JP2004324684A - Method for manufacturing dynamic pressure generating groove - Google Patents

Method for manufacturing dynamic pressure generating groove Download PDF

Info

Publication number
JP2004324684A
JP2004324684A JP2003116659A JP2003116659A JP2004324684A JP 2004324684 A JP2004324684 A JP 2004324684A JP 2003116659 A JP2003116659 A JP 2003116659A JP 2003116659 A JP2003116659 A JP 2003116659A JP 2004324684 A JP2004324684 A JP 2004324684A
Authority
JP
Japan
Prior art keywords
dynamic pressure
shaft member
flange portion
shaft
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003116659A
Other languages
Japanese (ja)
Other versions
JP4340855B2 (en
Inventor
Yasuto Tomochika
康人 友近
Takenori Komura
武則 小村
Takeshi Takahashi
高橋  毅
Kenji Ogimoto
健治 荻本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP2003116659A priority Critical patent/JP4340855B2/en
Publication of JP2004324684A publication Critical patent/JP2004324684A/en
Application granted granted Critical
Publication of JP4340855B2 publication Critical patent/JP4340855B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a dynamic pressure generating groove for providing a dynamic pressure bearing to set a gap between a shaft member as an integrated body of a shaft with a flange part and an inner circumferential surface of a sleeve in a desired state after formation of the dynamic pressure generating groove even when there is residual internal stress in a case where drawn material is used. <P>SOLUTION: The dynamic generating groove is formed by plastic work in the surface of a flange part of the dynamic pressure bearing composed of the shaft member 1 comprising a shaft part 2 and a flange part 3, and a sleeve having a gap to the shaft part 2 and the flange part 3 for the shaft member 1 to be engaged. The shaft member 1 is formed by lathing of drawn material of which drawn direction is known. The shaft member is taken correctly as sized, the dynamic pressure generating groove is formed in the surface of the flange part, perpendicular distance from an outer circumferential end part of the flange part to the shaft part is measured, an obtained value is fed back to take the shaft member from the drawn material, and plastic work is performed to the flange part. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、軸にフランジ部を一体的に形成した軸部材と、これら軸部とフランジ部との間に僅かな隙間を設けたスリーブと、より成る動圧軸受において、前記フランジ表面に塑性加工により動圧発生用溝を形成する際の動圧発生用溝の製造方法、特に、引き抜き材を用いた軸部材のフランジ部とスリーブアキシャル面との間の隙間を殆ど均一とすることのできる動圧発生用溝の製造方法に関する。
【0002】
【従来の技術】
動圧軸受として使用される軸部とフランジ部とを一体形成した軸部材は、旋削加工した後、フランジ部表面に形成する動圧発生用溝をプレス等により塑性加工して形成する場合がある。例えば、スピンドルモータには、動圧軸受が使用されることがあるが、この場合、回転軸に形成する円盤状軸受部材の表面の動圧軸受は、プレス加工によって製作される(特許文献1)。また、プレス加工等の塑性変形で動圧発生用溝を加工するとき、フランジ部の内側周囲を外側より一段低く形成し、外側周囲に動圧発生用溝を形成して加工時内側周囲が盛り上がるのを防止する製造方法も提案されている(特許文献2)。
【0003】
【特許文献1】特開平6−338125
【特許文献2】特開平8−210345
【0004】
【発明が解決しようとする課題】
プレス加工等の塑性加工で動圧発生用溝を形成する加工方法は、銅合金等の軟質材に対しては有効であるが、ステンレス鋼等のような硬質材でフランジ部の上下面に同一形状を安定的に形成するのは困難である。特に、冷間引き抜き加工材に塑性加工を施して安定的に動圧発生用溝を形成するのは難しい。
即ち、図8に示すように、冷間引き抜き加工材(以下、単に引き抜き材とする)から取り出した軸部2とフランジ部3とより成る軸部材1のフランジ部3の表面3a,3bにプレス加工等の塑性加工を施して動圧発生用溝を形成しても、これら軸部材1とスリーブとで形成された動圧軸受に適切な動圧が得られなくなるという現象があった。その原因は、引き抜き材に残留応力が存在しているため、旋削加工後に設計どおりプレス加工(塑性加工)しても(図9)、動圧発生溝4を形成した後フランジ部3が変形し(図10参照、この逆方向の変形もあり得る)、スリーブ6との間の隙間5が設計どおりの正確な状態でなくなる(図11参照)ことが大きな原因であると考えられる。尚、残留応力が存在する場合、これを除去するため焼鈍による方法も考えられる。しかし、焼鈍によると、材料が柔らかくなりすぎてプレス加工のような塑性加工による動圧発生用溝の形成は不可能である。また、スリーブ内周面やスラスト板等に動圧発生用溝を加工するのは煩雑でコストがかかり、安定的に同一の溝を形成するのは難しい。
【0005】
この発明は、上記する課題に対処するためになされたものであり、引き抜き材を使用し内部に残留応力が存在し、動圧発生用溝を形成するための塑性加工後でも軸部とフランジ部とを一体とした軸部材とスリーブ内周面との間の隙間が意図したとおりの状態となる動圧軸受を得ることのできる動圧発生用溝の製造方法を提供することを目的としている。
【0006】
【課題を解決するための手段】
即ち、この発明は上記する課題を提供するために、請求項1に記載の発明は、軸部とフランジ部とを形成した軸部材と、これら軸部とフランジ部との間に隙間を設けて該軸部材を嵌め入れたスリーブと、で構成される動圧軸受の前記フランジ部の表面に動圧発生用溝を塑性加工により形成する動圧発生用溝の製造方法において、
引き抜き方向の判明している引き抜き材から旋削加工により前記軸部材を形成するに際し、先ず寸法通りの軸部材を取り出し、フランジ部の表面に動圧発生用溝を形成して該フランジ部の外周端部の軸部に対する直角方向との距離を測定し、次にこの測定値をフィードバックして引き抜き材から軸部材を取り出し、フランジ部に塑性加工を施すことを特徴とするものである。
