JP6870309B2 - Wear resistance performance prediction method - Google Patents

Wear resistance performance prediction method Download PDF

Info

Publication number
JP6870309B2
JP6870309B2 JP2016243384A JP2016243384A JP6870309B2 JP 6870309 B2 JP6870309 B2 JP 6870309B2 JP 2016243384 A JP2016243384 A JP 2016243384A JP 2016243384 A JP2016243384 A JP 2016243384A JP 6870309 B2 JP6870309 B2 JP 6870309B2
Authority
JP
Japan
Prior art keywords
sulfur
sample
vulcanization accelerator
ray
wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016243384A
Other languages
Japanese (ja)
Other versions
JP2018096905A (en
Inventor
房恵 金子
房恵 金子
岸本 浩通
浩通 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2016243384A priority Critical patent/JP6870309B2/en
Publication of JP2018096905A publication Critical patent/JP2018096905A/en
Application granted granted Critical
Publication of JP6870309B2 publication Critical patent/JP6870309B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、耐摩耗性能予測方法に関する。 The present invention relates to a method for predicting wear resistance performance.

ゴム材料は、硫黄を用いてポリマー同士を橋掛けした架橋構造を形成させることで、強度、機械疲労、繰り返し変形によるエネルギーロスや周波数応答性など、特異な物理特性を発現するため、タイヤや制震材料などに応用され、欠かすことのできない材料となっている。しかしながら、今後、タイヤ需要の拡大等による原材料の供給不足等の懸念から、ゴム材料の性能の長期維持が求められており、そのためには、耐摩耗性能、耐破壊性能等を向上することが必要にある。 Rubber materials exhibit unique physical characteristics such as strength, mechanical fatigue, energy loss due to repeated deformation, and frequency responsiveness by forming a crosslinked structure in which polymers are bridged using sulfur. It is applied to seismic materials and is an indispensable material. However, in the future, there is a concern that the supply of raw materials will be insufficient due to the expansion of tire demand, etc., and it is required to maintain the performance of rubber materials for a long period of time. For that purpose, it is necessary to improve wear resistance, fracture resistance, etc. It is in.

ゴム材料の耐摩耗性能を向上させるポイントの1つとして架橋構造の制御が挙げられ、そのためには、硫黄や加硫促進剤の分散状態等を調べることが重要である。従来から、蛍光X線分析(XRF)、エネルギー分散型X線分光法(EDX)等を用いた硫黄のマッピングが提案されており、硫黄の分散状態が分析されているが、例えば、加硫系材料として、硫黄加硫剤と共に用いられ、加硫反応に重要な加硫促進剤と区別して分散状態を調べることができない。 Control of the crosslinked structure is one of the points for improving the wear resistance performance of the rubber material, and for that purpose, it is important to investigate the dispersed state of sulfur and the vulcanization accelerator. Conventionally, mapping of sulfur using fluorescent X-ray analysis (XRF), energy dispersion type X-ray spectroscopy (EDX), etc. has been proposed, and the dispersion state of sulfur has been analyzed. As a material, it is used together with a sulfur vulcanizing agent, and its dispersion state cannot be investigated in distinction from the vulcanization accelerator that is important for the vulcanization reaction.

本発明は、前記課題を解決し、高分子複合材料中の加硫促進剤やそれに準ずる添加剤の分散状態を調べ、耐摩耗性能を予測する耐摩耗性能予測方法を提供することを目的とする。 An object of the present invention is to solve the above-mentioned problems, to investigate the dispersed state of a vulcanization accelerator and an additive similar thereto in a polymer composite material, and to provide a wear resistance performance prediction method for predicting wear resistance performance. ..

本発明は、加硫促進剤及びそれに準ずる添加剤からなる群より選択される少なくとも1種の化合物を含む高分子複合材料に高輝度X線を照射し、X線のエネルギーを変えながら該高分子複合材料の微小領域におけるX線吸収量を測定することにより、前記化合物の分散状態を調べ、該分散状態に基いて耐摩耗性能を予測する耐摩耗性能予測方法に関する。 In the present invention, a polymer composite material containing at least one compound selected from the group consisting of a sulfide accelerator and an additive equivalent thereto is irradiated with high-intensity X-rays, and the polymer is subjected to high-intensity X-ray energy while changing the X-ray energy. The present invention relates to a wear-resistant performance prediction method for investigating the dispersed state of the compound by measuring the amount of X-ray absorption in a minute region of the composite material and predicting the wear-resistant performance based on the dispersed state.

前記高分子複合材料の2次元マッピング画像における前記化合物の粒子面積に基いて耐摩耗性能を予測する方法であることが好ましい。
前記化合物の最大粒子面積が小さいほど耐摩耗性能が優れていると判断する方法であることが好ましい。
It is preferable that the method predicts the wear resistance performance based on the particle area of the compound in the two-dimensional mapping image of the polymer composite material.
It is preferable that the method is to determine that the smaller the maximum particle area of the compound is, the better the wear resistance performance is.

前記高輝度X線を用いて、エネルギー範囲130〜280eVの硫黄L殼吸収端におけるX線吸収量及びエネルギー範囲370〜500eVの窒素K殼吸収端におけるX線吸収量を測定する方法であることが好ましい。 It is a method of measuring the X-ray absorption amount at the sulfur L shell absorption end in the energy range of 130 to 280 eV and the X-ray absorption amount at the nitrogen K shell absorption end in the energy range of 370 to 500 eV using the high-intensity X-ray. preferable.

本発明によれば、加硫促進剤及びそれに準ずる添加剤からなる群より選択される少なくとも1種の化合物を含む高分子複合材料に高輝度X線を照射し、X線のエネルギーを変えながら該高分子複合材料の微小領域におけるX線吸収量を測定することにより、前記化合物の分散状態を調べ、該分散状態に基いて耐摩耗性能を予測する耐摩耗性能予測方法であるので、実際にタイヤ等の製品を製造して耐久試験をすることなく、耐摩耗性能を予測することが可能となる。従って、開発時間やコストも削減できる。 According to the present invention, a polymer composite material containing at least one compound selected from the group consisting of a vulcanization accelerator and an additive equivalent thereto is irradiated with high-intensity X-rays, and the X-ray energies are changed. Since it is a wear-resistant performance prediction method for investigating the dispersed state of the compound by measuring the amount of X-ray absorption in a minute region of the polymer composite material and predicting the wear-resistant performance based on the dispersed state, the tire is actually used. It is possible to predict the wear resistance performance without manufacturing a product such as the above and performing a durability test. Therefore, development time and cost can be reduced.

試料のマッピング画像及びX線吸収スペクトルを示す図の一例。An example of a diagram showing a sample mapping image and an X-ray absorption spectrum. 試料のマッピング画像及びX線吸収スペクトルを示す図の一例。An example of a diagram showing a sample mapping image and an X-ray absorption spectrum. 前記マッピング画像を二値化した図及び加硫促進剤粒子の粒子面積と個数の関係図の一例。An example of a binarized diagram of the mapping image and a relationship diagram between the particle area and the number of vulcanization accelerator particles. 加硫促進剤粒子の最大粒子面積と耐摩耗性能の関係図の一例。An example of a relationship diagram between the maximum particle area of vulcanization accelerator particles and wear resistance performance.

