JP2004322481A - Glare shielding film - Google Patents

Glare shielding film Download PDF

Info

Publication number
JP2004322481A
JP2004322481A JP2003120596A JP2003120596A JP2004322481A JP 2004322481 A JP2004322481 A JP 2004322481A JP 2003120596 A JP2003120596 A JP 2003120596A JP 2003120596 A JP2003120596 A JP 2003120596A JP 2004322481 A JP2004322481 A JP 2004322481A
Authority
JP
Japan
Prior art keywords
fine particles
film
type
average particle
glare
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003120596A
Other languages
Japanese (ja)
Other versions
JP4361754B2 (en
Inventor
Akito Ogino
明人 荻野
Junichi Hayakawa
潤一 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paper Industries Co Ltd
Jujo Paper Co Ltd
Original Assignee
Nippon Paper Industries Co Ltd
Jujo Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paper Industries Co Ltd, Jujo Paper Co Ltd filed Critical Nippon Paper Industries Co Ltd
Priority to JP2003120596A priority Critical patent/JP4361754B2/en
Priority to TW093111345A priority patent/TWI340254B/en
Priority to KR1020040028047A priority patent/KR101108907B1/en
Priority to CNB200410036953XA priority patent/CN100570411C/en
Publication of JP2004322481A publication Critical patent/JP2004322481A/en
Application granted granted Critical
Publication of JP4361754B2 publication Critical patent/JP4361754B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0226Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures having particles on the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0074Production of other optical elements not provided for in B29D11/00009- B29D11/0073
    • B29D11/00788Producing optical films
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0268Diffusing elements; Afocal elements characterized by the fabrication or manufacturing method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/584Scratch resistance

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a glare shielding film for surface protection which has a low degree of haze, is excellent in transparency and scratch resistance, reduces the flickering and whitishness (white blurring) of an image, and improves the visibility of a display. <P>SOLUTION: In the glare shielding film, a glare shielding layer containing two fine particles and a resin is formed. The fine organic particles of a first type have an average particle size of 1-4 μm and an index of refraction of 1.45-1.55. The fine inorganic particles of a second type have an average particle size of below 0.1 μm and an index of refraction of 1.45-1.55. The paint film thickness of the glare shielding layer is 0.8-2.5 times as large as the average particle size of the fine particles of the first type, and the 60° specular glossiness of the surface of the glare shielding layer is 65% or below. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は、ノートパソコン、パソコン用モニタ、テレビ等の各種ディスプレイの表面に用いる防眩フィルムに関する。
【0002】
【従来の技術】
ノートパソコン、液晶モニタなどのディスプレイは、その表面の表面保護基材を通して画像を認識するようになっている。それらのディスプレイは本体内部にバックライトを用いるか、または外部の光を利用して視認性を向上させている。これらのディスプレイは内部から発する光や外光の映り込みを軽減し、画像の視認性を向上するため、表面保護基材に防眩処理を施している。
【0003】
このような防眩フィルムとしては、透明基材フィルムの表面にシリカ等のフィラーを含む樹脂を塗工したものが知られている(例えば、特許文献1参照)。ここで、防眩フィルムは、防眩層の凹凸により反射光を光拡散させて防眩性を付与しているが、凹凸が大となると画面が曇って、ヘイズ値が上昇し、フィルムの透過率が低下する問題があるため、塗工樹脂とフィラーとの屈折率差を小さくして透過率を向上させる技術も報告されている(例えば、特許文献2、3参照)。
【0004】
【特許文献1】
特開平6−18706号公報
【特許文献2】
特開2000−121809号公報
【特許文献3】
特開2000−180611号公報
【0005】
【発明が解決しようとする課題】
しかし、防眩層の凹凸により反射光を光拡散させて防眩性を付与しているタイプの液晶ディスプレイの場合、ディスプレイの解像度が高いと、バックライト等からカラーフィルター画素を通過した光が、防眩層での表面散乱により混合するため、画面がちらつき、著しく視認性を低下させるという問題がある。
【0006】
従来技術においては画像のちらつきを防止するためには、微粒子添加量を多量にして、ヘイズ度を高めなければならず、液晶パネルに装着し、画像を表示すると画面が白っぽくなり、特に、黒表示で画像品位が低下する問題があった。
【0007】
そこで、本発明の目的は、このような従来の防眩フィルムに比べ、ヘイズ度が低く、透明性、耐擦傷性に優れ、画像のちらつきおよび白っぽさ(白ぼけ)を低減し、ディスプレイの視認性を向上させた表面保護用の防眩フィルムを提供することである。
【0008】
【課題を解決するための手段】
本発明者らは透明フィルム上に、粒径の異なる有機質と無機質の2種類の微粒子を含む樹脂塗膜を形成することで、前記課題を解決できることを見出し、本発明に至った。
【0009】
即ち、本発明は、透明フィルム上に、2種の微粒子および樹脂を含有する防眩層を設けてなる防眩フィルムであって、第1種の微粒子は有機質で平均粒径1〜4μmの微粒子であり、かつ屈折率が、1.45〜1.55未満の範囲にあり、第2種の微粒子は無機質の微粒子で平均粒径が0.1μm未満の微粒子であり、かつ屈折率が、1.45〜1.55未満の範囲にあり、さらに防眩層の塗膜厚さが第1種の微粒子平均粒径の0.8〜2.5倍でありかつ、60度鏡面光沢度が65%以下である防眩フィルムである。
【0010】
又、本発明は、透明フィルム上に、2種の微粒子および樹脂を含有する防眩層を設けてなる防眩フィルムであって、第1種の微粒子は有機質で平均粒径1〜4μmの微粒子であり、その屈折率が、1.45〜1.55未満の範囲にあり、その配合量が樹脂100重量部に対して5〜20重量部であり、第2種の微粒子は無機質の微粒子で平均粒径が0.1μm未満の微粒子であり、かつ屈折率が、1.45〜1.55未満の範囲にあり、その配合量が樹脂100重量部に対して5〜25重量部であり、防眩層の塗膜厚さが第1種の微粒子平均粒径の0.8〜2.5倍である防眩フィルムである。
【0011】
さらに、電離放射線硬化樹脂の屈折率と近い屈折率を有する点で、透明フィルムがトリアセチルセルロースフィルムまたはノルボルネンフィルムであることが好ましい。また、第一の微粒子と吸着し易いという点で二酸化珪素微粒子が好ましい。さらに、生産性の観点から前記樹脂は電離放射線硬化樹脂であることが好ましい。
【0012】
【発明実施の形態】
本発明の請求項1に係る発明の断面図を図1に示す。透明フィルム上に、大きさの異なる2種の微粒子を含む電離放射線硬化樹脂を所定の厚さで塗工したものである。
【0013】
この発明に用いることのできる、透明フィルムは、特に限定はないが、たとえば、ポリエチレンテレフタレートフィルム(PET;屈折率1.665)、ポリカーボネートフィルム(PC;屈折率1.582)、トリアセチルセルロースフィルム(TAC;屈折率1.485)、ノルボルネンフィルム(NB;屈折率1.525)などが使用でき、フィルム厚さも25μm〜250μm程度が使用可能である。一般的な、電離放射線硬化樹脂の屈折率は、1.5程度であるので、視認性を高くするために、この屈折率に近いTACフィルム、NBフィルムが特に好ましい。
【0014】
本発明において、第1種の微粒子は有機質で平均粒径が1〜4μm、好ましくは1.5〜3.5μmである。上記の第1種の微粒子はフィルムの透過率を低下させない点で、透明フィルムや硬化後の電離放射線硬化樹脂との屈折率差が小さいことが望ましく、屈折率1.45〜1.55のものを使用する。また、本発明において第1種の微粒子は防眩層中に好ましくは樹脂100重量部に対し3〜20重量部、さらに好ましくは5〜15重量部配合する。
【0015】
平均粒径が前記よりも小さい場合および添加量が少ない場合は防眩性が不十分になり、粒径が大きい場合は塗膜厚さを厚くしなければならないため、透過率が低下する。また、添加量が多い場合も透過率が低下する傾向にある。
【0016】
第1種の微粒子としては、ポリメタクリル酸メチルビーズ(屈折率;1.49)、シリコーンビ−ズ(屈折率1.48)、アクリルビーズ(屈折率1.49)など屈折率1.45〜1.55の合成樹脂の微粒子を用いることができる。本発明においてはこれらを単独で用いてもよいし、2種以上を併用してもよい。バックライト光の不均一な散乱を少なくするため、球状粒子を用いることが好ましい。なお、本発明において、有機質とはC−H結合を持つ化合物であり、主に共有結合で原子が結合しているものをいう。
【0017】
本発明において、第2種の微粒子は視認性を低下させないために、平均粒径は小さく均一であることが望ましく、また、第1種の微粒子と同様に屈折率が1.45〜1.55未満であることが必要である。
【0018】
第2種の微粒子は、無機質の微粒子であり平均粒径0.05μm以下、好ましくは0.005〜0.03μmのものを使用し、防眩層中に好ましくは樹脂100重量部に対し3〜20重量部以下、さらに好ましくは5〜15重量部配合する。添加量が20重量%を越えると、塗膜内の微粒子が増加し、フィルムの透過率が低下する傾向がある。3重量部未満では、表面に突起が少なくなるため、防眩性が不十分になる傾向がある。また、第2種の微粒子としては、屈折率が1.40〜1.55の物を使用することが好ましい。特に第2種の微粒子は屈折率が硬化後の電離放射線硬化樹脂と近い屈折率を有する二酸化珪素微粒子が好ましい。なお、本発明において、無機質とは前述した有機質以外の物質を示す。
【0019】
本発明においては、第1種の微粒子を有機質とし第2種の微粒子を無機質とすることで、第1種の微粒子の周囲に第2の微粒子が吸着し易く、防眩層を形成したときに防眩層表面に細かい第2の微粒子が突出し易くなるため、視認性の低下を防止することができる。特に、第2種の微粒子が二酸化珪素である場合は有機質微粒子に吸着し易いため効果が大きい。
【0020】
第2種の微粒子が第1種の微粒子に吸着していない場合、第2種の微粒子が塗膜内に埋没するため、表面に凹凸ができにくく防眩性が不十分になる。第1種の微粒子、第2種の微粒子共に無機質である場合または有機質である場合は、2種類の微粒子が同じ電荷になりやすいので、電気的斥力が発生し、第2種の微粒子は第1種の微粒子の周囲に吸着しにくいため防眩性が不十分になり、視認性は低下する。
【0021】
なお、上記の第1種、第2種の微粒子の平均粒径は、レーザー回折散乱法で測定することができる。また、第2種の微粒子の平均粒径は顕微鏡等で実測して求めることができる。
【0022】
本発明に用いる樹脂は、被膜を形成する樹脂であればいずれを用いることができるが、特に耐擦傷性を付与し、又防眩層形成時に多量の熱を必要としないという点で、電離放射線硬化樹脂が好ましい。
【0023】
電離放射線硬化樹脂はアクリレート系の官能基を有するポリエステル樹脂、アクリル樹脂、ウレタン樹脂などとこれらのオリゴマーおよびプレポリマーを主成分とした樹脂が使用できる。また、これらの樹脂を紫外線照射により架橋する場合は、光重合開始剤としてアセトフェノン類、ベンゾフェノン類、α−ヒドロキシケトン、ベンジルジメチルケタール、α−アミノケトン、ビスアシルフォスフィンオキサイド等を混合することが望ましい。
【0024】
さらに、防眩層は、本発明の効果を変えない範囲で、レベリング剤、消泡剤、滑剤、紫外線吸収剤、光安定剤、重合禁止剤、湿潤分散剤、レオロジーコントロール剤、酸化防止剤などを含有してもよい。
【0025】
防眩層は、前記樹脂と微粒子等を溶剤に溶解、分散した塗料を透明フィルム上に塗工乾燥して形成することができる。塗料に用いることのできる溶剤は、ヘキサン、オクタンなどの脂肪族炭化水素、トルエン、キシレンなどの芳香族炭化水素、エタノール、1−プロパノール、イソプロパノール、1−ブタノールなどのアルコール類、メチルエチルケトン、メチルイソブチルケトンなどのケトン類、酢酸エチル、酢酸ブチルなどのエステル類、セロソルブ類などから適宜選択して用いることができ、これらの数種類を混合して用いてもよい。塗工乾燥を行うため沸点が70℃〜200℃の範囲であることが望ましい。また、塗工時の外観を調整するためフッ素系やシロキサン系のレベリング剤を添加してもよい。
【0026】
塗工方法については特に限定しないが、グラビア塗工、マイクログラビア塗工、バー塗工、スライドダイ塗工、スロットダイ塗工、デイップコートなど、塗膜厚さの調整が容易な方式で塗工が可能である。
【0027】
防眩層の膜厚は、第1種の微粒子平均粒径の0.8倍以上であることが必要である。平均粒径よりも薄いと第1種の微粒子が塗膜表面に突出し、外光の表面散乱が大きくなり、光の散乱により表面が白くなりディスプレイの視認性を著しく低下させるからである。一方塗膜厚さが厚すぎると防眩性の低下、透過率の低下が生じるため、膜厚は第1種の平均粒径の2.2倍以下、好ましくは1〜2倍になるようにする。
【0028】
なお、防眩層の膜厚は、防眩フィルム断面写真を顕微鏡等で観察し、塗膜界面から表面までを実測することにより測定可能である。防眩層に凹凸がある場合はに塗膜界面から表面突起の頂点までを実測する。なお、本発明においては、防眩層の凸部の高さは0.1μm程度であることが好ましい。
【0029】
また、本発明の防眩フィルムにおいては、60度鏡面光沢度が65%以下であることが必要であり好ましくは55%以下、20%以上である。また、本発明の防眩フィルムにおいては、透過率が92%以上であることが好ましく、ヘイズ度が35%以下、5%以上であることが好ましい。
【0030】
【実施例】
以下、実施例にて本発明を例証するが、本発明を限定することを意図するものではない。なお、第1の微粒子の平均粒子径は、シマズ製作所(株)社のレーザー回折粒度分布測定器WingSALD2100を用い測定し、第2の微粒子の平均粒子径と塗膜厚さは、日本電子(株)社の走査型電子顕微鏡にて写真を撮り実測した。
〈実施例1〉
[塗料調製]
MX300 (ポリアクリル樹脂微粒子、平均粒径3.0μm、綜研化学(株)社製)3.0g、PL−1 (40%シリカ微粒子トルエン分散液、平均粒径0.01μm、扶桑化学(株)社製)7.5gをトルエン20.0gと混合し十分攪拌した。この液に、ビームセット500(アクリル系電離放射線硬化樹脂、荒川化学(株)社製)41.7gとダロキュア1173(光重合開始剤、(株)チバスペシャリティーケミカル社製)2.3gを添加し、メチルエチルケトン(MEK)23.0g、エチレングリコールモノブチルエーテル(ブチルセロソルブ)2.5gを加え、レベリング剤としてBYK320(ビックケミー(株)社製)0.5gを加えて十分攪拌し塗料を調製した。
[防眩フィルム作製]
FTUV80UZ(トリアセチルセルロースフィルム、富士写真フィルム(株)社製)に上記塗料をマイヤーバー#6(RDS社製)で塗工し、80℃で1分間乾燥後、高圧水銀ランプを用い窒素雰囲気下で350mJ/cmの紫外線を照射し硬化した。得られた塗膜の厚さは4.1μmであった。
【0031】
〈実施例2〉
[塗料調製]
MX300、3.0g、PL−3 (40%シリカ微粒子トルエン分散液、扶桑化学(株)社製、平均粒径0.03μm)7.5gをトルエン20.0gと混合し十分攪拌した。この液に、ビームセット500、41.7gとダロキュア1173、2.3gを添加し、MEK、23.0g、ブチルセロソルブ2.5gを加え、BYK320、0.5gを加えて十分攪拌し塗料を調製した。
[防眩フィルム作製]
FTUV80UZに上記塗料をマイヤーバー#6で塗工し、80℃で1分間乾燥後、高圧水銀ランプを用い窒素雰囲気下で350mJ/cmの紫外線を照射し硬化した。得られた塗膜の厚さは4.2μmであった。
【0032】
〈実施例3〉
[塗料調製]
MX150 (ポリアクリル樹脂微粒子、綜研化学(株)社製、平均粒径1.5μm)1.8g、PL−1、3.0gをトルエン33.2gと混合し十分攪拌した。この液に、ビームセット500、25.6gと、ダロキュア1173、1.4gを添加し、MEK、31.5g、ブチルセロソルブ3.5gを加え、BYK320、0.5gを加えて十分攪拌し塗料を調製した。
[防眩フィルム作製]
FTUV80UZに上記塗料をマイヤーバー#6で塗工し、80℃で1分間乾燥後、高圧水銀ランプを用い窒素雰囲気下で350mJ/cmの紫外線を照射し硬化した。得られた塗膜の厚さは2.7μmであった。
【0033】
〈実施例4〉
[塗料調製]
MX150、1.8g、PL−3、3.0gをトルエン33.2gと混合し十分攪拌した。この液に、ビームセット500、25.6gとダロキュア1173、1.4gを添加し、MEK、31.5g、ブチルセロソルブ、3.5gを加え、BYK320、0.5gを加えて十分攪拌し塗料を調製した。
[防眩フィルム作製]
FTUV80UZに上記塗料をマイヤーバー#6で塗工し、80℃で1分間乾燥後、高圧水銀ランプを用い窒素雰囲気下で350mJ/cmの紫外線を照射し硬化した。得られた塗膜の厚さは2.7μmであった。
【0034】
〈実施例5〉
[塗料調製]
TP130 (シリコーン樹脂微粒子、東芝シリコーン(株)社製、平均粒径3.0μm)4.0g、PL−1、6.8gをトルエン20.2gと混合し十分攪拌した。この液に、ビームセット500、41.3gとダロキュア1173、2.2gを添加し、MEK、23.0g、ブチルセロソルブ2.5gを加え、BYK320、0.5gを加えて十分攪拌し塗料を調製した。
[防眩フィルム作製]
FTUV80UZに上記塗料をマイヤーバー#6で塗工し、80℃で1分間乾燥後、高圧水銀ランプを用い窒素雰囲気下で350mJ/cmの紫外線を照射し硬化した。得られた塗膜の厚さは3.7μmであった。
【0035】
〈実施例6〉
基材フィルムをZEONOR1420R (熱可塑性飽和ノルボルネン樹脂フィルム、日本ゼオン(株)社製)に替えたこと以外は実施例1と同様にしてフィルムを作製した。得られた塗膜の厚さは4.1μmであった。
【0036】
(実施例7)
MX300、3.0g、PL−1、25.0gをトルエン9.5gと混合し十分攪拌した。この液に、ビームセット500、35.1gとダロキュア1173、1.9gを添加し、MEK、23.0g、ブチルセロソルブ、2.5gを加え、BYK320、0.5gを加えて十分攪拌し塗料を調製した。
[防眩フィルム作製]
FTUV80UZに上記塗料をマイヤーバー#6で塗工し、80℃で1分間乾燥後、高圧水銀ランプを用い窒素雰囲気下で350mJ/cmの紫外線を照射し硬化した。得られた塗膜の厚さは4.1μmであった。
【0037】
〈実施例8〉
MX300、9.0g、PL−1、7.5gをトルエン20.0gと混合し十分攪拌した。この液に、ビームセット500、36.1gとダロキュア1173、1.9gを添加し、MEK、23.0g、ブチルセロソルブ、2.5gを加え、BYK320、0.5gを加えて十分攪拌し塗料を調製した。
[防眩フィルム作製]
FTUV80UZに上記塗料をマイヤーバー#6で塗工し、80℃で1分間乾燥後、高圧水銀ランプを用い窒素雰囲気下で350mJ/cmの紫外線を照射し硬化した。得られた塗膜の厚さは4.2μmであった。
【0038】
〈比較例1〉
[塗料調製]
MX500 (ポリアクリル樹脂微粒子、平均粒径5.0μm、綜研化学(株)社製)3.0g、PL−1 、7.5gをトルエン20.0gと混合し十分攪拌した。この液に、ビームセット500、41.7gとダロキュア1173、2.3gを添加し、MEK、23.0g、ブチルセロソルブ、2.5gを加え、BYK320、0.5gを加えて十分攪拌し塗料を調製した。
[防眩フィルム作製]
FTUV80UZに上記塗料をマイヤーバー#10(RDS社製)で塗工し、80℃で1分間乾燥後、高圧水銀ランプを用い窒素雰囲気下で350mJ/cmの紫外線を照射し硬化した。得られた塗膜の厚さは6.0μmであった。
【0039】
〈比較例2〉
[塗料調製]
X−52−854 (シリコーン樹脂微粒子、信越ポリマー(株)社製、平均粒径0.8μm)0.8g、PL−1、1.9gをトルエン41.5gと混合し十分攪拌した。この液に、ビームセット500、12.8gと、ダロキュア1173、0.7gを添加し、MEK、38.2g、ブチルセロソルブ4.3gを加え、BYK320、0.5gを加えて十分攪拌し塗料を調製した。
[防眩フィルム作製]
FTUV80UZに上記塗料をマイヤーバー#6で塗工し、80℃で1分間乾燥後、高圧水銀ランプを用い窒素雰囲気下で350mJ/cmの紫外線を照射し硬化した。得られた塗膜の厚さは1.5μmであった。
【0040】
〈比較例3〉
[塗料調製]
MX300、3.0g、SO−C1 (シリカ微粒子、(株)アドマテックス社製、平均粒径0.3μm)3.0gをトルエン24.5gと混合し十分攪拌した。この液に、ビームセット500、41.7gとダロキュア1173、2.3gを添加し、MEK、23.0g、ブチルセロソルブ2.5gを加え、BYK320、0.5gを加えて十分攪拌し塗料を調製した。
[防眩フィルム作製]
FTUV80UZに上記塗料をマイヤーバー#6で塗工し、80℃で1分間乾燥後、高圧水銀ランプを用い窒素雰囲気下で350mJ/cmの紫外線を照射し硬化した。得られた塗膜の厚さは4.1μmであった。
【0041】
〈比較例4〉
[塗料調製]
SX350H (ポリスチレン樹脂微粒子、平均粒径3.5μm、綜研化学(株)社製)3.0g、PL−1 、7.5gをトルエン20.0gと混合し十分攪拌した。この液に、ビームセット500、41.7gとダロキュア1173、2.3gを添加し、MEK、23.0g、ブチルセロソルブ、2.5gを加え、BYK320、0.5gを加えて十分攪拌し塗料を調製した。
[防眩フィルム作製]
FTUV80UZに上記塗料をマイヤーバー#7(RDS社製)で塗工し、80℃で1分間乾燥後、高圧水銀ランプを用い窒素雰囲気下で350mJ/cmの紫外線を照射し硬化した。得られた塗膜の厚さは4.3μmであった。
(比較例5)
MX300、1.0g、PL−1、7.5gをトルエン20.0gと混合し十分攪拌した。この液に、ビームセット500、43.7gとダロキュア1173、2.3gを添加し、MEK、23.0g、ブチルセロソルブ、2.5gを加え、BYK320、0.5gを加えて十分攪拌し塗料を調製した。
[防眩フィルム作製]
FTUV80UZに上記塗料をマイヤーバー#6で塗工し、80℃で1分間乾燥後、高圧水銀ランプを用い窒素雰囲気下で350mJ/cmの紫外線を照射し硬化した。得られた塗膜の厚さは3.7μmであった。
【0042】
(比較例6)
サイロスフェアC−1504(シリカ微粒子、平均粒径4.0μm、富士シリシア(株)社製)3.0g、PL−1、7.5gをトルエン20.0gと混合し十分攪拌した。この液に、ビームセット500、41.7gとダロキュア1173、2.3gを添加し、MEK、23.0g、ブチルセロソルブ、2.5gを加え、BYK320、0.5gを加えて十分攪拌し塗料を調製した。
[防眩フィルム作製]
FTUV80UZに上記塗料をマイヤーバー#10で塗工し、80℃で1分間乾燥後、高圧水銀ランプを用い窒素雰囲気下で350mJ/cmの紫外線を照射し硬化した。得られた塗膜の厚さは5.5μmであった。
(比較例7)
マイヤーバーを#14(RDS社製)に替えた以外は実施例1と同様にして防眩フィルムを作製した。得られた塗膜の厚さは7.1μmであった。
(比較例8)
マイヤーバーを#4(RDS社製)に替えた以外は実施例1と同様にして防眩フィルムを作製した。得られた塗膜の厚さは2.0μmであった。
【0043】
(比較例9)
MX300、3.0gをトルエン24.5gと混合し十分攪拌した。この液に、ビームセット500、44.6gとダロキュア1173、2.4gを添加し、MEK、23.0g、ブチルセロソルブ、2.5gを加え、BYK320、0.5gを加えて十分攪拌し塗料を調製した。
[防眩フィルム作製]
FTUV80UZに上記塗料をマイヤーバー#6で塗工し、80℃で1分間乾燥後、高圧水銀ランプを用い窒素雰囲気下で350mJ/cmの紫外線を照射し硬化した。得られた塗膜の厚さは3.9μmであった。
【0044】
〈比較例10〉
[塗料調製]
PL−1、7.5gをトルエン20.0gと混合し十分攪拌した。この液に、ビームセット500、44.6gとダロキュア1173、2.4gを添加し、MEK、23.0g、ブチルセロソルブ、2.5gを加え、BYK320、0.5gを加えて十分攪拌し塗料を調製した。
[防眩フィルム作製]
FTUV80UZに上記塗料をマイヤーバー#6で塗工し、80℃で1分間乾燥後、高圧水銀ランプを用い窒素雰囲気下で350mJ/cmの紫外線を照射し硬化した。得られた塗膜の厚さは4.1μmであった。
【0045】
【表1】

Figure 2004322481
【0046】
【表2】
Figure 2004322481
【0047】
【表3】
Figure 2004322481
【0048】
以上のように、2種類の微粒子の大きさ、配合量、平均粒径、屈折率を合わせた、実施例1〜6は良好な、透過率、防眩性、視認性、耐擦傷性が得られた。第2種の微粒子の配合量が多い実施例7は若干防眩性が劣った。また、第1種の微粒子の配合量が多い実施例8は透過率が低く、ぎらつきがやや悪かった。第1種の微粒子の平均粒径が大きい比較例1はぎらつきが顕著で透過率が低かった。第1種の微粒子の平均粒径が小さい比較例2は防眩性、耐擦傷性が低かった。第2種の微粒子の平均粒径が大きい比較例3と第1種の微粒子が無機系粒子である比較例6は透過率が低く、画面が白くなった。第1種の微粒子の屈折率が大きい比較例4は画面の白ぼけが発生した。第1種の微粒子の配合量が少ない比較例5、塗膜厚さが厚い比較例7、第2種の微粒子がない比較例9および第1種の微粒子がない比較例10は防眩性がなく外光の写りこみがあった。塗膜厚さが薄い比較例8は透過率、ぎらつき、白ぼけ、耐擦傷性が悪かった。
【0049】
以下に測定方法をまとめた
▲1▼透過率:分光光度計(島津製作所 UV3100)にて550nmの値を測定した。
▲2▼ヘイズ度(曇り度):ヘイズメーター(村上色彩技術研究所、HM150)にてJIS K7105に準拠して測定した。
▲3▼光沢度:光沢度計(村上色彩技術研究所、GM−26PRO)にてJIS Z8741に準拠し、60°光沢度を測定した。
▲4▼ちらつき:全面緑色表示させたLCD(液晶表示体)の上に各防眩フィルムを重ね、画面のちらつきの度合いを目視で評価した。なお、LCD表面には予めクリアタイプのハードコートフィルムが設置されている。ちらつきが見られないもの及びちらつきがわずかであるものを○、ちらつきが大きいものを×した。
▲6▼白ぼけ:塗工反対面に黒色のビニールテープ(日東ビニルテープ、PROSELF NO.21(幅広))を貼りマクベス濃度計で黒濃度を測定した。2.10以上を○、2.10未満を×とした。
▲7▼耐擦傷性:防眩層表面に#0000のスチールウールを置き、堅牢度試験機による24.5kPaの加重で防眩層上を100回往復させた後の防眩層表面の傷の本数を目視で数えた。防眩層に傷が無いものを○、傷10本未満を△、傷10本以上を×とした。
【0050】
【発明の効果】
本発明により、低ヘイズで、透明性が高く、かつ耐擦傷性に優れる防眩フィルムを得ることができる。本発明の防眩フィルムを用いることにより、高解像度のディスプレイであっても、画像のちらつきおよび白っぽさ(白ぼけ)を低減可能となり、ディスプレイの視認性が向上する。
【図面の簡単な説明】
【図1】本発明の防眩フィルムの一例の概略図(断面)である。[0001]
[Industrial applications]
The present invention relates to an antiglare film used on the surface of various displays such as a notebook computer, a monitor for a personal computer, and a television.
[0002]
[Prior art]
A display such as a notebook computer or a liquid crystal monitor recognizes an image through a surface protection base material on its surface. These displays use a backlight inside the main body or use external light to improve visibility. In these displays, a surface protective substrate is subjected to an anti-glare treatment in order to reduce reflection of light emitted from the inside and external light and to improve the visibility of an image.
[0003]
As such an antiglare film, a film in which a resin containing a filler such as silica is coated on the surface of a transparent base film is known (for example, see Patent Document 1). Here, the anti-glare film imparts anti-glare properties by diffusing the reflected light by the unevenness of the anti-glare layer, but when the unevenness is large, the screen becomes cloudy, the haze value increases, and the transmission of the film increases. Because of the problem of a decrease in the transmittance, a technique for reducing the difference in the refractive index between the coating resin and the filler to improve the transmittance has been reported (for example, see Patent Documents 2 and 3).
[0004]
[Patent Document 1]
JP-A-6-18706 [Patent Document 2]
Japanese Patent Application Laid-Open No. 2000-121809 [Patent Document 3]
JP 2000-180611 A
[Problems to be solved by the invention]
However, in the case of a liquid crystal display of a type that imparts antiglare properties by diffusing reflected light by unevenness of the antiglare layer, when the resolution of the display is high, light that has passed through a color filter pixel from a backlight or the like, Since mixing occurs due to surface scattering in the anti-glare layer, there is a problem that the screen flickers and visibility is significantly reduced.
[0006]
In the prior art, in order to prevent the image from flickering, the haze degree must be increased by increasing the amount of added fine particles, and the screen becomes whitish when the image is displayed on the liquid crystal panel. Thus, there is a problem that image quality is deteriorated.
[0007]
Accordingly, an object of the present invention is to provide a display having a low haze, excellent transparency, excellent scratch resistance, reduced flickering and whitishness (blur) of an image as compared with such a conventional antiglare film, and To provide an anti-glare film for surface protection with improved visibility.
[0008]
[Means for Solving the Problems]
The present inventors have found that the above problem can be solved by forming, on a transparent film, a resin coating film containing two kinds of fine particles of organic and inorganic particles having different particle diameters, and have reached the present invention.
[0009]
That is, the present invention is an anti-glare film comprising a transparent film provided with an anti-glare layer containing two types of fine particles and a resin, wherein the first type of fine particles are organic and have an average particle size of 1 to 4 μm. And the refractive index is in the range of less than 1.45 to 1.55, and the second type of fine particles are inorganic fine particles having an average particle size of less than 0.1 μm, and have a refractive index of 1 0.45 to less than 1.55, and the coating thickness of the antiglare layer is 0.8 to 2.5 times the average particle size of the first type of fine particles, and the 60-degree specular gloss is 65. % Or less.
[0010]
The present invention is also an anti-glare film comprising a transparent film provided with an anti-glare layer containing two types of fine particles and a resin, wherein the first type fine particles are organic and have an average particle diameter of 1 to 4 μm. The refractive index is in the range of 1.45 to less than 1.55, the compounding amount is 5 to 20 parts by weight with respect to 100 parts by weight of the resin, and the second type of fine particles are inorganic fine particles. Fine particles having an average particle size of less than 0.1 μm and a refractive index in the range of 1.45 to less than 1.55, and the compounding amount is 5 to 25 parts by weight with respect to 100 parts by weight of the resin, An antiglare film in which the coating thickness of the antiglare layer is 0.8 to 2.5 times the average particle size of the first type of fine particles.
[0011]
Further, the transparent film is preferably a triacetylcellulose film or a norbornene film in that it has a refractive index close to that of the ionizing radiation-curable resin. Further, silicon dioxide fine particles are preferable in that they are easily adsorbed to the first fine particles. Further, from the viewpoint of productivity, the resin is preferably an ionizing radiation curing resin.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a sectional view of the invention according to claim 1 of the present invention. An ionizing radiation curable resin containing two types of fine particles having different sizes is applied on a transparent film at a predetermined thickness.
[0013]
The transparent film that can be used in the present invention is not particularly limited. For example, a polyethylene terephthalate film (PET; refractive index 1.665), a polycarbonate film (PC; refractive index 1.582), a triacetyl cellulose film ( TAC; refractive index 1.485), norbornene film (NB; refractive index 1.525), and the like, and a film thickness of about 25 μm to 250 μm can be used. Since a general ionizing radiation curable resin has a refractive index of about 1.5, a TAC film and an NB film having a refractive index close to this refractive index are particularly preferable in order to enhance visibility.
[0014]
In the present invention, the first type of fine particles are organic and have an average particle diameter of 1 to 4 μm, preferably 1.5 to 3.5 μm. The first type of fine particles preferably have a small difference in refractive index between the transparent film and the cured ionizing radiation-curable resin in that the transmittance of the film is not reduced, and the refractive index is 1.45 to 1.55. Use In the present invention, the first type of fine particles are preferably incorporated in the antiglare layer in an amount of 3 to 20 parts by weight, more preferably 5 to 15 parts by weight, based on 100 parts by weight of the resin.
[0015]
When the average particle size is smaller than the above or when the added amount is small, the antiglare property becomes insufficient, and when the average particle size is large, the coating film thickness must be increased, so that the transmittance decreases. Also, when the amount of addition is large, the transmittance tends to decrease.
[0016]
Examples of the first type of fine particles include polymethyl methacrylate beads (refractive index: 1.49), silicone beads (refractive index: 1.48), acrylic beads (refractive index: 1.49), and a refractive index of 1.45 to 1.45. Fine particles of 1.55 synthetic resin can be used. In the present invention, these may be used alone or in combination of two or more. It is preferable to use spherical particles in order to reduce uneven scattering of backlight light. In the present invention, an organic substance is a compound having a C—H bond, and refers to a compound in which atoms are mainly bonded by covalent bonds.
[0017]
In the present invention, it is desirable that the second type of fine particles have a small and uniform average particle size so as not to lower the visibility, and have a refractive index of 1.45 to 1.55 like the first type of fine particles. It must be less than.
[0018]
The second type of fine particles are inorganic fine particles having an average particle diameter of 0.05 μm or less, preferably 0.005 to 0.03 μm, and preferably 3 to 100 parts by weight of the resin in the antiglare layer. 20 parts by weight or less, more preferably 5 to 15 parts by weight. If the amount exceeds 20% by weight, the amount of fine particles in the coating film tends to increase, and the transmittance of the film tends to decrease. If the amount is less than 3 parts by weight, the anti-glare properties tend to be insufficient because projections on the surface are reduced. Further, as the second type of fine particles, those having a refractive index of 1.40 to 1.55 are preferably used. In particular, the second type fine particles are preferably silicon dioxide fine particles having a refractive index close to that of the cured ionizing radiation-curable resin. In the present invention, the term “inorganic” refers to a substance other than the aforementioned organic substances.
[0019]
In the present invention, by making the first kind of fine particles organic and the second kind of fine particles inorganic, the second fine particles are easily adsorbed around the first kind fine particles, and when the anti-glare layer is formed, Since the fine second fine particles easily protrude from the surface of the anti-glare layer, a decrease in visibility can be prevented. In particular, when the second type of fine particles is silicon dioxide, the effect is great because the fine particles are easily adsorbed on the organic fine particles.
[0020]
When the second type of fine particles are not adsorbed on the first type of fine particles, the second type of fine particles are buried in the coating film. When both the first type of fine particles and the second type of fine particles are inorganic or organic, the two types of fine particles are likely to have the same charge, so that an electric repulsion is generated, and the second type of fine particles is Since it is difficult to adsorb around the seed fine particles, the antiglare property becomes insufficient, and the visibility is reduced.
[0021]
The average particle size of the first and second types of fine particles can be measured by a laser diffraction scattering method. Further, the average particle size of the second type of fine particles can be obtained by actually measuring with a microscope or the like.
[0022]
As the resin used in the present invention, any resin may be used as long as it forms a coating film. In particular, ionizing radiation is used because it imparts abrasion resistance and does not require a large amount of heat when forming an antiglare layer. Cured resins are preferred.
[0023]
As the ionizing radiation-curable resin, a polyester resin, an acrylic resin, a urethane resin, or the like having an acrylate-based functional group and a resin containing these oligomers and prepolymers as main components can be used. When these resins are crosslinked by ultraviolet irradiation, it is desirable to mix acetophenones, benzophenones, α-hydroxyketone, benzyldimethylketal, α-aminoketone, bisacylphosphine oxide, and the like as a photopolymerization initiator. .
[0024]
Furthermore, the anti-glare layer is a leveling agent, an antifoaming agent, a lubricant, an ultraviolet absorber, a light stabilizer, a polymerization inhibitor, a wetting and dispersing agent, a rheology control agent, an antioxidant, etc., as long as the effects of the present invention are not changed. May be contained.
[0025]
The anti-glare layer can be formed by applying and drying a coating obtained by dissolving and dispersing the resin and fine particles in a solvent on a transparent film. Solvents that can be used in the paint include aliphatic hydrocarbons such as hexane and octane, aromatic hydrocarbons such as toluene and xylene, alcohols such as ethanol, 1-propanol, isopropanol and 1-butanol, methyl ethyl ketone, and methyl isobutyl ketone. Ketones, esters such as ethyl acetate and butyl acetate, cellosolves, and the like, and these may be used in combination. It is desirable that the boiling point is in the range of 70C to 200C in order to perform coating and drying. Further, a fluorine-based or siloxane-based leveling agent may be added to adjust the appearance at the time of coating.
[0026]
The coating method is not particularly limited, but is applied by a method such as gravure coating, microgravure coating, bar coating, slide die coating, slot die coating, dip coating, etc., in which the coating thickness can be easily adjusted. Is possible.
[0027]
It is necessary that the thickness of the antiglare layer is at least 0.8 times the average particle diameter of the first type of fine particles. If the average particle diameter is smaller than the average particle diameter, the first type of fine particles protrude from the surface of the coating film, the surface scattering of external light increases, and the surface becomes white due to the scattering of light, thereby significantly lowering the visibility of the display. On the other hand, if the coating film thickness is too thick, the antiglare property and the transmittance are reduced, so that the film thickness is 2.2 times or less, preferably 1 to 2 times the average particle size of the first type. I do.
[0028]
The thickness of the anti-glare layer can be measured by observing a cross-sectional photograph of the anti-glare film with a microscope or the like and actually measuring from the coating film interface to the surface. When the anti-glare layer has irregularities, the distance from the coating film interface to the top of the surface projection is measured. In the present invention, the height of the convex portion of the antiglare layer is preferably about 0.1 μm.
[0029]
Further, in the antiglare film of the present invention, the 60-degree specular glossiness needs to be 65% or less, preferably 55% or less, and 20% or more. Further, in the antiglare film of the present invention, the transmittance is preferably 92% or more, and the haze degree is preferably 35% or less and 5% or more.
[0030]
【Example】
Hereinafter, the present invention is illustrated by examples, but is not intended to limit the present invention. The average particle diameter of the first fine particles was measured using a laser diffraction particle size distribution analyzer WingSALD2100 manufactured by Shimadzu Corporation. The average particle diameter and the coating thickness of the second fine particles were determined by JEOL Ltd. Photographs were taken with a scanning electron microscope manufactured by the company) and measured.
<Example 1>
[Paint preparation]
MX300 (polyacrylic resin fine particles, average particle size 3.0 μm, manufactured by Soken Chemical Co., Ltd.) 3.0 g, PL-1 (40% silica fine particle toluene dispersion, average particle size 0.01 μm, Fuso Chemical Co., Ltd.) 7.5 g) was mixed with 20.0 g of toluene and sufficiently stirred. 41.7 g of beam set 500 (acrylic ionizing radiation curable resin, manufactured by Arakawa Chemical Co., Ltd.) and 2.3 g of Darocur 1173 (photopolymerization initiator, manufactured by Ciba Specialty Chemical Co., Ltd.) are added to this liquid. Then, 23.0 g of methyl ethyl ketone (MEK) and 2.5 g of ethylene glycol monobutyl ether (butyl cellosolve) were added, and 0.5 g of BYK320 (manufactured by BYK Co., Ltd.) was added as a leveling agent, followed by sufficient stirring to prepare a paint.
[Preparation of anti-glare film]
The above paint is applied to FTUV80UZ (triacetyl cellulose film, manufactured by Fuji Photo Film Co., Ltd.) using a Meyer bar # 6 (manufactured by RDS), dried at 80 ° C. for 1 minute, and then dried under a nitrogen atmosphere using a high-pressure mercury lamp. At 350 mJ / cm 2 for curing. The thickness of the obtained coating film was 4.1 μm.
[0031]
<Example 2>
[Paint preparation]
MX300, 3.0 g, PL-3 (40% silica fine particle toluene dispersion, manufactured by Fuso Chemical Co., Ltd., average particle size 0.03 μm) and 7.5 g were mixed with 20.0 g of toluene and sufficiently stirred. 41.7 g of beam set 500, 41.7 g of Darocure 12.3 and 2.3 g of Darocure were added to this solution, 23.0 g of MEK and 2.5 g of butyl cellosolve were added, BYK 320 and 0.5 g were added, and the mixture was sufficiently stirred to prepare a paint. .
[Preparation of anti-glare film]
The above-mentioned paint was applied to FTUV80UZ with a Meyer bar # 6, dried at 80 ° C. for 1 minute, and cured by irradiating with UV light of 350 mJ / cm 2 under a nitrogen atmosphere using a high-pressure mercury lamp. The thickness of the obtained coating film was 4.2 μm.
[0032]
<Example 3>
[Paint preparation]
1.8 g of MX150 (fine particles of polyacrylic resin, manufactured by Soken Chemical Co., Ltd., average particle size: 1.5 μm) and 3.0 g of PL-1 were mixed with 33.2 g of toluene and sufficiently stirred. To this liquid, add 25.6 g of beam set 500, 1.4 g of Darocure 1173, and 1.4 g of MEK, add 31.5 g of MEK, 3.5 g of butyl cellosolve, and add 0.5 g of BYK320 and stir well to prepare a paint. did.
[Preparation of anti-glare film]
The above-mentioned paint was applied to FTUV80UZ with a Meyer bar # 6, dried at 80 ° C. for 1 minute, and cured by irradiating with UV light of 350 mJ / cm 2 under a nitrogen atmosphere using a high-pressure mercury lamp. The thickness of the obtained coating film was 2.7 μm.
[0033]
<Example 4>
[Paint preparation]
MX150, 1.8 g, PL-3, and 3.0 g were mixed with 33.2 g of toluene and sufficiently stirred. To this liquid, add 25.6 g of beam set 500, 1.4 g of Darocure 1173, 1.4 g of MEK, add 31.5 g of MEK, 3.5 g of butyl cellosolve, and add 0.5 g of BYK320 and stir well to prepare a paint. did.
[Preparation of anti-glare film]
The above-mentioned paint was applied to FTUV80UZ with a Meyer bar # 6, dried at 80 ° C. for 1 minute, and cured by irradiating with UV light of 350 mJ / cm 2 under a nitrogen atmosphere using a high-pressure mercury lamp. The thickness of the obtained coating film was 2.7 μm.
[0034]
<Example 5>
[Paint preparation]
4.0 g of TP130 (silicone resin fine particles, manufactured by Toshiba Silicone Co., Ltd., average particle size: 3.0 μm), 6.8 g of PL-1, and 20.2 g of toluene were mixed and sufficiently stirred. To this liquid, 41.3 g of beam set 500, 2.2 g of Darocure 1173 and 2.2 g were added, 23.0 g of MEK and 2.5 g of butyl cellosolve were added, BYK 320 and 0.5 g were added, and the mixture was sufficiently stirred to prepare a paint. .
[Preparation of anti-glare film]
The above-mentioned paint was applied to FTUV80UZ with a Meyer bar # 6, dried at 80 ° C. for 1 minute, and cured by irradiating with UV light of 350 mJ / cm 2 under a nitrogen atmosphere using a high-pressure mercury lamp. The thickness of the obtained coating film was 3.7 μm.
[0035]
<Example 6>
A film was produced in the same manner as in Example 1 except that the substrate film was changed to ZEONOR1420R (thermoplastic saturated norbornene resin film, manufactured by Zeon Corporation). The thickness of the obtained coating film was 4.1 μm.
[0036]
(Example 7)
MX300, 3.0 g, PL-1 and 25.0 g were mixed with 9.5 g of toluene and stirred sufficiently. 35.1 g of beam set 500, 1.9 g of Darocure 1173 and 1.9 g of Darocure were added to this liquid, 23.0 g of MEK, 2.5 g of butyl cellosolve were added, BYK 320 and 0.5 g were added, and the mixture was sufficiently stirred to prepare a paint. did.
[Preparation of anti-glare film]
The above-mentioned paint was applied to FTUV80UZ with a Meyer bar # 6, dried at 80 ° C. for 1 minute, and cured by irradiating with UV light of 350 mJ / cm 2 under a nitrogen atmosphere using a high-pressure mercury lamp. The thickness of the obtained coating film was 4.1 μm.
[0037]
<Example 8>
9.0 g of MX300, 7.5 g of PL-1, and 20.0 g of toluene were mixed and sufficiently stirred. 36.1 g of beam set 500 and 1.9 g of Darocure 1173 were added to this liquid, 23.0 g of MEK, 2.5 g of butyl cellosolve were added, and BYK 320, 0.5 g was added and sufficiently stirred to prepare a paint. did.
[Preparation of anti-glare film]
The above-mentioned paint was applied to FTUV80UZ with a Meyer bar # 6, dried at 80 ° C. for 1 minute, and cured by irradiating with UV light of 350 mJ / cm 2 under a nitrogen atmosphere using a high-pressure mercury lamp. The thickness of the obtained coating film was 4.2 μm.
[0038]
<Comparative Example 1>
[Paint preparation]
3.0 g of MX500 (polyacrylic resin fine particles, average particle size of 5.0 μm, manufactured by Soken Chemical Co., Ltd.), PL-1 and 7.5 g were mixed with 20.0 g of toluene and sufficiently stirred. 41.7 g of beam set 500 and 2.3 g of Darocure 1173 are added to this liquid, 23.0 g of MEK, 2.5 g of butyl cellosolve are added, BYK 320 and 0.5 g are added, and the mixture is sufficiently stirred to prepare a paint. did.
[Preparation of anti-glare film]
The above-mentioned paint was applied to FTUV80UZ with a Meyer bar # 10 (manufactured by RDS), dried at 80 ° C. for 1 minute, and irradiated with ultraviolet rays of 350 mJ / cm 2 under a nitrogen atmosphere using a high-pressure mercury lamp and cured. The thickness of the obtained coating film was 6.0 μm.
[0039]
<Comparative Example 2>
[Paint preparation]
0.8 g of X-52-854 (silicone resin fine particles, manufactured by Shin-Etsu Polymer Co., Ltd., average particle size 0.8 μm) and 1.9 g of PL-1 were mixed with 41.5 g of toluene and sufficiently stirred. To this liquid, add 12.8 g of beam set 500, 0.7 g of Darocure 1173, 0.7 g of MEK, 38.2 g of MEK, 4.3 g of butyl cellosolve, add 0.5 g of BYK320, and sufficiently stir to prepare a paint. did.
[Preparation of anti-glare film]
The above-mentioned paint was applied to FTUV80UZ with a Meyer bar # 6, dried at 80 ° C. for 1 minute, and cured by irradiating with UV light of 350 mJ / cm 2 under a nitrogen atmosphere using a high-pressure mercury lamp. The thickness of the obtained coating film was 1.5 μm.
[0040]
<Comparative Example 3>
[Paint preparation]
MX300, 3.0 g, and 3.0 g of SO-C1 (silica fine particles, manufactured by Admatechs Co., Ltd., average particle size: 0.3 μm) were mixed with 24.5 g of toluene and sufficiently stirred. 41.7 g of beam set 500, 41.7 g of Darocure 12.3 and 2.3 g of Darocure were added to this solution, 23.0 g of MEK and 2.5 g of butyl cellosolve were added, BYK 320 and 0.5 g were added, and the mixture was sufficiently stirred to prepare a paint. .
[Preparation of anti-glare film]
The above-mentioned paint was applied to FTUV80UZ with a Meyer bar # 6, dried at 80 ° C. for 1 minute, and cured by irradiating with UV light of 350 mJ / cm 2 under a nitrogen atmosphere using a high-pressure mercury lamp. The thickness of the obtained coating film was 4.1 μm.
[0041]
<Comparative Example 4>
[Paint preparation]
3.0 g of SX350H (polystyrene resin fine particles, average particle size of 3.5 μm, manufactured by Soken Chemical Co., Ltd.), PL-1 and 7.5 g were mixed with 20.0 g of toluene and sufficiently stirred. 41.7 g of beam set 500 and 2.3 g of Darocure 1173 are added to this liquid, 23.0 g of MEK, 2.5 g of butyl cellosolve are added, BYK 320 and 0.5 g are added, and the mixture is sufficiently stirred to prepare a paint. did.
[Preparation of anti-glare film]
The above-mentioned paint was applied to FTUV80UZ with a Meyer bar # 7 (manufactured by RDS), dried at 80 ° C. for 1 minute, and irradiated with ultraviolet rays of 350 mJ / cm 2 under a nitrogen atmosphere using a high-pressure mercury lamp and cured. The thickness of the obtained coating film was 4.3 μm.
(Comparative Example 5)
MX300, 1.0 g, PL-1 and 7.5 g were mixed with 20.0 g of toluene and sufficiently stirred. To this liquid, add 43.7 g of beam set 500, 2.3 g of Darocure 1173, and 2.3 g of MEK, add 23.0 g of MEK, 2.5 g of butyl cellosolve, add 0.5 g of BYK320, and sufficiently stir to prepare a paint. did.
[Preparation of anti-glare film]
The above-mentioned paint was applied to FTUV80UZ with a Meyer bar # 6, dried at 80 ° C. for 1 minute, and cured by irradiating with UV light of 350 mJ / cm 2 under a nitrogen atmosphere using a high-pressure mercury lamp. The thickness of the obtained coating film was 3.7 μm.
[0042]
(Comparative Example 6)
3.0 g of Silosphere C-1504 (silica fine particles, average particle size 4.0 μm, manufactured by Fuji Silysia Ltd.), PL-1 and 7.5 g were mixed with 20.0 g of toluene and sufficiently stirred. 41.7 g of beam set 500 and 2.3 g of Darocure 1173 are added to this liquid, 23.0 g of MEK, 2.5 g of butyl cellosolve are added, BYK 320 and 0.5 g are added, and the mixture is sufficiently stirred to prepare a paint. did.
[Preparation of anti-glare film]
The above coating material was applied to FTUV80UZ with a Meyer bar # 10, dried at 80 ° C. for 1 minute, and cured by irradiating 350 mJ / cm 2 of ultraviolet light under a nitrogen atmosphere using a high-pressure mercury lamp. The thickness of the obtained coating film was 5.5 μm.
(Comparative Example 7)
An antiglare film was produced in the same manner as in Example 1 except that the Meyer bar was changed to # 14 (manufactured by RDS). The thickness of the obtained coating film was 7.1 μm.
(Comparative Example 8)
An antiglare film was produced in the same manner as in Example 1 except that the Meyer bar was changed to # 4 (manufactured by RDS). The thickness of the obtained coating film was 2.0 μm.
[0043]
(Comparative Example 9)
MX300 (3.0 g) was mixed with toluene (24.5 g) and stirred sufficiently. To this solution, add 44.6 g of beam set 500 and 2.4 g of Darocure 1173, 2.4 g of MEK, add 23.0 g of MEK, 2.5 g of butyl cellosolve, add 0.5 g of BYK320, and sufficiently agitate to prepare a paint. did.
[Preparation of anti-glare film]
The above-mentioned paint was applied to FTUV80UZ with a Meyer bar # 6, dried at 80 ° C. for 1 minute, and cured by irradiating with UV light of 350 mJ / cm 2 under a nitrogen atmosphere using a high-pressure mercury lamp. The thickness of the obtained coating film was 3.9 μm.
[0044]
<Comparative Example 10>
[Paint preparation]
7.5 g of PL-1 was mixed with 20.0 g of toluene and sufficiently stirred. To this solution, add 44.6 g of beam set 500 and 2.4 g of Darocure 1173, 2.4 g of MEK, add 23.0 g of MEK, 2.5 g of butyl cellosolve, add 0.5 g of BYK320, and sufficiently agitate to prepare a paint. did.
[Preparation of anti-glare film]
The above-mentioned paint was applied to FTUV80UZ with a Meyer bar # 6, dried at 80 ° C. for 1 minute, and cured by irradiating with UV light of 350 mJ / cm 2 under a nitrogen atmosphere using a high-pressure mercury lamp. The thickness of the obtained coating film was 4.1 μm.
[0045]
[Table 1]
Figure 2004322481
[0046]
[Table 2]
Figure 2004322481
[0047]
[Table 3]
Figure 2004322481
[0048]
As described above, in Examples 1 to 6 in which the size, blending amount, average particle size, and refractive index of the two types of fine particles were combined, good transmittance, antiglare property, visibility, and scratch resistance were obtained. Was done. Example 7 in which the amount of the second type of fine particles was large was slightly inferior in antiglare properties. In Example 8 in which the amount of the first kind of fine particles was large, the transmittance was low and the glare was slightly poor. Comparative Example 1, in which the average particle size of the first type of fine particles was large, was markedly glaring and low in transmittance. Comparative Example 2 in which the average particle size of the first type of fine particles was small was low in antiglare property and scratch resistance. In Comparative Example 3 in which the average particle diameter of the second type of fine particles was large and Comparative Example 6 in which the first type of fine particles were inorganic particles, the transmittance was low and the screen became white. In Comparative Example 4 in which the first type of fine particles had a large refractive index, white blurring of the screen occurred. Comparative Example 5 in which the amount of the first type of fine particles was small, Comparative Example 7 in which the coating film thickness was large, Comparative Example 9 in which the second type of fine particles were not included, and Comparative Example 10 in which the first type of fine particles were not included had poor antiglare properties There was no reflection of outside light. Comparative Example 8 having a small coating thickness was poor in transmittance, glare, white blur, and scratch resistance.
[0049]
(1) Transmittance: The transmittance was measured at 550 nm with a spectrophotometer (UV3100, Shimadzu Corporation).
{Circle over (2)} Haze (cloudiness): Measured with a haze meter (Murakami Color Research Laboratory, HM150) according to JIS K7105.
{Circle around (3)} Gloss: A 60 ° gloss was measured using a gloss meter (Murakami Color Research Laboratory, GM-26PRO) in accordance with JIS Z8741.
{Circle around (4)} Flicker: Each anti-glare film was overlaid on an LCD (liquid crystal display) displaying green on the entire surface, and the degree of flicker on the screen was visually evaluated. Note that a clear type hard coat film is provided on the LCD surface in advance. Those with no or little flicker were evaluated as ○, and those with large flicker were evaluated as x.
{Circle around (6)} Blurring: A black vinyl tape (Nitto vinyl tape, PROSELF No. 21 (wide)) was applied to the opposite side of the coating, and the black density was measured with a Macbeth densitometer. 2.10 or more was evaluated as O, and less than 2.10 as X.
{Circle around (7)} Scratch resistance: A scratch on the surface of the anti-glare layer after placing the steel wool of # 0000 on the surface of the anti-glare layer and reciprocating 100 times on the anti-glare layer with a load of 24.5 kPa using a fastness tester. The number was counted visually. When the anti-glare layer had no scratches, it was evaluated as ○, when less than 10 scratches were evaluated as Δ, and when 10 or more scratches were evaluated as ×.
[0050]
【The invention's effect】
According to the present invention, an antiglare film having low haze, high transparency, and excellent scratch resistance can be obtained. By using the anti-glare film of the present invention, it is possible to reduce flicker and whiteness (blur) of an image even in a high-resolution display, and the visibility of the display is improved.
[Brief description of the drawings]
FIG. 1 is a schematic view (cross section) of an example of the antiglare film of the present invention.

Claims (5)

透明フィルム上に、2種の微粒子および樹脂を含有する防眩層を設けてなる防眩フィルムであって、第1種の微粒子は有機質で平均粒径1〜4μmの微粒子であり、かつ屈折率が、1.45〜1.55未満の範囲にあり、第2種の微粒子は無機質の微粒子で平均粒径が0.1μm未満の微粒子であり、かつ屈折率が、1.45〜1.55未満の範囲にあり、防眩層の塗膜厚さが第1種の微粒子平均粒径の0.8〜2.5倍でありかつ、防眩層表面の60度鏡面光沢度が65%以下であることを特徴とする防眩フィルム。An anti-glare film comprising a transparent film provided with an anti-glare layer containing two types of fine particles and a resin, wherein the first type fine particles are organic fine particles having an average particle diameter of 1 to 4 μm, and have a refractive index. Is less than 1.45 to 1.55, and the second type of fine particles are inorganic fine particles having an average particle size of less than 0.1 μm and a refractive index of 1.45 to 1.55. , The thickness of the coating film of the antiglare layer is 0.8 to 2.5 times the average particle diameter of the first type of fine particles, and the 60-degree specular gloss of the surface of the antiglare layer is 65% or less. An anti-glare film, characterized in that: 透明フィルム上に、2種の微粒子および樹脂を含有する防眩層を設けてなる防眩フィルムであって、第1種の微粒子は有機質で平均粒径1〜4μmの微粒子であり、その屈折率が、1.45〜1.55未満の範囲にあり、その配合量が樹脂100重量部に対して5〜20重量部であり、第2種の微粒子は無機質の微粒子で平均粒径が0.1μm未満の微粒子であり、かつ屈折率が、1.45〜1.55未満の範囲にあり、その配合量が樹脂100重量部に対して5〜25重量部であり、防眩層の塗膜厚さが第1種の微粒子平均粒径の0.8〜2.5倍であることを特徴とする防眩フィルム。An anti-glare film comprising a transparent film provided with an anti-glare layer containing two types of fine particles and a resin, wherein the first type fine particles are organic fine particles having an average particle diameter of 1 to 4 μm, and the refractive index thereof is Is in the range of 1.45 to less than 1.55, the compounding amount is 5 to 20 parts by weight with respect to 100 parts by weight of the resin, and the second type of fine particles are inorganic fine particles having an average particle size of 0. A fine particle having a particle diameter of less than 1 μm, a refractive index in a range of 1.45 to less than 1.55, and a compounding amount of 5 to 25 parts by weight with respect to 100 parts by weight of the resin; An antiglare film having a thickness of 0.8 to 2.5 times the average particle size of the first type of fine particles. 透明フィルムがトリアセチルセルロースフィルムまたはノルボルネンフィルムであることを特徴とする請求項1又は請求項2に記載の防眩フィルム。The anti-glare film according to claim 1 or 2, wherein the transparent film is a triacetyl cellulose film or a norbornene film. 防眩層に含まれる第2種の微粒子が二酸化珪素微粒子である請求項1〜請求項3のいずれかに記載された防眩フィルム。The anti-glare film according to any one of claims 1 to 3, wherein the second type of fine particles contained in the anti-glare layer is silicon dioxide fine particles. 防眩層に含まれる樹脂が電離放射線硬化型樹脂である請求項1〜請求項4のいずれかに記載の防眩フィルム。The antiglare film according to claim 1, wherein the resin contained in the antiglare layer is an ionizing radiation-curable resin.
JP2003120596A 2003-04-24 2003-04-24 Anti-glare film Expired - Fee Related JP4361754B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003120596A JP4361754B2 (en) 2003-04-24 2003-04-24 Anti-glare film
TW093111345A TWI340254B (en) 2003-04-24 2004-04-23 Glare-proof film
KR1020040028047A KR101108907B1 (en) 2003-04-24 2004-04-23 Glare-proof film
CNB200410036953XA CN100570411C (en) 2003-04-24 2004-04-23 Antiglare film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003120596A JP4361754B2 (en) 2003-04-24 2003-04-24 Anti-glare film

Publications (2)

Publication Number Publication Date
JP2004322481A true JP2004322481A (en) 2004-11-18
JP4361754B2 JP4361754B2 (en) 2009-11-11

Family

ID=33499453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003120596A Expired - Fee Related JP4361754B2 (en) 2003-04-24 2003-04-24 Anti-glare film

Country Status (4)

Country Link
JP (1) JP4361754B2 (en)
KR (1) KR101108907B1 (en)
CN (1) CN100570411C (en)
TW (1) TWI340254B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006175783A (en) * 2004-12-24 2006-07-06 Toppan Printing Co Ltd Antiglare laminate and display device
JP2009166322A (en) * 2008-01-15 2009-07-30 Toppan Printing Co Ltd Hard coat film and its manufacturing method
JPWO2015145618A1 (en) * 2014-03-26 2017-04-13 リンテック株式会社 Anti-glare hard coat film
KR20190067751A (en) * 2016-12-12 2019-06-17 주식회사 엘지화학 Optical film and display device comprising the same
JP2019179268A (en) * 2019-07-01 2019-10-17 リンテック株式会社 Antiglare hard-coat film

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005030822A1 (en) 2005-07-01 2007-01-11 Krones Ag Method and apparatus for monitoring an evaporator
CN100356247C (en) * 2005-11-29 2007-12-19 长兴化学工业股份有限公司 Optical thin sheet
JP5220286B2 (en) * 2006-06-15 2013-06-26 日東電工株式会社 Anti-glare hard coat film, polarizing plate and image display device using the same
KR100831497B1 (en) * 2006-08-02 2008-05-22 주식회사 에이스 디지텍 Manufacturing method for glare reducing complementary film
CN101118291B (en) * 2006-08-04 2010-04-14 鸿富锦精密工业(深圳)有限公司 Pervasion piece
KR100920371B1 (en) * 2006-11-10 2009-10-07 도레이새한 주식회사 Light-diffusing film for direct back light unit of lcd
US8182899B2 (en) * 2007-05-09 2012-05-22 Sony Corporation Anti-glare film, method of manufacturing the same, and display apparatus using the same
JP5179229B2 (en) * 2008-03-11 2013-04-10 日東電工株式会社 Laser pointer visibility improving film, polarizing plate, image display device, and laser pointer display method
US8617697B2 (en) * 2008-05-29 2013-12-31 Kolon Industries, Inc. Protective film
KR101037429B1 (en) * 2008-12-23 2011-05-30 주식회사 효성 Antiglare film and method for producing the same
TWI461746B (en) * 2009-03-25 2014-11-21 Sumitomo Chemical Co Method for producing anti-glare film and method for producing mold for anti-glare film
JP2011017829A (en) * 2009-07-08 2011-01-27 Sumitomo Chemical Co Ltd Anti-glare film and method for manufacturing the same
JP4788830B1 (en) * 2010-03-18 2011-10-05 大日本印刷株式会社 Antiglare film, method for producing antiglare film, polarizing plate and image display device
TWI454753B (en) * 2010-04-19 2014-10-01 Tomoegawa Co Ltd Optical laminate, polarizing plate, display device, and method for making an optical laminate
TWI406761B (en) * 2010-12-28 2013-09-01 Chi Mei Corp And a scratch resistant resin laminate for a protective plate of a display
US9507057B2 (en) 2011-10-12 2016-11-29 Dai Nippon Printing Co., Ltd. Anti-glare sheet for image display device
KR101273789B1 (en) 2012-04-19 2013-06-11 다이니폰 인사츠 가부시키가이샤 Anti-glare film, polarizer and image display device
TWI628457B (en) * 2014-04-17 2018-07-01 日商大日本印刷股份有限公司 Anti-glare film, polarizing plate, liquid crystal panel, and image display device
CN104503010B (en) * 2014-12-23 2016-09-21 浙江大学宁波理工学院 A kind of scratch resistance type optical diffusion and preparation method thereof
CN107140842A (en) * 2017-07-04 2017-09-08 京东方科技集团股份有限公司 The preparation method and anti-reflection structure of a kind of anti-reflection structure
WO2019107923A1 (en) * 2017-11-28 2019-06-06 주식회사 엘지화학 Visibility improving film for display panel, and display device comprising same
KR102215026B1 (en) 2017-11-28 2021-02-10 주식회사 엘지화학 Visibility improvement film for display panel and display device comprising the same
WO2019172731A1 (en) * 2018-03-09 2019-09-12 주식회사 엘지화학 Visibility improvement film for display panel, and display device comprising same
KR102209683B1 (en) * 2018-03-09 2021-01-29 주식회사 엘지화학 Visibility improvement film for display panel and display device comprising the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09251101A (en) * 1996-03-15 1997-09-22 Konica Corp Protective film for polarizing plate
JP3862941B2 (en) * 2000-07-21 2006-12-27 リンテック株式会社 High definition antiglare hard coat film
JP2002082206A (en) * 2000-09-06 2002-03-22 Toppan Printing Co Ltd Glare-proof antireflection film
JP2003161816A (en) * 2001-11-29 2003-06-06 Nitto Denko Corp Optical diffusion sheet, optical element and display device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006175783A (en) * 2004-12-24 2006-07-06 Toppan Printing Co Ltd Antiglare laminate and display device
JP2009166322A (en) * 2008-01-15 2009-07-30 Toppan Printing Co Ltd Hard coat film and its manufacturing method
JPWO2015145618A1 (en) * 2014-03-26 2017-04-13 リンテック株式会社 Anti-glare hard coat film
KR20190067751A (en) * 2016-12-12 2019-06-17 주식회사 엘지화학 Optical film and display device comprising the same
KR102077318B1 (en) 2016-12-12 2020-02-13 주식회사 엘지화학 Optical film and display device comprising the same
JP2019179268A (en) * 2019-07-01 2019-10-17 リンテック株式会社 Antiglare hard-coat film

Also Published As

Publication number Publication date
KR101108907B1 (en) 2012-02-09
JP4361754B2 (en) 2009-11-11
CN1540365A (en) 2004-10-27
TWI340254B (en) 2011-04-11
KR20040092478A (en) 2004-11-03
TW200500627A (en) 2005-01-01
CN100570411C (en) 2009-12-16

Similar Documents

Publication Publication Date Title
JP4361754B2 (en) Anti-glare film
JP5653378B2 (en) Anti-glare hard coat film
JP4848072B2 (en) Anti-glare hard coat film
RU2507548C2 (en) Optical film and method for production thereof, antiglare film, polariser with optical layer and display device
JP4187186B2 (en) Anti-glare film
WO2011065446A1 (en) Optical laminate and method for producing optical laminate
JP2010256851A (en) Antiglare hard coat film
JP6414173B2 (en) Antiglare antireflection hard coat film, image display device, and method for producing antiglare antireflection hard coat film
JP5308215B2 (en) Anti-glare hard coat film
JP2013257359A (en) Antidazzle hard coat film
JP4215458B2 (en) Anti-glare film
JP4490622B2 (en) Anti-glare film
JP4393088B2 (en) Anti-glare film
WO2017002779A1 (en) Hard coat film
JP2013195606A (en) Antiglare hard coat film
JP2013045031A (en) Antiglare hard coat film
TWI586995B (en) Anti-glare film
EP3715111B1 (en) Anti-glare film, polarizing plate, and display device
JP2020122926A (en) Antiglare reflection prevention hard coat film, image display device and manufacturing method of antiglare reflection prevention hard coat film
JP2012141625A (en) Optical laminate
JP7007236B2 (en) Hardcourt film and hardcourt resin
JP2010079111A (en) Optical layered product
JP2004217847A (en) Coating composition for forming hard coat layer and hard coat film
JP2014071395A (en) Anti-glare hard coat film
JP2013257358A (en) Polarizing plate and image display device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060414

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080929

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090109

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090813

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4361754

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150821

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees