JP2004323693A - Method for producing living radical polymer, and polymer - Google Patents

Method for producing living radical polymer, and polymer Download PDF

Info

Publication number
JP2004323693A
JP2004323693A JP2003120939A JP2003120939A JP2004323693A JP 2004323693 A JP2004323693 A JP 2004323693A JP 2003120939 A JP2003120939 A JP 2003120939A JP 2003120939 A JP2003120939 A JP 2003120939A JP 2004323693 A JP2004323693 A JP 2004323693A
Authority
JP
Japan
Prior art keywords
group
living radical
radical polymer
meth
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003120939A
Other languages
Japanese (ja)
Other versions
JP4107996B2 (en
Inventor
Shigeru Yamako
茂 山子
Junichi Yoshida
潤一 吉田
Takashi Kameshima
隆 亀島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Chemical Co Ltd
Original Assignee
Otsuka Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Chemical Co Ltd filed Critical Otsuka Chemical Co Ltd
Priority to JP2003120939A priority Critical patent/JP4107996B2/en
Publication of JP2004323693A publication Critical patent/JP2004323693A/en
Application granted granted Critical
Publication of JP4107996B2 publication Critical patent/JP4107996B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Polymerization Catalysts (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a living radical polymer in which the living radical polymer having precise molecular weight and molecular weight distribution (PD=Mw/Mn) is obtained under mild conditions from not only styrene, but also from the other (meth)acrylic acid ester by using an azo-based polymerization initiator and an organic tellurium compound represented by the following formula (1). <P>SOLUTION: The method for producing the living radical polymer comprises reacting an azo-based polymerization initiator with the organic tellurium compound represented by formula (1): (R<SP>1</SP>Te)<SB>2</SB>(wherein R<SP>1</SP>is a 1-8C alkyl group, an aryl group, a substituted aryl group or an aromatic hetero ring group) as a first step, adding a vinyl monomer thereto and polymerizing the vinyl monomer as a second step to obtain the living radical polymer. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、リビングラジカルポリマーの製造方法及びそれより得られうるリビングラジカルポリマーに関する。
【0002】
【従来の技術】
アゾ系化合物は、ラジカル重合の開始剤として用いられている。特にAIBN(2,2’−アゾビスイソブチロニトリル)は、アゾ系ラジカル重合開始剤の中でも重要で広く使用されている。このような反応としては、非常に多様のモノマー、例えば、スチレン、(メタ)アクリル酸アルキルやアクリロニトリル等のビニルモノマーの重合に使用されている。
【0003】
上記方法は、多様なモノマーに対して重合反応が可能であるが、生成物の分子量と分子量分布の精密な制御には不向きである。
このような問題を解消するものとして、AIBN、ジフェニルジテルリド(DPDTe)を用いてスチレンを重合させて、ポリスチレンを得る方法が知られている(例えば、非特許文献1参照)。
【0004】
【発明が解決しようとする課題】
しかしながら、この方法はまず有機テルル化合物として芳香族系のDPDTeのみを用い、ビニルモノマーとしてスチレンのみを用いることを開示するものであり、且つ上記AIBN、ジフェニルジテルリド(DPDTe)、スチレンの3者を同時に反応させる方法であり、分子量分布(PD=Mw/Mn)も1.18〜1.26程度のポリマーが得られている。従ってこの文献からビニルモノマーとしてスチレンを用いる場合には分子量分布(PD=Mw/Mn)が制御されているものが得られることがわかるが、スチレン以外のビニルモノマーについての知見は不明である。そこで(メタ)アクリル酸エステルのような他のビニルモノマーについて研究したところ、アゾ化合物、有機テルル化合物、ビニルモノマーの3者を同時に反応させるこの方法では優れた分子量分布が得られないことが判明した。
〔非特許文献1 Polymer Bulletin 43,143−150(1999)〕
本発明の課題は、アゾ系重合開始剤と式(1)で表される化合物を用いてスチレンのみならずその他の(メタ)アクリル酸エステルのようなビニルモノマーであっても、温和な条件下で、精密な分子量及び分子量分布(PD=Mw/Mn)を有するリビングラジカルポリマーが得られるリビングラジカルポリマーの製造方法及び該ポリマーを提供することにある。
【0005】
【課題を解決するための手段】
本発明は、第一段階として、アゾ系重合開始剤と式(1)で示される化合物を反応させ、次に第二段階として、ビニルモノマーを加えてビニルモノマーを重合して、リビングラジカルポリマーを得ることを特徴とするリビングラジカルポリマーの製造方法、及びそれより得られうるリビングラジカルポリマーに係る。
【0006】
(RTe) (1)
〔式中、Rは、C〜Cのアルキル基、アリール基、置換アリール基又は芳香族ヘテロ環基を示す。〕
【0007】
【発明の実施の形態】
本発明のリビングラジカルポリマーは、第一段階として、アゾ系重合開始剤と式(1)で示される化合物を反応させ、次に第二段階として、ビニルモノマーを加えてビニルモノマーを重合させることにより製造される。
(RTe) (1)
〔式中、Rは、C〜Cのアルキル基、アリール基、置換アリール基又は芳香族ヘテロ環基を示す。〕
【0008】
本発明で使用する式(1)で表される化合物は、次の通りである。
(RTe) (1)
〔式中、Rは、C〜Cのアルキル基、アリール基、置換アリール基又は芳香族ヘテロ環基を示す。〕
で示される基は、具体的には次の通りである。
〜Cのアルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、シクロプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、シクロブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基等の炭素数1〜8の直鎖状、分岐鎖状又は環状のアルキル基を挙げることができる。好ましいアルキル基としては、炭素数1〜4の直鎖状又は分岐鎖状のアルキル基、より好ましくはメチル基、エチル基又はブチル基が良い。
【0009】
アリール基としては、フェニル基、ナフチル基等、置換アリール基としては置換基を有しているフェニル基、置換基を有しているナフチル基等、芳香族へテロ環基としてはピリジル基、フリル基、チエニル基等を挙げることができる。上記置換基を有しているアリール基の置換基としては、例えば、ハロゲン原子、水酸基、アルコキシ基、アミノ基、ニトロ基、シアノ基、−CORで示されるカルボニル含有基(R=C〜Cのアルキル基、アリール基、C〜Cのアルコキシ基、アリーロキシ基)、スルホニル基、トリフルオロメチル基等を挙げることができる。好ましいアリール基としては、フェニル基、トリフルオロメチル置換フェニル基が良い。また、これら置換基は、1個又は2個置換しているのが良く、パラ位若しくはオルト位が好ましい。
【0010】
式(1)で示される化合物は、具体的には、ジメチルジテルリド、ジエチルジテルリド、ジ−n−プロピルジテルリド、ジイソプロピルジテルリド、ジシクロプロピルジテルリド、ジ−n−ブチルジテルリド、ジ−sec−ブチルジテルリド、ジ−tert−ブチルジテルリド、ジシクロブチルジテルリド、ジフェニルジテルリド、ビス−(p−メトキシフェニル)ジテルリド、ビス−(p−アミノフェニル)ジテルリド、ビス−(p−ニトロフェニル)ジテルリド、ビス−(p−シアノフェニル)ジテルリド、ビス−(p−スルホニルフェニル)ジテルリド、ジナフチルジテルリド、ジピリジルジテルリド等が挙げられる。
【0011】
式(1)で示される化合物は、金属テルルと式(2)の化合物を反応させることにより製造することができる。
式(2)で表される化合物としては、具体的には次の通りである。
M(R)m (2)
〔式中、Rは、C〜Cのアルキル基、アリール基、置換アリール基又は芳香族ヘテロ環基を示す。Mは、アルカリ金属、アルカリ土類金属又は銅原子を示す。Mがアルカリ金属の時、mは1、Mがアルカリ土類金属の時、mは2、Mが銅原子の時、mは1または2を示す。〕
で示される基は、具体的には次の通りである。
〜Cのアルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、シクロプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、シクロブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基等の炭素数1〜8の直鎖状、分岐鎖状又は環状のアルキル基を挙げることができる。好ましいアルキル基としては、炭素数1〜4の直鎖状又は分岐鎖状のアルキル基、より好ましくはメチル基、エチル基又はブチル基が良い。アリール基、置換アリール基又は芳香族ヘテロ環基としては、上記に示した通りである。
【0012】
Mで示されるものとしては、リチウム、ナトリウム、カリウム等のアルカリ金属、マグネシウム、カルシウム等のアルカリ土類金属、銅を挙げることができる。好ましくは、リチウムが良い。
なお、Mがマグネシウムの時、化合物(2)はMg(Rでも、或いはRMgX(Xは、ハロゲン原子)で表される化合物(グリニャール試薬)でもよい。Xは、好ましくは、クロロ原子、ブロモ原子がよい。
【0013】
具体的な化合物としては、メチルリチウム、エチルリチウム、n−ブチルリチウム、フェニルリチウム、p−メトキシフェニルリチウム等を挙げることができる。好ましくは、メチルリチウム、エチルリチウム、n−ブチルリチウム、フェニルリチウムが良い。
【0014】
反応は具体的には例えば次のように行う。先ず金属テルルを溶媒に懸濁させる。使用できる溶媒としては、テトラハイドロフラン(THF)等の極性溶媒やトルエン、キシレン等の芳香族系溶媒、ヘキサン等の脂肪族系炭化水素、ジアルキルエーテル等のエーテル類等が挙げられる。好ましくは、THFが良い。有機溶媒の使用量としては適宜調節すればよいが、通常、金属テルル1gに対して1〜100ml、好ましくは、5〜20mlが良い。
金属テルル及び式(2)の化合物の使用割合としては、金属テルル1molに対して、式(2)の化合物を0.5〜1.5mol、好ましくは、0.8〜1.2molとするのが良い。
【0015】
上記懸濁溶液に、式(2)で表される化合物をゆっくりと滴下しその後撹拌する。反応時間は、反応温度や圧力により異なるが、通常5分〜24時間、好ましくは、10分〜2時間が良い。反応温度としては、−20℃〜80℃、好ましくは、15℃〜40℃、より好ましくは、室温が良い。圧力は、通常、常圧で行うが、加圧或いは減圧しても構わない。
【0016】
次に、この反応溶液に、水(食塩水等の中性水、塩化アンモニウム水溶液等のアルカリ性水、塩酸水等の酸性水でも良い)を加え、撹拌する。反応時間は、反応温度や圧力により異なるが、通常5分〜24時間、好ましくは、10分〜2時間が良い。反応温度としては、−20℃〜80℃、好ましくは、15℃〜40℃、より好ましくは、室温が良い。圧力は、通常、常圧で行うが、加圧或いは減圧しても構わない。
反応終了後、溶媒を濃縮し、目的化合物を単離精製する。精製方法としては、化合物により適宜選択できるが、通常、減圧蒸留や再沈殿精製等が好ましい。
【0017】
本発明で使用されるアゾ系重合開始剤は、通常のラジカル重合で使用するアゾ系重合開始剤であれば特に制限はないが、例えば式(3)で示される化合物を例示することができる。
【0018】
【化1】

Figure 2004323693
【0019】
[式中、R及びRは同一又は異なってC〜C10アルキル基、カルボキシ置換C〜Cアルキル基、置換基を有していてもよいフェニル基を示し、同じ炭素原子に結合しているRとRとで脂肪族環を形成していても良く、Rはシアノ基、アセトキシ基、カルバモイル基、(C〜Cアルコキシ)カルボニル基を示す。]
【0020】
本発明で用いられる式(3)のアゾ化合物において、R、RのC〜C10アルキル基としては例えばメチル、エチル、プロピル、イソプロピル、ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル基等を例示できる。またカルボキシ置換C〜Cアルキル基のC〜Cアルキル基としては、例えばメチル、エチル、プロピル、イソプロピル、ブチル基等を例示できる。同じ炭素原子に結合しているRとRとで形成される脂肪族環としては例えばシクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル基等を例示できる。尚、フェニル基には、例えば水酸基、メチル基、エチル基、メトキシ基、エトキシ基、ニトロ基、アミノ基、アセチル基、アセチルアミノ基等の置換基が置換されていてもよい。Rの(C〜Cアルコキシ)カルボニル基としては例えばメトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、イソプロポキシカルボニル、ブトキシカルボニル基等を例示できる。
【0021】
式(3)のアゾ化合物は、具体的には、2,2’−アゾビス(イソブチロニトリル)(AIBN)、2,2’−アゾビス(2−メチルブチロニトリル)(AMBN)、2,2’−アゾビス(2,4−ジメチルバレロニトリル)(ADVN)、1,1’−アゾビス(1−シクロヘキサンカルボニトリル)(ACHN)、ジメチル−2,2’−アゾビスイソブチレート(MAIB)、4,4’−アゾビス(4−シアノバレリアン酸)(ACVA)、1,1’−アゾビス(1−アセトキシ−1−フェニルエタン)、2,2’−アゾビス(2−メチルブチルアミド)、1,1’−アゾビス(1−シクロヘキサンカルボン酸メチル)等が挙げられる。
【0022】
本発明で使用するビニルモノマーとしては、ラジカル重合可能なものであれば特に制限はないが、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸オクチル、(メタ)アクリル酸ラウリル等の(メタ)アクリル酸エステル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸メチルシクロヘキシル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸シクロドデシル等のシクロアルキル基含有不飽和モノマー、(メタ)アクリル酸、マレイン酸、フマル酸、イタコン酸、シトラコン酸、クロトン酸、無水マレイン酸等メチル等のカルボキシル基含有不飽和モノマー、N,N−ジメチルアミノプロピル(メタ)アクリルアミド、N,N−ジメチルアミノエチル(メタ)アクリルアミド、2−(ジメチルアミノ)エチル(メタ)アクリレート、N,N−ジメチルアミノプロピル(メタ)アクリレート等の3級アミン含有不飽和モノマー、N−2−ヒドロキシ−3−アクリロイルオキシプロピル−N,N,N−トリメチルアンモニウムクロライド、N−メタクリロイルアミノエチル−N,N,N−ジメチルベンジルアンモニウムクロライド等の4級アンモニウム塩基含有不飽和モノマー、(メタ)アクリル酸グリシジル等のエポキシ基含有不飽和モノマー、スチレン、α−メチルスチレン、4−メチルスチレン、2−メチルスチレン、3−メチルスチレン、4−メトキシスチレン、2−ヒドロキシメチルスチレン、2−クロロスチレン、4−クロロスチレン、2,4−ジクロロスチレン、1−ビニルナフタレン、ジビニルベンゼンp−スチレンスルホン酸又はそのアルカリ金属塩(ナトリウム塩、カリウム塩等)等の芳香族不飽和モノマー、2−ビニルチオフェン、N−メチル−2−ビニルピロール等のヘテロ環含有不飽和モノマー、N−ビニルホルムアミド、N−ビニルアセトアミド等のビニルアミド、1−ヘキセン、1−オクテン、1−デセン等のα−オレフィン、ブタジエン、イソプレン、4−メチル−1,4−ヘキサジエン、7−メチル−1,6−オクタジエン等のジエン、酢酸ビニル、メタクリル酸ヒドロキシエチル、アクリロニトリル、アクリルアミド、N−イソプロピルアクリルアミド、N,N−ジメチルアクリルアミド、塩化ビニル等を挙げることができる。
【0023】
この中でも好ましくは、(メタ)アクリル酸エステルモノマー、3級アミン含有不飽和モノマー、スチレン系モノマー、アクリルアミド、N,N−ジメチルアクリルアミドが良い。
好ましい(メタ)アクリル酸エステルモノマーとしては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチルが挙げられる。
【0024】
好ましい3級アミン含有不飽和モノマーとしては、N,N−ジメチルアミノエチル(メタ)アクリルアミド、2−(ジメチルアミノ)エチル(メタ)アクリレートが挙げられる。
好ましいスチレン系モノマーとしては、スチレン、α−メチルスチレン、o−メチルスチレン、p−メチルスチレン、p−メトキシスチレン、p−t−ブチルスチレン、p−n−ブチルスチレン、p−クロロスチレン、p−スチレンスルホン酸又はそのアルカリ金属塩(ナトリウム塩、カリウム塩等)が挙げられる。特に好ましくは、スチレン、p−メトキシスチレン、p−クロロスチレンが良い。尚、上記の「(メタ)アクリル酸」は、「アクリル酸」及び「メタクリル酸」の総称である。
これらの中で、好ましくは、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチルが挙げられる。特に好ましくは、(メタ)アクリル酸メチル、(メタ)アクリル酸ブチルであり、最も好ましくはメタクリル酸メチルである。
【0025】
本発明のリビングラジカルポリマーの製造方法は、具体的には次の通りである。
不活性ガスで置換した容器で、アゾ系重合開始剤と式(1)で示される化合物を混合する。次に、上記混合物を撹拌する。反応温度、反応時間は、適宜調節すればよいが、通常、40〜150℃で、0.5〜100時間撹拌する。好ましくは、60〜120℃で、1〜30時間撹拌するのが良い。この時、圧力は、通常、常圧で行われるが、加圧或いは減圧しても構わない。この時、不活性ガスとしては、窒素、アルゴン、ヘリウム等を挙げることができる。好ましくは、アルゴン、窒素が良い。特に好ましくは、窒素が良い。
【0026】
アゾ系重合開始剤と式(1)で示される化合物の使用量としては、通常、アゾ系重合開始剤1molに対して、式(1)で示される化合物0.01〜100mol、好ましくは0.1〜10mol、特に好ましくは0.1〜5molとするのが良い。
【0027】
反応は、通常、無溶媒で行うが、ラジカル重合で一般に使用される有機溶媒或いは水系溶媒を使用しても構わない。使用できる有機溶媒としては、例えば、ベンゼン、トルエン、N,N−ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、アセトン、クロロホルム、四塩化炭素、テトラヒドロフラン(THF)、酢酸エチル、トリフルオロメチルベンゼン等が挙げられる。また、水系溶媒としては、例えば、水、メタノール、エタノール、イソプロパノール、n−ブタノール、エチルセロソルブ、ブチルセロソルブ、1−メトキシ−2−プロパノール等が挙げられる。溶媒の使用量としては適宜調節すればよいが、例えば、ビニルモノマー1gに対して、溶媒を0.01〜50ml、好ましくは、0.05〜5mlが良い。
次に、上記混合物にビニルモノマーを加えて撹拌する。重合温度、重合時間は、得られるリビングラジカルポリマーの分子量或いは分子量分布により適宜調節すればよいが、通常、40〜150℃で、0.5〜100時間撹拌する。好ましくは、60〜120℃で、1〜30時間撹拌するのが良い。この時、圧力は、通常、常圧で行われるが、加圧或いは減圧しても構わない。
【0028】
ビニルモノマーとアゾ系重合開始剤の使用量としては、得られるリビングラジカルポリマーの分子量或いは分子量分布により適宜調節すればよいが、通常、アゾ系重合開始剤1molに対して、ビニルモノマーを5〜10,000mol、好ましくは50〜5,000molとするのが良い。
【0029】
反応終了後、常法により使用溶媒や残存モノマーを減圧下除去して目的ポリマーを取り出したり、目的ポリマー不溶溶媒を使用して再沈澱処理により目的物を単離する。反応処理については、目的物に支障がなければどのような処理方法でも行う事が出来る。
本発明のリビングラジカル重合開始剤は、優れた分子量制御及び分子量分布制御を非常に温和な条件下で行うことができる。
本発明で得られるリビングラジカルポリマーの分子量は、反応時間及び有機テルル化合物の量により調整可能であるが、数平均分子量500〜1,000,000のリビングラジカルポリマーを得ることができる。特に数平均分子量1,000〜50,000のリビングラジカルポリマーを得るのに好適である。
本発明で得られるリビングラジカルポリマーの分子量分布(PD=Mw/Mn)は、1.05〜1.50の間で制御される。更に、分子量分布1.05〜1.30、更には1.05〜1.20、更には1.05〜1.15のより狭いリビングラジカルポリマーを得ることができる。
【0030】
本発明で得られるリビングラジカルポリマーの末端基は、有機テルル化合物由来のアルキル基、アリール基、置換アリール基、芳香族へテロ環基、オキシカルボニル基又はシアノ基が、また、成長末端は、反応性の高いテルルであることが確認されている。従って、有機テルル化合物をリビングラジカル重合に用いることにより従来のリビングラジカル重合で得られるリビングラジカルポリマーよりも末端基を他の官能基へ変換することが容易である。これらにより、本発明で得られるリビングラジカルポリマーは、マクロリビングラジカル重合開始剤(マクロイニシエーター)として用いることができる。
【0031】
即ち、本発明のマクロリビングラジカル重合開始剤を用いて、例えばメタクリル酸メチル−スチレン等のA−Bジブロック共重合体やメタクリル酸メチル−スチレン−メタクリル酸メチル等のA−B−Aトリブロック共重合体、メタクリル酸メチル−スチレン−アクリル酸ブチル等のA−B−Cトリブロック共重合体を得ることができる。これは、本発明のリビングラジカル重合開始剤とジテルル化合物で、種々の異なったタイプのビニル系モノマーをコントロールできること、また、リビングラジカル重合開始剤により得られるリビングラジカルポリマーの成長末端に反応性の高いテルルが存在していることによるものである。
【0032】
ブロック共重合体の製造方法としては、具体的には次の通りである。
A−Bジブロック共重合体の場合、例えば、メタクリル酸メチル−スチレン共重合体の場合は、上記のリビングラジカルポリマーの製造方法と同様に、まず、メタクリル酸メチルとアゾ系重合開始剤と式(1)の化合物を混合し、ポリメタクリル酸メチルを製造後、続いてスチレンを混合して、メタクリル酸メチル−スチレン共重合体を得る方法が挙げられる。
A−B−Aトリブロック共重合体やA−B−Cトリブロック共重合体の場合も、上記の方法でA−Bジブロック共重合体を製造した後、ビニルモノマー(A)或いはビニルモノマー(C)を混合し、A−B−Aトリブロック共重合体やA−B−Cトリブロック共重合体を得る方法が挙げられる。
上記で、各ブロックを製造後、そのまま次のブロックの反応を開始しても良いし、一度反応を終了後、精製してから次のブロックの反応を開始しても良い。ブロック共重合体の単離は通常の方法により行うことができる。
【0033】
【実施例】
以下、本発明を実施例に基づいて具体的に説明するが何らこれらに限定されるものではない。また、実施例及び比較例において、各種物性測定は以下の方法で行った。
【0034】
(1)ジテルリド化合物及びリビングラジカルポリマーの同定
ジテルリド化合物を、H−NMR及びMSの測定結果から同定した。また、リビングラジカルポリマーの分子量及び分子量分布は、GPC(ゲルパーミエーションクロマトグラフィー)を用いて求めた。使用した測定機は以下の通りである。
H−NMR:Varian Gemini 2000(300MHz forH)、JEOL JNM−A400(400MHz for H)
MS(HRMS):JEOL JMS−300
分子量及び分子量分布:液体クロマトグラフ Shimadzu LC−10(カラム:Shodex K−804L + K−805L、ポリスチレンスタンダード:TOSOH TSK Standard、ポリメチルメタクリレートスタンダード:Shodex Standard M−75)
【0035】
合成例1(ジメチルジテルリド)
金属テルル〔Aldrich製、商品名:Tellurium(−40mesh)〕3.19g(25mmol)をTHF25mlに懸濁させ、メチルリチウム(関東化学株式会社製、ジエチルエーテル溶液)25ml(28.5mmol)を0℃でゆっくり加えた(10分間)。この反応溶液を金属テルルが完全に消失するまで撹拌した(10分間)。この反応溶液に、塩化アンモニウム溶液20mlを室温で加え、1時間撹拌した。有機層を分離し、水層をジエチルエーテルで3回抽出した。集めた有機層を芒硝で乾燥後、減圧濃縮し、黒紫色油状物2.69g(9.4mmol:収率75%)を得た。
MS(HRMS)、H−NMRによりジメチルジテルリドであることを確認した。
HRMS(EI)m/z:Calcd for CTe(M), 289.8594;Found289.8593
H−NMR(300MHz,CDCl)2.67(s,6H)
【0036】
合成例2(ジ−n−ブチルジテルリド)
金属テルル(上記と同じ)3.19g(25mmol)をTHF25mlに懸濁させ、n−ブチルリチウム(Aldrich製、1.6Mヘキサン溶液)17.2ml(27.5mmol)を0℃でゆっくり加えた(10分間)。この反応溶液を金属テルルが完全に消失するまで撹拌した(10分間)。この反応溶液に、塩化アンモニウム溶液20mlを室温で加え、1時間撹拌した。有機層を分離し、水層をジエチルエーテルで3回抽出した。集めた有機層を芒硝で乾燥後、減圧濃縮し、黒紫色油状物4.41g(11.93mmol:収率95%)を得た。
H−NMRによりジ−n−ブチルジテルリドであることを確認した。
H−NMR(300MHz,CDCl)0.93(t,J=7.3Hz,3H),1.39(m,2H),1.71(m,2H),3.11(t,J=7.6,2H,CHTe)
【0037】
合成例3(ジフェニルジテルリド)
金属テルル(上記と同じ)3.19g(25mmol)をTHF25mlに懸濁させ、フェニルリチウム〔Aldrich製、1.8Mシクロヘキサン/エーテル(70:30)溶液〕15.8ml(28.5mmol)を0℃でゆっくり加えた(10分間)。この反応溶液を金属テルルが完全に消失するまで撹拌した(10分間)。この反応溶液に、塩化アンモニウム溶液20mlを室温で加え、1時間撹拌した。有機層を分離し、水層をジエチルエーテルで3回抽出した。集めた有機層を芒硝で乾燥後、減圧濃縮し、黒紫色油状物3.48g(8.5mmol:収率68%)を得た。
H−NMRによりジフェニルジテルリドであることを確認した。
【0038】
実施例1
窒素置換したグローブボックス内で、AIBN(大塚化学株式会社製、商品名:AIBN)(0.10mmol)、合成例3で製造した化合物(0.10mmol)、トリフルオロメチルベンゼン1mlの溶液を80℃で3時間撹拌した。次に、この反応溶液にメチルメタクリレート〔stabilized with Hydroquinone(HQ)〕(10mmol)を加え80℃で4時間撹拌した。反応終了後、クロロホルム5mlに溶解した後、その溶液を撹拌しているヘキサン200ml中に注いだ。沈殿したポリマーを室温で吸引ろ過、乾燥することによりポリマーを得た。
GPC分析(ポリメチルメタクリレート標準サンプルの分子量を基準)の結果を表1に示す。
【0039】
比較例1
窒素置換したグローブボックス内で、AIBN(大塚化学株式会社製、商品名:AIBN)(0.10mmol)、合成例3で製造した化合物(0.10mmol)、メチルメタクリレート〔stabilized with Hydroquinone(HQ)〕(10mmol)を加え80℃で0.5時間撹拌した。反応終了後、クロロホルム5mlに溶解した後、その溶液を撹拌しているヘキサン200ml中に注いだ。沈殿したポリマーを室温で吸引ろ過、乾燥することによりポリマーを得た。
GPC分析(ポリメチルメタクリレート標準サンプルの分子量を基準)の結果を表1に示す。
【0040】
【表1】
Figure 2004323693
【0041】
実施例1と比較例1とを比較すれば明らかなように、第一段階として、アゾ系重合開始剤と式(1)で示される化合物を反応させ、次に第二段階として、ビニルモノマーを加えてビニルモノマーを重合させることにより、狭い分子量分布(PD値がより1に近い)のリビングラジカルポリマーが得られることがわかる。
【0042】
実施例2〜7
窒素置換したグローブボックス内で、AIBN(上記と同じ)(0.10mmol)、表2に示した配合で式(1)で示される化合物(合成例1から合成例3で製造した化合物)、トリフルオロメチルベンゼン1mlの溶液を80℃で3時間撹拌した。その反応溶液に表2に示した配合でビニルモノマー〔スチレン、メチルメタクリレート(上記と同じ)、アクリル酸n−ブチル(stabilized with Hydroquinone)〕を加え、次いでクロロホルム5mlに溶解した後、その溶液を撹拌しているメタノール(スチレンの場合)或いはヘキサン(メチルメタクリレート、アクリル酸n−ブチルの場合)200ml中に注いだ。沈殿したポリマーを室温で吸引ろ過、乾燥することにより各種ポリマーを得た。
GPC分析(ポリスチレン:ポリスチレン標準サンプルの分子量を基準、ポリメチルメタクリレート:ポリメチルメタクリレート標準サンプルの分子量を基準、ポリアクリル酸n−ブチル:ポリメチルメタクリレート標準サンプルの分子量を基準)の結果を表2に示す。
【0043】
【表2】
Figure 2004323693
【0044】
表2から明らかなように、スチレンのみならずその他の(メタ)アクリル酸エステルのようなビニルモノマーであっても、温和な条件下で重合することができ、しかもそのPDも1.06〜1.13と極めて優れている。
【0045】
【発明の効果】
本発明によれば、温和な条件下で、精密な分子量及び分子量分布制御を可能とするリビングラジカルポリマーの製造方法を提供する。
特に本発明ではスチレンのみならずその他の(メタ)アクリル酸エステルのようなビニルモノマーであっても、温和な条件下で、精密な分子量及び分子量分布(PD=Mw/Mn)を有するリビングラジカルポリマーを製造することができる。
また、本発明の重合方法により得られるリビングラジカルポリマーは、末端基を他の官能基へ変換することが容易であり、さらに、マクロモノマーの合成、架橋点としての利用、相容化剤、ブロックポリマーの原料等として用いることができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a living radical polymer and a living radical polymer obtainable therefrom.
[0002]
[Prior art]
Azo compounds are used as initiators for radical polymerization. In particular, AIBN (2,2'-azobisisobutyronitrile) is important and widely used among azo radical polymerization initiators. Such reactions have been used to polymerize a wide variety of monomers, for example, vinyl monomers such as styrene, alkyl (meth) acrylates and acrylonitrile.
[0003]
Although the above method allows a polymerization reaction for various monomers, it is not suitable for precise control of the molecular weight and molecular weight distribution of a product.
As a method for solving such a problem, a method is known in which styrene is polymerized using AIBN and diphenylditelluride (DPDTe) to obtain polystyrene (for example, see Non-Patent Document 1).
[0004]
[Problems to be solved by the invention]
However, this method first discloses that only aromatic DPDTe is used as the organic tellurium compound and only styrene is used as the vinyl monomer, and that the above-mentioned AIBN, diphenylditelluride (DPDTe), and styrene are used. Are simultaneously reacted, and a polymer having a molecular weight distribution (PD = Mw / Mn) of about 1.18 to 1.26 is obtained. Therefore, it is understood from this document that when styrene is used as the vinyl monomer, a polymer having a controlled molecular weight distribution (PD = Mw / Mn) can be obtained, but knowledge of vinyl monomers other than styrene is unknown. Investigating other vinyl monomers such as (meth) acrylates, it was found that this method of simultaneously reacting azo compounds, organic tellurium compounds, and vinyl monomers could not provide an excellent molecular weight distribution. .
[Non-Patent Document 1 Polymer Bulletin 43, 143-150 (1999)]
It is an object of the present invention to provide an azo-based polymerization initiator and a compound represented by the formula (1), which can be used not only for styrene but also for other vinyl monomers such as (meth) acrylates under mild conditions. Accordingly, it is an object of the present invention to provide a method for producing a living radical polymer from which a living radical polymer having a precise molecular weight and a precise molecular weight distribution (PD = Mw / Mn) can be obtained, and to provide the polymer.
[0005]
[Means for Solving the Problems]
In the present invention, as a first step, an azo polymerization initiator is reacted with a compound represented by the formula (1), and then, as a second step, a vinyl monomer is added to polymerize the vinyl monomer to form a living radical polymer. The present invention relates to a method for producing a living radical polymer, characterized by being obtained, and a living radical polymer obtainable therefrom.
[0006]
(R 1 Te) 2 (1)
[In the formula, R 1 represents a C 1 -C 8 alkyl group, an aryl group, a substituted aryl group, or an aromatic heterocyclic group. ]
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
The living radical polymer of the present invention is obtained by reacting the azo-based polymerization initiator with the compound represented by the formula (1) as a first step, and then adding a vinyl monomer to polymerize the vinyl monomer as a second step. Manufactured.
(R 1 Te) 2 (1)
[In the formula, R 1 represents a C 1 -C 8 alkyl group, an aryl group, a substituted aryl group, or an aromatic heterocyclic group. ]
[0008]
The compound represented by the formula (1) used in the present invention is as follows.
(R 1 Te) 2 (1)
[In the formula, R 1 represents a C 1 -C 8 alkyl group, an aryl group, a substituted aryl group, or an aromatic heterocyclic group. ]
The group represented by R 1 is specifically as follows.
Examples of the C 1 -C 8 alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a cyclopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group, a cyclobutyl group, and an n-pentyl group. And linear, branched or cyclic alkyl groups having 1 to 8 carbon atoms such as a group, n-hexyl group, n-heptyl group and n-octyl group. As a preferable alkyl group, a linear or branched alkyl group having 1 to 4 carbon atoms, more preferably a methyl group, an ethyl group or a butyl group is preferred.
[0009]
Examples of the aryl group include a phenyl group and a naphthyl group. Examples of the substituted aryl group include a phenyl group having a substituent and a group including a naphthyl group having a substituent. Examples of the aromatic heterocyclic group include a pyridyl group and furyl. And thienyl groups. Examples of the substituent of the aryl group having a substituent include a halogen atom, a hydroxyl group, an alkoxy group, an amino group, a nitro group, a cyano group, and a carbonyl-containing group represented by —COR a (R a = C 1 alkyl group -C 8, aryl group, alkoxy group of C 1 -C 8, an aryloxy group), a sulfonyl group, and a trifluoromethyl group. Preferred aryl groups are phenyl and trifluoromethyl-substituted phenyl. These substituents are preferably substituted one or two times, and are preferably in para-position or ortho-position.
[0010]
The compound represented by the formula (1) is specifically, dimethyl ditelluride, diethyl ditelluride, di-n-propyl ditelluride, diisopropyl ditelluride, dicyclopropyl ditelluride, di-n- Butyl ditelluride, di-sec-butyl ditelluride, di-tert-butyl ditelluride, dicyclobutyl ditelluride, diphenyl ditelluride, bis- (p-methoxyphenyl) ditelluride, bis- (p-aminophenyl) ditelluride, bis- (p -Nitrophenyl) ditelluride, bis- (p-cyanophenyl) ditelluride, bis- (p-sulfonylphenyl) ditelluride, dinaphthyl ditelluride, dipyridyl ditelluride and the like.
[0011]
The compound represented by the formula (1) can be produced by reacting metal tellurium with the compound of the formula (2).
The compound represented by the formula (2) is specifically as follows.
M (R 2 ) m (2)
[In the formula, R 2 represents a C 1 -C 8 alkyl group, an aryl group, a substituted aryl group, or an aromatic heterocyclic group. M represents an alkali metal, an alkaline earth metal or a copper atom. When M is an alkali metal, m is 1, when M is an alkaline earth metal, m is 2, when M is a copper atom, m is 1 or 2. ]
The group represented by R 2 is specifically as follows.
Examples of the C 1 -C 8 alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a cyclopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group, a cyclobutyl group, and an n-pentyl group. And linear, branched or cyclic alkyl groups having 1 to 8 carbon atoms such as a group, n-hexyl group, n-heptyl group and n-octyl group. As a preferable alkyl group, a linear or branched alkyl group having 1 to 4 carbon atoms, more preferably a methyl group, an ethyl group or a butyl group is preferred. The aryl group, substituted aryl group or aromatic heterocyclic group is as described above.
[0012]
Examples of the compound represented by M include alkali metals such as lithium, sodium and potassium, alkaline earth metals such as magnesium and calcium, and copper. Preferably, lithium is good.
When M is magnesium, compound (2) may be Mg (R 2 ) 2 or a compound (Grignard reagent) represented by R 2 MgX (X is a halogen atom). X is preferably a chloro atom or a bromo atom.
[0013]
Specific compounds include methyllithium, ethyllithium, n-butyllithium, phenyllithium, p-methoxyphenyllithium and the like. Preferably, methyl lithium, ethyl lithium, n-butyl lithium, and phenyl lithium are good.
[0014]
The reaction is specifically performed, for example, as follows. First, metal tellurium is suspended in a solvent. Examples of usable solvents include polar solvents such as tetrahydrofuran (THF), aromatic solvents such as toluene and xylene, aliphatic hydrocarbons such as hexane, and ethers such as dialkyl ether. Preferably, THF is good. The amount of the organic solvent used may be appropriately adjusted, but is usually 1 to 100 ml, preferably 5 to 20 ml per 1 g of metal tellurium.
The use ratio of the metal tellurium and the compound of the formula (2) is such that the compound of the formula (2) is 0.5 to 1.5 mol, preferably 0.8 to 1.2 mol per 1 mol of the metal tellurium. Is good.
[0015]
The compound represented by the formula (2) is slowly dropped into the above suspension solution, and the mixture is stirred. The reaction time varies depending on the reaction temperature and pressure, but is usually 5 minutes to 24 hours, preferably 10 minutes to 2 hours. The reaction temperature is preferably −20 ° C. to 80 ° C., preferably 15 ° C. to 40 ° C., and more preferably room temperature. The pressure is usually at normal pressure, but may be increased or decreased.
[0016]
Next, water (neutral water such as saline, alkaline water such as aqueous ammonium chloride, or acidic water such as aqueous hydrochloric acid) may be added to the reaction solution, followed by stirring. The reaction time varies depending on the reaction temperature and pressure, but is usually 5 minutes to 24 hours, preferably 10 minutes to 2 hours. The reaction temperature is preferably −20 ° C. to 80 ° C., preferably 15 ° C. to 40 ° C., and more preferably room temperature. The pressure is usually at normal pressure, but may be increased or decreased.
After completion of the reaction, the solvent is concentrated, and the target compound is isolated and purified. The purification method can be appropriately selected depending on the compound, but generally, distillation under reduced pressure, reprecipitation purification, or the like is preferable.
[0017]
The azo-based polymerization initiator used in the present invention is not particularly limited as long as it is an azo-based polymerization initiator used in ordinary radical polymerization, and examples thereof include a compound represented by the formula (3).
[0018]
Embedded image
Figure 2004323693
[0019]
[Wherein, R 3 and R 4 are the same or different and each represent a C 1 -C 10 alkyl group, a carboxy-substituted C 1 -C 4 alkyl group, or a phenyl group which may have a substituent; The bonded R 3 and R 4 may form an aliphatic ring, and R 5 represents a cyano group, an acetoxy group, a carbamoyl group, or a (C 1 -C 4 alkoxy) carbonyl group. ]
[0020]
In the azo compound of the formula (3) used in the present invention, examples of the C 1 -C 10 alkyl group for R 3 and R 4 include methyl, ethyl, propyl, isopropyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, A decyl group and the like can be exemplified. Examples of the C 1 -C 4 alkyl group of the carboxy-substituted C 1 -C 4 alkyl group include a methyl, ethyl, propyl, isopropyl, butyl group and the like. Examples of the aliphatic ring formed by R 3 and R 4 bonded to the same carbon atom include a cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl group and the like. The phenyl group may be substituted with a substituent such as a hydroxyl group, a methyl group, an ethyl group, a methoxy group, an ethoxy group, a nitro group, an amino group, an acetyl group, and an acetylamino group. Examples of the (C 1 -C 4 alkoxy) carbonyl group for R 5 include methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, butoxycarbonyl and the like.
[0021]
Specific examples of the azo compound of the formula (3) include 2,2′-azobis (isobutyronitrile) (AIBN), 2,2′-azobis (2-methylbutyronitrile) (AMBN), 2′-azobis (2,4-dimethylvaleronitrile) (ADVN), 1,1′-azobis (1-cyclohexanecarbonitrile) (ACHN), dimethyl-2,2′-azobisisobutyrate (MAIB), 4,4′-azobis (4-cyanovaleric acid) (ACVA), 1,1′-azobis (1-acetoxy-1-phenylethane), 2,2′-azobis (2-methylbutylamide), 1, 1′-azobis (methyl 1-cyclohexanecarboxylate) and the like.
[0022]
The vinyl monomer used in the present invention is not particularly limited as long as it can be radically polymerized. For example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, (meth) (Meth) acrylates such as butyl acrylate, octyl (meth) acrylate, lauryl (meth) acrylate, cyclohexyl (meth) acrylate, methylcyclohexyl (meth) acrylate, isobornyl (meth) acrylate, (meth) acrylate ) Unsaturated monomers having a cycloalkyl group such as cyclododecyl acrylate, unsaturated monomers having a carboxyl group such as methyl such as (meth) acrylic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid, crotonic acid and maleic anhydride; N, N-dimethylaminopropyl (meth) acrylamide, N, N Tertiary amine-containing unsaturated monomers such as dimethylaminoethyl (meth) acrylamide, 2- (dimethylamino) ethyl (meth) acrylate, N, N-dimethylaminopropyl (meth) acrylate, N-2-hydroxy-3-acryloyl Quaternary ammonium base-containing unsaturated monomers such as oxypropyl-N, N, N-trimethylammonium chloride and N-methacryloylaminoethyl-N, N, N-dimethylbenzylammonium chloride, and epoxy groups such as glycidyl (meth) acrylate Containing unsaturated monomer, styrene, α-methylstyrene, 4-methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methoxystyrene, 2-hydroxymethylstyrene, 2-chlorostyrene, 4-chlorostyrene, 2, 4-dichlorosty Aromatic unsaturated monomers such as styrene, 1-vinylnaphthalene, divinylbenzene p-styrenesulfonic acid or alkali metal salts thereof (sodium salt, potassium salt, etc.), 2-vinylthiophene, N-methyl-2-vinylpyrrole, etc. Heterocycle-containing unsaturated monomer, vinylamide such as N-vinylformamide, N-vinylacetamide, α-olefin such as 1-hexene, 1-octene, 1-decene, butadiene, isoprene, 4-methyl-1,4-hexadiene And diene such as 7-methyl-1,6-octadiene, vinyl acetate, hydroxyethyl methacrylate, acrylonitrile, acrylamide, N-isopropylacrylamide, N, N-dimethylacrylamide, and vinyl chloride.
[0023]
Of these, (meth) acrylate monomers, tertiary amine-containing unsaturated monomers, styrene monomers, acrylamide, and N, N-dimethylacrylamide are preferred.
Preferred (meth) acrylate monomers include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, and butyl (meth) acrylate.
[0024]
Preferred tertiary amine-containing unsaturated monomers include N, N-dimethylaminoethyl (meth) acrylamide and 2- (dimethylamino) ethyl (meth) acrylate.
Preferred styrene monomers include styrene, α-methylstyrene, o-methylstyrene, p-methylstyrene, p-methoxystyrene, pt-butylstyrene, pn-butylstyrene, p-chlorostyrene, and p-methylstyrene. Styrenesulfonic acid or an alkali metal salt thereof (sodium salt, potassium salt, etc.) can be mentioned. Particularly preferred are styrene, p-methoxystyrene and p-chlorostyrene. The “(meth) acrylic acid” is a general term for “acrylic acid” and “methacrylic acid”.
Of these, preferred are methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, and butyl (meth) acrylate. Particularly preferred are methyl (meth) acrylate and butyl (meth) acrylate, and most preferred is methyl methacrylate.
[0025]
The method for producing the living radical polymer of the present invention is specifically as follows.
The azo-based polymerization initiator and the compound represented by the formula (1) are mixed in a container replaced with an inert gas. Next, the mixture is stirred. The reaction temperature and the reaction time may be appropriately adjusted, and usually, the mixture is stirred at 40 to 150 ° C. for 0.5 to 100 hours. Preferably, stirring is performed at 60 to 120 ° C. for 1 to 30 hours. At this time, the pressure is usually set at normal pressure, but may be increased or decreased. At this time, examples of the inert gas include nitrogen, argon, and helium. Preferably, argon and nitrogen are good. Particularly preferably, nitrogen is good.
[0026]
The amounts of the azo-based polymerization initiator and the compound represented by the formula (1) are usually 0.01 to 100 mol, preferably 0.1 mol, of the compound represented by the formula (1) per 1 mol of the azo-based polymerization initiator. The content is preferably 1 to 10 mol, particularly preferably 0.1 to 5 mol.
[0027]
The reaction is usually performed without a solvent, but an organic solvent or an aqueous solvent generally used in radical polymerization may be used. Examples of usable organic solvents include benzene, toluene, N, N-dimethylformamide (DMF), dimethylsulfoxide (DMSO), acetone, chloroform, carbon tetrachloride, tetrahydrofuran (THF), ethyl acetate, trifluoromethylbenzene and the like. Is mentioned. Examples of the aqueous solvent include water, methanol, ethanol, isopropanol, n-butanol, ethyl cellosolve, butyl cellosolve, 1-methoxy-2-propanol, and the like. The amount of the solvent used may be appropriately adjusted. For example, the solvent is used in an amount of 0.01 to 50 ml, preferably 0.05 to 5 ml, per 1 g of the vinyl monomer.
Next, a vinyl monomer is added to the mixture and stirred. The polymerization temperature and the polymerization time may be appropriately adjusted depending on the molecular weight or the molecular weight distribution of the obtained living radical polymer, and the mixture is usually stirred at 40 to 150 ° C. for 0.5 to 100 hours. Preferably, stirring is performed at 60 to 120 ° C. for 1 to 30 hours. At this time, the pressure is usually set at normal pressure, but may be increased or decreased.
[0028]
The amount of the vinyl monomer and the azo-based polymerization initiator to be used may be appropriately adjusted depending on the molecular weight or the molecular weight distribution of the obtained living radical polymer, and usually, the vinyl monomer is used in an amount of 5 to 10 based on 1 mol of the azo-based polymerization initiator. 2,000 mol, preferably 50 to 5,000 mol.
[0029]
After completion of the reaction, the solvent used and the residual monomer are removed under reduced pressure by a conventional method to take out the target polymer, or the target product is isolated by reprecipitation using a solvent insoluble in the target polymer. The reaction treatment can be performed by any treatment method as long as the object is not hindered.
The living radical polymerization initiator of the present invention can perform excellent control of molecular weight and control of molecular weight distribution under extremely mild conditions.
Although the molecular weight of the living radical polymer obtained in the present invention can be adjusted by the reaction time and the amount of the organic tellurium compound, a living radical polymer having a number average molecular weight of 500 to 1,000,000 can be obtained. Particularly, it is suitable for obtaining a living radical polymer having a number average molecular weight of 1,000 to 50,000.
The molecular weight distribution (PD = Mw / Mn) of the living radical polymer obtained in the present invention is controlled between 1.05 and 1.50. Furthermore, a narrower living radical polymer having a molecular weight distribution of 1.05 to 1.30, more preferably 1.05 to 1.20, and even more preferably 1.05 to 1.15 can be obtained.
[0030]
The terminal group of the living radical polymer obtained in the present invention is an alkyl group, an aryl group, a substituted aryl group, an aromatic heterocyclic group, an oxycarbonyl group or a cyano group derived from an organic tellurium compound. It has been confirmed that tellurium is highly active. Therefore, by using an organic tellurium compound for living radical polymerization, it is easier to convert a terminal group into another functional group than a living radical polymer obtained by conventional living radical polymerization. Thus, the living radical polymer obtained in the present invention can be used as a macro living radical polymerization initiator (macro initiator).
[0031]
That is, using the macro living radical polymerization initiator of the present invention, for example, an AB diblock copolymer such as methyl methacrylate-styrene or an ABA triblock such as methyl methacrylate-styrene-methyl methacrylate. It is possible to obtain an ABC triblock copolymer such as a copolymer and methyl methacrylate-styrene-butyl acrylate. This is because the living radical polymerization initiator and the ditellurium compound of the present invention can control various different types of vinyl monomers, and have high reactivity at the growth terminal of the living radical polymer obtained by the living radical polymerization initiator. This is due to the presence of tellurium.
[0032]
The method for producing the block copolymer is specifically as follows.
In the case of the AB diblock copolymer, for example, in the case of the methyl methacrylate-styrene copolymer, similarly to the above-described method for producing a living radical polymer, first, methyl methacrylate, an azo-based polymerization initiator and a compound represented by the formula After mixing the compound of (1) to produce polymethyl methacrylate, subsequently, styrene is mixed to obtain a methyl methacrylate-styrene copolymer.
In the case of the ABA triblock copolymer or the ABC triblock copolymer, after the AB diblock copolymer is produced by the above method, the vinyl monomer (A) or the vinyl monomer is used. (C) is mixed to obtain an ABA triblock copolymer or an ABC triblock copolymer.
As described above, after producing each block, the reaction of the next block may be started as it is, or after the reaction is completed, the reaction of the next block may be started after purification. The block copolymer can be isolated by a usual method.
[0033]
【Example】
Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto. In Examples and Comparative Examples, various physical properties were measured by the following methods.
[0034]
(1) Identification of Ditelluride Compound and Living Radical Polymer The ditelluride compound was identified from the measurement results of 1 H-NMR and MS. The molecular weight and the molecular weight distribution of the living radical polymer were determined by using GPC (gel permeation chromatography). The measuring instruments used are as follows.
1 H-NMR: Varian Gemini 2000 (300 MHz for 1 H), JEOL JNM-A400 (400 MHz for 1 H)
MS (HRMS): JEOL JMS-300
Molecular weight and molecular weight distribution: Liquid chromatograph Shimadzu LC-10 (column: Shodex K-804L + K-805L, polystyrene standard: TOSOH TSK Standard, polymethyl methacrylate standard: Shodex Standard M-75)
[0035]
Synthesis Example 1 (dimethyl ditelluride)
3.19 g (25 mmol) of metal tellurium [manufactured by Aldrich, trade name: Tellurium (-40 mesh)] is suspended in 25 ml of THF, and 25 ml (28.5 mmol) of methyllithium (a diethyl ether solution manufactured by Kanto Chemical Co., Ltd.) is added at 0 ° C. (10 minutes). The reaction solution was stirred until the metal tellurium completely disappeared (10 minutes). To this reaction solution, 20 ml of ammonium chloride solution was added at room temperature, and the mixture was stirred for 1 hour. The organic layer was separated, and the aqueous layer was extracted three times with diethyl ether. The collected organic layer was dried over sodium sulfate and concentrated under reduced pressure to obtain 2.69 g (9.4 mmol: yield: 75%) of a dark purple oily substance.
MS (HRMS) and 1 H-NMR confirmed that the product was dimethyl ditelluride.
HRMS (EI) m / z: Calcd for C 2 H 6 Te 2 (M) + , 289.8594; Found 289.8593
1 H-NMR (300 MHz, CDCl 3 ) 2.67 (s, 6H)
[0036]
Synthesis Example 2 (di-n-butyl ditelluride)
3.19 g (25 mmol) of metal tellurium (same as above) was suspended in 25 ml of THF, and 17.2 ml (27.5 mmol) of n-butyllithium (1.6M hexane solution from Aldrich) was slowly added at 0 ° C ( 10 minutes). The reaction solution was stirred until the metal tellurium completely disappeared (10 minutes). To this reaction solution, 20 ml of ammonium chloride solution was added at room temperature, and the mixture was stirred for 1 hour. The organic layer was separated, and the aqueous layer was extracted three times with diethyl ether. The collected organic layer was dried over sodium sulfate and concentrated under reduced pressure to obtain 4.41 g (11.93 mmol: yield 95%) of a black-purple oily substance.
The powder was confirmed to be di-n-butyl ditelluride by 1 H-NMR.
1 H-NMR (300 MHz, CDCl 3 ) 0.93 (t, J = 7.3 Hz, 3H), 1.39 (m, 2H), 1.71 (m, 2H), 3.11 (t, J) = 7.6, 2H, CH 2 Te)
[0037]
Synthesis Example 3 (diphenyl ditelluride)
3.19 g (25 mmol) of metal tellurium (same as above) was suspended in 25 ml of THF, and 15.8 ml (28.5 mmol) of phenyllithium [1.8M cyclohexane / ether (70:30) solution from Aldrich] was added at 0 ° C. (10 minutes). The reaction solution was stirred until the metal tellurium completely disappeared (10 minutes). To this reaction solution, 20 ml of ammonium chloride solution was added at room temperature, and the mixture was stirred for 1 hour. The organic layer was separated, and the aqueous layer was extracted three times with diethyl ether. The collected organic layer was dried over sodium sulfate and concentrated under reduced pressure to obtain 3.48 g (8.5 mmol: yield 68%) of a black-purple oily substance.
It was confirmed by 1 H-NMR that the substance was diphenyl ditelluride.
[0038]
Example 1
In a glove box purged with nitrogen, a solution of AIBN (manufactured by Otsuka Chemical Co., Ltd., trade name: AIBN) (0.10 mmol), the compound prepared in Synthesis Example 3 (0.10 mmol), and 1 ml of trifluoromethylbenzene at 80 ° C. For 3 hours. Next, methyl methacrylate [stabilized with Hydroquinone (HQ)] (10 mmol) was added to the reaction solution, and the mixture was stirred at 80 ° C for 4 hours. After the completion of the reaction, the reaction mixture was dissolved in 5 ml of chloroform, and the solution was poured into 200 ml of stirring hexane. The resulting polymer precipitate was collected by suction filtration at room temperature and dried to obtain a polymer.
Table 1 shows the results of the GPC analysis (based on the molecular weight of a standard sample of polymethyl methacrylate).
[0039]
Comparative Example 1
In a glove box purged with nitrogen, AIBN (manufactured by Otsuka Chemical Co., Ltd., trade name: AIBN) (0.10 mmol), the compound produced in Synthesis Example 3 (0.10 mmol), methyl methacrylate [stabilized with Hydroquinone (HQ)] (10 mmol) was added and the mixture was stirred at 80 ° C. for 0.5 hour. After the completion of the reaction, the reaction mixture was dissolved in 5 ml of chloroform, and the solution was poured into 200 ml of stirring hexane. The resulting polymer precipitate was collected by suction filtration at room temperature and dried to obtain a polymer.
Table 1 shows the results of the GPC analysis (based on the molecular weight of a standard sample of polymethyl methacrylate).
[0040]
[Table 1]
Figure 2004323693
[0041]
As is clear from the comparison between Example 1 and Comparative Example 1, as the first step, the azo-based polymerization initiator is reacted with the compound represented by the formula (1), and then, as the second step, the vinyl monomer is used. In addition, it is understood that a living radical polymer having a narrow molecular weight distribution (PD value is closer to 1) can be obtained by polymerizing a vinyl monomer.
[0042]
Examples 2 to 7
In a glove box purged with nitrogen, AIBN (same as above) (0.10 mmol), a compound represented by the formula (1) in a composition shown in Table 2 (compounds prepared in Synthesis Examples 1 to 3), A solution of 1 ml of fluoromethylbenzene was stirred at 80 ° C. for 3 hours. A vinyl monomer [styrene, methyl methacrylate (same as above), n-butyl acrylate (stabilized with Hydroquinone)] was added to the reaction solution in the composition shown in Table 2, and then dissolved in 5 ml of chloroform. The mixture was poured into 200 ml of methanol (for styrene) or hexane (for methyl methacrylate or n-butyl acrylate). Various polymers were obtained by suction-filtration and drying the precipitated polymer at room temperature.
Table 2 shows the results of the GPC analysis (polystyrene: based on the molecular weight of a polystyrene standard sample, polymethyl methacrylate: based on the molecular weight of a polymethyl methacrylate standard sample, poly-n-butyl acrylate: based on the molecular weight of a polymethyl methacrylate standard sample). Show.
[0043]
[Table 2]
Figure 2004323693
[0044]
As is clear from Table 2, not only styrene but also other vinyl monomers such as (meth) acrylic acid ester can be polymerized under mild conditions, and the PD is also 1.06-1. .13, which is extremely excellent.
[0045]
【The invention's effect】
According to the present invention, there is provided a method for producing a living radical polymer which enables precise control of molecular weight and molecular weight distribution under mild conditions.
Particularly, in the present invention, a living radical polymer having a precise molecular weight and a precise molecular weight distribution (PD = Mw / Mn) under mild conditions, not only for styrene but also for other vinyl monomers such as (meth) acrylates. Can be manufactured.
In addition, the living radical polymer obtained by the polymerization method of the present invention can easily convert a terminal group into another functional group, and further synthesize a macromonomer, use as a cross-linking point, a compatibilizer, and a block. It can be used as a raw material for polymers.

Claims (6)

第一段階として、アゾ系重合開始剤と式(1)で示される化合物を反応させ、次に第二段階として、ビニルモノマーを加えてビニルモノマーを重合して、リビングラジカルポリマーを得ることを特徴とするリビングラジカルポリマーの製造方法。
(RTe) (1)
〔式中、Rは、C〜Cのアルキル基、アリール基、置換アリール基又は芳香族ヘテロ環基を示す。〕
The first step is to react the azo-based polymerization initiator with the compound represented by the formula (1), and then the second step is to add a vinyl monomer and polymerize the vinyl monomer to obtain a living radical polymer. A method for producing a living radical polymer.
(R 1 Te) 2 (1)
[In the formula, R 1 represents a C 1 -C 8 alkyl group, an aryl group, a substituted aryl group, or an aromatic heterocyclic group. ]
第一段階として、アゾ系重合開始剤と式(1)で示される化合物を反応させ、次に第二段階として、ビニルモノマーを加えてビニルモノマーを重合して得られうるリビングラジカルポリマー。As a first step, a living radical polymer obtainable by reacting an azo-based polymerization initiator with a compound represented by the formula (1), and then, as a second step, polymerizing a vinyl monomer by adding a vinyl monomer. 式(1)で示される化合物がジアルキルジテルリドである請求項1に記載のリビングラジカルポリマーの製造方法。The method for producing a living radical polymer according to claim 1, wherein the compound represented by the formula (1) is a dialkyl ditelluride. ビニルモノマーが(メタ)アクリル酸、(メタ)アクリル酸エステルである請求項3に記載のリビングラジカルポリマー。The living radical polymer according to claim 3, wherein the vinyl monomer is (meth) acrylic acid or (meth) acrylate. ビニルモノマーがメチルメタアクリレートである請求項4に記載のリビングラジカルポリマー。The living radical polymer according to claim 4, wherein the vinyl monomer is methyl methacrylate. アゾ系重合開始剤と、式(1)で表される化合物の混合物。A mixture of an azo-based polymerization initiator and a compound represented by the formula (1).
JP2003120939A 2003-04-25 2003-04-25 Method for producing living radical polymer and polymer Expired - Lifetime JP4107996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003120939A JP4107996B2 (en) 2003-04-25 2003-04-25 Method for producing living radical polymer and polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003120939A JP4107996B2 (en) 2003-04-25 2003-04-25 Method for producing living radical polymer and polymer

Publications (2)

Publication Number Publication Date
JP2004323693A true JP2004323693A (en) 2004-11-18
JP4107996B2 JP4107996B2 (en) 2008-06-25

Family

ID=33499634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003120939A Expired - Lifetime JP4107996B2 (en) 2003-04-25 2003-04-25 Method for producing living radical polymer and polymer

Country Status (1)

Country Link
JP (1) JP4107996B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005126459A (en) * 2003-10-21 2005-05-19 Jsr Corp Acid-dissociating-group-containing resin and its production method
JP2005344009A (en) * 2004-06-03 2005-12-15 Shin Etsu Chem Co Ltd Polymer for resist material, method for producing the same and chemically amplified positive type resist material
JP2006225524A (en) * 2005-02-17 2006-08-31 Kobe Univ Method for producing aqueous liquid by using organotellurium compound
WO2007034965A1 (en) * 2005-09-26 2007-03-29 Nippon Shokubai Co., Ltd. Polymer, process for production the polymer, and cement admixture using the polymer
WO2007119884A1 (en) * 2006-04-14 2007-10-25 Otsuka Chemical Co., Ltd. Resin composition and heat-resistant adhesive
JP2008291216A (en) * 2007-04-26 2008-12-04 Toagosei Co Ltd Polyfunctional living radical polymerization initiator and method for producing polymer
JP4992708B2 (en) * 2005-02-14 2012-08-08 トヨタ自動車株式会社 Graft copolymer and method for producing the same
US8323869B2 (en) 2009-03-10 2012-12-04 Tokyo Ohka Kogyo Co., Ltd. Positive resist composition and method of forming resist pattern
WO2012165623A1 (en) 2011-06-02 2012-12-06 Dic株式会社 Easily dismantled adhesive agent composition and easily dismantled adhesive tape
WO2012165625A1 (en) 2011-06-02 2012-12-06 Dic株式会社 Easily dismantled adhesive agent composition and easily dismantled adhesive tape
WO2012165619A1 (en) 2011-06-02 2012-12-06 Dic株式会社 Easily dismantled adhesive agent composition and easily dismantled adhesive tape
US8349534B2 (en) 2009-03-09 2013-01-08 Tokyo Ohka Kogyo Co., Ltd. Positive resist composition and method of forming resist pattern
US8404428B2 (en) 2009-07-03 2013-03-26 Tokyo Ohka Kogyo Co., Ltd. Positive resist composition, method of forming resist pattern using the same, and fluorine-containing polymeric compound
US8475997B2 (en) 2008-06-23 2013-07-02 Tokyo Ohka Kogyo Co., Ltd. Resist composition for immersion exposure, method of forming resist pattern, and fluorine-containing polymeric compound
US8642244B2 (en) 2008-02-06 2014-02-04 Tokyo Ohka Kogyo Co., Ltd. Resist composition for immersion exposure, method of forming resist pattern using the same, and fluorine-containing compound
US8980524B2 (en) 2010-01-05 2015-03-17 Tokyo Ohka Kogyo Co., Ltd. Positive resist composition and method of forming resist pattern
WO2015080189A1 (en) * 2013-11-27 2015-06-04 日本ゼオン株式会社 Radical polymerization initiator and method for producing polymers
WO2018164147A1 (en) * 2017-03-09 2018-09-13 Agc株式会社 Method for producing polymer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11322714A (en) * 1998-03-09 1999-11-24 Ciba Specialty Chem Holding Inc 1-alkoxy-polyalkyl-piperidine derivative and use thereof as polymerization adjusting agent
WO2004014962A1 (en) * 2002-08-08 2004-02-19 Otsuka Chemical Co., Ltd. Process for production of living radical polymers and polymers
WO2004014848A1 (en) * 2002-08-06 2004-02-19 Otsuka Chemical Co., Ltd. Organic tellurium compound, process for producing the same, living radical polymerization initiator, process for producing polymer with the same, and polymer
WO2004072126A1 (en) * 2003-02-17 2004-08-26 Otsuka Chemical Co., Ltd. Process for the production of living radical polymers and polymers
WO2004096870A1 (en) * 2003-04-25 2004-11-11 Otsuka Chemical Co., Ltd. Process for production of living-radical polymers and polymers
JP2004323437A (en) * 2003-04-25 2004-11-18 Otsuka Chemical Co Ltd Method for producing organotellurium compound

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11322714A (en) * 1998-03-09 1999-11-24 Ciba Specialty Chem Holding Inc 1-alkoxy-polyalkyl-piperidine derivative and use thereof as polymerization adjusting agent
WO2004014848A1 (en) * 2002-08-06 2004-02-19 Otsuka Chemical Co., Ltd. Organic tellurium compound, process for producing the same, living radical polymerization initiator, process for producing polymer with the same, and polymer
WO2004014962A1 (en) * 2002-08-08 2004-02-19 Otsuka Chemical Co., Ltd. Process for production of living radical polymers and polymers
WO2004072126A1 (en) * 2003-02-17 2004-08-26 Otsuka Chemical Co., Ltd. Process for the production of living radical polymers and polymers
WO2004096870A1 (en) * 2003-04-25 2004-11-11 Otsuka Chemical Co., Ltd. Process for production of living-radical polymers and polymers
JP2004323437A (en) * 2003-04-25 2004-11-18 Otsuka Chemical Co Ltd Method for producing organotellurium compound

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
DEKUN WANG, ZHE WU: "Facile Synthesis of New Unimolecular Initiators for Living Radical Polymerizations", MACROMOLECULES, vol. 第31巻、第19号, JPN4007017165, 22 September 1998 (1998-09-22), US, pages 6727 - 6729, ISSN: 0000887233 *
DEKUN WANG, ZHE WU: "Facile Synthesis of New Unimolecular Initiators for Living Radical Polymerizations", MACROMOLECULES, vol. 第31巻、第19号, JPN7008002663, 22 September 1998 (1998-09-22), US, pages 6727 - 6729, ISSN: 0001007186 *
DEKUN WANG, ZHE WU: "Facile Synthesis of New Unimolecular Initiators for Living Radical Polymerizations", POLYMER PREPRINTS, vol. 第39巻、第2号, JPN4007017166, August 1998 (1998-08-01), US, pages 544 - 545, ISSN: 0000887234 *
DEKUN WANG, ZHE WU: "Facile Synthesis of New Unimolecular Initiators for Living Radical Polymerizations", POLYMER PREPRINTS, vol. 第39巻、第2号, JPN7008002664, August 1998 (1998-08-01), US, pages 544 - 545, ISSN: 0001007187 *
KOJI TAKAGI, AKIMASA SOYANO, TAE SEOK KWON, HIDEO KUNISADA, YASUO YUKI: "Controlled radical polymerization of styrene utilizing excellent radical capturing ability of diphen", POLYMER BULLETIN, vol. 第43巻、第2-3号, JPN4007016915, 1999, DE, pages 143 - 150, ISSN: 0000887230 *
KOJI TAKAGI, AKIMASA SOYANO, TAE SEOK KWON, HIDEO KUNISADA, YASUO YUKI: "Controlled radical polymerization of styrene utilizing excellent radical capturing ability of diphen", POLYMER BULLETIN, vol. 第43巻、第2-3号, JPN6007013739, 1999, DE, pages 143 - 150, ISSN: 0000945709 *
KOJI TAKAGI, AKIMASA SOYANO, TAE SEOK KWON, HIDEO KUNISADA, YASUO YUKI: "Controlled radical polymerization of styrene utilizing excellent radical capturing ability of diphen", POLYMER BULLETIN, vol. 第43巻、第2-3号, JPN7008002660, 1999, DE, pages 143 - 150, ISSN: 0001007183 *
SHIGERU YAMAGO, KAZUNORI IIDA, JUN-ICHI YOSHIDA: "Organotellurium Compounds as Novel Initiators for Controlled/Living Radical Polymerization. Synthesi", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 第124巻、第12号, JPN7008002662, 27 March 2002 (2002-03-27), US, pages 2874 - 2875, ISSN: 0001007185 *
SHIGERU YAMAGO, KAZUNORI IIDA, JUN-ICHI YOSHIDA: "Organotellurium Compounds as Novel Initiators for Controlled/Living Radical 以下備考", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 第124巻、第12号, JPN4007016917, 27 March 2002 (2002-03-27), US, pages 2874 - 2875, ISSN: 0000887232 *
SHIGERU YAMAGO, KAZUNORI IIDA, JUN-ICHI YOSHIDA: "Tailored Synthesis of Structurally Defined Polymers by Organotellurium-Mediated Living Radical Polym", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 第124巻、第46号, JPN4007016916, 20 November 2002 (2002-11-20), US, pages 13666 - 13667, ISSN: 0000887231 *
SHIGERU YAMAGO, KAZUNORI IIDA, JUN-ICHI YOSHIDA: "Tailored Synthesis of Structurally Defined Polymers by Organotellurium-Mediated Living Radical Polym", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 第124巻、第46号, JPN7008002661, 20 November 2002 (2002-11-20), US, pages 13666 - 13667, ISSN: 0001007184 *

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005126459A (en) * 2003-10-21 2005-05-19 Jsr Corp Acid-dissociating-group-containing resin and its production method
JP2005344009A (en) * 2004-06-03 2005-12-15 Shin Etsu Chem Co Ltd Polymer for resist material, method for producing the same and chemically amplified positive type resist material
JP4992708B2 (en) * 2005-02-14 2012-08-08 トヨタ自動車株式会社 Graft copolymer and method for producing the same
US8604133B2 (en) 2005-02-14 2013-12-10 Toyota Jidosha Kabushiki Kaisha Graft copolymer and process for producing the same
JP2006225524A (en) * 2005-02-17 2006-08-31 Kobe Univ Method for producing aqueous liquid by using organotellurium compound
JP4539843B2 (en) * 2005-02-17 2010-09-08 国立大学法人神戸大学 Method for producing aqueous liquid using organic tellurium compound
WO2007034965A1 (en) * 2005-09-26 2007-03-29 Nippon Shokubai Co., Ltd. Polymer, process for production the polymer, and cement admixture using the polymer
WO2007119884A1 (en) * 2006-04-14 2007-10-25 Otsuka Chemical Co., Ltd. Resin composition and heat-resistant adhesive
JP5256515B2 (en) * 2006-04-14 2013-08-07 大塚化学株式会社 Resin composition and heat-resistant adhesive
JP2008291216A (en) * 2007-04-26 2008-12-04 Toagosei Co Ltd Polyfunctional living radical polymerization initiator and method for producing polymer
US8742038B2 (en) 2008-02-06 2014-06-03 Tokyo Ohka Kogyo Co., Ltd. Resist composition for immersion exposure, method of forming resist pattern using the same, and fluorine-containing compound
US8642244B2 (en) 2008-02-06 2014-02-04 Tokyo Ohka Kogyo Co., Ltd. Resist composition for immersion exposure, method of forming resist pattern using the same, and fluorine-containing compound
US8475997B2 (en) 2008-06-23 2013-07-02 Tokyo Ohka Kogyo Co., Ltd. Resist composition for immersion exposure, method of forming resist pattern, and fluorine-containing polymeric compound
US8349534B2 (en) 2009-03-09 2013-01-08 Tokyo Ohka Kogyo Co., Ltd. Positive resist composition and method of forming resist pattern
US8323869B2 (en) 2009-03-10 2012-12-04 Tokyo Ohka Kogyo Co., Ltd. Positive resist composition and method of forming resist pattern
US8846838B2 (en) 2009-07-03 2014-09-30 Tokyo Ohka Kogyo Co., Ltd. Fluorine-containing block copolymeric compound
US8404428B2 (en) 2009-07-03 2013-03-26 Tokyo Ohka Kogyo Co., Ltd. Positive resist composition, method of forming resist pattern using the same, and fluorine-containing polymeric compound
US8980524B2 (en) 2010-01-05 2015-03-17 Tokyo Ohka Kogyo Co., Ltd. Positive resist composition and method of forming resist pattern
US10301515B2 (en) 2011-06-02 2019-05-28 Dic Corporation Easily dismantlable adhesive composition and easily dismantlable adhesive tape
WO2012165619A1 (en) 2011-06-02 2012-12-06 Dic株式会社 Easily dismantled adhesive agent composition and easily dismantled adhesive tape
WO2012165625A1 (en) 2011-06-02 2012-12-06 Dic株式会社 Easily dismantled adhesive agent composition and easily dismantled adhesive tape
WO2012165623A1 (en) 2011-06-02 2012-12-06 Dic株式会社 Easily dismantled adhesive agent composition and easily dismantled adhesive tape
US9206340B2 (en) 2011-06-02 2015-12-08 Dic Corporation Easily dismantlable adhesive composition and easily dismantlable adhesive tape
US9321944B2 (en) 2011-06-02 2016-04-26 Dic Corporation Easily dismantlable adhesive agent composition and easily dismantlable adhesive tape
WO2015080189A1 (en) * 2013-11-27 2015-06-04 日本ゼオン株式会社 Radical polymerization initiator and method for producing polymers
JPWO2015080189A1 (en) * 2013-11-27 2017-03-16 日本ゼオン株式会社 Radical polymerization initiator and method for producing polymer
US10689336B2 (en) 2013-11-27 2020-06-23 Zeon Corporation Radical polymerization initiator and method for producing polymers
WO2018164147A1 (en) * 2017-03-09 2018-09-13 Agc株式会社 Method for producing polymer
JPWO2018164147A1 (en) * 2017-03-09 2019-11-07 Agc株式会社 Method for producing polymer
US10961332B2 (en) 2017-03-09 2021-03-30 AGC Inc. Method for producing polymer

Also Published As

Publication number Publication date
JP4107996B2 (en) 2008-06-25

Similar Documents

Publication Publication Date Title
JP4107996B2 (en) Method for producing living radical polymer and polymer
CA2494816C (en) Organic tellurium compound, process for producing the same, living radical polymerization initiator, process for producing polymer with the same, and polymer
JP3839829B2 (en) Method for producing living radical polymer and polymer
JP3845109B2 (en) Method for producing living radical polymer and polymer
JP2006299278A (en) Process for production of living radical polymer
JP4539843B2 (en) Method for producing aqueous liquid using organic tellurium compound
JP5193480B2 (en) Method for producing living radical polymer and polymer
KR100633200B1 (en) Process for the production of living radical polymers and polymers
JP4767552B2 (en) Phenolic star polymer
TWI388580B (en) Living radical polymerization reaction promoter
JP2007302737A (en) Preparation of living radical polymer
JP4360829B2 (en) Method for producing organic tellurium compound
EP1688440A1 (en) Novel hyperbranched polymer
KR100589035B1 (en) Process for production of living radical polymers and polymers
KR100708959B1 (en) Organic tellurium compound, process for producing the same, living radical polymerization initiator, process for producing polymer with the same, and polymer
JP2009215472A (en) Process for producing living radical polymer having functional group at terminal
KR20050047087A (en) Organic tellurium compound, process for producing the same, living radical polymerization initiator, process for producing polymer with the same, and polymer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20071016

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20071019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080215

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080401

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4107996

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term