【0007】
また、請求項2に記載の発明は、前記フランジ部は、内径部から外径部にかけて肉厚が薄くなるように形成したものであることを特徴とするものである。
【0008】
また、請求項3に記載の発明は、前記フランジ部は、内径部から外径部にかけて肉厚が厚くなるように形成したものであることを特徴とするものである。
【0009】
【発明の実施の形態】
以下、本発明の具体的な実施の形態について図面を参照して説明する。
図1は、本発明の第1の実施の形態の動圧発生用溝(以下、動圧溝とする)の製造方法を実施するに際して軸部材を取り出す前の引き抜き材を示す。この場合、引き抜き材Wは、先を細くした穴をもつダイス(工具)を通して素材を引き抜き、その断面積を減少させて製作したものである。この実施の形態では該引き抜き材Wを旋削加工を施して、T字形の軸部材1を取り出す。この軸部材1は、軸部2とフランジ部3とよりなるが、該フランジ部3の両面に、ヘリングボーン形やV字形或いは一部螺旋形の動圧溝をプレス加工(塑性加工)により形成する。
【0010】
前記軸部材1のフランジ部3に動圧溝を形成するに際しては、先ず、図1に示すように、引き抜き材Wの表面に、目安として多数の細かい横線X,X,・・・と、縦線Y,Y,・・・を入れておき、これらの横線X,X,・・や縦線Y,Y,・・に沿って平行に軸部2やフランジ部3を旋削加工して図8に示したのと同様の軸部材1を形成する。これらのX,・・、Y,・・は、後述するように、一旦、旋削加工して軸部材1を取り出しプレス加工(塑性加工)した後、図10に示すように、のフランジ部の傾斜角度α或いは、軸2に対して直角方向と外周端部における高さの差d(フランジ部3における下側面3bの中心側端部3cと外周端部3dとの軸方向の位置の差)を測定し、その数値をフィードバックして改めて旋削加工後プレス加工して正確な軸部材1を取り出すための目安とする。
【0011】
次に、フランジ部3の両面に図9に示すように、プレス加工により動圧溝4,,4を形成した状態の軸部材1を製作する。この場合、前記軸部材1は、元の材料の引き抜き材W内に残留応力が生じているため、当初の図8に示す設計図通りの寸法とはならず、図10に示すように、若干フランジ部3はある程度の角度(α)傾斜した状態となる。従って、予め動圧溝を形成する場合、プレス加工してこのようにフランジ部3がα傾斜することが判っていれば、この傾斜角度αをフィードバックして、図2に示すように、図1においてT字形の軸部材1を取り出すとき、逆方向にこの角度(α)分傾斜した状態で旋削加工してプレス加工すれば、加工後のフランジ部3は、図3(A)に示すように、正確な状態の軸部材1とすることができる。従って、図3(B)に示すように、その表面に動圧溝4を形成したフランジ部3とスリーブ6との間の隙間5は、適正な隙間となる。
【0012】
上記するように、フランジ部3の傾斜角度αは、通常、微小な角度であり、正確な角度が測定できない場合は、軸2に対して直角方向と外周端部における高さの差d(フランジ部3における下側面3bの中心側端部3cと外周端部3dとの軸方向の位置の差)を測定し、その数値をフィードバックしても良い。
【0013】
尚、正確な軸部材1を形成するにあたっては、元の引き抜き材Wの素材の種類(例えば、ステンレス鋼、炭素鋼等)、引き抜き方向及び素材メーカー等が明確になっていなければならない。蓋し、そのような素材情報が明確でないと、引き抜き後の内部の残留応力の状態(大きさや方向)旋削加工時の旋削方向が判らず、その都度、プレス加工後の変形状態を調査して旋削加工とプレス加工を繰り返さなければ正確な加工が出来ないからである。
【0014】
次に、軸部材1に形成されるフランジ部3の上下面に傾斜を設ける場合について説明する。先ず、引き抜き材Wから旋削加工により軸部材1を取り出して、フランジ部3の内径部から外径部(外周端部)にかけて肉厚が薄くなるように形成する場合(第2の実施の形態)について説明する。
引き抜き材Wから旋削加工により軸部材1を取り出して、フランジ部3の内径部から外径部(外周端部)にかけて肉厚が薄くなるように形成する場合、前記軸部材1の上側面3aと下側面3bの肉厚部と上下の外周端部の上下の軸2に対して直角方向に対するそれぞれの高さの差を、図4(A)に示すように、h,hとしてプレス加工すると、該軸部材1の内部には残留応力が生じているため、当初の設計予定通りの(h,h)とはならず、図4(B)に示すように、h、hで且つh<hとなる。即ち、上側面3aと下側面3bとは内部の残留応力の分布状態が異なっているので同一とはならない。
【0015】
次に、図5(A)に示すように、引き抜き材Wから旋削加工により軸部材1を取り出すとき、上側面3aと下側面3bの肉厚部と外周端部のそれぞれのフランジ部3の上下の軸2に対して直角方向に対する高さの差を、h、hとし且つh>hとなるようにする。そして、この状態でプレス加工により動圧溝4,4を形成すると、図5(B)に示すように、動圧溝4,4を形成した後のフランジ部3の上側面3aと下側面3bの肉厚部と外周端部のそれぞれの上下の軸2に対する直角方向に対する高さの差は、ほぼ同じh、hとなる。
【0016】
上記するように、プレス加工のような塑性加工をしてみてフランジ部3の上下面3a、3bの端部の軸2に対して直角方向に対する高さの差がh、hで且つh<hとなることが判れば、図1において、T字形の軸部材1を取り出すとき、これらの高さの差(h,h)をフィードバックして、図5(A)に示すよう逆方向に、予め高さの差を設けて旋削加工する。即ち、軸部材1を旋削加工して取り出すとき、上側面3aと下側面3bの肉厚部と外周端部のそれぞれの高さをh,hとし且つh>hとすれば、図5(B)に示すように、プレス加工後のフランジ部3の上下面3a、3bのの肉厚部と外周端部のそれぞれの軸2に対して直角方向に対する高さの差がほぼh、hとなる軸部材1を得ることができる。
【0017】
次に、軸側材1に形成されるフランジ部3に傾斜を設ける場合であって、フランジ部3の上下面3a,3bは、内径部から外径部(外周端部)にかけて肉厚が厚くなるように形成する場合(第3の実施の形態)について説明する。
引き抜き材Wから旋削加工により軸部材1を取り出して、フランジ部3の内径部から外径部(外周端部)にかけて肉厚が厚くなるように形成する場合、前記軸部材1の上側面3aと下側面3bの肉厚部と外周端部のそれぞれの高さを差を図6(A)に示すように、j,jとしてプレス加工すると、該軸部材1の内部には残留応力が生じているため、この場合も当初の設計予定通りの(j,j)とはならず、図6(B)に示すように、若干フランジ部3の上下の軸2に対して直角方向に対する高さの差は、j,jで且つj<jとなる。即ち、上側面と下側面とは残留応力の分布状態が異なっているので同一とはならない。
【0018】
次に、引き抜き材Wから旋削加工により軸部材1を取り出すとき、上側面3aと下側面3bの肉厚部と外周端部のそれぞれのフランジ部3の上下の軸2に対して直角方向に対する高さの差を、j、jとし且つj>jとなるようにする。そして、この状態でプレス加工により動圧溝4,4を形成すると、図7(B)に示すように、動圧溝4,4を形成した後のフランジ部3の上側面3aと下側面3bの肉厚部と外周端部のそれぞれの上下の軸2に対する直角方向に対する高さの差は、ほぼ同じj、jとなる。
【0019】
従って、この場合も塑性加工してみてフランジ部3の上下面3a、3bの端部の軸2に対して直角方向に対する高さの差がj,jとなることが判れば、図1において、T字形の軸部材1を取り出すとき、これらの高さの差(j,j)をフィードバックして、図7(A)に示すよう逆方向に、予め高さの差を設ければ良い。即ち、軸部材1を旋削加工して取り出すとき、上側面3aと下側面3bの肉厚部と外周端部のそれぞれの高さがj,jて且つj>jとすれば、図7(B)に示すように、プレス加工後のフランジ部3の上下面3a、3bのの肉厚部と外周端部のそれぞれの軸2に対して直角方向に対する高さの差がほぼj、jとなる軸部材1を得ることができる。
【0020】
本発明の実施の形態においては、軸部材1がT字形の場合について説明したが、勿論、軸部2の途中の周囲にフランジ部3を形成した軸部材であっても良い。また、フランジ部3の上面3aのみ或いは下面3bのみに傾斜を設けたり、動圧発生用溝4を形成する場合にも適用することができる。更に、T字形の軸部材1では、図に示すように、T字形の頂点中央部には、凹部3cを形成してあるが、この頂点中央部が面一の水平の平面状態であっても良い。
【0021】
表1は、本発明の動圧発生用溝の製造方法において、特に、第3の実施の形態において、実際に引き抜き材W(ステンレス材)から旋削加工により軸部2とフランジ部3とより成る軸部材1を取り出し、軸部材1の上側面3aと下側面3bの肉厚部と外周端部のそれぞれの高さを差を図6(A)に示すように、プレス加工前にj,jの値をそれぞれ3回製作し、プレス加工後の値を測定した結果を示す表である。
【表1】

Figure 2004324684
この表1に示すように、引き抜き材から旋削加工により取り出した軸部材1は、その残留応力の影響を考慮して、フィードバックしてフランジ部3を形成すれば、軸部2とフランジ部3とが ほぼ正確な直角度を有する軸部材1とすることができることが判明した。
【0022】
【発明の効果】
以上、詳述したように、本発明の動圧発生用溝の製造方法によれば、ステンレス鋼や炭素鋼等の引き抜き材を使用する場合、内部に残留応力が存在してプレス加工のような塑性加工により動圧発生用溝を加工した後の軸とフランジ部とを一体とした軸部材とスリーブ内周面との間の隙間が意図したとおりの正確な動圧軸受を得ることができる。また、本発明の製造方法によれば、スリーブやスラスト板等に動圧発生用溝の煩雑な加工が不要となる。更に、軸に設けたフランジ部の上下両面に同時に同じ動圧発生用溝を加工することができるので工程数を低減することができる。また、軸に設けたフランジ部の上下両面に動圧発生用溝を加工する場合、同じ形状の動圧発生用溝が安定的に得られるので、組立完了後の精度が良くなり、不良品発生率も低下しその分製造コストを低減することができる。
【図面の簡単な説明】
【図1】本発明の動圧発生用溝の製造方法を実施するに際して軸部材を取り出す前の冷間引き抜き加工材を示す図である。
【図2】T字形の軸部材を取り出すとき、予めプレス加工した結果を考慮して逆方向に生じた歪の角度分傾斜した状態で旋削加工した軸部材を示す図である。
【図3】図3(A)は、予めプレス加工した結果を考慮して逆方向に生じた歪の角度分傾斜した状態で旋削加工した軸部材をプレス加工した状態の軸部材を示す図であり、図3(B)は、この軸部材をスリーブに嵌め入れた状態の断面図である。
【図4】引き抜き材から取り出した軸部材のフランジ部の内径部から外径部(外周端部)にかけて肉厚が薄くなるように形成する場合であって、図4(A)は、プレス加工前の状態を示す一部断面図であり、図4(B)は、付パス加工後の状態を示す一部断面図である。
【図5】引き抜き材から取り出した軸部材のフランジ部の内径部から外径部(外周端部)にかけて肉厚が薄くなるように形成する場合であって、図5(A)は、プレス加工前の状態を示す一部断面図であり、図5(B)は、プレス加工後の状態を示す一部断面図である。
【図6】引き抜き材から取り出した軸部材のフランジ部の内径部から外径部(外周端部)にかけて肉厚が厚くなるように形成する場合であって、図6(A)は、プレス加工前の状態を示す一部断面図であり、図6(B)は、付パス加工後の状態を示す一部断面図である。
【図7】引き抜き材から取り出した軸部材のフランジ部の内径部から外径部(外周端部)にかけて肉厚が厚くなるように形成する場合であって、図7(A)は、プレス加工前の状態を示す一部断面図であり、図7(B)は、プレス加工後の状態を示す一部断面図である。
【図8】冷間引き抜き加工材から旋削加工により取り出した軸部とフランジ部からなるT字形の軸部材を示す図である。
【図9】冷間引き抜き加工材から旋削加工により取り出した軸部材のフランジ部に動圧発生用溝を形成するためのプレス加工する状態を示す図である。
【図10】冷間引き抜き加工材から旋削加工により取り出した軸部材のフランジ部に動圧発生用溝を形成するためプレス加工した状態を示す図である。
【図11】冷間引き抜き加工材から旋削加工により取り出した軸部材のフランジ部に動圧発生用溝を形成した後この軸部材をスリーブに嵌め入れた状態の動圧軸受の断面図を示す図である。
【符号の説明】
1 軸部材
2 軸部
3 フランジ部
4 動圧発生用溝[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a hydrodynamic bearing comprising a shaft member having a flange integrally formed on a shaft and a sleeve having a slight gap between the shaft portion and the flange portion. The method for producing the dynamic pressure generating groove when forming the dynamic pressure generating groove by the method described above, in particular, a dynamic method capable of making the gap between the flange portion of the shaft member using the drawn material and the sleeve axial surface almost uniform. The present invention relates to a method for manufacturing a pressure generating groove.
[0002]
[Prior art]
A shaft member integrally formed with a shaft portion and a flange portion used as a dynamic pressure bearing may be formed by turning and then plastically processing a dynamic pressure generating groove formed on the flange portion surface by a press or the like. . For example, a dynamic pressure bearing may be used for a spindle motor. In this case, a dynamic pressure bearing on a surface of a disk-shaped bearing member formed on a rotating shaft is manufactured by press working (Patent Document 1). . Also, when processing the dynamic pressure generating groove by plastic deformation such as press working, the inner circumference of the flange portion is formed one step lower than the outer side, the dynamic pressure generating groove is formed on the outer circumference, and the inner circumference rises during processing A manufacturing method has been proposed to prevent the occurrence of such a phenomenon (Patent Document 2).
[0003]
[Patent Document 1] JP-A-6-338125
[Patent Document 2] JP-A-8-210345
[0004]
[Problems to be solved by the invention]
The method of forming grooves for generating dynamic pressure by plastic working such as press working is effective for soft materials such as copper alloys, but is the same on the upper and lower surfaces of the flange part with a hard material such as stainless steel. It is difficult to form the shape stably. In particular, it is difficult to stably form a dynamic pressure generating groove by performing plastic working on a cold drawn material.
That is, as shown in FIG. 8, pressing is performed on the surfaces 3a and 3b of the flange portion 3 of the shaft member 1 including the shaft portion 2 and the flange portion 3 taken out of a cold drawn material (hereinafter, simply referred to as a drawn material). Even when the dynamic pressure generating grooves are formed by performing plastic working such as working, there has been a phenomenon that an appropriate dynamic pressure cannot be obtained in the dynamic pressure bearing formed by the shaft member 1 and the sleeve. The reason is that the residual stress exists in the drawn material, so that even if the press working (plastic working) is performed as designed after the turning (FIG. 9), the flange portion 3 is deformed after forming the dynamic pressure generating groove 4. (Refer to FIG. 10, the deformation in the opposite direction is also possible), and it is considered that the major cause is that the gap 5 between the sleeve 6 and the sleeve 6 is not in an accurate state as designed (see FIG. 11). If residual stress is present, a method using annealing to remove the residual stress is also conceivable. However, according to the annealing, the material becomes too soft, and it is impossible to form a groove for generating dynamic pressure by plastic working such as press working. In addition, machining grooves for generating dynamic pressure on the inner peripheral surface of the sleeve or the thrust plate is complicated and costly, and it is difficult to stably form the same grooves.
[0005]
The present invention has been made in order to address the above-described problem, and has a residual stress inside using a drawn material, and a shaft portion and a flange portion even after plastic working for forming a groove for generating dynamic pressure. It is an object of the present invention to provide a method of manufacturing a dynamic pressure generating groove capable of obtaining a dynamic pressure bearing in which a gap between a shaft member and an inner peripheral surface of a sleeve is integrated as intended.
[0006]
[Means for Solving the Problems]
That is, in order to provide the above object, the invention according to claim 1 provides a shaft member having a shaft portion and a flange portion, and a gap provided between the shaft portion and the flange portion. A sleeve in which the shaft member is fitted, and a dynamic pressure generating groove formed by plastic working on the surface of the flange portion of the dynamic pressure bearing, the method comprising:
When forming the shaft member by turning from a drawn material whose drawing direction is known, first, a shaft member having the same dimensions is taken out, a groove for generating dynamic pressure is formed on the surface of the flange portion, and an outer peripheral end of the flange portion is formed. The distance between the portion and the shaft in the direction perpendicular to the shaft is measured, and the measured value is fed back to take out the shaft member from the drawn material, and the flange is subjected to plastic working.
[0007]
The invention according to claim 2 is characterized in that the flange portion is formed so as to be thinner from the inner diameter portion to the outer diameter portion.
[0008]
The invention according to claim 3 is characterized in that the flange portion is formed so as to increase in thickness from the inner diameter portion to the outer diameter portion.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a drawn member before taking out a shaft member when performing a method of manufacturing a dynamic pressure generating groove (hereinafter, referred to as a dynamic pressure groove) according to the first embodiment of the present invention. In this case, the extracted material W is manufactured by extracting the material through a die (tool) having a tapered hole and reducing the cross-sectional area thereof. In this embodiment, the drawn material W is subjected to turning to take out the T-shaped shaft member 1. The shaft member 1 includes a shaft portion 2 and a flange portion 3, and a herringbone-shaped, V-shaped or partially spiral dynamic pressure groove is formed on both surfaces of the flange portion 3 by press working (plastic working). I do.
[0010]
When forming a dynamic pressure groove in the flange portion 3 of the shaft member 1, first, as shown in FIG. 1, a large number of fine horizontal lines X, X,. . Are inserted, and the shaft portion 2 and the flange portion 3 are turned in parallel along the horizontal lines X, X,... And the vertical lines Y, Y,. The shaft member 1 similar to that shown in FIG. As described later, these X,..., Y,... Are obtained by turning the shaft member 1 once, taking out the press member (plastic working), and then, as shown in FIG. Or the difference d in height between the direction perpendicular to the shaft 2 and the outer peripheral end (difference in axial position between the center side end 3c of the lower side surface 3b of the flange 3 and the outer peripheral end 3d). The measured value is fed back and the value is used as a guide for taking out the correct shaft member 1 by performing the turning process and the press working again.
[0011]
Next, as shown in FIG. 9, the shaft member 1 in which the dynamic pressure grooves 4, 4 are formed on both surfaces of the flange portion 3 by press working is manufactured. In this case, since the shaft member 1 has a residual stress in the drawn material W of the original material, it does not have the dimensions as originally shown in the design drawing in FIG. The flange 3 is inclined at a certain angle (α). Therefore, when the dynamic pressure grooves are formed in advance, if it is known that the flange portion 3 is inclined by α by press working, the inclination angle α is fed back, and as shown in FIG. When the T-shaped shaft member 1 is taken out, if it is turned and pressed in a state inclined in the opposite direction by this angle (α), the processed flange portion 3 becomes as shown in FIG. Thus, the shaft member 1 in an accurate state can be obtained. Therefore, as shown in FIG. 3 (B), the gap 5 between the flange portion 3 having the dynamic pressure groove 4 formed on the surface thereof and the sleeve 6 is an appropriate gap.
[0012]
As described above, the inclination angle α of the flange portion 3 is usually a minute angle, and when an accurate angle cannot be measured, the height difference d (flange) between the direction perpendicular to the shaft 2 and the outer peripheral end portion is determined. The difference in the axial position between the center side end 3c of the lower side surface 3b and the outer peripheral end 3d of the lower side 3b of the portion 3 may be measured, and the numerical value may be fed back.
[0013]
In forming the accurate shaft member 1, it is necessary to clarify the material type (for example, stainless steel, carbon steel, etc.), the drawing direction, the material maker, and the like of the original drawn material W. If such material information is not clear, the state (size and direction) of the internal residual stress after drawing is unknown, and the turning direction during turning is not known. This is because accurate machining cannot be performed unless turning and pressing are repeated.
[0014]
Next, a case where the upper and lower surfaces of the flange portion 3 formed on the shaft member 1 are provided with an inclination will be described. First, a case in which the shaft member 1 is taken out from the drawn material W by turning and formed so as to be thinner from the inner diameter portion to the outer diameter portion (outer peripheral end portion) of the flange portion 3 (second embodiment) Will be described.
When the shaft member 1 is taken out from the drawn material W by turning and formed so as to be thinner from the inner diameter portion to the outer diameter portion (outer peripheral end portion) of the flange portion 3, the upper surface 3 a of the shaft member 1 is removed. As shown in FIG. 4A, when the thickness difference between the thick portion of the lower side surface 3b and the upper and lower outer peripheral ends in the direction perpendicular to the upper and lower shafts 2 is defined as h, h, as shown in FIG. Since residual stress is generated inside the shaft member 1, (h, h) does not become as originally designed, and as shown in FIG. 4B, h 1 , h 2 and h 1 a <h 2. That is, the upper side surface 3a and the lower side surface 3b are not identical because the distribution state of the internal residual stress is different.
[0015]
Next, as shown in FIG. 5 (A), when the shaft member 1 is taken out from the drawn material W by turning, the upper and lower surfaces of the flange portions 3 at the thicker portions and the outer peripheral end portions of the upper side surface 3a and the lower side surface 3b. The height difference in the direction perpendicular to the axis 2 is h 1 , h 2 and h 1 > h 2 . Then, when the dynamic pressure grooves 4, 4 are formed by press working in this state, as shown in FIG. 5B, the upper surface 3a and the lower surface 3b of the flange portion 3 after the dynamic pressure grooves 4, 4 are formed. The difference between the height of the thick portion and the height of the outer peripheral end in the direction perpendicular to the upper and lower shafts 2 is substantially the same h, h.
[0016]
As described above, and in the press upper and lower surfaces 3a of the machining try to plastic working such as the flange portion 3, h 1 is the height difference relative to a direction perpendicular to the axis 2 of the end of 3b, h 2 h if to be a 1 <h 2 known, in FIG. 1, when taking the shaft member 1 of the T-shaped, by feeding back the difference between the height (h 1, h 2), shown in FIG. 5 (a) In the opposite direction, turning is performed with a height difference provided in advance. That is, when the shaft member 1 is taken out by turning, if the height of each of the thick portion of the upper surface 3a and the lower side 3b and the peripheral edge portion and h 1, h 2 and and the h 1> h 2, As shown in FIG. 5B, the height difference between the thick portions of the upper and lower surfaces 3a, 3b of the flange portion 3 after press working and the outer peripheral end thereof in the direction perpendicular to the axis 2 is substantially h. , H can be obtained.
[0017]
Next, in the case where the flange portion 3 formed on the shaft side member 1 is provided with an inclination, the upper and lower surfaces 3a and 3b of the flange portion 3 are thicker from the inner diameter portion to the outer diameter portion (outer peripheral end portion). A case in which it is formed (third embodiment) will be described.
When the shaft member 1 is taken out from the drawn material W by turning and formed so as to be thicker from the inner diameter portion to the outer diameter portion (outer peripheral end portion) of the flange portion 3, the upper surface 3 a of the shaft member 1 is As shown in FIG. 6 (A), when the height of the thick portion of the lower side surface 3b and the height of the outer peripheral end are press-worked as j and j, residual stress is generated inside the shaft member 1. Therefore, in this case as well, (j, j) does not become as originally designed, and as shown in FIG. 6 (B), the height of the flange portion 3 in the direction perpendicular to the upper and lower shafts 2 is slightly increased. The difference is j 1 , j 2 and j 1 <j 2 . That is, since the distribution of the residual stress is different between the upper side and the lower side, they are not the same.
[0018]
Next, when the shaft member 1 is taken out from the drawn material W by turning, the height of the thick portion of the upper side surface 3a and the lower side surface 3b and the flange portion 3 of the outer peripheral end portion in the direction perpendicular to the upper and lower shafts 2 are formed. The difference between the heights is set to j 1 , j 2 and j 1 > j 2 . When the dynamic pressure grooves 4 and 4 are formed by press working in this state, as shown in FIG. 7B, the upper surface 3a and the lower surface 3b of the flange portion 3 after the formation of the dynamic pressure grooves 4,4. The height difference between the thick portion and the outer peripheral end portion in the direction perpendicular to the upper and lower shafts 2 is substantially the same j, j.
[0019]
Thus, the upper and lower surfaces 3a of the flange portion 3 in this case try to plastic working even if the difference in height that is j 1, j 2 knowing for a direction perpendicular to the axis 2 of the end of 3b, FIG. 1 When the T-shaped shaft member 1 is taken out, the height difference (j 1 , j 2 ) is fed back to provide a height difference in the opposite direction in advance as shown in FIG. Good. That is, when the shaft member 1 is taken out by turning, if each of the height of the thick portion of the upper surface 3a and the lower side 3b and the outer peripheral end portion Te j 1, j 2 and the j 1> j 2, As shown in FIG. 7 (B), the height difference between the thick portions of the upper and lower surfaces 3a, 3b of the flange portion 3 after press working and the outer peripheral end thereof in the direction perpendicular to the axis 2 is substantially j. , J can be obtained.
[0020]
In the embodiment of the present invention, the case where the shaft member 1 has a T-shape has been described. However, it is needless to say that a shaft member having the flange portion 3 formed around the shaft portion 2 may be used. Further, the present invention can also be applied to a case where only the upper surface 3a or only the lower surface 3b of the flange portion 3 is provided with an inclination or the groove 4 for generating dynamic pressure is formed. Further, in the T-shaped shaft member 1, as shown in the figure, a concave portion 3c is formed at the center of the T-shaped apex. good.
[0021]
Table 1 shows that in the method of manufacturing a groove for generating dynamic pressure of the present invention, in particular, in the third embodiment, a shaft portion 2 and a flange portion 3 are actually formed by turning a drawn material W (stainless steel). the shaft member 1 is taken out, the difference between the respective heights of the thick portion and the outer peripheral edge portion of the side surface 3a and the lower surface 3b on the shaft member 1, as shown in FIG. 6 (a), j 1 before pressing, j 2 values were produced 3 times respectively, a table showing the results of measuring the value after pressing.
[Table 1]
Figure 2004324684
As shown in Table 1, if the shaft member 1 taken out from the drawn material by the turning process is fed back to form the flange portion 3 in consideration of the influence of the residual stress, the shaft portion 2 and the flange portion 3 are formed. It has been found that the shaft member 1 can have a substantially accurate squareness.
[0022]
【The invention's effect】
As described in detail above, according to the method for producing a groove for generating dynamic pressure of the present invention, when a drawn material such as stainless steel or carbon steel is used, residual stress is present inside such as pressing. An accurate dynamic pressure bearing can be obtained in which the clearance between the shaft member and the inner peripheral surface of the sleeve, in which the shaft and the flange portion are integrated after processing the dynamic pressure generating groove by plastic working, is intended. Further, according to the manufacturing method of the present invention, complicated processing of a dynamic pressure generating groove in a sleeve, a thrust plate or the like becomes unnecessary. Furthermore, since the same dynamic pressure generating groove can be simultaneously formed on both upper and lower surfaces of the flange portion provided on the shaft, the number of steps can be reduced. Also, when machining grooves for generating dynamic pressure on the upper and lower surfaces of the flange provided on the shaft, the same shape of grooves for generating dynamic pressure can be obtained stably, so the accuracy after assembly is improved and defective products are generated. Therefore, the manufacturing cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a view showing a cold-drawn material before a shaft member is taken out when a method of manufacturing a groove for generating dynamic pressure according to the present invention is carried out.
FIG. 2 is a view showing a shaft member which is turned in a state where the shaft member is inclined by an angle of strain generated in the opposite direction in consideration of a result of press working in advance when removing a T-shaped shaft member.
FIG. 3 (A) is a view showing a shaft member in a state where a shaft member which has been turned in a state where the shaft member is inclined by an angle of strain generated in the opposite direction in consideration of a result of pre-pressing is pressed. FIG. 3B is a cross-sectional view of a state in which the shaft member is fitted in a sleeve.
FIG. 4 shows a case where the shaft member taken out from the drawn material is formed so that the thickness is reduced from the inner diameter portion to the outer diameter portion (outer peripheral end portion) of the flange portion, and FIG. FIG. 4B is a partial cross-sectional view showing a state before, and FIG. 4B is a partial cross-sectional view showing a state after additional pass processing.
FIG. 5 shows a case where the shaft member taken out of the drawn material is formed so that the thickness is reduced from the inner diameter portion to the outer diameter portion (outer peripheral end portion) of the flange portion, and FIG. FIG. 5B is a partial cross-sectional view illustrating a state before the pressing, and FIG. 5B is a partial cross-sectional view illustrating a state after the pressing.
FIG. 6 shows a case where the shaft member taken out of the drawn material is formed so that the thickness increases from the inner diameter portion to the outer diameter portion (outer peripheral end portion) of the flange portion, and FIG. FIG. 6B is a partial cross-sectional view showing a state before, and FIG. 6B is a partial cross-sectional view showing a state after additional pass processing.
FIG. 7 shows a case where the shaft member taken out from the drawn material is formed so that the thickness increases from the inner diameter portion to the outer diameter portion (outer peripheral end portion) of the flange portion, and FIG. FIG. 7B is a partial cross-sectional view showing a state before, and FIG. 7B is a partial cross-sectional view showing a state after press working.
FIG. 8 is a diagram showing a T-shaped shaft member including a shaft portion and a flange portion taken out from a cold drawn material by turning.
FIG. 9 is a view showing a state in which press working is performed to form a dynamic pressure generating groove in a flange portion of a shaft member taken out from a cold drawn material by turning.
FIG. 10 is a view showing a state in which pressing is performed to form a dynamic pressure generating groove in a flange portion of a shaft member taken out from a cold drawn material by turning.
FIG. 11 is a sectional view of a dynamic pressure bearing in a state where a dynamic pressure generating groove is formed in a flange portion of a shaft member taken out from a cold drawn material by turning, and the shaft member is fitted into a sleeve. It is.
[Explanation of symbols]
1 Shaft member 2 Shaft 3 Flange 4 Groove for generating dynamic pressure

Claims (3)

軸部とフランジ部とを形成した軸部材と、これら軸部とフランジ部との間に隙間を設けて該軸部材を嵌め入れたスリーブと、で構成される動圧軸受の前記フランジ部の表面に動圧発生用溝を塑性加工により形成する動圧発生用溝の製造方法において、
引き抜き方向の判明している引き抜き材から旋削加工により前記軸部材を形成するに際し、先ず寸法通りの軸部材を取り出し、フランジ部の表面に動圧発生用溝を形成して該フランジ部の外周端部の軸部に対する直角方向との距離を測定し、次にこの測定値をフィードバックして引き抜き材から軸部材を取り出し、フランジ部に塑性加工を施すことを特徴とする動圧発生用溝の製造方法。
Surface of the flange portion of a hydrodynamic bearing composed of a shaft member having a shaft portion and a flange portion, and a sleeve in which a gap is provided between the shaft portion and the flange portion and the shaft member is fitted. In the method for producing a dynamic pressure generating groove to form a dynamic pressure generating groove by plastic working,
When forming the shaft member by turning from a drawn material of which the drawing direction is known, first, the shaft member according to dimensions is taken out, a groove for generating dynamic pressure is formed on the surface of the flange portion, and the outer peripheral end of the flange portion is formed. Measuring the distance of the part in the direction perpendicular to the shaft part and then feeding back the measured value to take out the shaft member from the drawn material and subjecting the flange part to plastic working to produce a groove for generating dynamic pressure Method.
前記フランジ部は、内径部から外径部にかけて肉厚が薄くなるように形成したものである請求項1に記載の動圧発生用溝の製造方法。The method for manufacturing a groove for generating dynamic pressure according to claim 1, wherein the flange portion is formed so as to be thinner from an inner diameter portion to an outer diameter portion. 前記フランジ部は、内径部から外径部にかけて肉厚が厚くなるように形成したものである請求項1に記載の動圧発生用溝の製造方法。The method for manufacturing a groove for generating dynamic pressure according to claim 1, wherein the flange portion is formed so as to increase in thickness from an inner diameter portion to an outer diameter portion.
JP2003116659A 2003-04-22 2003-04-22 Manufacturing method of dynamic pressure generating groove Expired - Fee Related JP4340855B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003116659A JP4340855B2 (en) 2003-04-22 2003-04-22 Manufacturing method of dynamic pressure generating groove

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003116659A JP4340855B2 (en) 2003-04-22 2003-04-22 Manufacturing method of dynamic pressure generating groove

Publications (2)

Publication Number Publication Date
JP2004324684A true JP2004324684A (en) 2004-11-18
JP4340855B2 JP4340855B2 (en) 2009-10-07

Family

ID=33496795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003116659A Expired - Fee Related JP4340855B2 (en) 2003-04-22 2003-04-22 Manufacturing method of dynamic pressure generating groove

Country Status (1)

Country Link
JP (1) JP4340855B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005098250A1 (en) * 2004-03-30 2005-10-20 Ntn Corporation Dynamic pressure bearing device
DE102011085681A1 (en) * 2011-11-03 2013-05-08 Abb Turbo Systems Ag Hydrodynamic thrust bearing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005098250A1 (en) * 2004-03-30 2005-10-20 Ntn Corporation Dynamic pressure bearing device
US8506167B2 (en) 2004-03-30 2013-08-13 Ntn Corporation Dynamic bearing device having a thrust bearing portion
DE102011085681A1 (en) * 2011-11-03 2013-05-08 Abb Turbo Systems Ag Hydrodynamic thrust bearing

Also Published As

Publication number Publication date
JP4340855B2 (en) 2009-10-07

Similar Documents

Publication Publication Date Title
JP2003004051A (en) Trail ring of shell shape needle roller bearing and its manufacturing method
JP2004324684A (en) Method for manufacturing dynamic pressure generating groove
JP3667814B2 (en) Synchronizer ring manufacturing method
JP3503816B2 (en) Bevel gear with web cold forging die and method of manufacturing bevel gear with web
JP5080359B2 (en) Manufacturing method of hollow tooth profile parts
JP2003112218A (en) Method for manufacturing thick-wall thin-diameter tube
JPS6040625A (en) Working method of cylinder end part
JPH0683872B2 (en) Cold rolling method for bearing material
JP2833418B2 (en) Mold for cold forging
JPS63272463A (en) Tool for smoothing work
JP2001263355A (en) Method of working bearing sleeve with dynamic pressure groove
JP3308503B2 (en) Manufacturing method of intermediate restriction pipe
JP3012510B2 (en) Method and apparatus for dividing connecting rod cap in forged connecting rod
JP6464946B2 (en) Method for removing surplus portion of cylindrical metal member, method for manufacturing raceway ring, and method for manufacturing radial rolling bearing
JPS59220240A (en) Forming by plastic working
JPH057970A (en) Manufacture of rotary shaft
JPS622895B2 (en)
JP3962350B2 (en) Molding method of internal gear
JPH1151056A (en) Processing method of bearing sleeve with dynamic pressure groove
JPH07323346A (en) Cold forming method of toothed ring-shaped article
JP2001171279A (en) Method for manufacturing ballpoint pen tip
JPH0117769B2 (en)
JP5729030B2 (en) Press-in parts manufacturing method
JP2503484B2 (en) Forging method
JPH11151505A (en) Method for cold-rolling ring body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090623

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees