vulcanized rubber

Similar Documents

Publication Publication Date Title
Ikeda et al. Vulcanization: new focus on a traditional technology by small-angle neutron scattering
EP2735865B1 (en) Method for evaluating energy loss in a polymeric material
KR20140083984A (en) Method for evaluating modulus of repulsion elasticity, hardness and energy loss of polymer material
JP2006317414A (en) Vulcanized rubber and method for evaluating crosslinking structure of same
JP6613637B2 (en) Method for evaluating response characteristics of internal structure of polymer materials
JP4443811B2 (en) Method for testing kneading state of rubber composition and method for producing rubber composition
JP6870309B2 (en) Wear resistance performance prediction method
JP6912999B2 (en) Sulfur cross-linked structure analysis method for polymer materials
JP2012173093A (en) Inspection method of rubber material
JP6135971B2 (en) Test method for crosslink density
Fernandes et al. Viscoelastic properties and sulfur distribution at the nanoscale in binary elastomeric blends: toward phase-specific cross-link density estimations
JP7053217B2 (en) Sulfur cross-linking structure analysis method for polymer materials
US9488707B2 (en) Method for predicting resistance to heat deterioration of isoprene rubber
JP6133576B2 (en) Carbon black quantification method, rubber composition in which carbon black content is defined by the quantification method, and pneumatic tire using the rubber composition
JP2011038945A (en) Nondestructive inspection method of rubber material
JP2020027084A (en) Crosslinked structure visualization method
Giese et al. Mechanistic and Kinetic Studies on Degradation Processes of Rubber Types
Berry The quest for a safer accelerator for polychloroprene rubber
Santoso et al. Investigations on initial stage of aging of tire rubbers by chemiluminescence spectroscopy
JP2006010462A (en) Crosslinking evaluation method of vulcanized rubber and vulcanized rubber
EP4249901A1 (en) Method for estimating abrasion resistance
EP4036542A1 (en) Evaluation method
JP6473123B2 (en) Rubber composition for tire
JP2020085776A (en) Rubber inspection method
JP2020085777A (en) Rubber inspection method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080805