本発明は、加硫促進剤及びそれに準ずる添加剤からなる群より選択される少なくとも1種の化合物を含む高分子複合材料に高輝度X線を照射し、X線のエネルギーを変えながら該高分子複合材料の微小領域におけるX線吸収量を測定することにより、前記化合物の分散状態を調べ、該分散状態に基いて耐摩耗性能を予測する耐摩耗性能予測方法である。 In the present invention, a polymer composite material containing at least one compound selected from the group consisting of a sulfide accelerator and an additive equivalent thereto is irradiated with high-intensity X-rays, and the polymer is irradiated with high-intensity X-rays while changing the energy of the X-rays. This is a wear-resistant performance prediction method for investigating the dispersed state of the compound by measuring the amount of X-ray absorption in a minute region of the composite material and predicting the wear-resistant performance based on the dispersed state.

耐摩耗性能等の検討には、サンプル中に含まれる各加硫促進剤やそれに準ずる添加剤の分散状態(未加硫ゴム材料や加硫ゴム材料中で加硫促進剤やそれに準ずる添加剤の分散状態、等)を精密に観察することが必要である。 In order to examine the wear resistance performance, etc., the dispersed state of each vulcanization accelerator and similar additives contained in the sample (in unvulcanized rubber materials and vulcanized rubber materials, vulcanization accelerators and similar additives It is necessary to precisely observe the dispersed state, etc.).

この点について、本発明の方法は、先ず、サンプルの微小領域のX線吸収量を測定して加硫促進剤やそれに準ずる添加剤の分散状態を測定するもので、例えば、窒素K殼吸収端や硫黄L殼吸収端におけるNEXAFSの2次元マッピングを測定することにより、サンプルの架橋構造の制御に重要な加硫促進剤やそれに準ずる添加剤のそれぞれの分散状態を観察できる。 Regarding this point, the method of the present invention first measures the amount of X-ray absorption in a minute region of a sample to measure the dispersed state of a vulcanization accelerator or an additive equivalent thereto. For example, a nitrogen K shell absorption edge. By measuring the two-dimensional mapping of NEXAFS at the sulfur L shell absorption end, it is possible to observe the dispersed state of each of the vulcanization accelerator and the additive equivalent thereto, which are important for controlling the crosslinked structure of the sample.

そして本発明の方法は、その分散状態と耐摩耗性能の関係性が有ることを見出して、該分散状態の結果をもとに耐摩耗性能を予測する方法であり、例えば、サンプル中に存在する加硫促進剤やそれに準ずる添加剤の粒子径分布(サンプル断面写真中に存在する加硫促進剤等を示す面積の分布、等)に基いて、該サンプルを用いて作製したタイヤ等の製品の耐摩耗性能の予測が可能である。 The method of the present invention is a method of finding that there is a relationship between the dispersed state and the wear resistance performance and predicting the wear resistance performance based on the result of the dispersed state. For example, it exists in a sample. Based on the particle size distribution of vulcanization accelerators and similar additives (distribution of areas showing vulcanization accelerators, etc. present in the cross-sectional photograph of the sample, etc.), tires and other products manufactured using the samples. It is possible to predict the wear resistance performance.

従って、加硫促進剤等の化合物を含む高分子複合材料(試験片)を本発明の方法に供することにより、実際にタイヤ等の製品を製造して耐久試験に供せずとも、該製品の耐摩耗性能を予測できる。 Therefore, by subjecting a polymer composite material (test piece) containing a compound such as a vulcanization accelerator to the method of the present invention, it is not necessary to actually manufacture a product such as a tire and subject it to a durability test. Abrasion resistance can be predicted.

本発明の方法に供される高分子複合材料は、加硫促進剤及びそれに準ずる添加剤からなる群より選択される少なくとも1種の化合物を含む材料である。加硫促進剤は、一般にゴム組成物の混練工程で添加(配合)、混練される加硫促進作用を持つ化合物である。加硫促進剤に準ずる添加剤は、無硫黄加硫剤(サルファードナー)である。 The polymer composite material used in the method of the present invention is a material containing at least one compound selected from the group consisting of a vulcanization accelerator and an additive equivalent thereto. The vulcanization accelerator is a compound having a vulcanization promoting action that is generally added (blended) and kneaded in the kneading step of the rubber composition. An additive similar to the vulcanization accelerator is a sulfur-free vulcanizing agent (sulfur donor).

加硫促進剤としては、グアニジン類、スルフェンアミド類、チアゾール類、チウラム類、ジチオカルバミン酸塩類、チオウレア類、キサントゲン酸塩類等、タイヤ工業で公知の各種加硫促進剤が挙げられる。特に、本発明の方法は、スルフェンアミド類等の硫黄含有加硫促進剤や、更に窒素も含む硫黄・窒素含有加硫促進剤等にも観察、分析にも好適に適用できる。 Examples of the vulcanization accelerator include various vulcanization accelerators known in the tire industry, such as guanidines, sulfenamides, thiazoles, thiurams, dithiocarbamates, thioureas, and xanthogenates. In particular, the method of the present invention can be suitably applied to observation and analysis of sulfur-containing vulcanization accelerators such as sulfenamides and sulfur / nitrogen-containing vulcanization accelerators containing nitrogen.

加硫促進剤に準ずる添加剤としては、4,4’−ジチオジモルホリン、2−(4’−モルホリノジチオ)ベンゾチアゾール、テトラメチルチウラムジスルフィド等が挙げられる。 Examples of the additive similar to the vulcanization accelerator include 4,4'-dithiodimorpholine, 2- (4'-morpholinodithio) benzothiazole, tetramethylthiuram disulfide and the like.

高分子複合材料は、加硫剤を含むものでも良い。
加硫剤としては、タイヤ工業で一般的なものを使用でき、硫黄加硫剤(粉末硫黄等の硫黄からなる加硫剤);1,6−ヘキサメチレン−ジチオ硫酸ナトリウム・二水和物、1,6−ビス(N,N’−ジベンジルチオカルバモイルジチオ)ヘキサン)などの硫黄を含む加硫剤:等が挙げられる。
The polymer composite material may contain a vulcanizing agent.
As the vulcanizing agent, those commonly used in the tire industry can be used. Sulfur vulcanizing agent (vulcanizing agent consisting of sulfur such as powdered sulfur); 1,6-hexamethylene-sodium dithiosulfate / dihydrate, Sulfur-containing vulcanizers such as 1,6-bis (N, N'-dibenzylthiocarbamoyldithio) hexane): and the like.

高分子複合材料は、ジエン系ポリマーや、ブレンドゴム材料と1種類以上の樹脂とが複合された複合材料を含むものが好ましい。ジエン系ポリマーとしては、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、アクリロニトリルブタジエンゴム(NBR)、クロロプレンゴム(CR)、ブチルゴム(IIR)、ハロゲン化ブチルゴム(X−IIR)、スチレンイソプレンブタジエンゴム(SIBR)などの二重結合を有するポリマーが挙げられる。 The polymer composite material preferably contains a diene-based polymer or a composite material in which a blended rubber material and one or more kinds of resins are composited. Examples of the diene polymer include natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), styrene butadiene rubber (SBR), acrylonitrile butadiene rubber (NBR), chloroprene rubber (CR), butyl rubber (IIR), and halogen. Examples thereof include polymers having a double bond such as butylated butyl rubber (X-IIR) and styrene isoprene butadiene rubber (SIBR).

上記樹脂としては特に限定されず、例えば、ゴム工業分野で汎用されているものが挙げられ、例えば、C5系脂肪族石油樹脂、シクロペンタジエン系石油樹脂などの石油樹脂が挙げられる。 The resin is not particularly limited, and examples thereof include those widely used in the rubber industry, and examples thereof include petroleum resins such as C5-based aliphatic petroleum resins and cyclopentadiene-based petroleum resins.

