JP2004323305A - Method of producing porous molding, porous molding, and granular material - Google Patents

Method of producing porous molding, porous molding, and granular material Download PDF

Info

Publication number
JP2004323305A
JP2004323305A JP2003120635A JP2003120635A JP2004323305A JP 2004323305 A JP2004323305 A JP 2004323305A JP 2003120635 A JP2003120635 A JP 2003120635A JP 2003120635 A JP2003120635 A JP 2003120635A JP 2004323305 A JP2004323305 A JP 2004323305A
Authority
JP
Japan
Prior art keywords
porous molded
zeolite
molded body
glass
granular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003120635A
Other languages
Japanese (ja)
Other versions
JP3469233B1 (en
Inventor
Ryuzo Okada
龍三 岡田
Hideyuki Usui
英之 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ATLAS WORLD KK
NAGATE YUTAKA
SHII RINKU KK
Original Assignee
ATLAS WORLD KK
NAGATE YUTAKA
SHII RINKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ATLAS WORLD KK, NAGATE YUTAKA, SHII RINKU KK filed Critical ATLAS WORLD KK
Priority to JP2003120635A priority Critical patent/JP3469233B1/en
Application granted granted Critical
Publication of JP3469233B1 publication Critical patent/JP3469233B1/en
Priority to PCT/JP2004/005672 priority patent/WO2004094340A1/en
Publication of JP2004323305A publication Critical patent/JP2004323305A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/02Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding chemical blowing agents
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G20/00Cultivation of turf, lawn or the like; Apparatus or methods therefor
    • A01G20/20Cultivation on mats
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C11/00Multi-cellular glass ; Porous or hollow glass or glass particles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/004Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of particles or flakes
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G24/00Growth substrates; Culture media; Apparatus or methods therefor
    • A01G24/10Growth substrates; Culture media; Apparatus or methods therefor based on or containing inorganic material
    • A01G24/18Growth substrates; Culture media; Apparatus or methods therefor based on or containing inorganic material containing inorganic fibres, e.g. mineral wool
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00758Uses not provided for elsewhere in C04B2111/00 for agri-, sylvi- or piscicultural or cattle-breeding applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/254Roof garden systems; Roof coverings with high solar reflectance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/32Roof garden systems

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Environmental Sciences (AREA)
  • Structural Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Cultivation Of Plants (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of producing a porous molding, when used as the one for vegetable cultivation, by which the cost for city water can be saved, and also, there is no need of paying remarkable cost to fertilizer though it has a structure where cultivation area can be enlarged even in the case of cultivation on the roof of a building, to provide a porous molding, and to provide a granular material. <P>SOLUTION: A mixture of a glass material, a foaming agent and zeolite is fired and cooled to obtain a porous molding 1. For example, the glass material has a powdery shape, and the zeolite has a granular shape. The foaming agent is added to the granular glass material obtained by pulverizing a glass product, and they are pulverized to produce powdery glass consisting of the powdery glass material and the foaming agent, and the glass is mixed with the granular zeolite, and mixing is performed to produce the mixture. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、多孔質成形体の製造方法及び多孔質成形体、並びに粒状物に関する。
【0002】
【従来の技術】
近年、ビルの屋上で植物を栽培し、太陽からの熱を植物で吸収して、ビルやその周囲の温度を下げる手段が採用されている。この手段では、屋上の花壇に収容された土に植物が植付けられる。そして肥料を施され、一定の時間ごとに潅水装置により潅水される。これにより、ビルの屋上を長期間にわたって緑化し、冷房に要する電気量を低減して省エネルギー化を図っている。
【0003】
ところが上記の手段によれば、土の保水力があまり大きくないために、潅水の間隔を短くしなければならず、水道代が高くなっていた。また、重量のある土を強度の弱い屋上に大量に載せることは好ましくないために、栽培面積を大きくすることができなかった。
【0004】
これらの問題を解消する技術として、土を使わずに多孔質成形体に植物を植付ける技術が提案されている[特許文献1参照]。この多孔質成形体は、石炭灰クリンカーアッシュ等の粗粒骨材にガラスを配合したものを成形し焼成して構成されている。詳しくは、前記粗粒骨材の表面は多孔質結晶化ガラスで覆われている。そして、それらの粗粒骨材同士が多孔質結晶化ガラスによって部分的に結合され、それらの粗粒骨材間に連続孔隙が多数形成されている。粗粒骨材は、微生物が棲みつく0.1〜100μmの多数の細孔を有し、多孔質結晶化ガラスは10〜100μmの通孔を有している。前記連続孔隙は0.4〜10mmである。
【0005】
【特許文献1】
特開2002−335747号公報
【0006】
【発明が解決しようとする課題】
上記構造の多孔質成形体は、多数の細孔、通孔、連続孔隙に水が貯えられることから保水性が高い。従って、灌水の間隔を長くすることができて水道代を節約することができる。また、土よりも軽量であるので屋上での植物の栽培面積を大きくすることができる。そのうえ、連続孔隙に植物の根が進入して根付く。そして細孔に微生物が棲み、これが栄養分となって植物が成長する。
【0007】
しかしながら、多孔質成形体は焼成物であり、成形当初から内部に土壌並の微生物が存在することはない。そのために、有機肥料等の充填材を連続孔隙に十分充填しないと、植物が成長不良になりやすかった。つまり、従来の多孔質成形体では、肥料に要するコストが高くなっていた。
【0008】
ところで、この種の多孔質成形体は植物栽培用としてではなく、脱臭処理・汚水処理・浄水処理など、別の目的で用いられることも多い。上記従来の構造の多孔質成形体をこれらの処理を目的として用いた場合、細孔等にアンモニア等の成分を吸着させるだけで、処理効果が十分ではなく、より処理効果を上げる多孔質成形体の開発が望まれていた。
【0009】
本発明は上記実状に鑑みて成されたものである。その目的は、植物栽培用として用いられる場合、水道代を節約でき、かつ、ビルの屋上での栽培であっても栽培面積を大きくすることができる構造でありながら、肥料に多くのコストをかけなくても済む多孔質成形体を製造する方法、及び多孔質成形体、並びに粒状物を提供する点にある。
【0010】
そして、本発明の目的は、脱臭処理・汚水処理・浄水処理等のために用いられる場合、これらの処理効果をより上げることができる多孔質成形体を製造する方法、及び多孔質成形体、並びに粒状物を提供する点にもある。
【0011】
【課題を解決するための手段】
本発明の特徴は、ガラス材と発泡剤とゼオライトとの混合物を焼成し冷却して多孔質成形体を得る点にある。
【0012】
この手段により製造した多孔質成形体を植物栽培のために用いる場合、例えば多孔質成形体に穴を開け、この穴に植物の根を嵌め込んで栽培する。穴には土を入れなくてもよい。
【0013】
上記の手段によれば、発泡剤の作用で多孔質成形体に多数の空隙が形成される。その結果、多孔質成形体の保水性を大きく、重量を軽くすることができる。多孔質成形体は焼成物であるが、多孔質成形体のゼオライトには成形当初からカリウム・カルシウム・ナトリウム・亜鉛・鉄分・銅分・ミネラル等の栄養分が含まれている。この栄養分を植物が吸収して成長し、植物の根が多数の空隙に進入して根付く。従って、土が不要になるとともに、少しの肥料を与えるだけで植物を十分成長させることができる。そして、ゼオライトは強度が強いから多孔質成形体の構造を強くすることができる。
【0014】
例えば、ガラス材と発泡剤の混合物を生成し、この混合物を焼成し冷却して多孔質成形体(ゼオライトが含まれていない多孔質成形体)を成形することも考えられる。しかしながら、この構造では、保水性を大きく、重量を軽くすることができるものの、栄養分がなくて植物の根が付きにくい。そのために土や肥料が必要で、植物を植付けた状態では重量化する。そして肥料にコストがかかり、強度も弱い。これに対して本発明にかかる上記の手段で製造した多孔質成形体ではこのような問題は生じない。
【0015】
ゼオライトが含まれていない上記の多孔質成形体の植物収容穴に粒状のゼオライトを収容し、そこに植物の根を植付けることも考えられるが、多孔質成形体とゼオライトとが別体になっていると、多孔質成形体の多数の空隙に侵入した植物の根がゼオライトの栄養分を吸収することができない。そのために、肥料なしでは植物の成長が止まりやすい。そのうえ、植物の植付け時に多孔質成形体のほかにゼオライトを準備しなければならず、取り扱いが煩雑で作業に手間がかかる。これに対して本発明にかかる上記の手段で製造した多孔質成形体では、多孔質成形体内にゼオライトが存在するから、多孔質成形体内の多数の空隙に侵入した植物の根がゼオライトから栄養分を吸収しやすい。そして、植物の植付け時の取り扱いが簡単で植付け作業を簡単化できる。
【0016】
また、ゼオライトだけから成る多孔質成形体では、強度が強く、肥料を節約できるものの、重量化する。そしてゼオライトに要するコストが高くなる。これに対して、本発明にかかる上記の手段で製造した多孔質成形体ではこのような問題は生じない。
【0017】
このように、ガラスとゼオライトとの組み合わせにより、互いに相手側の短所を補い合って上記の優れた効果を得ることができる。すなわち、軽量であるからビルの屋上に広い面積にわたって載せることができて、屋上での栽培面積を大きくすることができる。しかも潅水間隔を短くできて、水道代を低く抑えることができる。そして、肥料に要するコストを少なくすることができる。さらに製作コストを低廉化できる。
【0018】
以上、多孔質成形体を植物栽培のために用いる場合を例に挙げて説明したが、脱臭処理・汚水処理・浄水処理等のために用いる場合であっても上記の作用効果とほぼ同様の作用効果を奏することができる。つまり、多孔質成形体を軽量化できるとともに製作コストを低廉化できる。また、汚水処理(水の浄化)には、従来、活性炭・砂等が浄化媒体として使われていたが、砂で有害微粒子を12〜14μmレベルで篩にかけるのに対し、ゼオライトは4μmレベルで篩にかける。かつ、ゼオライトの一大特徴であるイオン交換能力(CEC)に優れ、アンモニア等の成分に対する吸着力が強いので、脱臭効果・汚水処理効果・浄水処理効果等をより上げることができる。
【0019】
本発明において、前記ガラス材が粉状であり、前記ゼオライトが粒状であると、前記混合物を焼成しやすくなる。そして、ゼオライトを多孔質成形体の全体にわたって分散させやすくすることができる。
【0020】
本発明においては、ガラス製品を粉砕して成る粒状のガラス材に前記発泡剤を加え、これらを粉砕することで、粉状のガラス材と発泡剤から成る粉状ガラス類を生成し、前記粉状ガラス類に粒状のゼオライトを混合して前記混合物を生成する手段を取ることができる。
【0021】
この手段により、廃棄されたガラス製品を粒状に粉砕すれば、ガラス製品をリサイクルすることができ、環境保護の面で有利になる。しかも製作コストを低く抑えることができる。また、粒状のガラス材に発泡剤を加え、これらをさらに粉状に粉砕するから、両者を十分混合させることができ、前記多数の空隙を分散配置させやすくなる。
【0022】
本発明においては、前記粉状ガラス類とゼオライトとの重量混合比が7:3〜6:4の範囲内に設定することができる。
【0023】
この手段によれば、粉状ガラス類の特性を活かして、軽量化を十分図ることができる。さらに、ゼオライトの特性を活かして、植物に栄養分を十分供給できるとともに、十分強い構造体にすることができる。
【0024】
前記粒状のガラス材の粒子径が1.5mm〜2mmであると、ガラス材を粉状にしやすく、ガラス材に発泡剤を均一に混合させやすい。また、粉状のガラス材の粒子径が20μm〜30μmであると、粉状ガラス類の上記の特性を活かしやすい。すなわち、20μm未満では粉砕にかかる費用が高くなるという問題があり、30μmを超えると混合時に均一に分散しにくいという問題があるが、粉状のガラス材の粒子径を20μm〜30μmにすることで、これらの問題を解消することができる。
【0025】
そして、前記ゼオライトの粒子径が1mm〜1.5mmであると、上記のゼオライトの特性を活かしやすい。すなわち、1mm未満ではガラス粒子との混合焼成にむらがでやすいという問題があり、1.5mmを超えてもガラス粒子との混合焼成にむらがでやすいという問題があるが、ゼオライトの粒子径を1mm〜1.5mmにすることで、これらの問題を解消することができる。
【0026】
前記混合物を成形型に収容して700℃〜900℃の温度で1.7時間〜2.3時間焼成し自然冷却すると、ゼオライトや空隙が均一に分布した多孔質成形体を得やすくなる。
【0027】
上記の手段で製造した多孔質成形体の構成によれば、上記の作用効果と同様の作用効果を奏することができる。
【0028】
上記の手段で製造した多孔質成形体を粒状に粉砕して成る粒状物を、砂地や砂漠に蒔くと、保水性や栄養分供給作用により植物の種子が成長して、砂地や砂漠を緑化しやすい。そして、花壇や田畑や鉢の土に蒔くと、保水性や栄養分供給作用により植物が成長しやすくなる。この場合、ゼオライトとガラスが一体になっているから、粒状のゼオライトだけを蒔いた場合よりも、比重を小さくできて屋上の緑化に適する。また、製作コストを低廉化することができる。前記粒状物を容器に入れ、その中に植物を植付けることもできる。
【0029】
上記の粒状物に水を通して浄水することで、浄水効果を上げることができる。同様に、粒状物でアンモニア等を吸収して脱臭効果を上げることができ、汚水処理効果を上げることができる。
【0030】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。図1に、本発明にかかる方法で製造された直方体状の多孔質成形体1を示し、図2に、この多孔質成形体1で栽培されている観葉植物3を示してある。多孔質成形体1はゼオライトを含んでおり、複数の丸い穴2が開けられている。そして、それぞれの穴2に複数の観葉植物3の根4が嵌め込まれている。穴2には土を入れてない。5は穴2に連通する排水口である。
【0031】
前記多孔質成形体1の製造方法は、ガラス材と発泡剤とゼオライトとの混合物を焼成し冷却して多孔質成形体1を得る方法であり、次の工程から成る。
【0032】
[原料選別工程]
ガラス製品を選別する。ガラス製品としては廃棄されたガラス瓶や板ガラスや蛍光灯を挙げることができる。ガラス瓶の場合、異なる種類のものを混ぜない。例えばビール瓶ならビール瓶だけを選別する。ガラス以外の不純物やガラスに付いている金属をガラスから十分に除去する。
【0033】
[粉砕工程]
ガラス製品を粒状に粉砕する。粒状のガラス材の粒子径は1.5mm〜2mmである。この工程でも、ガラス材以外の不純物やガラス材に付いている金属があれば、これらをガラス材から除去する。
【0034】
そして、その粒状のガラス材に発泡剤を加え、これらをさらに粉砕し、粉状のガラス材と発泡剤とから成る粉状ガラス類を生成する。粉状のガラス材と発泡剤との重量混合比は99:1〜95:5の範囲内にある。粉状のガラス材の粒子径は20μm〜30μmである。例えば、縦横1m、厚さ5cmの直方体の多孔質成形体1を成形する場合、粉状ガラス類の重量は12.6Kgである。
【0035】
[混合工程]
前記粉状ガラス類に粒状のゼオライトを混合し攪拌して前記混合物を生成する。混合攪拌はコンクリートミキサーで行う。バインダー(結合剤)としてベントナイトを発泡剤に加えてある。ベントナイトと発泡剤との重量混合比は1:9〜9:1である。
【0036】
ゼオライトの粒子径は1mm〜1.5mmである。粉砕工程で一例として挙げた大きさの直方体の多孔質成形体1を成形する場合、ゼオライトの重量は5.4Kgである。つまり、粉状ガラス類とゼオライトとの重量混合比は7:3である(9:1〜5:5の範囲内にあってもよい)。
【0037】
[成形工程]
前記混合物を成形型に収容し、700℃〜900℃の温度で約2時間焼成する(1.7時間〜2.3時間であってもよい)。
【0038】
[冷却工程]
焼成後に4〜5時間自然冷却する。
【0039】
(表1)に上記の方法で製造した多孔質成形体1の特性を示してある。
【0040】
上記の多孔質成形体1を粉砕することで、ゼオライトを含んだ粒状物を得ることができる。粒子径は例えば(1.4mm〜2.54mm)にする。この粒状物を容器に入れ、その中に植物を植付けてもよい。また、この粒状物を砂地や砂漠に蒔くと、これらを緑化しやすくなる。
【0041】
【表1】

Figure 2004323305
【0042】
[別実施形態]
上記の実施形態で挙げた数値は一例であり、別の数値であってもよい。ゼオライトは天然のゼオライトであっても人工のゼオライトであってもよい。天然のゼオライトを用いるとコストを低く抑えることができる。前記発泡剤としては炭酸カルシウムやドロマイト等を挙げることができる。前記多孔質成形体1を鉢形に成形することもできる。また、多孔質成形体1で観葉植物以外の植物も栽培することができる。前記成形型で成形する際に、前記植物の根を嵌め込む穴2を成形工程で成形してもよい。すなわち、図1の前記穴2(あるいは穴2と排水口5)に対応する中型を下型と上型との間にセットし、これらから成る成形型に前記混合物を収容し、焼成して穴2等を成形してもよい。
【0043】
これまで、植物栽培用の多孔質成形体1を例に挙げて説明したが、前記多孔質成形体1を次のようにして用いることもできる。(1)畜舎の壁材等として用いてアンモニア等を吸収させ、脱臭効果を得る。(2)浄水処理材として用いる。(3)汚水処理材として用いる。(4)核廃棄物処理材として用いる。この場合、CEC(cation exchange capacity 陽イオン交換作用)が160〜180meq/100g程度のものであれば、よい効果を得ることができる。(5)これらに限られず、その他の処理等を目的として多孔質成形体1を用いることもできる。
【0044】
屋上緑化植物栽培用以外の多孔質成形体やその粒状物に合成ゼオライトを含ませると、よりよい効果を得ることができる。
【0045】
【発明の効果】
本発明によれば、植物栽培用として用いられる場合、水道代を節約でき、かつ、ビルの屋上での栽培であっても栽培面積を大きくすることができる構造でありながら、肥料に多くのコストをかけなくても済む多孔質成形体を製造する方法、及び多孔質成形体、並びに粒状物を提供することができた。
【0046】
そして、脱臭処理・汚水処理・浄水処理等のために用いられる場合、これらの処理効果をより上げることができる多孔質成形体を製造する方法、及び多孔質成形体、並びに粒状物を提供することができた。
【0047】
また、本発明にかかる粒状物によって、砂地や砂漠を緑化することができ、花壇や田畑や鉢植えの植物を成長しやすくすることができる。
【図面の簡単な説明】
【図1】多孔質成形体を示す斜視図
【図2】多孔質成形体で植物を栽培している状態を示す縦断面図
【符号の説明】
1 多孔質成形体
2 多孔質成形体に開けられた穴
3 植物
4 植物の根
5 排水口[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a porous molded body, a porous molded body, and a granular material.
[0002]
[Prior art]
BACKGROUND ART In recent years, means for cultivating plants on the roof of a building, absorbing heat from the sun with the plants, and lowering the temperature of the building and its surroundings have been adopted. By this means, plants are planted in the soil contained in the flower beds on the roof. And fertilizer is applied, and it is watered by a watering device at regular intervals. As a result, the rooftop of the building is greened for a long period of time, and the amount of electricity required for cooling is reduced to save energy.
[0003]
However, according to the above-mentioned means, since the water retention capacity of the soil is not so large, the interval of irrigation has to be shortened, and the cost of water supply has been increased. In addition, it is not preferable to put a large amount of heavy soil on a roof having low strength, so that the cultivation area cannot be increased.
[0004]
As a technique for solving these problems, a technique of planting a plant in a porous compact without using soil has been proposed [see Patent Document 1]. This porous molded body is formed by molding and firing a mixture of coarse aggregate such as coal ash clinker ash and glass. Specifically, the surface of the coarse aggregate is covered with porous crystallized glass. Then, the coarse-grained aggregates are partially bonded by the porous crystallized glass, and a large number of continuous pores are formed between the coarse-grained aggregates. The coarse-grained aggregate has a large number of pores of 0.1 to 100 μm in which microorganisms can live, and the porous crystallized glass has pores of 10 to 100 μm. The continuous pores are 0.4 to 10 mm.
[0005]
[Patent Document 1]
JP 2002-335747 A
[Problems to be solved by the invention]
The porous molded body having the above structure has high water retention because water is stored in many pores, through holes, and continuous pores. Therefore, the interval of irrigation can be lengthened, and the water bill can be saved. In addition, since it is lighter than soil, the cultivation area of the plant on the roof can be increased. In addition, plant roots enter the continuous pores and take root. Microorganisms live in the pores, which become nutrients and grow plants.
[0007]
However, the porous molded body is a fired product, and there is no microbe that is at the same level as soil inside from the beginning of molding. For this reason, unless the filler such as the organic fertilizer is sufficiently filled in the continuous pores, the plant tends to have poor growth. That is, in the conventional porous molded body, the cost required for the fertilizer was high.
[0008]
By the way, such a porous molded body is often used not for plant cultivation but for another purpose such as deodorization treatment, sewage treatment, and water purification treatment. When the porous molded body having the above-mentioned conventional structure is used for the purpose of these treatments, the treatment effect is not sufficient only by adsorbing a component such as ammonia to the pores and the like, and the porous molded body which further enhances the treatment effect is obtained. The development of was desired.
[0009]
The present invention has been made in view of the above situation. The purpose is that when it is used for plant cultivation, it has a structure that can save water bills and can increase the cultivation area even when cultivating on the roof of a building, but puts a lot of cost on fertilizer. It is an object of the present invention to provide a method for producing a porous molded body which does not need to be provided, a porous molded body, and a granular material.
[0010]
And an object of the present invention is a method for producing a porous molded body capable of further improving these treatment effects, when used for deodorization treatment, sewage treatment, water purification treatment, and the like, and a porous molded body, and It also provides granules.
[0011]
[Means for Solving the Problems]
A feature of the present invention is that a mixture of a glass material, a foaming agent, and zeolite is fired and cooled to obtain a porous molded body.
[0012]
When the porous molded body produced by this means is used for plant cultivation, for example, a hole is made in the porous molded body, and the root of the plant is fitted into the hole for cultivation. There is no need to put soil in the hole.
[0013]
According to the above means, a large number of voids are formed in the porous molded body by the action of the foaming agent. As a result, the water retention of the porous molded body can be increased, and the weight can be reduced. The porous compact is a calcined product, and the zeolite of the porous compact contains nutrients such as potassium, calcium, sodium, zinc, iron, copper, and minerals from the beginning. This nutrient is absorbed by the plant and grows, and the roots of the plant enter a large number of voids and take root. Accordingly, soil is not required, and plants can be sufficiently grown with a small amount of fertilizer. And since zeolite has high strength, the structure of the porous molded body can be strengthened.
[0014]
For example, it is conceivable to produce a mixture of a glass material and a foaming agent, bake and cool the mixture to form a porous molded body (a porous molded body containing no zeolite). However, with this structure, although the water retention is large and the weight can be reduced, there is no nutrient, and the roots of the plant are hard to adhere. For that purpose, soil and fertilizer are required, and the weight is increased when plants are planted. And fertilizer is costly and weak. On the other hand, such a problem does not occur in the porous molded body manufactured by the above-described means according to the present invention.
[0015]
It is conceivable to accommodate granular zeolite in the above-mentioned porous molded body containing no zeolite, and to plant plant roots therein, but the porous molded body and zeolite are separated. In this case, the roots of the plant that have invaded many voids of the porous molded body cannot absorb the nutrients of zeolite. Therefore, plant growth tends to stop without fertilizer. In addition, zeolite must be prepared in addition to the porous molded body at the time of planting the plant, and the handling is complicated and the work is troublesome. On the other hand, in the porous molded body produced by the above-described means according to the present invention, since zeolite is present in the porous molded body, the roots of the plants that have invaded a large number of voids in the porous molded body remove nutrients from the zeolite. Easy to absorb. And the handling at the time of planting of a plant is easy, and the planting operation can be simplified.
[0016]
In addition, a porous molded body composed only of zeolite has high strength and can save fertilizer, but is heavy. And the cost required for the zeolite increases. On the other hand, such a problem does not occur in the porous molded body manufactured by the above-described means according to the present invention.
[0017]
Thus, the combination of glass and zeolite can compensate for the disadvantages of each other and achieve the above-described excellent effects. That is, since it is lightweight, it can be placed over a large area on the roof of a building, and the cultivation area on the roof can be increased. In addition, the watering interval can be shortened, and the water bill can be kept low. And the cost required for fertilizer can be reduced. Further, the production cost can be reduced.
[0018]
As described above, the case where the porous molded body is used for plant cultivation has been described as an example. However, even when the porous molded body is used for deodorization treatment, sewage treatment, water purification treatment, and the like, almost the same operation and effect as described above The effect can be achieved. That is, the weight of the porous molded body can be reduced and the manufacturing cost can be reduced. Activated carbon, sand and the like have been used as a purification medium for sewage treatment (purification of water), but harmful fine particles are sieved with sand at a level of 12 to 14 μm, whereas zeolite is sieved at a level of 4 μm. Sift. In addition, since zeolite has excellent ion exchange capacity (CEC), which is one of the major features, and has a strong adsorptivity to components such as ammonia, the deodorizing effect, sewage treatment effect, water purification treatment effect, and the like can be further improved.
[0019]
In the present invention, when the glass material is powdery and the zeolite is granular, the mixture is easily fired. Then, the zeolite can be easily dispersed throughout the porous molded body.
[0020]
In the present invention, the foaming agent is added to a granular glass material obtained by pulverizing a glass product, and the resultant is pulverized to produce powdery glass material composed of a powdery glass material and a foaming agent. Means for producing the mixture by mixing granular zeolites with glassy glasses can be taken.
[0021]
By crushing the discarded glass product into granules by this means, the glass product can be recycled, which is advantageous in terms of environmental protection. Moreover, the manufacturing cost can be kept low. Further, since a foaming agent is added to the granular glass material and these are further pulverized into a powder, both can be sufficiently mixed, and the large number of voids can be easily dispersed and arranged.
[0022]
In the present invention, the weight mixing ratio between the powdery glass and the zeolite can be set in the range of 7: 3 to 6: 4.
[0023]
According to this means, it is possible to sufficiently reduce the weight by utilizing the properties of the powdery glass. Further, by utilizing the properties of zeolite, nutrients can be sufficiently supplied to plants, and a sufficiently strong structure can be obtained.
[0024]
When the particle diameter of the granular glass material is 1.5 mm to 2 mm, the glass material is easily made into a powdery state, and the foaming agent is easily mixed with the glass material. Further, when the particle diameter of the powdery glass material is 20 μm to 30 μm, the above-mentioned properties of the powdery glass are easily utilized. That is, if it is less than 20 μm, there is a problem that the cost for pulverization is high, and if it exceeds 30 μm, there is a problem that it is difficult to uniformly disperse the mixture during mixing. These problems can be solved.
[0025]
When the particle diameter of the zeolite is 1 mm to 1.5 mm, the above-mentioned characteristics of the zeolite can be easily utilized. That is, when the particle size is less than 1 mm, there is a problem that unevenness in mixing and firing with glass particles tends to occur, and when it exceeds 1.5 mm, there is a problem that unevenness tends to occur in mixing and firing with glass particles. These problems can be solved by setting the thickness to 1 mm to 1.5 mm.
[0026]
When the mixture is accommodated in a mold and fired at a temperature of 700 ° C. to 900 ° C. for 1.7 hours to 2.3 hours and naturally cooled, it becomes easy to obtain a porous molded body in which zeolite and voids are uniformly distributed.
[0027]
According to the configuration of the porous molded body manufactured by the above-described means, the same operation and effect as those described above can be obtained.
[0028]
When a granular material obtained by crushing the porous molded body produced by the above means into a granular form is sown on sand or a desert, plant seeds grow due to water retention and nutrient supply, and the sand or desert is easily greened. . When sown on flowerbeds, fields and pots, the plants grow easily due to water retention and nutrient supply. In this case, since zeolite and glass are integrated, the specific gravity can be made smaller than when only granular zeolite is sown, which is suitable for rooftop greening. Further, the manufacturing cost can be reduced. The granular material can be put in a container, and a plant can be planted therein.
[0029]
By purifying water by passing water through the above granular material, the water purification effect can be improved. Similarly, it is possible to increase the deodorizing effect by absorbing ammonia and the like by the particulate matter, and to increase the sewage treatment effect.
[0030]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a rectangular shaped porous molded body 1 produced by the method according to the present invention, and FIG. 2 shows a houseplant 3 cultivated with the porous molded body 1. The porous compact 1 contains zeolite and has a plurality of round holes 2. The roots 4 of the plurality of houseplants 3 are fitted into the respective holes 2. There is no soil in hole 2. 5 is a drain port communicating with the hole 2.
[0031]
The method for producing the porous molded body 1 is a method for obtaining a porous molded body 1 by firing and cooling a mixture of a glass material, a foaming agent, and zeolite, and comprising the following steps.
[0032]
[Raw material selection process]
Sort glass products. Examples of the glass product include a discarded glass bottle, a plate glass, and a fluorescent lamp. For glass bottles, do not mix different types. For example, for beer bottles, only beer bottles are selected. The impurities other than the glass and the metal attached to the glass are sufficiently removed from the glass.
[0033]
[Pulverizing process]
Grind glassware into granules. The particle diameter of the granular glass material is 1.5 mm to 2 mm. Also in this step, if there are impurities other than the glass material and metals attached to the glass material, these are removed from the glass material.
[0034]
Then, a foaming agent is added to the granular glass material, and these are further pulverized to generate powdered glass composed of the powdery glass material and the foaming agent. The weight mixing ratio between the powdery glass material and the foaming agent is in the range of 99: 1 to 95: 5. The particle size of the powdery glass material is 20 μm to 30 μm. For example, when forming a rectangular parallelepiped porous molded body 1 having a length and width of 1 m and a thickness of 5 cm, the weight of the powdery glass is 12.6 kg.
[0035]
[Mixing process]
Granular zeolite is mixed with the powdered glass and stirred to form the mixture. Mixing and stirring are performed with a concrete mixer. Bentonite is added to the blowing agent as a binder. The weight mixing ratio of bentonite and blowing agent is 1: 9 to 9: 1.
[0036]
The particle size of the zeolite is 1 mm to 1.5 mm. In the case of forming a rectangular parallelepiped porous molded body 1 having the size mentioned as an example in the pulverizing step, the weight of zeolite is 5.4 kg. That is, the weight mixing ratio between the powdery glass and the zeolite is 7: 3 (may be in the range of 9: 1 to 5: 5).
[0037]
[Molding process]
The mixture is placed in a mold and fired at a temperature of 700 ° C. to 900 ° C. for about 2 hours (may be 1.7 hours to 2.3 hours).
[0038]
[Cooling step]
After baking, it is naturally cooled for 4 to 5 hours.
[0039]
Table 1 shows the properties of the porous molded body 1 manufactured by the above method.
[0040]
By pulverizing the above-mentioned porous compact 1, a granular material containing zeolite can be obtained. The particle size is, for example, (1.4 mm to 2.54 mm). The granules may be placed in a container into which plants are planted. Also, if these granular materials are sown on sand or a desert, they can be easily greened.
[0041]
[Table 1]
Figure 2004323305
[0042]
[Another embodiment]
The numerical values given in the above embodiment are examples, and may be other numerical values. The zeolite may be a natural zeolite or an artificial zeolite. Use of natural zeolites can reduce costs. Examples of the foaming agent include calcium carbonate and dolomite. The porous molded body 1 can be formed in a pot shape. Plants other than house plants can also be cultivated on the porous molded body 1. When molding with the mold, the hole 2 into which the root of the plant is fitted may be molded in a molding step. That is, the middle mold corresponding to the hole 2 (or the hole 2 and the drain port 5) in FIG. 2 etc. may be formed.
[0043]
The porous molded body 1 for plant cultivation has been described as an example, but the porous molded body 1 can be used as follows. (1) It is used as a wall material of a barn to absorb ammonia and the like, thereby obtaining a deodorizing effect. (2) Used as a water purification material. (3) Used as a sewage treatment material. (4) Used as a nuclear waste treatment material. In this case, if CEC (cation exchange capacity cation exchange action) is about 160 to 180 meq / 100 g, a good effect can be obtained. (5) The present invention is not limited to these, and the porous molded body 1 can be used for other treatments and the like.
[0044]
Better effects can be obtained if the synthetic zeolite is included in the porous molded body other than for rooftop greening plants and its granular material.
[0045]
【The invention's effect】
According to the present invention, when used for plant cultivation, it is possible to save water bills and to increase the cultivation area even when cultivating on the rooftop of a building, but with a large cost for fertilizer. Thus, a method for producing a porous molded body, which does not need to be applied, a porous molded body, and a granular material were provided.
[0046]
And, when used for deodorization treatment, sewage treatment, water purification treatment, etc., a method for producing a porous molded body capable of further improving these treatment effects, and a porous molded body, and a granular material are provided. Was completed.
[0047]
Further, the granular material according to the present invention can green a sandy area or a desert, and can easily grow a flower bed, a field, or a potted plant.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a porous molded body. FIG. 2 is a longitudinal sectional view showing a state where a plant is cultivated on the porous molded body.
DESCRIPTION OF SYMBOLS 1 Porous molded body 2 Hole formed in porous molded body 3 Plant 4 Plant root 5 Drainage outlet

Claims (8)

ガラス材と発泡剤とゼオライトとの混合物を焼成し冷却して多孔質成形体を得る多孔質成形体の製造方法。A method for producing a porous molded body, wherein a mixture of a glass material, a foaming agent and zeolite is fired and cooled to obtain a porous molded body. 前記ガラス材は粉状であり、前記ゼオライトは粒状である請求項1記載の多孔質成形体の製造方法。The method according to claim 1, wherein the glass material is powdery, and the zeolite is granular. ガラス製品を粉砕して成る粒状のガラス材に前記発泡剤を加え、これらを粉砕することで、粉状のガラス材と発泡剤から成る粉状ガラス類を生成し、前記粉状ガラス類に粒状のゼオライトを混合して前記混合物を生成する請求項1又は2記載の多孔質成形体の製造方法。The foaming agent is added to a granular glass material obtained by pulverizing a glass product, and these are pulverized to produce a powdery glass material composed of a powdery glass material and a foaming agent. The method for producing a porous molded body according to claim 1 or 2, wherein the zeolite is mixed to produce the mixture. 前記粉状ガラス類とゼオライトとの重量混合比が7:3〜6:4の範囲内にある請求項3記載の多孔質成形体の製造方法。The method for producing a porous molded body according to claim 3, wherein a weight mixing ratio of the powdery glass and the zeolite is in a range of 7: 3 to 6: 4. 前記粒状のガラス材の粒子径は1.5mm〜2mm、前記粉状のガラス材の粒子径は20μm〜30μm、前記ゼオライトの粒子径は1mm〜1.5mmである請求項2,3,4のいずれか一つに記載の多孔質成形体の製造方法。The particle size of the granular glass material is 1.5 mm to 2 mm, the particle size of the powdery glass material is 20 μm to 30 μm, and the particle size of the zeolite is 1 mm to 1.5 mm. A method for producing a porous molded article according to any one of the above. 前記混合物を成形型に収容して700℃〜900℃の温度で1.7時間〜2.3時間焼成し自然冷却する請求項1〜5のいずれか一つに記載の多孔質成形体の製造方法。The production of the porous molded article according to any one of claims 1 to 5, wherein the mixture is accommodated in a mold, fired at a temperature of 700 ° C to 900 ° C for 1.7 hours to 2.3 hours, and naturally cooled. Method. 請求項1〜6のいずれか一つに記載の方法で製造した多孔質成形体。A porous molded article produced by the method according to claim 1. 請求項7に記載の多孔質成形体を粉砕して成る粒状物。A granular material obtained by pulverizing the porous molded article according to claim 7.
JP2003120635A 2003-04-24 2003-04-24 Method for producing porous molded article, porous molded article, and granular material Expired - Fee Related JP3469233B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003120635A JP3469233B1 (en) 2003-04-24 2003-04-24 Method for producing porous molded article, porous molded article, and granular material
PCT/JP2004/005672 WO2004094340A1 (en) 2003-04-24 2004-04-20 Process for producing porous molding, porous molding and granular matter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003120635A JP3469233B1 (en) 2003-04-24 2003-04-24 Method for producing porous molded article, porous molded article, and granular material

Publications (2)

Publication Number Publication Date
JP3469233B1 JP3469233B1 (en) 2003-11-25
JP2004323305A true JP2004323305A (en) 2004-11-18

Family

ID=29707423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003120635A Expired - Fee Related JP3469233B1 (en) 2003-04-24 2003-04-24 Method for producing porous molded article, porous molded article, and granular material

Country Status (2)

Country Link
JP (1) JP3469233B1 (en)
WO (1) WO2004094340A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016069203A (en) * 2014-09-29 2016-05-09 大和ハウス工業株式会社 Fired body and method for producing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3614963B2 (en) * 1996-01-24 2005-01-26 太平洋セメント株式会社 Concrete block for planting
JP2003020290A (en) * 2001-07-02 2003-01-24 Ueda Shikimono Kojo:Kk Porous base material made of ceramics and method for manufacturing the same and base material for soil obtained by pulverizing this porous base material
JP3527484B2 (en) * 2001-07-11 2004-05-17 末好 阪田 Green plate plate and natural turf coat using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016069203A (en) * 2014-09-29 2016-05-09 大和ハウス工業株式会社 Fired body and method for producing the same

Also Published As

Publication number Publication date
WO2004094340A1 (en) 2004-11-04
JP3469233B1 (en) 2003-11-25

Similar Documents

Publication Publication Date Title
US5106405A (en) Horticultural medium consisting essentially of natural zeolite particles
CA2654886C (en) Organo-mineral soil amendment
JPH04104736A (en) Fly ash-containing culture medium material for plant
JP2009213446A (en) Culture soil improving agent containing artificial zeolite, and culture soil
KR102258759B1 (en) Cohesive bed soil and manufacturing method thereof
JP3469233B1 (en) Method for producing porous molded article, porous molded article, and granular material
JP2002084877A (en) Artificial zeolite-mixed gardening culture soil
JP4649361B2 (en) Composite material utilizing industrial waste liquid, solid-liquid separation method of industrial waste liquid, and storage method of industrial waste liquid
CN108812202A (en) The preparation method of multi-functional illite desert storage water suction nutrient bag
CN108834830A (en) The preparation method of multifunctional silicone diatomaceous earth desert storage water suction nutrient bag
KR20160019593A (en) soil composition for planting and manufacturing method thereby
KR20160083533A (en) Artificial soil comprising dry bottom/middle ash and the manufacturing method of the same
CN108834827A (en) The preparation method of multi-functional zeolite desert storage water suction nutrient bag
KR101410250B1 (en) Bed soil for rice seeding for the growth control of microorganism and rhizosphere reinforcement and production method thereof
CN1390444A (en) Medium for cultivating plant and its preparing process
CN105819824B (en) A kind of plant culture ball and preparation method thereof
JP4699771B2 (en) Nursery soil for machine-planting
CN106116674A (en) Mud lightweight through hole haydite
JPH10327693A (en) Plant-growing particle to be used as cultivation bed for water culture
CN108812200A (en) The preparation method of multi-functional volcano dust and sand desert storage water suction nutrient bag
CN109006372A (en) The preparation method of multi-functional bentonite tailing desert storage water suction nutrient bag
CN108812199A (en) The preparation method of multi-functional concave convex rod desert storage water suction nutrient bag
KR101164008B1 (en) Granulated soil for seeding culture using the vermiculite and its producting method
JPH02117330A (en) Nutriculture of plant and culture medium material for culture bed
CN108812201A (en) The preparation method of multifunctional fly ash desert storage water suction nutrient bag

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees