JPH0117769B2 - - Google Patents

Info

Publication number
JPH0117769B2
JPH0117769B2 JP56045816A JP4581681A JPH0117769B2 JP H0117769 B2 JPH0117769 B2 JP H0117769B2 JP 56045816 A JP56045816 A JP 56045816A JP 4581681 A JP4581681 A JP 4581681A JP H0117769 B2 JPH0117769 B2 JP H0117769B2
Authority
JP
Japan
Prior art keywords
cylindrical member
diameter
bore
wall thickness
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56045816A
Other languages
Japanese (ja)
Other versions
JPS57159229A (en
Inventor
Yasuhisa Tozawa
Kazuaki Deguchi
Kenji Masuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiho Kogyo Co Ltd
Original Assignee
Taiho Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiho Kogyo Co Ltd filed Critical Taiho Kogyo Co Ltd
Priority to JP4581681A priority Critical patent/JPS57159229A/en
Publication of JPS57159229A publication Critical patent/JPS57159229A/en
Publication of JPH0117769B2 publication Critical patent/JPH0117769B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/10Making other particular articles parts of bearings; sleeves; valve seats or the like

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Forging (AREA)

Description

【発明の詳細な説明】 本発明は円筒形部材の製造方法に係り、特に円
筒形部材の精度を格段に向上させることのできる
円筒形部材の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a cylindrical member, and more particularly to a method for manufacturing a cylindrical member that can significantly improve the accuracy of the cylindrical member.

従来、円筒形部材として、方形板状素材を湾曲
させてその両端部を突合わせた、いわゆる突合わ
せタイプの円筒形部材や、あるいは方形板状素材
を湾曲させるとともに、その両端部にそれぞれ形
成した凹部と凸部とを相互に係合させた、いわゆ
るクリンチタイプの円筒形部材が知られている。
Conventionally, the cylindrical member has been a so-called butt-type cylindrical member in which a rectangular plate-shaped material is curved and its ends are butted together, or a rectangular plate-shaped material is curved and formed at each end thereof. A so-called clinch type cylindrical member in which a concave portion and a convex portion are engaged with each other is known.

そして、この種の円筒形部材の真円度および肉
厚精度等を向上させる手段としては、円筒形部材
内に配される軸コアと円筒形部材の外面側に配置
されるホルダとにより、その円筒形部材を径方向
に圧縮する、いわゆるサイジング方式、あるいは
円筒形部材にその軸方向両端部から圧縮力を作用
させる、いわゆる側圧方式などを挙げることがで
きる。さらに、円筒形部材の精度をより向上させ
る手段として、上記サイジング方式により成形し
た円筒形部材を次工程でさらに側圧方式により成
形することも提案されている。
As a means for improving the roundness and wall thickness accuracy of this type of cylindrical member, it is possible to improve the roundness and wall thickness accuracy of this type of cylindrical member by using a shaft core disposed within the cylindrical member and a holder disposed on the outer surface side of the cylindrical member. Examples include a so-called sizing method in which a cylindrical member is compressed in the radial direction, and a so-called lateral pressure method in which a compressive force is applied to the cylindrical member from both ends in the axial direction. Furthermore, as a means to further improve the precision of the cylindrical member, it has been proposed that the cylindrical member formed by the above-mentioned sizing method is further formed by a lateral pressure method in the next step.

しかしながら、このようにサイジング方式によ
る工程と側圧方式による工程を順次経由させて円
筒形部材を製造することは、それにより円筒形部
材の精度をある程度向上させることができるにし
ても、従来はサイジングと側圧の工程が別工程と
なつているため製造が困難となるとともに、各工
程において円筒形部材に各別の方向から力が作用
することから前工程で矯正された円筒形部材の歪
が次工程で再び発生する等の不具合があり、必ず
しも充分な精度が期待できなかつた。
However, manufacturing a cylindrical member through a process using the sizing method and a process using the lateral pressure method in this way, although it is possible to improve the accuracy of the cylindrical member to a certain extent, has traditionally been difficult to do with sizing. The lateral pressure process is a separate process, which makes manufacturing difficult, and since forces act on the cylindrical member from different directions in each process, the distortion of the cylindrical member corrected in the previous process can be transferred to the next process. However, there were problems such as reoccurrence, and sufficient accuracy could not always be expected.

本発明はかかる従来の難点を解決するためにな
されたもので、その目的とするところは、円筒形
部材の真円度および肉厚精度を向上させることが
できる円筒形部材の製造方法を提供するにある。
The present invention has been made to solve these conventional difficulties, and its purpose is to provide a method for manufacturing a cylindrical member that can improve the roundness and wall thickness accuracy of the cylindrical member. It is in.

本発明は、従来の難点がサイジング工程と側圧
工程とを別工程としていたことに起因する点に着
目し、前記両工程をほぼ同時的に行わせるように
したことを特色とするものである。
The present invention is characterized by focusing on the fact that the conventional drawback is that the sizing process and the lateral pressure process are separate processes, and the two processes are performed almost simultaneously.

更に詳細にいえば、方形板状素材を湾曲させて
突合わせまたはクリンチタイプの円筒形部材を成
形し、次いでこの円筒形部材を、上記円筒形部材
の肉厚より小であつて、ホルダの円筒形ボアの内
径と円筒形部材外径、又は、円筒形の軸コア外径
と円筒形部材内径とを同一に設定した上記軸コア
および上記ボア内の間隙に挿入配置させながら塑
性変形を伴う径方向の押圧力を付加するととも
に、円筒形部材の内周および外周を同時に拘束
し、さらに、この径方向押圧力を維持したまま前
記径方向押圧力の付加工程終期に軸方向に塑性変
形を伴う圧縮力を協働付加させ、これら軸方向の
圧縮力と径方向の押圧力とにより円筒形部材に所
望の真円度と真直度を付与するものである。
More specifically, a rectangular plate material is curved to form a butt or clinch type cylindrical member, and then this cylindrical member is formed into a cylindrical member having a wall thickness smaller than that of the cylindrical member and a cylindrical member of the holder. The inner diameter of the shaped bore and the outer diameter of the cylindrical member, or the outer diameter of the cylindrical shaft core and the inner diameter of the cylindrical member are set to be the same, and the diameter is plastically deformed while being inserted into the gap in the bore. While applying a pressing force in the direction, the inner circumference and outer circumference of the cylindrical member are simultaneously restrained, and further, while maintaining this radial pressing force, plastic deformation occurs in the axial direction at the end of the process of applying the radial pressing force. Compressive forces are applied together, and the axial compressive force and radial pressing force impart desired roundness and straightness to the cylindrical member.

以下本発明実施の一態様を突合わせタイプの円
筒形部材を例に採つて説明する。
Hereinafter, one embodiment of the present invention will be described using a butt type cylindrical member as an example.

まず、第1図は突合わせタイプの円筒形部材1
を示すもので、この円筒形部材1は従来から知ら
れているように方形板状素材を湾曲させその両端
部を相互に突合わせて形成されている。そしてこ
の円筒形部材1は、第2図に示す装置により所要
の寸法精度が付与されるが、その構成は次の通り
である。すなわちこの装置は、第2図から明きら
かな如く、円筒形部材1が内挿されるボア3を設
けたダイス2と、先端に円筒形部材1内に挿入さ
れるコア5を突設し上記ボア3内に図示Pの力で
押入されるポンチ4と、このポンチ4に対向され
円筒形部材1を受けるノツクアウトポンチ6と、
さらに上記ダイス2を支持する基台7とから構成
されており、ダイス2に設けたボア3の径D1
加工前の円筒形部材1の外径D3と同一に形成さ
れ、またポンチ4のコア5の径D2は加工前の円
筒形部材1の内径D4より大径に形成されている。
つまり、ダイス2とコア5との間隙は、加工前の
円筒形部材1の肉厚よりも小さく設定してあり、
ポンチ4のコア5に円筒形部材1を取付けてこれ
をダイス2のボア3内に圧入させれば、この円筒
形部材1には径方向の力が加えられることにな
り、またその圧入の最終時にはポンチ4とノツク
アウトポンチ6とにより挾圧されて軸方向の圧縮
力が同時に加えられることになる。そして、上記
ボア3およびコア5は、円筒形部材の予定された
内外径仕上寸法に合致した高い真円精度に成形さ
れている。
First, Figure 1 shows a butt-type cylindrical member 1.
As is conventionally known, this cylindrical member 1 is formed by curving a rectangular plate-shaped material and abutting both ends thereof against each other. This cylindrical member 1 is given the required dimensional accuracy by the device shown in FIG. 2, and its configuration is as follows. That is, as is clear from FIG. 2, this device includes a die 2 provided with a bore 3 into which a cylindrical member 1 is inserted, and a core 5 protruding from the tip to be inserted into the cylindrical member 1. a punch 4 that is pushed into the inside of the punch 3 with a force P shown in the figure; a knockout punch 6 that faces the punch 4 and receives the cylindrical member 1;
It further comprises a base 7 that supports the die 2, the diameter D1 of the bore 3 provided in the die 2 is formed to be the same as the outer diameter D3 of the cylindrical member 1 before processing, and a punch 4. The diameter D 2 of the core 5 is larger than the inner diameter D 4 of the cylindrical member 1 before processing.
In other words, the gap between the die 2 and the core 5 is set smaller than the wall thickness of the cylindrical member 1 before processing.
If the cylindrical member 1 is attached to the core 5 of the punch 4 and press-fitted into the bore 3 of the die 2, a radial force will be applied to the cylindrical member 1, and the final Sometimes, the punch 4 and the knock-out punch 6 are used to clamp and apply compressive force in the axial direction at the same time. The bore 3 and the core 5 are formed with high roundness accuracy that matches the planned finishing dimensions of the inner and outer diameters of the cylindrical member.

しかして、上記装置による円筒形部材1の製造
方法について説明すれば、製造に際して上記精度
付与加工に先立ち、まず方形板状素材を湾曲させ
その両端部を相互に突合わせて円筒形部材1を成
形する。
Therefore, to explain the manufacturing method of the cylindrical member 1 using the above-mentioned apparatus, in manufacturing, prior to the above-mentioned precision imparting processing, a rectangular plate-shaped material is first curved and both ends of the material are butted against each other to form the cylindrical member 1. do.

次いで、この円筒形部材1をポンチ4のコア5
に取付けた状態でこの円筒形部材1をダイス2の
ボア3内に図示の如くPの力で圧入する。しかる
ときは、コア5の径D2は加工前の円筒形部材1
の内径D4よりも大径に形成されているので、コ
ア5の圧入により円筒形部材1には拡径方向の力
が加わる。これと同時にポンチ4の挿入により円
筒形部材1はポンチ4とノツクアウトポンチ6と
により軸方向の両側面側から押圧されることにな
るので、円筒形部材1には軸方向の圧縮力が負荷
される。したがつて、ほぼ同時的に付加される前
記拡径方向の押圧力と軸方向の圧縮力とにより、
円筒形部材1は予め高い真円度で製造してあるボ
ア3の内周面とコア5の外周面とに強く圧接され
て、格段に優れた高い真円度および肉厚精度が付
与されることとなる。
Next, this cylindrical member 1 is inserted into the core 5 of the punch 4.
This cylindrical member 1 is press-fitted into the bore 3 of the die 2 with a force of P as shown in the figure. In such a case, the diameter D 2 of the core 5 is the same as the diameter D 2 of the cylindrical member 1 before processing.
Since it is formed to have a larger diameter than the inner diameter D 4 of the cylindrical member 1 , a force in the direction of diameter expansion is applied to the cylindrical member 1 when the core 5 is press-fitted. At the same time, when the punch 4 is inserted, the cylindrical member 1 is pressed from both sides in the axial direction by the punch 4 and the knockout punch 6, so that a compressive force in the axial direction is applied to the cylindrical member 1. be done. Therefore, due to the pressing force in the diameter expanding direction and the compressive force in the axial direction, which are applied almost simultaneously,
The cylindrical member 1 is strongly pressed against the inner circumferential surface of the bore 3 and the outer circumferential surface of the core 5, which have been manufactured in advance with a high degree of circularity, thereby providing extremely high degree of circularity and wall thickness accuracy. It happens.

このことは次の実験結果から明きらかである。
すなわち、本出願人は、ボア3の径D1が49.65φ
mmのダイス2と、コア5の径D2が44.88φmmのポ
ンチ4とを用い、加工前の外径D3が49.65φmmの
円筒形部材1の加工実験を行ない、これにより外
径真円度10〜30μm、肉厚のバラツキが0.02〜0.04
mm、背面真直度10〜30μmの値を得ることができ
た。
This is clear from the following experimental results.
That is, the applicant has determined that the diameter D 1 of the bore 3 is 49.65φ.
A machining experiment was carried out on a cylindrical member 1 with an outer diameter D 3 of 49.65 φ mm before machining using a die 2 with a diameter D 2 of 44.88 φ mm and a punch 4 with a core 5 having a diameter D 2 of 44.88 φ mm. 10~30μm, wall thickness variation 0.02~0.04
mm, and back straightness values of 10 to 30 μm could be obtained.

なお、上記ボア3の径D1と加工前の円筒形部
材の外径D3の関係は、必ずしも厳密に一致させ
る必要はなく真円度、肉厚のバラツキ、真直度の
規格内に入つていれば所期の効果が達成できる。
Note that the relationship between the diameter D 1 of the bore 3 and the outer diameter D 3 of the cylindrical member before processing does not necessarily have to be exactly the same, but may be within the standard for roundness, wall thickness variation, and straightness. If you do so, you can achieve the desired effect.

通常、この種の円筒形部材の規格は外径真円度
が150μm以下、肉厚のバラツキが0.15mm以下であ
るので、前記実験結果から本発明方法により充分
良好な精度が得られることが確認できる。
Normally, the standard for this type of cylindrical member is that the outer diameter roundness is 150 μm or less and the wall thickness variation is 0.15 mm or less, so the above experimental results confirm that the method of the present invention can achieve sufficiently good accuracy. can.

なお、前記実施の態様および加工実験において
は、ポンチ4のコア5の径D2を加工前の円筒形
部材1の内径D4より大径に形成して円筒形部材
1に拡径方向の力を加えるようにしたものについ
て説明したが、コア5の径D2と加工前の円筒形
部材1の内径D4とを同一とし、かつダイス2の
ボア3の径D1を加工前の円筒形部材1の外径D3
よりも小径として円筒形部材1に縮径方向の力を
付加させるようにしても、上記実施例と同効を期
待することができる。
In the embodiments and processing experiments described above, the diameter D 2 of the core 5 of the punch 4 is made larger than the inner diameter D 4 of the cylindrical member 1 before processing, and a force in the diametrical direction is applied to the cylindrical member 1. In the above explanation, the diameter D 2 of the core 5 is the same as the inner diameter D 4 of the cylindrical member 1 before processing, and the diameter D 1 of the bore 3 of the die 2 is the same as the diameter D 4 of the cylindrical member 1 before processing. Outer diameter of member 1 D 3
Even if the cylindrical member 1 is made to have a smaller diameter and a force is applied in the direction of diameter reduction, the same effect as in the above embodiment can be expected.

以上説明したように本発明の第1の実施例にお
いては、方形板状素材を湾曲させて突合わせタイ
プの円筒形部材を成形し、次いでこの円筒形部材
内に軸コアを挿入するとともにこの円筒形部材を
ホルダのボア内に配置させ、上記ボアの内径と円
筒形部材外径し、又は、軸コア外径と円筒形部材
内径とを同一に設定してボアと軸コアとの間隙を
上記円筒形部材の肉厚より小とすることにより、
先ずこの円筒形部材に塑性変形を伴う径方向の押
圧力を付加するとともに、この径方向押圧力を維
持したまま前記径方向押圧力の付加工程終期に軸
方向に塑性変形を伴う圧縮力を協働付加させるよ
うにしているので、円筒形部材は加工初期に付加
される径方向の押圧力により円筒形成形過程で生
じた内外面のウネリが矯正されるとともに、引続
いて協働して付加される軸方向圧縮力により内外
面のボアおよび軸コア面に対するならい過程が達
成され、これらの間に各部の歪みが互いに分散吸
収されることになる。つまり、この発明によれ
ば、従来のサイジング工程と側圧工程とが同時に
行なわれることになり、両工程を各別に行なつて
いた従来のものに比較して、ほぼ同時的に施され
る両工程の相乗作用により発生歪を互いに補完さ
せて円筒形部材の真円度および肉厚精度を格段に
向上させることができる。したがつてまた、この
円筒形部材を軸受として使用する場合には、異常
発熱および焼付を効果的に排除し得ることは明き
らかである。
As explained above, in the first embodiment of the present invention, a butt-type cylindrical member is formed by curving a rectangular plate-like material, and then a shaft core is inserted into this cylindrical member, and the cylindrical member is The shaped member is placed in the bore of the holder, and the inner diameter of the bore and the outer diameter of the cylindrical member are set to be the same, or the outer diameter of the shaft core and the inner diameter of the cylindrical member are set to be the same and the gap between the bore and the shaft core is set as above. By making it smaller than the wall thickness of the cylindrical member,
First, a radial pressing force that causes plastic deformation is applied to this cylindrical member, and while this radial pressing force is maintained, a compressive force that causes plastic deformation in the axial direction is applied at the end of the process of applying the radial pressing force. Since the cylindrical member is applied with a radial pressing force at the beginning of processing, the undulations of the inner and outer surfaces that occur during the cylinder forming process are corrected, and the undulations of the inner and outer surfaces that occur during the cylinder forming process are corrected, and The applied axial compressive force achieves a process of conforming the inner and outer surfaces to the bore and the shaft core surface, and the strain in each part is dispersed and absorbed between them. In other words, according to this invention, the conventional sizing process and the lateral pressure process are performed at the same time, and compared to the conventional method in which both processes were performed separately, both processes are performed almost simultaneously. Due to the synergistic effect, the generated strain can be complemented with each other, and the roundness and wall thickness accuracy of the cylindrical member can be significantly improved. Therefore, it is clear that when this cylindrical member is used as a bearing, abnormal heat generation and seizure can be effectively eliminated.

次に、本発明実施の他の態様をクリンチタイプ
の円筒形部材を例に採つて説明する。
Next, another embodiment of the present invention will be described using a clinch type cylindrical member as an example.

第3図はクリンチタイプの円筒形部材11を示
すもので、この円筒形部材11は従来から知られ
ているように両端部に凹部11aと凸部11bと
がそれぞれ設けられた略方形板状素材を湾曲させ
るとともに、前記凹部11aと凸部11bとを相
互に係合させてその突き合せ部分を連結結合させ
ている。そしてこの円筒形部材11は、第4図に
示す装置により所要の寸法精度が付与されるが、
図示態様から明白なように、この装置は、突合わ
せタイプの円筒形部材1に用いられる装置と基本
的には同一構造をなしている。
FIG. 3 shows a clinch type cylindrical member 11, which is a generally rectangular plate-like material having a concave portion 11a and a convex portion 11b at both ends, as is conventionally known. The concave portion 11a and the convex portion 11b are engaged with each other to connect and connect the abutting portions. This cylindrical member 11 is given the required dimensional accuracy by the device shown in FIG.
As is clear from the illustrated embodiment, this device has basically the same structure as the device used for the butt-type cylindrical member 1.

すなわち、この装置は、第4図に示すように、
円筒形部材11が内挿されるボア13を設けたダ
イス12と、先端に円筒形部材11内に挿入され
るコア15を突設しボア13内に図示P1の力で
押入されるポンチ14と、このポンチ14に対向
され円筒形部材11の下端側を受承するノツクア
ウトポンチ16と、さらに上記ダイス12を支持
する基台17から構成されている。そして、これ
らの構成により上記第3図の実施例と同様に、円
筒形部材11に軸方向の圧縮力と径方向の力とを
同時に加えることができるようにしている。ただ
し、本装置は、前述の突合わせタイプの円筒形部
材1に用いられる装置とは異なり、円筒形部材1
1に拡径方向の力を加えるのではなく縮径方向の
力を加えるようになつていることが特異である。
That is, this device, as shown in FIG.
A die 12 is provided with a bore 13 into which the cylindrical member 11 is inserted, and a punch 14 is provided with a protruding core 15 at its tip to be inserted into the cylindrical member 11 and is pushed into the bore 13 with a force of P1 as shown in the figure. , a knockout punch 16 that faces the punch 14 and receives the lower end side of the cylindrical member 11, and a base 17 that supports the die 12. With these configurations, it is possible to simultaneously apply compressive force in the axial direction and force in the radial direction to the cylindrical member 11, similar to the embodiment shown in FIG. 3 above. However, unlike the device used for the butt-type cylindrical member 1 described above, this device
1 is unique in that it applies a force in the diameter-reducing direction instead of applying a force in the diameter-increasing direction.

すなわち、ダイス12のボア13の径D11は加
工前の円筒形部材11の外径D13より小径に形成
されており、一方ポンチ14のコア15の径D12
は加工前の円筒形部材11の内径D14と同一径に
形成されている。
That is, the diameter D 11 of the bore 13 of the die 12 is smaller than the outer diameter D 13 of the cylindrical member 11 before processing, while the diameter D 12 of the core 15 of the punch 14 is smaller than the outer diameter D 13 of the cylindrical member 11 before processing.
is formed to have the same diameter as the inner diameter D14 of the cylindrical member 11 before processing.

したがつて、円筒形部材11にはダイス12と
ポンチ14とにより縮径方向の力が加えられると
ともに、ポンチ14とノツクアウトポンチ16と
により軸方向の圧縮力が前記縮径力と同時的に加
えられることになる。
Therefore, a force is applied to the cylindrical member 11 in the direction of diameter reduction by the die 12 and the punch 14, and a compressive force in the axial direction is applied by the punch 14 and the knockout punch 16 simultaneously with the diameter reduction force. It will be added.

なお、ここで円筒形部材11に拡径方向の力を
加えず縮径方向の力を加えるようにしたのは、ク
リンチタイプの円筒形部材11に拡径方向の力を
加えると、クリンチ部、すなわち凹部11aと凸
部11bとの係合部分に離隔現象が発生して好ま
しくないことに依るものである。
Note that the reason why the force in the diametrical direction is applied to the cylindrical member 11 instead of the force in the diametrical expanding direction is that when a force in the radial expanding direction is applied to the clinch type cylindrical member 11, the clinch portion, That is, this is because an undesirable separation phenomenon occurs at the engagement portion between the recess 11a and the protrusion 11b.

次に、このクリンチタイプの円筒形部材11の
製造方法について説明すれば、上記突合わせタイ
プのものと同様に、製造に際しては、まず方形板
状素材を湾曲させるとともに、その両端部の凹部
11aと凸部11bとを相互に係合させて第3図
に示す円筒形部材11を成形する。
Next, the method for manufacturing this clinch type cylindrical member 11 will be explained. Similar to the above-mentioned butt type, when manufacturing, first, a rectangular plate-shaped material is curved, and the recesses 11a at both ends of the cylindrical member 11 are The convex portions 11b are engaged with each other to form the cylindrical member 11 shown in FIG. 3.

次いで、この円筒形部材11内にポンチ14の
コア15を挿入し、この状態で円筒形部材11を
図示P1の力でポンチ14とともにダイス12の
ボア13内に圧入すれば、ボア13の径D11は加
工前の円筒形部材11の外径D3より小径に形成
されているので、上記ボア13への圧入操作によ
り円筒形部材11には縮径方向の圧縮力が付加さ
れ、これと同時に円筒形部材11のボア13内へ
の押圧挿入により、円筒形部材11はポンチ14
とノツクアウトポンチ16との間で軸方向両面か
ら挾圧されることとなり、該円筒形部材11には
軸方向の圧縮力が相伴つて加えられる。かくし
て、前記縮径方向の圧縮力と軸方向の圧縮力との
相乗作用により、円筒形部材11には寸法精度の
高いボア13とコア15とに挾圧されて格段に優
れた真円度および肉厚精度を付与することができ
る。
Next, the core 15 of the punch 14 is inserted into the cylindrical member 11, and in this state, the cylindrical member 11 and the punch 14 are pressed into the bore 13 of the die 12 with a force of P1 as shown in the figure. Since D 11 is formed to have a smaller diameter than the outer diameter D 3 of the cylindrical member 11 before machining, compressive force is applied to the cylindrical member 11 in the diameter reduction direction by the press-fitting operation into the bore 13, and this At the same time, by pressing the cylindrical member 11 into the bore 13, the cylindrical member 11 is inserted into the punch 14.
The cylindrical member 11 is clamped from both sides in the axial direction between the cylindrical member 11 and the knockout punch 16, and a compressive force in the axial direction is simultaneously applied to the cylindrical member 11. Thus, due to the synergistic effect of the compressive force in the diametrical direction and the compressive force in the axial direction, the cylindrical member 11 is compressed by the bore 13 and the core 15 with high dimensional accuracy, and has extremely excellent roundness and It is possible to provide wall thickness accuracy.

第5図、第6図および第8図に示す実験結果
は、ボア13の径D11が49.515φのダイス12と、
コア15の径D12が44.82φのポンチ14とを用い、
加工前の外径D13を1とした場合にボア13の径
D11が0.997に相当する外径D13を備えた円筒形部
材11の加工実験を行なつたものである。第5
図、第6図、第8図に示す実験結果は、それぞれ
側圧率(l−l′)/l×100(ただしl…側圧前の
円筒形部材の軸方向の長さ、l′…側圧後の円筒形
部材の軸方向の長さ)を変化させたときの外径真
直度、背面真直度、並びに肉厚のバラツキの変化
を計測したものである。なお、第8図に示す4種
類の記号は、それぞれ第7図に示す計測箇所にお
ける肉厚を示したものである。
The experimental results shown in FIG. 5, FIG. 6, and FIG .
Using a punch 14 with a core 15 having a diameter D 12 of 44.82φ,
Diameter of bore 13 when outer diameter D 13 before processing is set as 1
A machining experiment was carried out on a cylindrical member 11 having an outer diameter D 13 where D 11 corresponds to 0.997. Fifth
The experimental results shown in Figs. Changes in outer diameter straightness, back surface straightness, and wall thickness variations were measured when the axial length of the cylindrical member was changed. The four types of symbols shown in FIG. 8 each indicate the wall thickness at the measurement location shown in FIG. 7.

上述の実験結果から理解されるように、側圧率
を2%以上、好ましくは3%〜8%程度とするこ
とにより、良好な精度が得られる。なお、縮径方
向の圧縮については、円筒形部材の圧縮前の外径
を1としたとき、圧縮後の外径が0.950〜0.997と
なる程度に圧縮したときが、良好な結果が得られ
ることが確認されている。
As understood from the above experimental results, good accuracy can be obtained by setting the side pressure ratio to 2% or more, preferably about 3% to 8%. Regarding compression in the direction of diameter reduction, when the outer diameter of the cylindrical member before compression is 1, good results can be obtained when the outer diameter after compression is 0.950 to 0.997. has been confirmed.

以上説明したように、本発明の第2の実施例に
おいては、先ずこの円筒形部材に縮径方向の圧縮
力を加えるとともにこの縮径方向圧縮力の付加行
程終期に軸方向の圧縮力を協働付加させるように
しているので、円筒形部材は加工初期に付加され
る縮径方向の圧縮力により円筒形成形過程で生じ
た内外面のウネリおよびクリンチ部の付勢が矯正
されるとともに、引続いて協働して付加される軸
方向圧縮力により内外面のボアおよび軸コア面に
対するならい過程が達成され、これらの間に各部
の歪みが互いに分散吸収されることとなる。つま
り、この第2の実施例によれば、従来のサイジン
グ工程と側圧工程とが同時的に並行して行なわれ
ることとなり、両工程を各別に行なつていた従来
のものに比較して、ほぼ同時的に施される両工程
の相乗作用により、発生歪が互いに補完されて円
筒形部材の真円度および肉厚精度を格段に向上さ
せることができる。特に、円筒形部材にはサイジ
ングとして縮径方向の力が加わるので、円筒形部
材のクリンチ部に離隔現象を発生させる惧れがな
く、クリンチタイプの円筒形部材の製造に極めて
好適なものと言うことができる。
As explained above, in the second embodiment of the present invention, a compressive force in the radial direction is first applied to the cylindrical member, and at the end of the additional stroke of the radial compressive force, the axial compressive force is cooperated. Since the compressive force in the diameter reduction direction is applied to the cylindrical member at the initial stage of processing, the waviness of the inner and outer surfaces and the biasing of the clinch portion that occur during the cylinder forming process are corrected, and the tension is also reduced. Subsequently, the axial compressive force applied in cooperation achieves a process of conforming to the inner and outer surfaces of the bore and the shaft core surface, and the strain of each part is mutually dispersed and absorbed between these. In other words, according to this second embodiment, the conventional sizing process and the lateral pressure process are performed simultaneously and in parallel, and compared to the conventional method in which both processes were performed separately, almost Due to the synergistic effect of both processes performed simultaneously, the generated strains are complemented with each other, and the roundness and wall thickness accuracy of the cylindrical member can be significantly improved. In particular, since a force is applied to the cylindrical member in the direction of diameter reduction for sizing, there is no risk of separation occurring at the clinch portion of the cylindrical member, making it extremely suitable for manufacturing clinch-type cylindrical members. be able to.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は突合わせタイプの円筒形部材を示す斜
視図、第2図はこの円筒形部材を加工する装置の
一例を示す断面図、第3図はクリンチタイプの円
筒形部材を示す斜視図、第4図はこの円筒形部材
を加工する装置の一例を示す断面図、第5図、第
6図、第8図はそれぞれ側圧率を変化させたとき
の外径真円度、背面真円度並びに肉厚の変化の状
態を示す実験結果図、第7図は第8図の実験にお
ける計測位置を示す図である。 1,11…円筒形部材、2,12…ダイス、
3,13…ボア、4,14…ポンチ、5,15…
コア、6,16…ノツクアウトポンチ、11a…
凹部、11b…凸部。
FIG. 1 is a perspective view showing a butt type cylindrical member, FIG. 2 is a sectional view showing an example of a device for processing this cylindrical member, and FIG. 3 is a perspective view showing a clinch type cylindrical member. Fig. 4 is a cross-sectional view showing an example of a device for processing this cylindrical member, and Figs. 5, 6, and 8 show the outer diameter roundness and back roundness when changing the side pressure ratio, respectively. FIG. 7 is a diagram showing the measurement positions in the experiment shown in FIG. 8. 1, 11... Cylindrical member, 2, 12... Dice,
3,13...Bore, 4,14...Punch, 5,15...
Core, 6, 16...knockout punch, 11a...
Concave portion, 11b... Convex portion.

Claims (1)

【特許請求の範囲】 1 方形板状素材を湾曲させて突合わせまたはク
リンチタイプの円筒形部材を成形し、次いでこの
円筒形部材を、上記円筒形部材の肉厚より小であ
つて、ホルダの円筒形ボアの内径と円筒形部材外
径、又は、円筒形の軸コア外径と円筒形部材内径
とを同一に設定した上記軸コアおよび上記ボア内
の間隙に挿入配置させながら塑性変形を伴う径方
向の押圧力を付加するとともに、円筒形部材の内
周および外周を同時に拘束し、さらに、この径方
向押圧力を維持したまま前記径方向押圧力の付加
工程終期に軸方向に塑性変形を伴う圧縮力を協働
付加させ、これら軸方向の圧縮力と径方向の押圧
力とにより円筒形部材に所望の真円度と真直度を
付与することを特徴とする円筒形部材の製造方
法。 2 円筒形部材の圧縮前の軸方向長さをl、圧縮
後の軸方向長さをl′としたとき、 (l−l′)/l×100で与えられる円筒形部材
の側圧率を3〜8%としたことを特徴とする特許
請求の範囲第1項記載の製造方法。 3 円筒形部材の縮径方向に圧縮する前の肉厚を
1としたとき、圧縮後の肉厚が0.950〜0.997とな
るようにその円筒形部材を圧縮したことを特徴と
する特許請求の範囲第1項又は第2項記載の製造
方法。
[Claims] 1. A rectangular plate-shaped material is curved to form a butt or clinch type cylindrical member, and then this cylindrical member is formed into a material having a wall thickness smaller than that of the cylindrical member and of a holder. The inner diameter of the cylindrical bore and the outer diameter of the cylindrical member, or the outer diameter of the cylindrical shaft core and the inner diameter of the cylindrical member are set to be the same, and plastic deformation occurs while being inserted into the gap in the shaft core and the bore. While applying a radial pressing force, the inner circumference and outer periphery of the cylindrical member are simultaneously constrained, and further, while maintaining this radial pressing force, plastic deformation is caused in the axial direction at the end of the process of applying the radial pressing force. A method for producing a cylindrical member, characterized in that the axial compressive force and the radial pressing force are used to impart desired roundness and straightness to the cylindrical member. 2 When the axial length of the cylindrical member before compression is l and the axial length after compression is l', the lateral pressure ratio of the cylindrical member given by (l-l')/l x 100 is 3. The manufacturing method according to claim 1, characterized in that the content is 8% to 8%. 3. Claims characterized in that the cylindrical member is compressed so that the wall thickness after compression is 0.950 to 0.997, assuming that the wall thickness of the cylindrical member before being compressed in the diameter reduction direction is 1. The manufacturing method according to item 1 or 2.
JP4581681A 1981-03-28 1981-03-28 Manufacture of cylindrical member Granted JPS57159229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4581681A JPS57159229A (en) 1981-03-28 1981-03-28 Manufacture of cylindrical member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4581681A JPS57159229A (en) 1981-03-28 1981-03-28 Manufacture of cylindrical member

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP27558085A Division JPS61235030A (en) 1985-12-06 1985-12-06 Production of cylindrical member

Publications (2)

Publication Number Publication Date
JPS57159229A JPS57159229A (en) 1982-10-01
JPH0117769B2 true JPH0117769B2 (en) 1989-04-03

Family

ID=12729765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4581681A Granted JPS57159229A (en) 1981-03-28 1981-03-28 Manufacture of cylindrical member

Country Status (1)

Country Link
JP (1) JPS57159229A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6188926A (en) * 1984-10-09 1986-05-07 Koji Kondo Production of tape guide cylinder
JPH08206737A (en) * 1995-02-02 1996-08-13 Honda Motor Co Ltd Method for correcting dimension of work

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5017190A (en) * 1973-05-03 1975-02-22

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5017190A (en) * 1973-05-03 1975-02-22

Also Published As

Publication number Publication date
JPS57159229A (en) 1982-10-01

Similar Documents

Publication Publication Date Title
US8468698B2 (en) Spinning method
JP3046645B2 (en) Method of manufacturing raceway for split bearings
US4939827A (en) Method of manufacturing a bearing device including a housing with a flange at one end thereof and a bearing bush press-fitted thereinto
JP2002106577A (en) Bearing ring, bearing with bearing ring and manufacturing method of bearing ring
US5199170A (en) Manufacturing method of half-split bearings
JP5307385B2 (en) Manufacturing method of concentric expanded tube or eccentric expanded tube
US4466267A (en) Process for forming curved structures, and the resulting structures
JP2006224169A (en) Method for manufacturing cylindrical body, and cylindrical body
JPH0117769B2 (en)
JPH06198358A (en) Method and device for fixing tubular reinforcing insert into tubular metal structure
JPH0139849B2 (en)
EP0565406A1 (en) Method of making a metallic ring-shaped body
JP2001047127A (en) Manufacture of intermediate drawn tube
KR910007288B1 (en) Method of production of cylindrical body
JPH0683872B2 (en) Cold rolling method for bearing material
JP2007245218A (en) U press apparatus and u press method
JPH0819816A (en) Production of cylindrical member
JPS61235030A (en) Production of cylindrical member
JPS6245793Y2 (en)
JP3308503B2 (en) Manufacturing method of intermediate restriction pipe
JP3128208B2 (en) Manufacturing method of ring-shaped parts
JP3938979B2 (en) Pipe end processing method
JPS59187426A (en) Machining method and machining device for machining race surface of race ring of roller bearing
JPS637900B2 (en)
JPH0359302B2 (en)