なお、高分子複合材料は、未加硫の複合材料、加硫済の複合材料のいずれでもよいが、種々の粒子径を持つ加硫促進剤等の粒子が観察され、該粒子径と耐摩耗性能の関係性を検討し易いという点から、未加硫の複合材料を用いる方が好適である。 The polymer composite material may be either an unvulcanized composite material or a vulcanized composite material, but particles such as a vulcanization accelerator having various particle sizes are observed, and the particle size and wear resistance are observed. It is preferable to use an unvulcanized composite material because it is easy to examine the relationship between performance.

本発明でX線吸収量を測定する方法としては、高輝度X線を用いて試料の微小領域におけるX線吸収スペクトルを測定する手法であるマイクロXAFS(X−ray Absorption Fine Structure)等を採用できる。通常のXAFSは、空間分解能を有しないため、試料全体の吸収量を検出するのに対し、マイクロXAFSは、試料の微小領域におけるX線吸収スペクトルを測定する測定方法であり、通常、100nm以下程度の空間分解能を有している。そのため、マイクロXAFSを採用することにより、試料中に含まれている各加硫促進剤やそれに準ずる添加剤、更には加硫剤等の吸収を検知し、各加硫促進剤やそれに準ずる添加剤、加硫剤等の吸収量の違いを検出できる。 As a method for measuring the amount of X-ray absorption in the present invention, micro XAFS (X-ray Absorption Fine Structure) or the like, which is a method for measuring an X-ray absorption spectrum in a minute region of a sample using high-intensity X-rays, can be adopted. .. Since ordinary XAFS does not have spatial resolution, it detects the absorption amount of the entire sample, whereas micro XAFS is a measurement method for measuring the X-ray absorption spectrum in a minute region of a sample, and is usually about 100 nm or less. Has a spatial resolution of. Therefore, by adopting Micro XAFS, absorption of each vulcanization accelerator and its equivalent additives, and further vulcanization agents and the like contained in the sample is detected, and each vulcanization accelerator and its equivalent additives are detected. , Difference in absorption amount of vulcanizing agent, etc. can be detected.

空間分解能に優れるという点から、マイクロXAFSは軟X線領域で測定する方法(マイクロNEXAFS)が好ましく、走査型透過X線顕微鏡(STXM:Scanning Transmission X−ray Microscopy)法やX線光電子顕微鏡(XPEEM:X−ray Photo emission electron microscopy)法、等が挙げられる。 From the viewpoint of excellent spatial resolution, the micro XAFS is preferably a method of measuring in a soft X-ray region (micro NEXAFS), and is preferably a scanning transmission X-ray microscope (STXM) method or an X-ray photoemission electron microscope (XPEEM). : X-ray Photoemission electron microscope) method and the like can be mentioned.

本発明では、ポリマー中の加硫促進剤等がX線損傷しやすいため、X線損傷が起きにくい方法での測定が望ましく、この点から、X線損傷が生じにくいSTXM法の方が好適である。また、測定の際、試料を冷却することでX線損傷を防ぐことが更に好ましい。 In the present invention, since the vulcanization accelerator and the like in the polymer are easily damaged by X-rays, it is desirable to measure by a method in which X-ray damage is unlikely to occur, and from this point of view, the STXM method in which X-ray damage is unlikely to occur is preferable. is there. Further, it is more preferable to prevent X-ray damage by cooling the sample at the time of measurement.

STXM法は、フレネルゾーンプレートで集光した高輝度X線を試料の微小領域に照射し、試料を抜けた光(透過光)と入射光を測定することで微小領域のX線吸収量を測定できる。なお、フレネルゾーンプレートの代わりに、X線反射ミラーを用いたKirkpatrick−Baez(K−B)集光系で高輝度X線を集光してもよい。 The STXM method measures the amount of X-ray absorption in a minute area by irradiating a minute area of the sample with high-intensity X-rays collected by a Fresnel zone plate and measuring the light (transmitted light) and incident light that have passed through the sample. it can. Instead of the Fresnel zone plate, a Kirkpatrick-Baez (KB) condensing system using an X-ray reflecting mirror may be used to condense high-intensity X-rays.

そして、微小領域のX線吸収量を測定し、次いでNEXAFSの2次元マッピングを行って得られたマッピング画像や、分散状態を観察する試料部位のX線吸収スペクトル、更には加硫促進剤やそれに準ずる添加剤、加硫剤等の試料に含まれる各材料の標準スペクトルを用いることにより、当該部位における加硫促進剤やそれに準ずる添加剤、加硫剤等の各材料の分散状態を観察できる。 Then, the amount of X-ray absorption in a minute region is measured, and then the mapping image obtained by performing two-dimensional mapping of NEXAFS, the X-ray absorption spectrum of the sample site for observing the dispersed state, the vulcanization accelerator, and the like. By using the standard spectrum of each material contained in the sample such as a vulcanizing agent and a vulcanizing agent, it is possible to observe the dispersed state of each material such as the vulcanization accelerator and the vulcanizing agent and the vulcanizing agent at the site.

X線エネルギーで走査するため光源には連続X線発生装置が必要であり、詳細な化学状態を解析するには高いS/N比及びS/B比のX線吸収スペクトルを測定する必要がある。そのため、シンクロトロンから放射されるX線は、少なくとも1010(photons/s/mrad/mm/0.1%bw)以上の輝度を有し、且つ連続X線源であるため、測定には最適である。尚、bwはシンクロトロンから放射されるX線のband widthを示す。 A continuous X-ray generator is required for the light source to scan with X-ray energy, and it is necessary to measure X-ray absorption spectra with high S / N ratio and S / B ratio in order to analyze detailed chemical states. .. Therefore, X-rays emitted from the synchrotron, since at least 10 10 (photons / s / mrad 2 / mm 2 /0.1%bw) has more brightness, a and continuous X-ray source, the measurement Is optimal. Note that bw indicates the band width of X-rays emitted from the synchrotron.

高輝度X線の輝度(photons/s/mrad/mm/0.1%bw)は、好ましくは1010以上、より好ましくは1011以上、更に好ましくは1012以上である。上限は特に限定されないが、放射線ダメージがない程度以下のX線強度を用いることが好ましい。 High-intensity X-ray intensity (photons / s / mrad 2 / mm 2 /0.1%bw) is preferably 10 10 or more, more preferably 10 11 or more, more preferably 10 12 or more. The upper limit is not particularly limited, but it is preferable to use an X-ray intensity of not more than a degree that does not cause radiation damage.

また、高輝度X線の光子数(photons/s)は、好ましくは10以上、より好ましくは10以上である。上限は特に限定されないが、放射線ダメージがない程度以下のX線強度を用いることが好ましい。 Further, the photon number of the high intensity X-ray (photons / s) is preferably 10 7 or more, more preferably 10 9 or more. The upper limit is not particularly limited, but it is preferable to use an X-ray intensity of not more than a degree that does not cause radiation damage.

高輝度X線を用いて走査するエネルギー範囲は、好ましくは4000eV以下、より好ましくは1500eV以下、更に好ましくは1000eV以下である。4000eVを超えると、目的とする高分子複合材料を分析できないおそれがある。下限は特に限定されない。 The energy range scanned using high-intensity X-rays is preferably 4000 eV or less, more preferably 1500 eV or less, and even more preferably 1000 eV or less. If it exceeds 4000 eV, the target polymer composite material may not be analyzed. The lower limit is not particularly limited.

なかでも、高輝度X線を用いて、370〜500eVのエネルギー範囲を走査して窒素K殼吸収端におけるX線吸収量を測定することが好ましく、130〜280eVのエネルギー範囲を走査して硫黄L殼吸収端におけるX線吸収量を測定し、かつ370〜500eVのエネルギー範囲を走査して窒素K殼吸収端におけるX線吸収量を測定することがより好ましい。窒素K殼吸収端におけるX線吸収量の測定により、加硫促進剤やそれに準ずる添加剤の分散状態を調べることは可能であるが、併せて硫黄L殼吸収端におけるX線吸収量も測定すると、同じ視野で硫黄加硫剤の分散も調べられる。 Among them, it is preferable to scan an energy range of 370 to 500 eV to measure the amount of X-ray absorption at the nitrogen K shell absorption edge using high-intensity X-rays, and scan an energy range of 130 to 280 eV to sulfur L. It is more preferable to measure the X-ray absorption amount at the shell absorption end and to measure the X-ray absorption amount at the nitrogen K shell absorption end by scanning the energy range of 370 to 500 eV. By measuring the amount of X-ray absorption at the nitrogen K shell absorption end, it is possible to investigate the dispersion state of the vulcanization accelerator and similar additives, but at the same time, the amount of X-ray absorption at the sulfur L shell absorption end is also measured. , The dispersion of the sulfur vulcanizer can also be investigated from the same viewpoint.

なお、硫黄L殼吸収端のエネルギー範囲は、140〜200eVがより好ましく、150〜180eVが更に好ましい。窒素K殼吸収端のエネルギー範囲は、375〜450eVがより好ましく、380〜430eVが更に好ましい。 The energy range of the sulfur L shell absorption end is more preferably 140 to 200 eV, and even more preferably 150 to 180 eV. The energy range of the nitrogen K shell absorption end is more preferably 375 to 450 eV, further preferably 380 to 430 eV.

STXM法等では、放射光が使用されるが、測定するエネルギーがかけ離れている場合、光学系が変わるため、別のビームラインで実験する必要がある。
各吸収端のエネルギーは、
[硫黄L殼吸収端]L2(2p1/2):163.6eV、L3(2p3/2):162.5eV
[窒素K殼吸収端]409.9eV
[硫黄K殼吸収端]2472eV
で、硫黄K殼吸収端のみエネルギーが高いため、硫黄K殼吸収端と窒素K殼吸収端を測定しようとすると、別々に実験する必要がある。そして、違うエネルギー領域でも同じ視野を測定しない限り、硫黄加硫剤、加硫促進剤やそれに準ずる添加剤の各材料の分散状態を評価できないので、硫黄K殼吸収端と窒素K殼吸収端の測定では、別のビームラインでの実験が必要で、同じ視野での測定が困難である。よって、当該測定では、各材料の分散状態を評価することは基本的に困難である。
Synchrotron radiation is used in the STXM method and the like, but if the energies to be measured are far apart, the optical system changes, so it is necessary to experiment with a different beamline.
The energy of each absorption edge is
[Sulfur L shell absorption end] L2 (2p1 / 2): 163.6eV, L3 (2p3 / 2): 162.5eV
[Nitrogen K shell absorption edge] 409.9 eV
[Sulfur K shell absorption edge] 2472eV
Since the energy is high only at the sulfur K shell absorption end, it is necessary to conduct separate experiments when trying to measure the sulfur K shell absorption end and the nitrogen K shell absorption end. Unless the same field of view is measured in different energy regions, the dispersion state of each material of the sulfur vulcanizer, vulcanization accelerator, and similar additives cannot be evaluated. The measurement requires experiments on different beamlines, making it difficult to measure in the same field of view. Therefore, it is basically difficult to evaluate the dispersed state of each material in the measurement.

これに対し、硫黄K殼吸収端ではなく、硫黄L殼吸収端を採用すると、窒素K殼吸収端と測定するエネルギー範囲が近く、該窒素K殼吸収端と、同一装置での測定が可能となる。従って、同じ視野での測定が可能となり、各材料の分散状態を同時に観察できるようになる。 On the other hand, if the sulfur L shell absorption end is adopted instead of the sulfur K shell absorption end, the energy range to be measured is close to that of the nitrogen K shell absorption end, and the measurement can be performed with the same device as the nitrogen K shell absorption end. Become. Therefore, the measurement can be performed in the same field of view, and the dispersed state of each material can be observed at the same time.

上記のマイクロXAFS法を用いて、加硫促進剤やそれに準ずる添加剤を含む高分子複合材料のX線吸収スペクトル測定を行い、2次元マッピング、aXis2000等のソフトェア、等を用いて解析することにより、試料中に含まれる各加硫促進剤等の分散状態を観察できる。以下、この点について具体的に説明する。 By using the above micro XAFS method, X-ray absorption spectrum measurement of a polymer composite material containing a vulcanization accelerator and an additive equivalent thereto is performed, and analysis is performed using two-dimensional mapping, software such as aXis2000, and the like. , The dispersed state of each vulcanization accelerator contained in the sample can be observed. Hereinafter, this point will be specifically described.

図1−1(a)は、試料(加硫促進剤CZ、DPGを含む高分子複合材料)の窒素K殼吸収端のマッピング画像(上段)、当該試料のX線吸収スペクトル(中段)、加硫促進剤CZ(N−tert−ブチル−2−ベンゾチアゾリルスルフェンアミド)、加硫促進剤DPG(1,3−ジフェニルグアニジン)の窒素K殼吸収端のX線吸収スペクトル(下段)を示す。図1−2(b)は、試料の硫黄L殼吸収端のマッピング画像(上段)、当該試料のX線吸収スペクトル(中段)、硫黄加硫剤、加硫促進剤CZ、DPGの硫黄L殼吸収端のX線吸収スペクトル(下段)を示す。 FIG. 1-1 (a) shows a mapping image of the nitrogen K shell absorption edge of a sample (a polymer composite material containing a vulcanization accelerator CZ and DPG) (upper row), an X-ray absorption spectrum of the sample (middle row), and addition. The X-ray absorption spectrum (lower) of the nitrogen K sample absorption edge of the vulcanization accelerator CZ (N-tert-butyl-2-benzothiazolyl sulphenamide) and the vulcanization accelerator DPG (1,3-diphenylguanidine) is shown. .. FIG. 1-2 (b) shows a mapping image of the sulfur L shell absorption edge of the sample (upper), an X-ray absorption spectrum of the sample (middle), a vulcanizing agent, a vulcanization accelerator CZ, and a sulfur L shell of DPG. The X-ray absorption spectrum (lower) at the absorption end is shown.

試料は、天然ゴム、ブタジエンゴム、硫黄(硫黄加硫剤)、加硫促進剤CZ、加硫促進剤DPG等を混練し、作製した高分子複合材料(未加硫)である。先ず、窒素K殼吸収端について、走査型透過X線顕微鏡(STXM)法を用いて、396〜403eVのエネルギー範囲を走査して窒素K殼吸収端におけるX線吸収量を測定し、試料のX線吸収スペクトルを得る。更に、得られた窒素K殼吸収端のX線吸収スペクトルに2次元マッピングを行い、図1−1(a)上段のマッピング画像を得る。 The sample is a polymer composite material (unvulcanized) prepared by kneading natural rubber, butadiene rubber, sulfur (sulfur vulcanizing agent), vulcanization accelerator CZ, vulcanization accelerator DPG and the like. First, the nitrogen K shell absorption edge is scanned in the energy range of 396 to 403 eV using a scanning transmission X-ray microscope (STXM) method to measure the X-ray absorption amount at the nitrogen K shell absorption edge, and the X-ray of the sample is measured. Obtain a line absorption spectrum. Further, two-dimensional mapping is performed on the X-ray absorption spectrum of the obtained nitrogen K shell absorption end to obtain a mapping image in the upper part of FIG. 1-1 (a).

そして、得られたマッピング画像において、丸囲み箇所(試料の丸囲み箇所)の黒色部位の窒素K殼吸収端におけるX線吸収量、加硫促進剤CZ、DPGの窒素K殼吸収端におけるX線吸収量を、同エネルギー範囲で測定し、試料の該黒色部位のX線吸収スペクトル(図1−1(a)中段)、CZ、DPGのX線吸収スペクトル(標準スペクトル)を得る(図1−1(a)下段)。 Then, in the obtained mapping image, the amount of X-ray absorption at the nitrogen K shell absorption end of the black part of the circled part (circled part of the sample), the vulture accelerator CZ, and the X-ray at the nitrogen K shell absorption end of DPG. The amount of absorption is measured in the same energy range to obtain an X-ray absorption spectrum (middle of FIG. 1-1 (a)) of the black portion of the sample and an X-ray absorption spectrum (standard spectrum) of CZ and DPG (Fig. 1-). 1 (a) lower row).

窒素K殼吸収端と同一測定箇所の硫黄L殼吸収端についても、同様に、STXM法を用いて、162〜168eVのエネルギー範囲を走査して試料のX線吸収スペクトルを得、その硫黄L殼吸収端のX線吸収スペクトルに2次元マッピングを行い、図1−2(b)上段のマッピング画像を得る。 Similarly, for the sulfur L shell absorption end at the same measurement location as the nitrogen K shell absorption end, the STXM method was used to scan the energy range of 162 to 168 eV to obtain an X-ray absorption spectrum of the sample, and the sulfur L shell was obtained. Two-dimensional mapping is performed on the X-ray absorption spectrum at the absorption edge, and the mapping image in the upper part of FIG. 1-2 (b) is obtained.

そして、得られたマッピング画像において、丸囲み箇所(試料の丸囲み箇所)の黒色部位(黒色部位1:硫黄及び加硫促進剤CZが存在する部位)、黒色部位2:主に加硫促進剤CZが存在する部位)の硫黄L殼吸収端におけるX線吸収量、硫黄、CZの硫黄L殼吸収端におけるX線吸収量を、同エネルギー範囲で測定し、試料の該黒色部位1、2のX線吸収スペクトル(図1−2(b)中段)、硫黄、CZのX線吸収スペクトル(標準スペクトル)を得る(図1−2(b)下段)。 Then, in the obtained mapping image, the black part (black part 1: the part where sulfur and the sulfurization accelerator CZ are present) and the black part 2: mainly the brewing accelerator in the circled part (circled part of the sample). The amount of X-ray absorption at the sulfur L shell absorption end of CZ) and the amount of X-ray absorption of sulfur and CZ at the sulfur L shell absorption end were measured in the same energy range, and the black parts 1 and 2 of the sample were measured. An X-ray absorption spectrum (middle of FIG. 1-2 (b)) and an X-ray absorption spectrum (standard spectrum) of sulfur and CZ are obtained (lower of FIG. 1-2 (b)).

マッピング画像では黒色部位の方がX線吸収量が大きく、これは、黒色部位に硫黄又は加硫促進剤が存在することを示している。そして、図1−1(a)の黒色部位の窒素K殼吸収端のスペクトル(図1−1(a)中段)を、CZ、DPGの標準スペクトル(図1−1(a)下段)と比較すると、加硫促進剤CZ、DPGのスペクトルと同エネルギーにピークを有している。従って、試料の当該部位に加硫促進剤CZ、DPGが存在することが分かる。 In the mapping image, the amount of X-ray absorption is larger in the black part, which indicates that sulfur or a vulcanization accelerator is present in the black part. Then, the spectrum of the nitrogen K shell absorption end of the black portion in FIG. 1-1 (a) (middle of FIG. 1-1 (a)) is compared with the standard spectrum of CZ and DPG (lower of FIG. 1-1 (a)). Then, it has a peak at the same energy as the spectra of the vulcanization accelerators CZ and DPG. Therefore, it can be seen that the vulcanization accelerators CZ and DPG are present at the site of the sample.

同様に、図1−2(b)の黒色部位1、2の硫黄L殼吸収端(図1−2(b)中段)を、硫黄、CZの標準スペクトル(図1−2(b)下段)と比較すると、硫黄、加硫促進剤CZと同エネルギーにピークを有している。従って、試料の当該箇所に、硫黄と、加硫促進剤CZとが存在することが分かる。 Similarly, the sulfur L shell absorption ends (middle of FIG. 1-2 (b)) of the black parts 1 and 2 of FIGS. 1-2 (b) are the standard spectra of sulfur and CZ (lower of FIG. 1-2 (b)). Compared with sulfur, it has a peak at the same energy as sulfur and the vulcanization accelerator CZ. Therefore, it can be seen that sulfur and the vulcanization accelerator CZ are present at the relevant portion of the sample.

更に、図1−2(b)上段の硫黄L殼吸収端のマッピング画像において、硫黄及び加硫促進剤の存在が確認される黒色部位は、コントラストのはっきりした粒状の部分とコントラストのはっきりしない箇所が見られる。一方、図1−1(a)上段の窒素K殼吸収端のマッピング画像は、黒色部位のコントラストがはっきりしていない。従って、コントラストがはっきりしている粒状部分に硫黄、はっきりしていない部分に加硫促進剤が、主に分散していると予想される。 Further, in the mapping image of the sulfur L shell absorption edge in the upper part of FIG. 1-2 (b), the black portion where the presence of sulfur and the vulcanization accelerator is confirmed is a granular portion with clear contrast and a portion with unclear contrast. Can be seen. On the other hand, in the mapping image of the nitrogen K shell absorption edge in the upper part of FIG. 1-1 (a), the contrast of the black portion is not clear. Therefore, it is expected that sulfur is mainly dispersed in the granular portion where the contrast is clear, and the vulcanization accelerator is mainly dispersed in the granular portion where the contrast is not clear.

なお、試料中の化合物の同定に関し、スペクトルの測定時期が異なると、スペクトルのエネルギーが多少ずれるケースがある(ズレが大きい場合、1〜2eV程度)。そのため、同時期に試料のスペクトル及び標準スペクトルを測定することが望ましいが、例えば、標準スペクトルの測定は1回だけ行い、異なる時期に試料のスペクトルを測定するケースにおいて、仮に両時期のエネルギーがずれていても、ピークの数、各ピークのエネルギー間隔及び強度が、標準スペクトルと対応している(スペクトルの形状が似ている)という点に基いて、試料中の化合物を同定することは可能である。但し、エネルギーのズレを確認(補正)する目的で、標準試料を1個以上測定することが望ましい。例えば、加硫促進剤CZは、窒素及び硫黄の両原子を含有しているため、窒素K殻及び硫黄L殻の吸収端をそれぞれ測定する手法を使用できる。 Regarding the identification of the compound in the sample, if the measurement time of the spectrum is different, the energy of the spectrum may be slightly deviated (when the deviation is large, it is about 1 to 2 eV). Therefore, it is desirable to measure the spectrum and standard spectrum of the sample at the same time. For example, in the case where the standard spectrum is measured only once and the spectrum of the sample is measured at different times, the energies of both periods are tentatively deviated. Even so, it is possible to identify compounds in a sample based on the number of peaks, the energy spacing and intensity of each peak, which correspond to the standard spectrum (similar spectrum shape). is there. However, it is desirable to measure one or more standard samples for the purpose of confirming (correcting) the energy deviation. For example, since the vulcanization accelerator CZ contains both nitrogen and sulfur atoms, a method of measuring the absorption ends of the nitrogen K shell and the sulfur L shell can be used, respectively.

また、試料のスペクトルが、複数の化合物の各標準スペクトルを足し合わせた形状に近いケースでは、試料中に当該複数の化合物が存在すると同定できる。 Further, in the case where the spectrum of the sample is close to the shape obtained by adding the standard spectra of the plurality of compounds, it can be identified that the plurality of compounds are present in the sample.

以上のような分析により、試料中に含まれる硫黄等の加硫剤、加硫促進剤やそれに準ずる添加剤の分散状態の観察が可能であることが分かる。なお、図1には、硫黄加硫剤及び2種の加硫促進剤を含む高分子複合材料の例が示されているが、例えば、加硫促進剤やそれに準ずる添加剤1種類のみを含む試料でも、本発明を適用することで、同様に、その加硫促進剤やそれに準ずる添加剤の分散状態を観察できる。 From the above analysis, it can be seen that it is possible to observe the dispersed state of the vulcanizing agent such as sulfur contained in the sample, the vulcanization accelerator, and the additive equivalent thereto. Although FIG. 1 shows an example of a polymer composite material containing a sulfur vulcanizing agent and two types of vulcanization accelerators, for example, it contains only one type of vulcanization accelerator and an additive equivalent thereto. By applying the present invention, the dispersed state of the vulcanization accelerator and similar additives can be observed in the sample as well.

本発明は、前述の方法等により、加硫促進剤やそれに準ずる添加剤、硫黄等の加硫剤の分散状態を観察し、次いで、その分散状態と、分散状態を観察したサンプルを用いた製品の耐摩耗性能との関係性が有るという知見を見出したもので、該関係性に基いて、該耐摩耗性能を予測できる。以下、この点について一例を挙げ、具体的に説明する。 The present invention is a product using a sample obtained by observing the dispersed state of a vulcanization accelerator, an additive equivalent thereto, and a vulcanizing agent such as sulfur by the above-mentioned method, and then observing the dispersed state and the dispersed state. We have found that there is a relationship with the wear resistance performance of the above, and based on this relationship, the wear resistance performance can be predicted. Hereinafter, this point will be specifically described with an example.

図1−1(a)上段に示されている試料(加硫促進剤CZ、DPGを含む高分子複合材料)の窒素K殼吸収端のマッピング画像を、Image−J等の画像解析ソフトにより二値化し、図2上段を得る。図1−1(a)上段の各黒色部位は、加硫促進剤CZ、DPGの存在を示すものである。よって、これを二値化した図2上段の各黒色部位には、加硫促進剤CZ及びDPGからなる加硫促進剤粒子が存在することを示す。 The mapping image of the nitrogen K shell absorption edge of the sample (polymer composite material containing vulcanization accelerators CZ and DPG) shown in the upper part of FIG. 1-1 (a) is captured by image analysis software such as Image-J. Value it and obtain the upper part of FIG. Each black part in the upper part of FIG. 1-1 (a) shows the presence of the vulcanization accelerators CZ and DPG. Therefore, it is shown that the vulcanization accelerator particles composed of the vulcanization accelerator CZ and DPG are present in each black portion in the upper part of FIG. 2, which is binarized.

二値化した図2上段の各黒色部位で示されている加硫促進剤粒子の粒子解析を行い、粒子面積(粒子径、粒子の断面積)と、該粒子面積を持つ粒子の個数の分布(関係)を求める。図2下段は、前記粒子解析により求めた、図1−1(a)上段に存在する各加硫促進剤粒子の粒子面積分布(粒子径分布、粒子断面積分布)を示している。 Particle analysis of the vulcanization accelerator particles shown in each black part in the upper part of Fig. 2 that was binarized was performed, and the particle area (particle size, cross-sectional area of the particles) and the distribution of the number of particles having the particle area. Find (relationship). The lower part of FIG. 2 shows the particle area distribution (particle size distribution, particle cross-sectional area distribution) of each vulcanization accelerator particle existing in the upper part of FIG. 1-1 (a) obtained by the particle analysis.

次いで、図2下段の粒子面積分布で観察される試料中の加硫促進剤粒子の最大粒子面積(約22μm)と、該試料を用いて作製したタイヤの耐摩耗性能(耐久試験)の結果との関係、更には他の試料の最大粒子面積とそれを用いたタイヤの耐摩耗性能の結果との関係、をプロットした図の一例が図3である。図3に示されているように、加硫促進剤粒子の最大粒子面積が小さいほど、良好な耐摩耗性能が得られる傾向がある。この理由としては、(1)加硫促進剤の分散状態が架橋粗密に関与している可能性があること、(2)架橋粗密のサイズが大きい(架橋が不均一)と耐摩耗性能が良くないこと、等が考えられる。 Next, the maximum particle area (about 22 μm 2 ) of the vulcanization accelerator particles in the sample observed in the particle area distribution in the lower part of FIG. 2 and the result of the wear resistance performance (durability test) of the tire produced using the sample. FIG. 3 is an example of a diagram in which the relationship between the above and the maximum particle area of another sample and the relationship between the result of the wear resistance performance of the tire using the same are plotted. As shown in FIG. 3, the smaller the maximum particle area of the vulcanization accelerator particles, the better the wear resistance tends to be obtained. The reasons for this are (1) the dispersed state of the vulcanization accelerator may be involved in the cross-linking density, and (2) the large size of the cross-linking density (non-uniform cross-linking) provides good wear resistance. It is possible that there is no such thing.

図3に示されているとおり、良好な耐摩耗性能が得られるという点から、高分子複合材料中に存在する加硫促進剤の前記最大粒子面積は、10μm以下であることが好ましく、8μm以下であることがより好ましい。 As shown in FIG. 3, the maximum particle area of the vulcanization accelerator present in the polymer composite material is preferably 10 μm 2 or less, preferably 8 μm, from the viewpoint of obtaining good wear resistance. It is more preferably 2 or less.

このように、本発明は、高分子複合材料中の加硫促進剤やそれに準ずる添加剤の分散状態(粒子径分布等)と、該材料を用いたタイヤ等の製品の耐摩耗性能との間に関係性が存在するという知見を見出し完成したもので、前述の手法等により観察される前記分散状態に基いて、製品の耐摩耗性能を予測できる。 As described above, the present invention is between the dispersed state (particle size distribution, etc.) of the vulcanization accelerator and the additives equivalent thereto in the polymer composite material and the wear resistance performance of the product such as a tire using the material. It was completed by finding the finding that there is a relationship between tires, and the wear resistance performance of the product can be predicted based on the dispersed state observed by the above-mentioned method or the like.

実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。 The present invention will be specifically described with reference to Examples, but the present invention is not limited thereto.

<試料作成方法>
(試料1)
下記配合内容に従い、硫黄及び加硫促進剤以外の材料を充填率が50%になるように、バンバリー型ミキサーに充填し、80rpmで140℃に到達するまで混練し、得られた混練物に、硫黄及び加硫促進剤を下記配合にて添加し、試料1(未加硫)を作製した。
<Sample preparation method>
(Sample 1)
According to the following formulation, materials other than sulfur and vulcanization accelerator were filled in a Banbury type mixer so that the filling rate was 50%, and kneaded at 80 rpm until the temperature reached 140 ° C., and the obtained kneaded product was kneaded. Sulfur and a vulcanization accelerator were added in the following formulation to prepare Sample 1 (unvulcanized).

(試料2)
下記配合内容に従い、硫黄及び加硫促進剤以外の材料を充填率が58%になるように、バンバリー型ミキサーに充填し、80rpmで140℃に到達するまで混練し、得られた混練物に、硫黄及び加硫促進剤を下記配合にて添加し、試料2(未加硫)を作製した。
(Sample 2)
According to the following formulation, materials other than sulfur and vulcanization accelerator were filled in a Banbury type mixer so that the filling rate was 58%, and kneaded at 80 rpm until the temperature reached 140 ° C., and the obtained kneaded product was kneaded. Sulfur and a vulcanization accelerator were added in the following formulation to prepare Sample 2 (unvulcanized).

(試料3)
下記配合内容に従い、充填率が58%になるように、バンバリー型ミキサーに充填し、80rpmで140℃に到達するまで混練し、試料3(未加硫)を作製した。
(Sample 3)
According to the following formulation, the mixture was filled in a Banbury type mixer so that the filling rate was 58%, and kneaded at 80 rpm until it reached 140 ° C. to prepare Sample 3 (unvulcanized).

(試料4)
下記配合内容をロールで練り込み、試料4(未加硫)を作製した。
(Sample 4)
The following compounding contents were kneaded with a roll to prepare Sample 4 (unvulcanized).

(配合)
天然ゴム50質量部、ブタジエンゴム50質量部、カーボンブラック60質量部、オイル5質量部、ワックス2.5質量部、酸化亜鉛3質量部、ステアリン酸2質量部、粉末硫黄1.2質量部、及び加硫促進剤CZ1質量部、加硫促進剤DPG0.5質量部
(Mixing)
50 parts by mass of natural rubber, 50 parts by mass of butadiene rubber, 60 parts by mass of carbon black, 5 parts by mass of oil, 2.5 parts by mass of wax, 3 parts by mass of zinc oxide, 2 parts by mass of stearic acid, 1.2 parts by mass of powdered sulfur, And 1 part by mass of vulcanization accelerator CZ, 0.5 part by mass of vulcanization accelerator DPG

なお、使用材料は、以下のとおりである。
天然ゴム:TSR20
ブタジエンゴム:宇部興産(株)製BR150B
カーボンブラック:キャボットジャパン(株)製のショウブラックN351
オイル:(株)ジャパンエナジー製のプロセスX−140
ワックス:日本精蝋(株)製のオゾエース0355
酸化亜鉛:東邦亜鉛(株)製の銀嶺R
ステアリン酸:日油(株)製の椿
粉末硫黄(5%オイル含有):鶴見化学工業(株)製の5%オイル処理粉末硫黄(オイル分5質量%含む可溶性硫黄)
加硫促進剤CZ:大内新興化学工業(株)製のノクセラーCZ(N−シクロヘキシル−2−ベンゾチアジルスルフェンアミド
加硫促進剤DPG:大内新興化学工業(株)製のノクセラーD(1,3−ジフェニルグアニジン)
The materials used are as follows.
Natural rubber: TSR20
Butadiene rubber: BR150B manufactured by Ube Industries, Ltd.
Carbon Black: Show Black N351 manufactured by Cabot Japan Co., Ltd.
Oil: Process X-140 manufactured by Japan Energy Co., Ltd.
Wax: Ozo Ace 0355 manufactured by Nippon Seiro Co., Ltd.
Zinc oxide: Ginmine R manufactured by Toho Zinc Co., Ltd.
Stearic acid: Tsubaki powdered sulfur manufactured by NOF Corporation (containing 5% oil): 5% oil-treated powdered sulfur manufactured by Tsurumi Chemical Industry Co., Ltd. (soluble sulfur containing 5% by mass of oil)
Vulcanization Accelerator CZ: Noxeller CZ manufactured by Ouchi Shinko Chemical Industry Co., Ltd. (N-Cyclohexyl-2-benzothiazyl sulfenamide Vulcanization Accelerator DPG: Noxeller D manufactured by Ouchi Shinko Chemical Industry Co., Ltd. 1,3-Diphenylguanidine)

(サンプリング方法)
特開2014−238287号公報に記載の方法を用いて、試料中のフリーサルファを除去した後、ミクロトームで、TEM−EDX用試料は厚み100nm、STXM用試料は厚み250nmにカットした後、TEM用のCu製のグリッドにマウントした。
(Sampling method)
After removing the free sulfa in the sample using the method described in JP-A-2014-238287, the TEM-EDX sample is cut to a thickness of 100 nm and the STXM sample is cut to a thickness of 250 nm by a microtome, and then for TEM. Mounted on a Cu grid.

〔比較例〕
作製した試料をTEM−EDX測定(市販の装置を使用)に供した。
[Comparative example]
The prepared sample was subjected to TEM-EDX measurement (using a commercially available device).

〔実施例〕
以下の条件下で、作製した試料をSTXM測定に供した。
(測定場所)
自然科学研究機構 分子科学研究所 極端紫外光研究施設 BL4U
(測定条件)
輝度:1×1016(photons/s/mrad/mm/0.1%bw)
分光器:グレーティング
(測定エネルギー)
硫黄L殼吸収端:162〜168eV
窒素K殼吸収端:396〜403eV
〔Example〕
The prepared sample was subjected to STXM measurement under the following conditions.
(Measurement location)
Institute for Molecular Science, Institute for Molecular Science, Extreme Ultraviolet Light Research Facility BL4U
(Measurement condition)
Brightness: 1 × 10 16 (photons / s / mrad 2 / mm 2 / 0.1% bw)
Spectrometer: Grating (measured energy)
Sulfur L shell absorption end: 162-168 eV
Nitrogen K shell absorption end: 396-403 eV

〔評価〕
実施例(STXM)、比較例(TEM−EDX)のそれぞれについて、試料中の硫黄(硫黄加硫剤)、加硫促進剤の分散状態の観察、加硫促進剤の最大粒子面積の算出の可否を評価した。なお、実施例は、図1〜3の方法に沿い、aXis2000(フリーソフト)、Image−J(フリーソフト)を用いて解析し、前記最大粒子面積を算出した。結果を表1〜2に示す。
[Evaluation]
For each of Example (STXM) and Comparative Example (TEM-EDX), it is possible to observe the dispersed state of sulfur (sulfur vulcanizer) and vulcanization accelerator in the sample, and to calculate the maximum particle area of the vulcanization accelerator. Was evaluated. In the examples, the maximum particle area was calculated by analyzing using aXis2000 (free software) and Image-J (free software) according to the methods of FIGS. 1 to 3. The results are shown in Tables 1-2.

<試験タイヤ作成方法>
試料1〜4のゴム組成物がトレッド部となる試験タイヤ(サイズ:195/65R15)を作製し、以下のタイヤ性能試験(耐摩耗性能)に供した。
<How to make a test tire>
A test tire (size: 195 / 65R15) in which the rubber compositions of Samples 1 to 4 serve as a tread portion was prepared and subjected to the following tire performance test (wear resistance).

〔タイヤ性能試験(耐摩耗性能)〕
試験タイヤを実車走行させ、30000km走行前後のパターン溝深さの変化を求めた。試料2を用いて作製した試験タイヤの耐摩耗性能の指数を100とし、各試験タイヤの指数を算出した。指数が大きいほど耐摩耗性能が良好である。
[Tire performance test (wear resistance)]
The test tire was run on the actual vehicle, and the change in the pattern groove depth before and after the 30,000 km run was determined. The index of the wear resistance performance of the test tires produced using Sample 2 was set to 100, and the index of each test tire was calculated. The larger the index, the better the wear resistance performance.

Figure 0006870309
Figure 0006870309

Figure 0006870309
Figure 0006870309

表1から、TEM−EDXによる比較例の方法は、硫黄の分散状態しか観察できないのに対し、STXMによる実施例の方法は、硫黄と加硫促進剤共に、分散状態の観察が可能であった。表2のとおり、比較例の方法は、加硫促進剤粒子の最大粒子面積を算出できないのに対し、実施例の方法は、算出が可能であった。 From Table 1, the method of the comparative example using TEM-EDX can only observe the dispersed state of sulfur, whereas the method of the example using STXM can observe the dispersed state of both sulfur and the vulcanization accelerator. .. As shown in Table 2, the method of the comparative example could not calculate the maximum particle area of the vulcanization accelerator particles, whereas the method of the example could calculate it.

そして、各試料を用いた試験タイヤの耐摩耗性能試験の結果と、実施例により算出した各試料の最大粒子面積に相関が見られ、該最大粒子面積が小さいほど、耐摩耗性能が優れていた。従って、本発明の方法により、加硫促進剤やそれに準ずる添加剤、硫黄等の加硫剤の分散状態の観察、加硫促進剤等の粒子の最大粒子面積の算出が可能で、それに基いて、各試料を用いた製品の耐摩耗性能を予測できることが明らかとなった。 Then, a correlation was found between the result of the wear resistance performance test of the test tire using each sample and the maximum particle area of each sample calculated by the example, and the smaller the maximum particle area, the better the wear resistance performance. .. Therefore, according to the method of the present invention, it is possible to observe the dispersed state of the vulcanization accelerator, an additive equivalent thereto, and the vulcanizing agent such as sulfur, and to calculate the maximum particle area of the particles such as the vulcanization accelerator. , It became clear that the wear resistance performance of products using each sample can be predicted.

Claims (4)

加硫促進剤及びそれに準ずる添加剤からなる群より選択される少なくとも1種の化合物を含む高分子複合材料に高輝度X線を照射し、X線のエネルギーを変えながら該高分子複合材料の微小領域におけるX線吸収量を測定することにより、前記化合物の分散状態を調べ、該分散状態に基いて耐摩耗性能を予測する耐摩耗性能予測方法であって、
前記それに準ずる添加剤は、4,4’−ジチオジモルホリン、2−(4’−モルホリノジチオ)ベンゾチアゾール、及びテトラメチルチウラムジスルフィドからなる群より選択される少なくとも1種である耐摩耗性能予測方法
A polymer composite material containing at least one compound selected from the group consisting of a vulcanization accelerator and an additive equivalent thereto is irradiated with high-intensity X-rays, and the minute amount of the polymer composite material is changed while changing the energy of the X-rays. A wear-resistant performance prediction method for investigating the dispersed state of the compound by measuring the amount of X-ray absorption in the region and predicting the wear-resistant performance based on the dispersed state .
The additive equivalent thereto is at least one selected from the group consisting of 4,4'-dithiodimorpholine, 2- (4'-morpholinodithio) benzothiazole, and tetramethylthiuram disulfide. ..
前記高分子複合材料の2次元マッピング画像における前記化合物の粒子面積に基いて耐摩耗性能を予測する請求項1記載の耐摩耗性能予測方法。 The wear-resistant performance prediction method according to claim 1, wherein the wear-resistant performance is predicted based on the particle area of the compound in the two-dimensional mapping image of the polymer composite material. 前記化合物の最大粒子面積が小さいほど耐摩耗性能が優れていると判断する請求項2記載の耐摩耗性能予測方法。 The wear-resistant performance prediction method according to claim 2, wherein it is determined that the smaller the maximum particle area of the compound is, the better the wear-resistant performance is. 前記高輝度X線を用いて、エネルギー範囲130〜280eVの硫黄L殼吸収端におけるX線吸収量及びエネルギー範囲370〜500eVの窒素K殼吸収端におけるX線吸収量を測定する請求項1〜3のいずれかに記載の耐摩耗性能予測方法。 Claims 1 to 3 for measuring the amount of X-ray absorption at the sulfur L shell absorption end in the energy range of 130 to 280 eV and the amount of X-ray absorption at the nitrogen K shell absorption end in the energy range of 370 to 500 eV using the high-intensity X-ray. The wear resistance performance prediction method according to any one of.
JP2016243384A 2016-12-15 2016-12-15 Wear resistance performance prediction method Active JP6870309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016243384A JP6870309B2 (en) 2016-12-15 2016-12-15 Wear resistance performance prediction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016243384A JP6870309B2 (en) 2016-12-15 2016-12-15 Wear resistance performance prediction method

Publications (2)

Publication Number Publication Date
JP2018096905A JP2018096905A (en) 2018-06-21
JP6870309B2 true JP6870309B2 (en) 2021-05-12

Family

ID=62633466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016243384A Active JP6870309B2 (en) 2016-12-15 2016-12-15 Wear resistance performance prediction method

Country Status (1)

Country Link
JP (1) JP6870309B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7167546B2 (en) * 2018-08-17 2022-11-09 住友ゴム工業株式会社 Crosslinked structure visualization method
JP7275461B2 (en) * 2018-12-21 2023-05-18 Toyo Tire株式会社 Method for obtaining X-ray absorption spectrum and method for creating calibration curve
JP7258292B2 (en) * 2019-05-16 2023-04-17 国立大学法人東北大学 Analysis method for polymer composites

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8693626B2 (en) * 2011-06-17 2014-04-08 Uop Llc Solid material characterization with X-ray spectra in both transmission and fluoresence modes
US9851342B2 (en) * 2011-11-04 2017-12-26 Sumitomo Rubber Industries, Ltd. Deterioration analyzing method
JP6348295B2 (en) * 2014-02-18 2018-06-27 住友ゴム工業株式会社 How to determine the chemical state of sulfur
JP6743477B2 (en) * 2016-05-02 2020-08-19 住友ゴム工業株式会社 Vulcanized material analysis method

Also Published As

Publication number Publication date
JP2018096905A (en) 2018-06-21

Similar Documents

Publication Publication Date Title
JP6743477B2 (en) Vulcanized material analysis method
JP6870309B2 (en) Wear resistance performance prediction method
JP6581539B2 (en) Method for analyzing sulfur cross-linking morphology of polymer materials
JP6578200B2 (en) Method for analyzing filler structure in polymer materials
JP6544098B2 (en) Method of measuring crosslink density in sulfur-containing polymer composites
JP7289186B2 (en) Method for Predicting Wear and Fracture Resistance Performance
JP2016080500A (en) Breaking strength prediction method and rubber composition for tire
JP6912999B2 (en) Sulfur cross-linked structure analysis method for polymer materials
JP7167546B2 (en) Crosslinked structure visualization method
JP6133576B2 (en) Carbon black quantification method, rubber composition in which carbon black content is defined by the quantification method, and pneumatic tire using the rubber composition
JP7053217B2 (en) Sulfur cross-linking structure analysis method for polymer materials
JP2019113488A (en) Method for evaluating reinforcement agent hierarchical structure of high polymer material
JP6413308B2 (en) Evaluation method for rubber / brass composites
JP6822160B2 (en) Evaluation method for sheet scraping of polymer composite materials
EP4249901A1 (en) Method for estimating abrasion resistance
JP7069874B2 (en) How to predict changes in wear resistance and fracture resistance
JP5805043B2 (en) Degradation analysis method
JP7450323B2 (en) Rubber composition and its manufacturing method
JP6769122B2 (en) Method for evaluating the degree of orientation of a polymer in a polymer composite material
JP2015132518A (en) Method for investigating chemical state of sulfur
JP7163242B2 (en) Sulfur cross-linking density evaluation method for polymeric materials
JP7275461B2 (en) Method for obtaining X-ray absorption spectrum and method for creating calibration curve
JP7139238B2 (en) Sulfur cross-link structure analysis method for polymeric materials
JP5814277B2 (en) Fracture energy prediction method and rubber composition
JP6347821B2 (en) Carbon black quantification method, rubber composition in which carbon black content is defined by the quantification method, and pneumatic tire using the rubber composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210329

R150 Certificate of patent or registration of utility model

Ref document number: 6870309

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250